1 Introduction

Let \({\mathbb {R}}^n\) (\(n \ge 2\)) be the Euclidean space equipped with the classical scalar product \({\textbf{u}}\cdot {\textbf{v}}=\sum _{i=1}^nu_iv_i\); the vectors \({\textbf{u}}\) and \({\textbf{v}}\) are orthogonal if \({\textbf{u}}\cdot {\textbf{v}}=0\). It is well-known that the maximum size of a set \(S \subseteq {\mathbb {R}}^n {\setminus }\{\textbf{0}\}\), such that any two distinct vectors of S are orthogonal is n. More generally, Erdős asked the following question.

Question 1.1

(Erdős) Let \(k \ge \ell \ge 2\). We let \(\alpha _n^{(k,\ell )}\) be the maximum size of a subset \(S \subseteq {\mathbb {R}}^n \setminus \{\textbf{0}\}\) satisfying the following property: for any \(E \subseteq S\) of size k, there exists \(F \subseteq E\) of size \(\ell \) such that any two distinct vectors in F are orthogonal. What is \(\alpha _n^{(k,\ell )}\)?

This question has attracted a lot of attention in the past decades (see for example [4, 7, 8, 13]). Note that the observation at the beginning can be reformulated as \(\alpha _n^{(2,2)}=n\). In [8], Füredi and Stanley proved that \(\alpha _2^{(k,2)}=2k-2\). Furthermore, Rosenfeld showed [13] that \(\alpha _n^{(3,2)}=2n\), a result which was reproved by Deaett [7].

Given a finite field \({\mathbb {F}}_q\) where q is an odd prime power, Ahmadi and Mohammadian [1] investigated the analogue of the problem of Erdős in \({\mathbb {F}}_q^n\) (\(n \ge 2\)), equipped with a symmetric non-degenerate bilinear form. In this setting, they computed \(\alpha _n^{(2,2)}\). Moreover, they provided an upper bound on \(\alpha _n^{(3,2)}\). In [12], Mohammadian and Petridis improved this upper bound.

A positive characteristic analogue of \({\mathbb {R}}\) that is well-studied in geometry of numbers is the field \({\mathbb {F}}_q((x^{-1}))\) of Laurent series in \(x^{-1}\) over a finite field \({\mathbb {F}}_q\) (see [2, 3, 10, 11, 14]). However, orthogonality with respect to bilinear forms on \({\mathbb {F}}_q((x^{-1}))^n\) are different. In this work, we consider the “ultrametric orthogonality” (see Definition 1.4), which makes sense in any ultrametric discrete valued field. This is inspired by the following property: in \({\mathbb {R}}^n\) equipped with the \({\mathcal {L}}_2\)-norm, \({\textbf{u}},{\textbf{v}}\in {\mathbb {R}}^n\) are orthogonal if and only if, for every \(a,b\in {\mathbb {R}}\), we have \(\Vert a{\textbf{u}}+b{\textbf{v}}\Vert ^2_2=\Vert a{\textbf{u}}\Vert ^2_2+\Vert b{\textbf{v}}\Vert ^2_2\).

Now let \({\mathcal {K}}\) be a discrete valued field with valuation \(\nu :{\mathcal {K}} \rightarrow {\mathbb {Z}} \cup \{0\}\). The sets

$$\begin{aligned} & {\mathfrak {m}}=\{ \lambda \in {\mathcal {K}} \mid \nu (\lambda )>0\},\\ & {\mathcal {O}}=\{ \lambda \in {\mathcal {K}} \mid \nu (\lambda ) \ge 0\}, \end{aligned}$$

and

$$\begin{aligned} \kappa ={\mathcal {O}}/{\mathfrak {m}} \end{aligned}$$

denote, respectively, the maximal ideal, the valuation ring and the residue field of \({\mathcal {K}}\). In the following, we assume that \(\kappa \) is finite; for that let us suppose \(\kappa ={\mathbb {F}}_q\) where q is a prime power. Here are some examples of discrete valued fields.

Example 1.2

  • Let \({\mathcal {K}}={\mathbb {F}}_q((x^{-1}))\) (q a prime power) be the field of Laurent series in \(x^{-1}\) and let \(\nu \) be the valuation defined by \(\nu (\sum _{i}a_ix^{-i})=\min (i \mid a_i\ne 0)\). In this case, \({\mathcal {O}}={\mathbb {F}}_q[[x^{-1}]]\), \({\mathfrak {m}}=x^{-1} {\mathcal {O}}\) and \(\kappa ={\mathbb {F}}_q\).

  • Let \({\mathcal {K}}={\mathbb {Q}}_p\) (p a prime number) be the field of p-adic numbers and let \(\nu \) be the p-adic valuation. In this case, \({\mathcal {O}}={\mathbb {Z}}_p\), \({\mathfrak {m}}=p {\mathbb {Z}}_p\) and \(\kappa ={\mathbb {F}}_p\).

On \({\mathcal {K}}\), we consider the utrametric absolute value defined by:

$$\begin{aligned} \left| \lambda \right| =q^{-\nu (\lambda )},\,\,\text {for all}\,\,\lambda \in {\mathcal {K}}. \end{aligned}$$

This gives rise to the infinity norm on \({\mathcal {K}}^n\) (\(n \ge 1\)) given by:

$$\begin{aligned} \Vert \textbf{v}\Vert =\max _{i \in [n]}\vert v_i\vert ,\,\, \text {for all}\,\, \textbf{v}=(v_1,\dots ,v_n) \in {\mathcal {K}}^n. \end{aligned}$$

Recall:

Lemma 1.3

(Ultrametric Inequality)

  1. (1)

    For any \(\alpha _1,\dots ,\alpha _{\ell }\in {\mathcal {K}}\), we have

    $$\begin{aligned} \vert \alpha _1+\dots +\alpha _{\ell }\vert \le \max _{i \in [\ell ]}\vert \alpha _i\vert , \end{aligned}$$
    (1.1)

    where \([\ell ]=\{1,\dots ,\ell \}\). Moreover, if there exists \(i_0\) such that \(\vert \alpha _{i}\vert < \vert \alpha _{i_0}\vert \) for all \(i \ne i_0\), then the inequality in (1.1) is an equality.

  2. (2)

    For any \({\textbf{u}}_1,\dots ,{\textbf{u}}_{\ell }\in {\mathcal {K}}^n\), we have

    $$\begin{aligned} \Vert {\textbf{u}}_1+\dots +{\textbf{u}}_{\ell }\Vert \le \max _{i \in [\ell ]}\Vert {\textbf{u}}_i\Vert . \end{aligned}$$
    (1.2)

    Moreover, if there exists \(i_0\) such that \(\Vert \textbf{u}_{i}\Vert < \Vert \textbf{u}_{i_0} \Vert \) for all \(i \ne i_0\), then the inequality in (1.2) is an equality.

In the sequel, for two vector spaces U and V, we denote \(U\le V\), whenever U is a subspace of V. The “ultrametric orthogonality” we consider is the following (see [10] and [14]).

Definition 1.4

  • The vectors \({\textbf{u}}_1,\dots ,{\textbf{u}}_\ell \in {\mathcal {K}}^n {\setminus } \{\textbf{0}\}\) are orthogonal if

    $$\begin{aligned} \Vert \lambda _\ell {\textbf{u}}_1+\dots + \lambda _\ell {\textbf{u}}_\ell \Vert =\max _{i \in [\ell ]}\Vert \lambda _i \textbf{u}_i \Vert , \end{aligned}$$

    for all \(\lambda _1,\dots ,\lambda _\ell \in {\mathcal {K}}\). In other words, every linear combination of \({\textbf{u}}_1,\dots ,{\textbf{u}}_\ell \) satisfies the equality case of the ultrametric inequality.

  • The subspaces \(U,V \le {\mathcal {K}}^n\) are orthogonal if \({\textbf{u}}\) and \({\textbf{v}}\) are orthogonal, for all \(\textbf{u}\in U\) and \(\textbf{v}\in V\).

  • The subspaces \(U, V \subseteq {\mathcal {K}}^n\) are feebly orthogonal if:

    • either there exists \(\textbf{u} \in U \setminus \{\textbf{0}\}\) such that \({\mathcal {K}}\cdot \textbf{u}\) and V are orthogonal;

    • or there exists \(\textbf{v} \in V \setminus \{\textbf{0}\}\) such that \({\mathcal {K}}\cdot \textbf{v}\) and U are orthogonal.

