Revision history of "File:Energyfig.png"

Jump to: navigation, search

Diff selection: Mark the radio boxes of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

  • (cur | prev) 20:30, 8 January 2017127.0.0.1 (talk). . (2,476 bytes) (+2,476). . (<p>The above figure was produced by <a rel="nofollow" class="external text" href="http://www.astroengine.net/astro/projects.shtml">Dr Ian O'Neill</a> and <a rel="nofollow" class="external text" href="http://users.aber.ac.uk/xxl">Dr Xing Li</a> during research into the energy balance in a long coronal loop (600 million meters long in this example). This is a <i>modelled</i> coronal loop using a <i>full-implicit, 2-fluid numerical method</i> which solves the basic plasma equations simultaneously. In the figure, the <i><b>top panel</b></i> shows the plasma parameters along the coronal loop length, where plasma <i>temperature</i> (<i>T</i> in <i>million Kelvin</i> or 10<sup>6</sup>K), <i>velocity</i> (<i>v</i> in 10<sup>2</sup> kilometers per second) and <i>pressure</i> (<i>p</i> in dyne per cm<sup>-2</sup>) are displayed. As can be seen, we are dealing with plasma temperatures of over 1.5MK. The <i><b>lower panel</b></i> demonstrates the energy sources (<a href="//commons.wikimedia.org/w/index.php?title=Kinetic&action=edit&redlink=1" class="new" title="Kinetic (page does not exist)">kinetic</a>, <a href="//commons.wikimedia.org/w/index.php?title=Gravity&action=edit&redlink=1" class="new" title="Gravity (page does not exist)">gravity</a>, <a href="//commons.wikimedia.org/w/index.php?title=Enthalpy&action=edit&redlink=1" class="new" title="Enthalpy (page does not exist)">enthalpy</a>, <a href="//commons.wikimedia.org/wiki/Wave" title="Wave">wave</a> <a href="//commons.wikimedia.org/w/index.php?title=Flux&action=edit&redlink=1" class="new" title="Flux (page does not exist)">fluxes</a>) and energy sinks (<a href="//commons.wikimedia.org/w/index.php?title=Heat_conduction&action=edit&redlink=1" class="new" title="Heat conduction (page does not exist)">conduction</a>, <a href="//commons.wikimedia.org/w/index.php?title=Radiation&action=edit&redlink=1" class="new" title="Radiation (page does not exist)">radiation</a> fluxes). With reference to the figure, the followeing energy flux corresponds to different traces on the graph: kinetic energy flux (<i>thin solid line</i>), gravitational flux (<i>dotted</i>), radiative flux (<i>long-dash</i>), conductive flux (<i>short-dash</i>), enthalpy flux (<i>dot-dash</i>), wave flux (<i>triple-dot-dash</i>) and the <b>total flux</b> (<i>thick solid line</i>). The total flux must remain constant to confirm steady state. </p>)