Molybdenum hexafluoride

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Molybdenum hexafluoride
150px
Names
IUPAC names
molybdenum(VI) fluoride
Other names
molybdenum hexafluoride
Identifiers
7783-77-9 YesY
EC Number 232-026-5
Jmol 3D model Interactive image
PubChem 82219
  • InChI=1S/6FH.Mo/h6*1H;/q;;;;;;+6/p-6
  • F[Mo](F)(F)(F)(F)F
Properties
MoF6
Molar mass 209.93 g/mol
Appearance white crystals[1] or colorless liquid
hygroscopic
Density 3.50 g/cm3[2]
Melting point 17.5 °C (63.5 °F; 290.6 K)[1]
Boiling point 34.0 °C (93.2 °F; 307.1 K)[1]
hydrolyzes
Structure
Orthorhombic, oP28
Pnma, No. 62
octahedral (Oh)
0
Vapor pressure {{{value}}}
Related compounds
Other cations
Tungsten hexafluoride
Uranium hexafluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Molybdenum hexafluoride, also molybdenum(VI) fluoride is the inorganic compound with the formula MoF6. It is the highest fluoride of molybdenum. A colourless solid, it melts just below room temperature. It is highly unstable toward hydrolysis.[3] It is one of the seventeen known binary hexafluorides.

Synthesis

Molybdenum hexafluoride is made by direct reaction of molybdenum metal in an excess of elemental fluorine gas.[2]

Mo + 3 F
2
MoF
6

Typical impurities are MoO2F2 and MoOF4.[4]

Description

Molybdenum hexafluoride is a liquid at room temperature. It reacts violently with water with release of hydrofluoric acid and molybdenum oxides.[1]

At −140 °C, it crystallizes in the orthorhombic space group Pnma. Lattice parameters are a = 9.394 Å, b = 8.543 Å, and c = 4.959 Å. There are four formula units (in this case, discrete molecules) per unit cell, giving a density of 3.50 g·cm−3.[2] The fluorine atoms are arranged in the hexagonal close packing.[5]

In liquid and gas phase, MoF6 adopt octahedral molecular geometry with point group Oh. The Mo–F bond length is 1.817 Å.[2]

Applications

Molybdenum hexafluoride has few uses. In the nuclear industry, MoF6 occurs as an impurity in uranium hexafluoride since molybdenum is a fission product of uranium. It is also an impurity in tungsten hexafluoride, which is used in the semiconductor industry. MoF6 can be removed by reduction of a WF6-MoF6 mixture with any of a number of elements including molybdenum at moderately elevated temperature.[6][7]

References

  1. 1.0 1.1 1.2 1.3 CRC Handbook of Chemistry and Physics, 90th Edition, CRC Press, Boca Raton, Florida, 2009, ISBN 978-1-4200-9084-0, Section 4, Physical Constants of Inorganic Compounds, p. 4-85.
  2. 2.0 2.1 2.2 2.3 T. Drews, J. Supeł, A. Hagenbach, K. Seppelt: "Solid State Molecular Structures of Transition Metal Hexafluorides", in: Inorganic Chemistry, 2006, 45 (9), S. 3782–3788; doi:10.1021/ic052029f; PMID 16634614
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. W. Kwasnik "Molybdenum(VI) Fluoride" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 259.
  5. J. H. Levy, J. C Taylor, A. B. Waugh: "Neutron Powder Structural Studies of UF6, MoF6 and WF6 at 77 K", in: Journal of Fluorine Chemistry, 1983, 23 (1), pp. 29–36; doi:10.1016/S0022-1139(00)81276-2.
  6. US-Patent 5234679: Method of Refining Tungsten Hexafluoride Containing Molybdenum Hexafluoride as an Impurity, 10 August 1993.
  7. US-Patent 6896866: Method for Purification of Tungsten Hexafluoride, 24 May 2005.