Remark 1.5

We can view feeble orthogonality as a weaker variant of orthogonality, in which one of the subspaces contains a vector which is orthogonal to all of the vectors in the other subspace.

The unit sphere in \({\mathcal {K}}^n\) is defined by \({\mathbb {B}}_n=\{\textbf{v}\in {\mathcal {K}}^n \mid \Vert \textbf{v}\Vert =1\}\), and the Grassmannian \(\textrm{Gr}_{s,n}({\mathcal {K}})\) (\(1 \le s \le n\)) denotes the set of all s-dimensional subspaces of \({\mathcal {K}}^n\).

Definition 1.6

  • A subset \(S\subseteq {\mathcal {K}}^n \setminus \{\textbf{0}\}\) is weakly orthogonal if any two distinct vectors in S are orthogonal.

  • A subset \(S=\{\textbf{u}_1,\dots ,\textbf{u}_\ell \}\subseteq {\mathcal {K}}^n {\setminus } \{\textbf{0}\}\) is orthogonal if the vectors \(\textbf{u}_1,\dots ,\textbf{u}_\ell \) are orthogonal in the sense of Definition 1.4.

  • Let \(s \ge 1\). A family \({\mathcal {F}} \subseteq \textrm{Gr}_{s,n}({\mathcal {K}})\) is feebly orthogonal if any two distinct subspaces in \({\mathcal {F}}\) are feebly orthogonal.

We can generalize Definition 1.6.

Definition 1.7

Let \( k \ge \ell \ge 2\).

  • A subset \(S \subseteq {\mathcal {K}}^n \setminus \{\textbf{0}\}\) is \((k,\ell )\)-weakly orthogonal if any \(E \subseteq S\) of size k contains a weakly orthogonal subset \(F \subseteq E\) of size \(\ell \). We denote by \(\Delta _{n}^{(k,\ell )}\) the maximum size of a \((k,\ell )\)-weakly orthogonal set in \({\mathcal {K}}^n \setminus \{\textbf{0}\}\), that is,

    $$\begin{aligned} \Delta _{n}^{(k,\ell )}&=\max \{\vert S\vert \mid S \subseteq {\mathcal {K}}^n\setminus \{\textbf{0}\} \,\,\text {is}\,\, (k,\ell )\text {-weakly orthogonal}\}\\&=\max \{\vert S\vert \mid S \subseteq {\mathbb {B}}_n \,\,\text {is}\,\, (k,\ell )\text {-weakly orthogonal}\}. \end{aligned}$$
  • A family \({\mathcal {F}} \subseteq \textrm{Gr}_{s,n}({\mathcal {K}})\) (\(1 \le s \le n\)) is \((k,\ell )\)-feebly orthogonal if any \({\mathcal {E}} \subseteq {\mathcal {F}}\) of size k contains a feebly orthogonal subset \({\mathcal {R}} \subseteq {\mathcal {E}}\) of size \(\ell \). We let

    $$\begin{aligned} \Omega _{s,n}^{(k,\ell )}&=\max \{\vert {\mathcal {F}}\vert \mid {\mathcal {F}} \subseteq \textrm{Gr}_{s,n}({\mathcal {K}})\,\,\text {is}\,\, (k,\ell )\text {-feebly orthogonal}\}. \end{aligned}$$

Remark 1.8

Note that orthogonality is invariant under scalar multiplication. Hence, we restrict to vectors in \({\mathbb {B}}_n\) in Definition 1.7.

In analogy with Question 1.1, it is natural to ask the following.

Question 1.9

Let \(s \ge 1\) and let \(k \ge \ell \ge 2\). What are \(\Delta _{n}^{(k,\ell )}\) and \(\Omega _{s,n}^{(k,\ell )}\)?

The two theorems below answer Question 1.9.

Theorem 1.10

(Weakly orthogonal sets) Let \(k \ge \ell \ge 2\). Then

$$\begin{aligned} \left\lfloor \frac{k-1}{\ell -1}\right\rfloor \frac{q^n-1}{q-1}\le \Delta _{n}^{(k,\ell )}\le \left\lfloor \frac{k-1}{\ell -1}\cdot \frac{q^n-1}{q-1}\right\rfloor ; \end{aligned}$$
(1.3)

more precisely,

$$\begin{aligned} \Delta ^{(k,\ell )}_{n}=\max \left\{ \left. \sum _{i=1}^{\frac{q^n-1}{q-1}}t_i\,\, \right| \sum _{i \in I}t_i \le k-1,\,\,\text {for all}\,\, I \subseteq \left[ \frac{q^n-1}{q-1}\right] \,\, \text {of size}\,\, \ell -1\right\} . \end{aligned}$$
(1.4)

As a consequence, if \(\ell -1\) divides \(k-1\), then \(\Delta _{n}^{(k,\ell )}=\frac{k-1}{\ell -1}\cdot \frac{q^n-1}{q-1}\). In particular,

$$\begin{aligned} \Delta _{n}^{(k,2)}=(k-1)\frac{q^n-1}{q-1}. \end{aligned}$$

Corollary 1.11

Let \(\ell \ge 2\). When \(k \rightarrow \infty \), we have \(\Delta _n^{(k,\ell )}\sim \frac{1}{\ell -1}\frac{q^n-1}{q-1} \cdot k\).

Theorem 1.12

(Feebly orthogonal spaces) Let \(s \ge 1\) and let \(k \ge \ell \ge 2\). Then

$$\begin{aligned} \left\lfloor \frac{k-1}{\ell -1}\right\rfloor {n \brack s}_{q}\le \Omega _{s,n}^{(k,\ell )}\le \left\lfloor \frac{k-1}{\ell -1}\cdot {n \brack s}_{q}\right\rfloor , \end{aligned}$$
(1.5)

where \({n \brack s}_{q}=\frac{(q^{n-s+1}-1)\cdots (q^2-1)(q-1)}{(q^s-1)\cdots (q^2-1)(q-1)}\); more precisely,

$$\begin{aligned} \Omega ^{(k,\ell )}_{s,n}=\max \left\{ \left. \sum _{i=1}^{{n \brack s}_{q}}t_i\,\,\right| \sum _{i \in I}t_i \le k-1,\,\,\text {for all}\,\, I \subseteq \left[ {n \brack s}_{q}\right] \,\, \text {of size}\,\, \ell -1\right\} . \end{aligned}$$
(1.6)

As a consequence, if \(\ell -1\) divides \(k-1\), then \(\Omega _{s,n}^{(k,\ell )}=\frac{k-1}{\ell -1}\cdot {n \brack s}_{q}\). In particular, \(\Omega _{s,n}^{(k,2)}=(k-1){n \brack s}_{q}\).

Corollary 1.13

Let \(s \ge 1\) and let \(\ell \ge 2\). When \(k \rightarrow \infty \), we have \(\Omega _{s,n}^{(k,\ell )}\sim \frac{1}{\ell -1}{n \brack s}_q \cdot k\).

Motivated by Definition 1.7, we also consider:

Definition 1.14

Let \(k \ge \ell \ge 2\). A subset \(S\subseteq {\mathcal {K}}^n{\setminus } \{\textbf{0}\}\) is \((k,\ell )\)-orthogonal if any \(E\subseteq S\) of size k contains an orthogonal subset \(F \subseteq E\) of size \(\ell \). We let

$$\begin{aligned} \Theta _{n}^{(k,\ell )}&=\max \{\vert S\vert \mid S \subseteq {\mathcal {K}}^n \setminus \{\textbf{0}\}\,\,\text {is}\,\,(k,\ell )\text {-orthogonal}\}\\&=\max \{\vert S\vert \mid S \subseteq {\mathbb {B}}_n\,\,\text {is}\,\,(k,\ell )\text {-orthogonal}\}. \end{aligned}$$

Question 1.15

Let \( k \ge \ell \ge 2\). What is \(\Theta _{n}^{(k,\ell )}\)?

In order to estimate \(\Theta _{n}^{(k,\ell )}\), our approach leads to analyze “independent sets” in \({\mathbb {F}}_q^n\); see [5, 6, 9, 15, 16].

