Ocean heat content

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Ocean heat content (OHC), NOAA 2012
File:Oceans of Climate Change.ogv
Oceanographer Josh Willis discusses the heat capacity of water, performs an experiment to demonstrate heat capacity using a water balloon and describes how water's ability to store heat affects Earth's climate.
File:The Ocean A Driving Force for Weather and Climate.webm
This animation uses Earth science data from a variety of sensors on NASA Earth observing satellites to measure physical oceanography parameters such as ocean currents, ocean winds, sea surface height and sea surface temperature. These measurements can help scientists understand the ocean's impact on weather and climate. (in HD)

Oceanic heat content (OHC) is the heat stored in the ocean. Oceanography and climatology are the science branches which study ocean heat content. Changes in the ocean heat content play an important role in the sea level rise, because of thermal expansion. It is with high confidence that ocean warming accounts for 90% of the energy accumulation from global warming between 1971 and 2010.[1]

Definition and measurement

The areal density of ocean heat content between two depth levels is defined as:[2]

H= \rho c_p \int_{h2}^{h1}  T(z) dz

where \rho is seawater density, c_p is the specific heat of sea water, h2 is the lower depth, h1 is the upper depth, and  T(z) is the temperature profile. In SI units, H has units of J·m-2. Multiplying this quantity by the area of an ocean basin, or entire ocean, gives the total heat content, as indicated in the figure to right.

Ocean heat content can be computed using temperature measurements obtained by a Nansen bottle, an ARGO float, or ocean acoustic tomography. The World Ocean Database Project is the largest database for temperature profiles from all of the world’s oceans.

Recent changes

Several studies in recent years have found a multidecadal increase in OHC of the deep and upper ocean regions and attribute the heat uptake to anthropogenic warming.[3] Studies based on ARGO indicate that ocean surface winds, especially the subtropical trade winds in the Pacific Ocean, change ocean heat vertical distribution.[4] This results in changes among ocean currents, and an increase of the subtropical overturning, which is also related to the El Niño and La Niña phenomenon. Depending on stochastic natural variability fluctuations, during La Niña years around 30% more heat from the upper ocean layer is transported into the deeper ocean. Model studies indicate that ocean currents transport more heat into deeper layers during La Niña years, following changes in wind circulation.[5] Years with increased ocean heat uptake have been associated with negative phases of the interdecadal Pacific oscillation (IPO).[6] This is of particular interest to climate scientists who use the data to estimate the ocean heat uptake.

A study in 2015 concluded that ocean heat content increases by the Pacific Ocean, were compensated by an abrupt distribution of OHC into the Indian Ocean.[7]

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found. Essay
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.

8. Cheng, L. J. and J. Zhu, 2014: Artifacts in variations of ocean heat content induced by the observation system changes, Geophysical Research Letters, 41(20), 7276-7283, DOI: 10.1002/2014GL061881

External links