Square-free word
In combinatorics, a square-free word is a word (a sequence of characters) that does not contain any subword twice in a row.
Thus a square-free word is one that avoids the pattern XX.[1][2]
Contents
Examples
Over a two-letter alphabet {a, b} the only square-free words are the empty word and a, b, ab, ba, aba, and bab. However, there exist infinite square-free words in any alphabet with three or more symbols,[3] as proved by Axel Thue.[4][5]
One example of an infinite square-free word over an alphabet of size 3 is the word over the alphabet {0,±1} obtained by taking the first difference of the Thue–Morse sequence.[6][7] That is, from the Thue–Morse sequence
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ...
one forms a new sequence in which each term is the difference of two consecutive terms of the Thue–Morse sequence. The resulting square-free word is
Another example found by John Leech[8] is defined recursively over the alphabet {a, b, c}. Let be any word starting with the letter a. Define the words recursively as follows: the word is obtained from by replacing each a in with abcbacbcabcba, each b with bcacbacabcacb, and each c with cabacbabcabac. It is possible to check that the sequence converges to the infinite square-free word
- abcbacbcabcbabcacbacabcacbcabacbabcabacbcacbacabcacb...
Related concepts
A cube-free word is one with no occurrence of www for a factor w. The Thue-Morse sequence is an example of a cube-free word over a binary alphabet.[3] This sequence is not square-free but is "almost" so: the critical exponent is 2.[9] The Thue–Morse sequence has no overlap or overlapping square, instances of 0X0X0 or 1X1X1:[3] it is essentially the only infinite binary word with this property.[10]
The Thue number of a graph G is the smallest number k such that G has a k-coloring for which the sequence of colors along every non-repeating path is squarefree.
The Kolakoski sequence is an example of a cube-free sequence.
An abelian p-th power is a subsequence of the form where each is a permutation of . There is no abelian-square-free infinite word over an alphabet of size three: indeed, every word of length eight over such an alphabet contains an abelian square. There is an infinite abelian-square-free word over an alphabet of size five.[11]
Notes
- ↑ Lothaire (2011) p.112
- ↑ Lothaire (2011) p.114
- ↑ 3.0 3.1 3.2 Lothaire (2011) p.113
- ↑ A. Thue, Über unendliche Zeichenreihen, Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 7 (1906) 1–22.
- ↑ A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 1 (1912) 1–67.
- ↑ Pytheas Fogg (2002) p.104
- ↑ Berstel et al (2009) p.97
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Berstel et al (2009) p.81
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
References
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found..
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.