Definition 1.16

Let \(1 \le \ell \le k \le q^n-1\) with \(\ell \le n\). A subset \(S\subseteq {\mathbb {F}}_q^n \setminus \{\textbf{0}\}\) is \((k,\ell )\)-independent if every subset \(X\subseteq S\) of size k contains a linearly independent subset of size \(\ell \), that is \(\textrm{dim}(\langle S \rangle ) \ge \ell \). We let

$$\begin{aligned} \textrm{Ind}_q(n,k,\ell )=\max \{\vert S\vert \mid S \subseteq {\mathbb {F}}_q^n\setminus \{\textbf{0}\}\,\,\text {is}\,\,(k,\ell )\text {-independent}\}. \end{aligned}$$

Towards Question 1.15, we obtain partial results:

Theorem 1.17

(Orthogonal sets) Let \(k \ge \ell \ge 2\).

  1. (1)
    $$\begin{aligned} \Theta _{n}^{(k,\ell )} \le \Delta _{n}^{(k,\ell )} \le \left\lfloor \frac{k-1}{\ell -1}\cdot \frac{q^n-1}{q-1}\right\rfloor . \end{aligned}$$
  2. (2)

    \({\text {Ind}}_{q}(n,k,\ell )\le \Theta _{n}^{(k,\ell )}\), with equality when \(k=\ell \). Moreover, if the equality holds, then \(k\le q^{\ell -2}+1\). As a consequence \(\textrm{Ind}_{q}(n,k,2)=(k-1)\frac{q^n-1}{q-1}\), for all \(2\le k \le q\).

  3. (3)

    \(\left\lfloor \frac{k-1}{\ell -1}\right\rfloor \Theta _{n}^{(\ell ,\ell )} \le \Theta _{n}^{(k,\ell )}\le (k-\ell +1){\text {Ind}}_{q}(n,k,\ell )\).

  4. (4)
    $$\begin{aligned} \frac{q^n-1}{q^{\ell -1}-1} \le \limsup _{k\rightarrow \infty }\frac{\Theta _{n}^{(k,\ell )}}{k} \le q^{n}-1. \end{aligned}$$
  5. (5)

    \(\Theta _{n}^{(\ell ,\ell )}<\Delta _{n}^{(\ell ,\ell )}\).

An interesting question is whether a \((k,\ell )\)-orthogonal set must be weakly orthogonal. This motivates the following definition.

Definition 1.18

Let \(k \ge \ell \ge 2\). A weakly orthogonal set \(S\subseteq {\mathcal {K}}^n{\setminus } \{\textbf{0}\}\) is \((k,\ell )\)-strongly orthogonal if, for any set \(E\subseteq S\) of size k, there exists an orthogonal set \(F \subseteq E\) of size \(\ell \). We let

$$\begin{aligned}\Gamma _{n}^{(k,\ell )}&=\max \{\vert S\vert \mid S \subseteq {\mathcal {K}}^n \setminus \{\textbf{0}\}\,\,\text {is}\,\,(k,\ell )\text {-strongly orthogonal}\}\\&=\max \{\vert S\vert \mid S \subseteq {\mathbb {B}}_n\,\,\text {is}\,\,(k,\ell )\text {-strongly orthogonal}\}. \end{aligned}$$

Question 1.19

Let \( k \ge \ell \ge 2\). What is \(\Gamma _{n}^{(k,\ell )}\)?

To investigate \(\Gamma _{n}^{(k,\ell )}\), we also need to study “independent sets” in \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)=({\mathbb {F}}_q^n{\setminus }\{\textbf{0}\})/{\mathbb {F}}_q^*\).

Definition 1.20

Let \(1 \le \ell \le k \le \frac{q^n-1}{q-1}\) with \(\ell \le n\). A subset \(S\subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) is \((k,\ell )\)-pro-independent if any subset \(X\subseteq S\) of size k contains a linearly independent subset of size \(\ell \), that is \(\textrm{dim}(\langle S \rangle ) \ge \ell \). We let

$$\begin{aligned} \textrm{Ind}_q^{{\text {pro}}}(n,k,\ell )=\max \{\vert S\vert \mid S \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\,\,\text {is}\,\,(k,\ell )\text {-pro-independent}\}. \end{aligned}$$

Remark 1.21

When \(q=2\), we have \({\mathbb {P}}^{n-1}({\mathbb {F}}_2)={\mathbb {F}}_2^n\), so \({\text {Ind}}_2^{{\text {pro}}}(n,k,\ell )={\text {Ind}}_2(n,k,\ell )\).

Concerning Question 1.19, we get:

Theorem 1.22

(Strongly orthogonal sets) Let \(k \ge \ell \ge 2\). Then \(\Gamma _{n}^{(k,\ell )}=\textrm{Ind}^{\textrm{pro}}_q(n,k,\ell )\).

Of independent interest, we also investigate some questions regarding independent sets in \({\mathbb {F}}_q^n\) and \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\):

Theorem 1.23

  1. (1)

    Independent sets in \({\mathbb {F}}_q^n\) . Let \(2 \le \ell \le k \le q^n-1\) with \(\ell \le n\). Then:

    1. (a)

      \({\text {Ind}}_q(n,k,\ell )=q^{n}-1\) if and only if \(k\ge q^{\ell -1}\). In other words, \({\mathbb {F}}_q^{n}{\setminus } \{\textbf{0}\}\) is \((k,\ell )\)-independent if and only if \(k\ge q^{\ell -1}\);

    2. (b)

      the sequence \(\{\textrm{Ind}_q(n,k,\ell )\}_{k=\ell }^{q^{\ell -1}}\) is strictly increasing in k;

    3. (c)
      $$\begin{aligned} q^n-1=\textrm{Ind}_q(n,k,1) =\dots =\textrm{Ind}_q(n,k,\lfloor \log _q(k) \rfloor +1)> \dots > \textrm{Ind}_q(n,k,k)\ge n+1. \end{aligned}$$
  2. (2)

    Independent sets in \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) . Let \(2 \le \ell \le k \le \frac{q^n-1}{q-1}\) with \(\ell \le n\). Then:

    1. (a)

      \({\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )=\frac{q^n-1}{q-1}\) if and only if \(k\ge \frac{q^{\ell -1}-1}{q-1}\). In other words, \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) is \((k,\ell )\)-pro-independent if and only if \(k\ge \frac{q^{\ell -1}-1}{q-1}\);

    2. (b)

      the sequence \(\{{\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\}_{k=\ell }^{\frac{q^{\ell -1}-1}{q-1}}\) is strictly increasing in k;

    3. (c)

      moreover,

      $$\begin{aligned} & \frac{q^n-1}{q-1}=\textrm{Ind}^{{\text {pro}}}_q(n,k,1)= \dots =\textrm{Ind}^{\textrm{pro}}_{q}(n,k,\lfloor \log _q((q-1)k+1)\rfloor +1)> \dots > \\ & \quad \textrm{Ind}^{{\text {pro}}}_q(n,k,k)\ge n+1. \end{aligned}$$
  3. (3)

    Independent sets in \({\mathbb {F}}_q^n\) vs independent sets in \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) . Let \(2 \le \ell \le k \le \frac{q^n-1}{q-1}\) with \(\ell \le n\). Then:

    1. (a)

      \(\textrm{Ind}_q^{\textrm{pro}}(n,k,\ell ) \le \textrm{Ind}_q(n,k,\ell )\), with equality when \(k=\ell \);

    2. (b)

      \(\left\lceil \llceil \frac{1}{q-1}{\text {Ind}}_q(n,k,\ell )\right\rceil \rrceil \le {\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\le \left\lfloor \frac{1}{q-1}{\text {Ind}}_q(n,(q-1)k,\ell )\right\rfloor . \) Moreover, if \(k\le \frac{q^{\ell -1}-1}{q-1}\), then \(\textrm{Ind}_q(n,k,\ell )=(q-1)\textrm{Ind}^{\textrm{pro}}_q(n,k,\ell )\) if and only if \(q=2\).

This paper is organized as follows. In Sect. 2, we investigate independent sets in \({\mathbb {F}}_q^n\) and \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\); in particular we prove Theorem 1.23. Section 3 is devoted to orthogonality in \({\mathcal {K}}^n\):

  • Weakly orthogonal sets and feebly orthogonal spaces: Theorems 1.10 and 1.12 are proved in §3.1.

  • Orthogonal sets: Theorem 1.17 is proved in §3.2.

  • Strongly orthogonal sets: Theorem 1.22 is proved in §3.3.

2 Independent sets in \({\mathbb {F}}_q^n\) and \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\)

In this section, we deal with independent sets in \({\mathbb {F}}_q^n\) and \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\). In particular, we prove Theorem 1.23. Let \({\mathbb {F}}_q\) be a finite field and let \(n\ge 1\) be an integer.

Notations:

  • For \(m \ge 1\), we let \([m]=\{1,\dots ,m\}\).

  • For \(\textbf{v}=(v_1,\dots ,v_n) \in {\mathbb {F}}_q^n\), let \(\textrm{supp}(\textbf{v})=\{i\in [n] \mid v_i \ne 0\}\).

  • Let \( s \in [n]\). The Grassmannian \(\textrm{Gr}_{s,n}({\mathbb {F}}_q)\) denotes the space of all s-dimensional subspaces of \({\mathbb {F}}_q^n\); the size of \(\textrm{Gr}_{s,n}({\mathbb {F}}_q)\) is given by the q-binomial \({n \brack s}_q=\frac{(q^{n-s+1}-1)\dots (q^2-1)(q-1)}{(q^s-1)\dots (q^2-1)(q-1)}\).

  • Let \(\rho _n:{\mathbb {F}}_q^n{\setminus } \{\textbf{0}\}\rightarrow {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) be the natural projection.

2.1 Independent sets in \({\mathbb {F}}_q^n\)

In this part, we establish some properties of \(\textrm{Ind}_q(n,k,\ell )\). In [5] and [6], Damelin, Michalski, Müllen and Stone investigated \(\textrm{Ind}_q(n,k,\ell )\) when \(k=\ell \). Independently, Tassa and Villar [16] also studied \(\textrm{Ind}_q(n,k,\ell )\). In finite geometry, similar concepts closely related to the \((k,\ell )\)-(pro-)independence have been also investigated earlier (see the survey [9] of Hirschfeld); for example, given \(1 \le k \le n\), Tallini [15] studied the maximum size of \(S \subset {\mathbb {F}}_q^n\) such that any \(X \subset S\) of size k is \({\mathbb {F}}_q\)-linearly independent, but not all \(X' \subset S\) of size \(k+1\) is \({\mathbb {F}}_q\)-linearly independent.

Theorem 2.1

(Theorem 2 in [5])

  1. (1)

    For every \(n\ge 3\), we have \(\textrm{Ind}_2(n,3,3)=2^{n-1}\).

  2. (2)

    For every \(m\ge 0\) and \(n\ge 3\,m+2\), we have \(\textrm{Ind}_2(n,n-m,n-m)=n+1\).

  3. (3)

    For every \(m\ge 2\), \(i\in \{0,1\}\) and \(n=3\,m+i\), we have \(\textrm{Ind}_2(n,n-m,n-m)=n+2\).

Theorem 2.2

(Theorem 2 in [6]) Let \(2 \le \ell \le n\). Then \({\text {Ind}}_q(n,\ell ,\ell )=n+1\) if and only if \(\frac{q}{q+1}(n+1)\le \ell \).

Proposition 2.3

(Theorem 1.23 (1a)) Let \(2 \le \ell \le k \le q^n-1\) with \(\ell \le n\). Then \({\text {Ind}}_q(n,k,\ell )=q^{n}-1\) if and only if \(k\ge q^{\ell -1}\). In other words, \({\mathbb {F}}_q^{n}{\setminus } \{\textbf{0}\}\) is \((k,\ell )\)-independent if and only if \(k\ge q^{\ell -1}\).

Proof

First assume that \(k< q^{\ell -1}\). Let us consider an \(\ell -1\)-dimensional subspace \(V \le {\mathbb {F}}_q^n\). Since \(\vert V {\setminus } \{\textbf{0}\}\vert = q^{\ell -1}-1\ge k\) and \(\textrm{dim}(\langle V{\setminus } \{\textbf{0}\} \rangle ) < \ell \), the set \({\mathbb {F}}_q^n{\setminus }\{{\varvec{0}}\}\) is not \((k,\ell )\)-independent.

Now assume that \(k \ge q^{\ell -1}\). Let \(S\subseteq {\mathbb {F}}_q^n{\setminus }\{\textbf{0}\}\) be a subset of size k. Since \(\vert S\cup \{\textbf{0}\}\vert =k+1> q^{\ell -1}\), we have \(\textrm{dim}(\langle S\rangle ) \ge \ell \). Hence \({\mathbb {F}}_q^n\setminus \{\textbf{0}\}\) is \((k,\ell )\)-independent.

This completes the proof. \(\square \)

Corollary 2.4

For \(k \ge 3\),

$$\begin{aligned} \textrm{Ind}_2(n,k,3)= {\left\{ \begin{array}{ll} 2^{n-1} & \text {if}\,\, k=3,\\ 2^n-1 & \text {if}\,\, k \ge 4. \end{array}\right. } \end{aligned}$$

Proof

This follows from Theorem 2.1 (1) and Proposition 2.3. \(\square \)

Proposition 2.5

(Theorem 1.23 (1b) and (1c))

  1. (1)

    Let \(2 \le \ell \le n\). Then the sequence \(\{\textrm{Ind}_q(n,k,\ell )\}_{k=\ell }^{q^{\ell -1}}\) is strictly increasing in k.

  2. (2)

    Let \(2 \le k \le q^n-1\). Then

    $$\begin{aligned} q^n-1=\textrm{Ind}_q(n,k,1) =\dots =\textrm{Ind}_q(n,k,\lfloor \log _q(k) \rfloor +1)> \dots > \textrm{Ind}_q(n,k,k)\ge n+1. \end{aligned}$$

Proof

  1. (1)

    First, note that by Proposition 2.3, \(\textrm{Ind}_q(n,k,q^{\ell -1}-1)< \textrm{Ind}_q(n,k,q^{\ell -1})=q^n-1\). Also, \(\{\textrm{Ind}_q(n,k,\ell )\}_{k=\ell }^{q^{\ell -1}}\) is weakly increasing. Assume on the contrary that it is not strictly increasing, that is, \({\text {Ind}}_q(n,k,\ell )={\text {Ind}}_q(n,k+1,\ell )\) for some \(\ell \le k \le q^{\ell -1}-2\). Let us consider a \((k,\ell )\)-independent set \(S \subseteq {\mathbb {F}}_q^n{\setminus }\{\textbf{0}\}\) of maximum size, and let \({\textbf{v}}\in {\mathbb {F}}_q^n\setminus (S\cup \{\textbf{0}\})\).

Claim

The set \(S\cup \{{\textbf{v}}\}\) is \((k+1,\ell )\)-independent.

Proof of the claim

Let \(X\subseteq S\cup \{{\textbf{v}}\}\) be of size \(k+1\). Since \(\vert S \cap X\vert \ge k\), by the \((k,\ell )\)-independence of S, the set \(S \cap X\) contains an independent set of size \(\ell \). Hence \(S\cup \{{\textbf{v}}\}\) is \((k+1,\ell )\)-independent, which completes the proof of the claim. \(\square \)

Therefore \({\text {Ind}}_q(n,k+1,\ell )\ge \vert S\vert +1>{\text {Ind}}_q(n,k,\ell )\), a contradiction. Consequently \(\{\textrm{Ind}_q(n,k,\ell )\}_{k=\ell }^{q^{\ell -1}}\) is strictly increasing.

  1. (2)

    Clearly \(\{\textrm{Ind}_q(n,k,\ell )\}_{\ell =1}^k\) is weakly decreasing in \(\ell \). By Proposition 2.3, we have

    $$\begin{aligned} q^n-1=\textrm{Ind}_q(n,k,1) =\dots =\textrm{Ind}_q(n,k,\lfloor \log _q(k)\rfloor +1) \end{aligned}$$

    and

    $$\begin{aligned} \textrm{Ind}_q(n,k,\lfloor \log _q(k)\rfloor +1)> \textrm{Ind}_q(n,k,\lfloor \log _q(k)\rfloor +2). \end{aligned}$$

    Assume on the contrary that \(\textrm{Ind}_q(n,k,\ell )=\textrm{Ind}_q(n,k,\ell +1)\) for some \( \lfloor \log _q(k)\rfloor +2 \le \ell \le k-1\). Note that \(\textrm{Ind}_q(n,k,\ell )<q^n-1\). Now let us consider a \((k,\ell +1)\)-independent set S of maximum size, and let \({\textbf{v}}\in {\mathbb {F}}_q^n\setminus (S\cup \{\textbf{0}\})\).

Claim

The set \(S\cup \{{\textbf{v}}\}\) is \((k,\ell )\)-independent.

Proof of the claim

Let \(X\subseteq S\cup \{{\textbf{v}}\}\) be of size k. If \(X \subseteq S\), then, by the \((k,\ell +1)\)-independence of S, the set X contains an independent set of size \(\ell \). We may then assume that \(X \not \subset S\). Let us choose \(\textbf{u} \in S \setminus X\), which exists because \(\vert S\vert \ge k\). Since \(\vert (X\cap S) \cup \{\textbf{u}\}\vert \ge k\), by the \((k,\ell +1)\)-independence of S, the set \((X\cap S)\cup \{\textbf{u}\}\) contains an independent set of size \(\ell +1\). Hence X contains an independent set of size \(\ell \). This implies that \(S\cup \{{\textbf{v}}\}\) is \((k,\ell )\)-independent. \(\square \)

Therefore \(\textrm{Ind}_q(n,k,\ell )\ge \vert S\vert +1 > \textrm{Ind}_q(n,k,\ell +1)\), a contradiction. Consequently

$$\begin{aligned} q^n-1=\textrm{Ind}_q(n,k,1) =\dots =\textrm{Ind}_q(n,k,\lfloor \log _q(k) \rfloor +1)> \dots > \textrm{Ind}_q(n,k,k)\ge n+1. \end{aligned}$$

\(\square \)

The following generalizes slightly Theorem 2.2.

Corollary 2.6

Let \(2 \le \ell \le k \le q^{n}-1\). Then \({\text {Ind}}_q(n,k,\ell )=n+1\) if and only if \(k=\ell \) and \(\frac{q}{q+1}(n+1) \le \ell \).

Proof

This is a consequence of Theorem 2.2 and Proposition 2.5 (1). \(\square \)

2.2 Independent sets in \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\)

In this part, we investigate some properties of \({\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\).

Proposition 2.7

(Theorem 1.23 (2a)) Let \(2 \le \ell \le k \le \frac{q^n-1}{q-1}\) with \(\ell \le n\). Then \({\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )=\frac{q^n-1}{q-1}\) if and only if \(k> \frac{q^{\ell -1}-1}{q-1}\). In other words, \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) is \((k,\ell )\)-pro-independent if and only if \(k> \frac{q^{\ell -1}-1}{q-1}\).

Proof

First assume that \(k\le \frac{q^{\ell -1}-1}{q-1}\). Let us consider an \(\ell -1\)-dimensional subspace \(V \le {\mathbb {F}}_q^{n}\). Since \(\vert \rho _n(V {\setminus } \{\textbf{0}\})\vert =\frac{q^{\ell -1}-1}{q-1}\ge k\) and \(\textrm{dim}(\langle X \rangle )< \ell \), the set \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) is not \((k,\ell )\)-pro-independent.

Now assume that \(k> \frac{q^{\ell -1}-1}{q-1}\). Let \(S\subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) be of size k. Since \(\vert S\vert =k > \frac{q^{\ell -1}-1}{q-1}\), we have \(\textrm{dim}(\langle S \rangle ) \ge \ell \). Hence \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) is \((k,\ell )\)-pro-independent. \(\square \)

Proposition 2.8

(Theorem 1.23 (2b) and (2c))

  1. (1)

    Let \(2 \le \ell \le n\). Then the sequence \(\{{\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\}_{k=\ell }^{\frac{q^{\ell -1}-1}{q-1}}\) is strictly increasing in k.

  2. (2)

    Let \(2 \le k \le \frac{q^n-1}{q-1}\). Then

    $$\begin{aligned} & \frac{q^n-1}{q-1}=\textrm{Ind}^{{\text {pro}}}_q(n,k,1)= \dots =\textrm{Ind}^{\textrm{pro}}_{q}(n,k,\lfloor \log _q((q-1)k+1)\rfloor +1)> \dots >\\ & \quad \textrm{Ind}^{{\text {pro}}}_q(n,k,k)\ge n+1. \end{aligned}$$

Proof

  1. (1)

    The proof is analogous to the one of Proposition 2.5 (1).

  2. (2)

    The proof is analogous to the one of Proposition 2.5 (2).

\(\square \)

2.3 \({\mathbb {F}}_q^n\) versus \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\)

In this part, we discuss some relations between \(\textrm{Ind}_q(n,k,\ell )\) and \(\textrm{Ind}^{\textrm{pro}}_q(n,k,\ell )\). The following is straightforward.

Lemma 2.9

(Properties of \(\rho _n\))

  1. (1)

    The map \(\rho _n\) is a \((q-1)\)-to-1. As a consequence, for every \(S\subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\), we have that \(\vert \rho _n^{-1}(S)\vert =(q-1)\vert S\vert \).

  2. (2)

    For any \(T\subseteq {\mathbb {F}}_q^n {\setminus } \{\textbf{0}\}\), we have \(\frac{\vert T\vert }{q-1}\le \vert \rho _n (T)\vert \le \vert T\vert \).

  3. (3)

    If \(T\subseteq {\mathbb {F}}_q^n{\setminus }\{\textbf{0}\}\) is linearly independent, then \(\vert \rho _n(T)\vert =\vert T\vert \).

  4. (4)

    Let \(\textbf{v}_1,\dots ,\textbf{v}_r \in {\mathbb {F}}_q^n {\setminus }\{\textbf{0}\}\). If \(\rho _n(\textbf{v}_1),\dots ,\rho _n(\textbf{v}_r)\) are linearly independent, then so are \(\textbf{v}_1,\dots ,\textbf{v}_r\).

Lemma 2.10

Let \(2 \le \ell \le n\). Suppose that \(S\subseteq {\mathbb {F}}_q^n{\setminus } \{\textbf{0}\}\) is an \((\ell ,\ell )\)-independent set. Then S is (2, 2)-independent.

Proof

Let \(\textbf{u},\textbf{v} \in S\) be distinct vectors. Since \(\vert S\vert \ge \ell \), there exists a subset \(X \subseteq S\) of size \(\ell \) containing both \(\textbf{u}\) and \(\textbf{v}\). Noticing that X is an independent set, \(\textbf{u}\) and \(\textbf{v}\) are also independent. Therefore S is (2, 2)-independent. \(\square \)

Lemma 2.11

Let \(2 \le \ell \le k \le q^n-1\) with \(\ell \le n\). Suppose that \(S\subseteq {\mathbb {F}}_q^n{\setminus } \{\textbf{0}\}\) is \((k,\ell )\)-independent. Then \(\rho _n(S) \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) is \((k,\ell )\)-pro-independent. Moreover, if \(k=\ell \), then \(\vert \rho _n(S)\vert =\vert S\vert \).

Proof

For the first statement, let \(X\subseteq \rho _n(S)\) be of size k. Since \(\rho _n^{-1}(X) \cap S \subseteq S\) has size at least k, it contains an independent subset Y of size \(\ell \). By Lemma 2.9 (2.9) and (2.9), \(\rho _n(Y) \subseteq X\) is also independent of size \(\ell \). Consequently \(\rho _n(S)\) is \((k,\ell )\)-pro-independent.

For the second statement, by Lemma 2.10, S is (2, 2)-independent. Hence, by Lemma 2.9 (2.9), \(\rho _n\vert _S\) is injective; so \(\vert \rho _n(S)\vert =\vert S\vert \) \(\square \)

Proposition 2.12

(Theorem 1.23 (3a)) Let \(2 \le \ell \le k \le \frac{q^n-1}{q-1}\) with \(\ell \le n\). Then \(\textrm{Ind}_q^{\textrm{pro}}(n,k,\ell ) \le \textrm{Ind}_q(n,k,\ell )\). Moreover \({\text {Ind}}_q^{{\text {pro}}}(n,\ell ,\ell )={\text {Ind}}_q(n,\ell ,\ell )\).

Proof

For the first statement, let \(S \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) be \((k,\ell )\)-pro-independent of maximum size. Let us choose a lift \(S' \subseteq {\mathbb {F}}_q^n {\setminus } \{\textbf{0}\}\) of S under \(\rho _n\). Since \(\rho _n\vert _{S'}\) is injective, it is clear that \(S'\) is \((k,\ell )\)-independent. Hence \(\textrm{Ind}_q^{\textrm{pro}}(n,k,\ell )=\vert S\vert =\vert S'\vert \le \textrm{Ind}_q(n,k,\ell )\).

For the second statement, let \(S\subseteq {\mathbb {F}}_q^n{\setminus } \{\textbf{0}\}\) be \((\ell ,\ell )\)-independent of maximum size. By Lemma 2.11, \(\rho _n(S)\) is \((\ell ,\ell )\)-pro-independent and \(\vert \rho _n(S)\vert =\vert S\vert \). Hence \(\textrm{Ind}_q(n,\ell ,\ell )=\vert S\vert =\vert \rho _n(S)\vert \le \textrm{Ind}_q^{\textrm{pro}}(n,\ell ,\ell )\). Consequently, from the first statement, we obtain \({\text {Ind}}_q^{{\text {pro}}}(n,\ell ,\ell )={\text {Ind}}_q(n,\ell ,\ell )\). \(\square \)

Question 2.13

When is \({\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )={\text {Ind}}_q(n,k,\ell )\)?

Corollary 2.14

Let \(2 \le \ell \le n\). Then \({\text {Ind}}_q^{{\text {pro}}}(n,\ell ,\ell )=n+1\) if and only if \(\frac{q}{q+1}(n+1)\le \ell \).

Proof

This is a direct consequence of Theorem 2.2 and Proposition 2.12. \(\square \)

Proposition 2.15

(Theorem 1.23 (3b)) Let \(2 \le \ell \le k \le \frac{q^n-1}{q-1}\) with \(\ell \le n\). Then

$$\begin{aligned} \left\lceil \llceil \frac{1}{q-1}{\text {Ind}}_q(n,k,\ell )\right\rceil \rrceil \le {\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\le \left\lfloor \frac{1}{q-1}{\text {Ind}}_q(n,(q-1)k,\ell )\right\rfloor . \end{aligned}$$
(2.1)

Proof

-Upper bound: Let \(S\subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) be a \((k,\ell )\)-pro-independent set of maximum size. Let \(X\subseteq \rho _n^{-1}(S)\) be of size \((q-1)k\). Since \( \vert \rho _n(X)\vert \ge k\) there exists an independent subset \(Y \subseteq \rho _n(X)\) of size \(\ell \). Let us consider a lift \(T \subseteq X\) of Y under \(\rho _n\). By Lemma 2.9 (2.9), T is also linearly independent. Hence \(\rho _n^{-1}(S)\) is \(((q-1)k,\ell )\)-independent, so

$$\begin{aligned} {\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )=\vert S\vert =\frac{\vert \rho _n^{-1}(S)\vert }{q-1}\le \frac{{\text {Ind}}_q(n,(q-1)k,\ell )}{q-1}. \end{aligned}$$

Therefore \({\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\le \left\lfloor \frac{{\text {Ind}}_q(n,k(q-1),\ell )}{q-1}\right\rfloor \).

-Lower bound: Let \(S\subseteq {\mathbb {F}}_q^n{\setminus } \{\textbf{0}\}\) be a \((k,\ell )\)-independent set of maximum size. By Lemma 2.11, \(\rho _n(S)\) is \((k,\ell )\)-pro-independent. Since \(\vert \rho _n(S)\vert \ge \frac{\vert S\vert }{q-1}\), we have \({\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\ge \vert \rho _n(S)\vert \ge \frac{{\text {Ind}}_q(n,k,\ell )}{q-1}\). Therefore \({\text {Ind}}_q^{{\text {pro}}}(n,k,\ell )\ge \left\lceil \llceil \frac{{\text {Ind}}_q(n,k,\ell )}{q-1}\right\rceil \rrceil \). \(\square \)

Proposition 2.16

(Theorem 1.23 (3b)) Let \(2 \le \ell \le k \le \frac{q^n-1}{q-1}\) with \(\ell \le n\). Assume that \(k\le \frac{q^{\ell -1}-1}{q-1}\). Then \(\textrm{Ind}_q(n,k,\ell )=(q-1)\textrm{Ind}^{\textrm{pro}}_q(n,k,\ell )\) if and only if \(q=2\).

Proof

Assume that \(q=2\). Then, by Remark 1.21, we have \(\textrm{Ind}_q(n,k,\ell )=(q-1)\textrm{Ind}^{\textrm{pro}}_q(n,k,\ell )\).

Conversely assume that \(\textrm{Ind}_q(n,k,\ell )=(q-1)\textrm{Ind}^{\textrm{pro}}_q(n,k,\ell )\). Let us consider a \((k,\ell )\)-independent set \(S\subseteq {\mathbb {F}}_q^n\setminus \{\textbf{0}\}\) of maximum size.

Claim

The set \(\rho _n(S)\) is \((k,\ell )\)-pro-independent of maximum size.

Proof of the claim

By Lemma 2.11, \(\rho _n(S)\) is \((k,\ell )\)-pro-independent. Since \(\textrm{Ind}^{\textrm{pro}}(n,k,\ell ) \ge \vert \rho _n(S)\vert \ge \frac{\vert S\vert }{q-1}=\frac{\textrm{Ind}_q(n,k,\ell )}{q-1}\), we get \(\vert \rho _n(S)\vert =\textrm{Ind}_q^{\textrm{pro}}(n,k,\ell )\). Hence \(\rho _n(S)\) is \((k,\ell )\)-pro-independent of maximum size. \(\square \)

Set \(r= \left\lceil \llceil \frac{k}{q-1} \right\rceil \rrceil \ge 1\).

Claim

The set \(\rho _n(S)\) is \((r,\ell )\)-pro-independent.

Proof of the claim

First, note that \((q-1)\vert \rho _n(S)\vert =\vert S\vert \). Hence \(\rho _n\vert _S: S \rightarrow \rho _n(S)\) is \((q-1)\) to 1. Now let \(V \subseteq \rho _n(S)\) be of size r. As \(X=\rho _n^{-1}(V)\cap S\) has size at least k, by the \((k,\ell )\)-independence of S, we have \(\textrm{dim}(\langle X \rangle ) \ge \ell \). Therefore \(\textrm{dim}(\langle V \rangle ) \ge \ell \). This implies that \(\rho _n(S)\) is \((r,\ell )\)-pro-independent. \(\square \)

Consequently, \(\textrm{Ind}_q^{\textrm{pro}}(n,k,\ell )=|\rho _n(S)|\le \textrm{Ind}^{\textrm{pro}}_q(n,r,\ell )\). By Proposition 2.8 (1), we deduce that \(r=k\), so \(q=2\). \(\square \)

Question 2.17

When are the inequalities in Proposition 2.15 tight?

3 Orthogonality in \({\mathcal {K}}^n\)

In this section we prove Theorems 1.10, 1.12, 1.17 and 1.22. For that, let \({\mathcal {K}}\) be a discrete valued field with valuation \(\nu \), maximal ideal \({\mathfrak {m}}\), valuation ring \({\mathcal {O}}\) and finite residue field \(\kappa ={\mathbb {F}}_q\). Let us fix a uniformizer \(\pi \) (that is \(\nu (\pi )=1\)) of \({\mathcal {K}}\) and an integer \(n \ge 1\).

Notations:

  • Denote by \(\{\textbf{e}_1,\dots ,\textbf{e}_n\}\) the standard basis for \({\mathcal {K}}^n\).

  • The Grassmannians \(\textrm{Gr}_{s,n}({\mathcal {K}})\) and \(\textrm{Gr}_{n,s}({\mathbb {F}}_q)\) (\(1 \le s \le n\)) denote the set of all s-dimensional subspaces of \({\mathcal {K}}^n\) and \({\mathbb {F}}_q^n\), respectively. In particular, \(\textrm{Gr}_{1,n}({\mathbb {F}}_q)={\mathbb {P}}^{n-1}({\mathbb {F}}_q)\).

  • For \({\textbf{v}}\in {\mathcal {K}}^n \setminus \{\textbf{0}\}\), let \(\nu (\textbf{v})=\min _{1 \le i \le n} (\nu (v_i))\).

  • Denote by \({\mathbb {B}}_n\) the unit sphere in \({\mathcal {K}}^{n}\), that is, \({\mathbb {B}}_n=\{\textbf{v} \in {\mathcal {K}}^n \mid \Vert \textbf{v}\Vert =1\}\).

  • For \(m \in {\mathbb {Z}}\) and \(\lambda \in \pi ^m{\mathcal {O}}\), write \(\lambda =O(\pi ^m)\) and denote by \(\textrm{res}_m(\lambda )\) the residue of \(\lambda \) in \(\pi ^m{\mathcal {O}}/\pi ^{m+1}{\mathcal {O}} \simeq {\mathbb {F}}_q\). Let \(\gamma =\textrm{res}_0: {\mathcal {O}} \rightarrow {\mathbb {F}}_q\) (the reduction modulo \({\mathfrak {m}}\)) and let us fix a section \(\delta :{\mathbb {F}}_q \rightarrow {\mathcal {O}}\) of \(\gamma \).

  • For \(\textbf{v}=(v_1,\dots ,v_n) \in {\mathcal {O}}^n\), let \(\gamma _n(\textbf{v})=(\gamma (v_1),\dots ,\gamma (v_n)) \in {\mathbb {F}}_q^n\). Denote by \(\delta _n:{\mathbb {F}}_q^n \rightarrow {\mathcal {O}}^n\) the section of \(\gamma _n\) induced by \(\delta \).

  • For \(\textbf{0} \ne V \subseteq {\mathcal {K}}^n\), let \(\mu _n(V)=\gamma _n(V \cap {\mathbb {B}}_n)\cup \{\textbf{0}\}\).

  • Denote by \(\rho _n\) the natural projection \({\mathbb {F}}_q^n\setminus \{\textbf{0}\} \rightarrow {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\).

  • For \(\ell \ge 1\), we denote by \(\textrm{Sym}(\ell )\) the symmetric group on \(\{1,\dots ,\ell \}\).

Example 3.1

Let \({\mathcal {K}}={\mathbb {F}}_q((x^{-1}))\) be as in Example 1.2. Take \(\pi =x^{-1}\). Recall that \({\mathcal {O}}={\mathbb {F}}_q[[x^{-1}]]\) and note that \({\mathbb {B}}_n={\mathcal {O}}^n\). We have \(\textrm{res}_m\left( \sum _{j=m}^{\infty }a_jx^{-j}\right) =a_m\) and

$$\begin{aligned} \gamma _n\left( \sum _{j=0}^{\infty }a_{1j}x^{-j},\dots ,\sum _{j=0}^{\infty }a_{nj}x^{-j}\right) =\left( a_{10},\dots ,a_{n0}\right) . \end{aligned}$$

A section of \(\gamma \) is given by the inclusion \(\delta : a \in {\mathbb {F}}_q \mapsto a \in {\mathcal {O}}\).

3.1 Weak and feeble orthogonality

In this part, we provide proofs of Theorem 1.10 (see §3.1.1) and Theorem 1.12 (see §3.1.2). We begin with some preliminary results.

Lemma 3.2

Let \(\textbf{u}, \textbf{v} \in {\mathbb {B}}_n\). Then \({\textbf{u}}\) and \({\textbf{v}}\) are orthogonal if and only if \(\rho _n(\gamma _n({\textbf{u}})) \ne \rho _n(\gamma _n({\textbf{v}}))\).

Proof

Assume that \(\rho _n(\gamma _n({\textbf{u}}))=\rho _n(\gamma _n({\textbf{v}}))\). Then there exists \((a,b)\in {\mathbb {F}}_q^2 \setminus \{\textbf{0}\}\) such that \(a \gamma _n(\textbf{u})+b \gamma _n(\textbf{v})=0\). Hence, for every \(i\in [n]\), we have

$$\begin{aligned} \vert \delta (a)u_i+\delta (b)v_i\vert =\vert O(\pi )\vert <\max \{\Vert \delta (a){\textbf{u}}\Vert ,\Vert \delta (b){\textbf{v}}\Vert \}. \end{aligned}$$

This implies that \(\Vert \delta (a)\textbf{u}+ \delta (b) \textbf{v}\Vert < \max \{\Vert \delta (a){\textbf{u}}\Vert ,\Vert \delta (b){\textbf{v}}\Vert \}\). Therefore, \({\textbf{u}}\) and \({\textbf{v}}\) are not orthogonal.

Conversely assume that \(\rho _n(\gamma _n({\textbf{u}}))\ne \rho _n(\gamma _n({\textbf{v}}))\). Let \((\lambda ,\beta )\in {\mathcal {K}}^2 \setminus \{\textbf{0}\}\).

  • Case 1: \(\vert \lambda \vert <\vert \beta \vert \) or \(\vert \beta \vert <\vert \lambda \vert \) . By the ultrametric inequality,

    $$\begin{aligned} \Vert \lambda {\textbf{u}}+\beta {\textbf{v}}\Vert =\max \{\Vert \lambda {\textbf{u}}\Vert ,\Vert \beta {\textbf{v}}\Vert \}. \end{aligned}$$
  • Case 2: \(\vert \lambda \vert =\vert \beta \vert \) . Since \(\rho _n(\gamma _n(\textbf{u})) \ne \rho _n(\gamma _n(\textbf{v}))\), we have \(\textrm{res}_{\nu (\lambda )}(\lambda )\gamma _n(\textbf{v})+\textrm{res}_{\nu (\beta )}(\beta )\gamma _n({\textbf{u}})\ne \textbf{0}\). Fix \(i_0\in \textrm{supp}(\gamma _n(\textbf{u}))\cup \textrm{supp}(\gamma _n(\textbf{v}))\) such that

    $$\begin{aligned} \textrm{res}_{\nu (\lambda )}(\lambda )\gamma (v_{i_0})+\textrm{res}_{\nu (\beta )}(\beta )\gamma (u_{i_0}) \ne 0. \end{aligned}$$

    Since

    $$\begin{aligned} \textrm{res}_{\nu (\lambda )}\left( \lambda v_{i_0}+\beta u_{i_0}\right) =\textrm{res}_{\nu (\lambda )}(\lambda )\gamma (v_{i_0})+\textrm{res}_{\nu (\beta )}(\beta )\gamma (u_{i_0}) \ne 0, \end{aligned}$$

    we have

    $$\begin{aligned} \vert \lambda v_{i_0}+\beta u_{i_0}\vert =q^{\nu (\lambda )}=\max \{\Vert \lambda {\textbf{u}}\Vert ,\Vert \beta {\textbf{v}}\Vert \}, \end{aligned}$$

    and so

    $$\begin{aligned} \Vert \lambda {\textbf{u}}+\beta {\textbf{v}}\Vert =\vert \lambda u_{i_0}+\beta v_{i_0}\vert =\max \{\Vert \lambda {\textbf{u}}\Vert ,\Vert \beta {\textbf{v}}\Vert \}. \end{aligned}$$

Therefore \(\Vert \lambda {\textbf{u}}+\beta {\textbf{v}}\Vert =\max \{\Vert \lambda {\textbf{u}}\Vert ,\Vert \beta {\textbf{v}}\Vert \}\). Consequently \({\textbf{u}}\) and \({\textbf{v}}\) are orthogonal. \(\square \)

Lemma 3.3

Suppose that \(W={\mathbb {F}}_q \cdot \textbf{w}_1 \oplus \dots \oplus {\mathbb {F}}_q \cdot \textbf{w}_s \le {\mathbb {F}}_q^n\) (\(s \ge 1\)). Let

$$\begin{aligned} V={\mathcal {K}}\cdot \delta _n(\textbf{w}_1)+\dots +{\mathcal {K}} \cdot \delta _n(\textbf{w}_s). \end{aligned}$$

Then \(\textrm{dim}(V)=s\) and \(\mu _n(V)=W\).

Proof

Assume on the contrary that \(\delta _n(\textbf{w}_1),\dots ,\delta _n(\textbf{w}_s)\) are linearly dependent over \({\mathcal {K}}\). Then \(\lambda _1 \delta _n(\textbf{w}_1)+\dots +\lambda _s \delta _n(\textbf{w}_s)=0\) for some \((\lambda _1,\dots ,\lambda _s)\in {\mathcal {K}}^s \setminus \{\textbf{0}\}\). Fix \(1 \le i_0 \le s\) such that \(\vert \lambda _{i_0}\vert =\max _{1 \le i \le s}\vert \lambda _i\vert \). Hence \(\sum _{i \ne i_0}\gamma (\lambda _i \lambda _{i_0}^{-1})\textbf{w}_{i}+\textbf{w}_{i_0}=0\), a contradiction. Therefore \(\delta _n(\textbf{w}_1),\dots ,\delta _n(\textbf{w}_s)\) are linearly independent over \({\mathcal {K}}\). Consequently \(\textrm{dim}(V)=s\).

Now we are going to prove that \(\mu _n(V)=W\).

  • The inclusion \(W \subseteq \mu _n(V)\) . Let \(\textbf{w} \in W\). Write \(\textbf{w}=\lambda _1 \textbf{w}_1+\dots +\lambda _s\textbf{w}_s\) where \(\lambda _1,\dots ,\lambda _s \in {\mathbb {F}}_q\). Then \(\textbf{w}=\gamma _n\left( \delta (\lambda _1)\delta _n(\textbf{w}_1)+\dots +\delta (\lambda _s)\delta _n(\textbf{w}_s)\right) \in \mu _n(V)\). Hence \(W \subseteq \mu _n(V)\).

  • The inclusion \(\mu _n(V) \subseteq W\) . Let \(\textbf{a} \in \mu _n(V) {\setminus } \{\textbf{0}\}\). Write \(\textbf{a}=\gamma _n(\textbf{v})\) where \(\textbf{v} \in V \cap {\mathbb {B}}_n\). Moreover write \(\textbf{v}=\lambda _{1}\delta _n(\textbf{w}_1)+\dots +\lambda _{s}\delta _n(\textbf{w}_s)\) where \(\lambda _1,\dots ,\lambda _s \in {\mathcal {K}}\). Fix \(1 \le i_0 \le s\) such that \(\vert \lambda _{i_0}\vert =\max _{1\le i \le s}\vert \lambda _i\vert \). Since \(\gamma _n(\lambda _{i_0}^{-1} \textbf{v})=\textbf{w}_{i_0}+\sum _{i \ne i_0}\gamma (\lambda _{i_0}^{-1}\lambda _i)\textbf{w}_i \ne \textbf{0}\), we get \(\Vert \lambda _{i_0}^{-1} \textbf{v}\Vert =1\) and so \(\vert \lambda _{i_0}\vert =1\). Hence \(\lambda _{1},\dots ,\lambda _s \in {\mathcal {O}}\) and \(\textbf{a}=\gamma _n(\textbf{v})=\sum _{i=1}^s \gamma (\lambda _i)\textbf{w}_i \in W\). Therefore \(\mu _n(V) \subseteq W\).

Consequently \(\mu _n(V)=W\). \(\square \)

Example 3.4

With the same notation as in Example 3.1, if \(\textbf{w}_1,\dots ,\textbf{w}_s \in {\mathbb {F}}_q^n\) are \({\mathbb {F}}_q\)-linearly independent, then

$$\begin{aligned} \mu _n({\mathcal {K}} \textbf{w}_1+\dots +{\mathcal {K}} \textbf{w}_s)={\mathbb {F}}_q\textbf{w}_1+\dots +{\mathbb {F}}_q\textbf{w}_s. \end{aligned}$$

Lemma 3.5

Let \(V \le {\mathcal {K}}^n\) be a subspace of dimension \(s \ge 1\). Then \(\mu _n(V)\) is a subspace of \({\mathbb {F}}_q^n\) of dimension s.

Proof

Claim

The set \(\mu _n(V)\) is a subspace of \({\mathbb {F}}_q^n\)

Proof of the claim

Let \(\lambda \in {\mathbb {F}}_q^*\) and let \(\textbf{a}, \textbf{b} \in \mu _n(V){\setminus }\{\textbf{0}\}\). Write \(\textbf{a}=\gamma _n(\textbf{u})\) and \(\textbf{b}=\gamma _n(\textbf{v})\) where \(\textbf{u},\textbf{v} \in V \cap {\mathbb {B}}_n\). First, noting that \(\delta (\lambda )\textbf{u} \in V \cap {\mathbb {B}}_n\), we have \(\lambda \textbf{a}=\gamma _n(\delta (\lambda ) \textbf{u}) \in \mu _n(V)\). Now we are going to prove that \(\lambda \textbf{a}+\textbf{b} \in \mu _n(V)\). Without loss of generality, we may assume \(\lambda \textbf{a}+\textbf{b} \ne \textbf{0}\). Since \(\gamma _n(\delta (\lambda )\textbf{u}+\textbf{v})=\lambda \textbf{a}+\textbf{b} \ne \textbf{0}\), we have \(\delta (\lambda )\textbf{u}+\textbf{v} \in V \cap {\mathbb {B}}_n\), and so \(\lambda \textbf{a}+\textbf{b} \in \mu _n(V)\). Consequently, \(\mu _n(V)\) is a subspace of \({\mathbb {F}}_q^n\). \(\square \)

Claim

The dimension of \(\mu _n(V)\) is s.

Proof of the claim

By [10, Lemma 3.3], V admits an orthogonal basis \(\{\textbf{v}_1,\dots ,\textbf{v}_s\}\), which we may assume to be in \({\mathbb {B}}_n\). By Proposition 3.14, \(\gamma _n(\textbf{v}_1),\dots ,\gamma _n(\textbf{v}_s)\) are linearly independent. Then by Lemma 3.3, \(\mu _n(V)={\mathbb {F}}_q \cdot \gamma _n(\textbf{v}_1)\oplus \dots \oplus {\mathbb {F}}_q \cdot \gamma _n(\textbf{v}_s)\). Hence \(\textrm{dim}(\mu _n(V))=s\). \(\square \)

\(\square \)

Lemma 3.6

Let \(s \ge 1\). Two subspaces \(U,V \in \textrm{Gr}_{s,n}({\mathcal {K}})\) are feebly orthogonal if and only if \(\mu _n(U) \ne \mu _n(V)\).

Proof

This follows from Lemmas 3.2, 3.3 and 3.5. \(\square \)

Lemma 3.7

Let \(s\ge 1\) and let \(k \ge \ell \ge 2\).

  1. (1)

    Let \(S\subseteq {\mathbb {B}}_n\). Then S is \((k,\ell )\)-weakly orthogonal, if and only if, for any \(S'\subseteq S\) of size k, we have \(\vert (\rho _n \circ \gamma _n)(S')\vert \ge \ell \).

  2. (2)

    Let \({\mathcal {F}}\subseteq \textrm{Gr}_{s,n}({\mathcal {K}})\). Then \({\mathcal {F}}\) is \((k,\ell )\)-feebly orthogonal, if and only if, for any \({\mathcal {E}}\subseteq {\mathcal {F}}\) of size k, we have \(\vert \mu _n({\mathcal {E}})\vert \ge \ell \).

Proof

  1. (1)

    This follows from the definition of \((k,\ell )\)-weak orthogonality and Lemma 3.2.

  2. (2)

    This follows from the definition of \((k,\ell )\)-feeble orthogonality and Lemma 3.6.

\(\square \)

Lemma 3.8

Let \(s \ge 1\) and let \(k \ge \ell \ge 2\).

  1. (1)

    Let \(S \subseteq {\mathbb {B}}_n\). For \( \textbf{w} \in {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\), let

    $$\begin{aligned} t_{\textbf{w},S}=\vert \{\textbf{v} \in S \mid \rho _n(\gamma _n(\textbf{v}))=\textbf{w}\}\vert . \end{aligned}$$

    Then the following are equivalent:

    1. (a)

      S is \((k,\ell )\)-weakly orthogonal;

    2. (b)

      For any \({\mathcal {I}} \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) with \(\vert {\mathcal {I}}\vert \le \ell -1\), we have \(\sum _{\textbf{w} \in {\mathcal {I}}}t_{\textbf{w},S} \le k-1\).

  2. (2)

    Let \({\mathcal {F}} \subseteq \textrm{Gr}_{n,s}({\mathcal {K}})\). For \( W \in \textrm{Gr}_{n,s}({\mathbb {F}}_q)\), let

    $$\begin{aligned} t_{W,{\mathcal {F}}}=\vert \{V \in {\mathcal {F}} \mid \mu _n(V)=W\}\vert . \end{aligned}$$

    Then the following are equivalent:

    1. (a)

      \({\mathcal {F}}\) is \((k,\ell )\)-feebly orthogonal;

    2. (b)

      For any \({\mathcal {R}} \subseteq \textrm{Gr}_{s,n}({\mathbb {F}}_q)\) with \(\vert {\mathcal {R}}\vert \le \ell -1\), we have \(\sum _{W \in {\mathcal {R}}} t_{W,S} \le k-1\).

Proof

  1. (1)

    By Lemma 3.7, S is \((k,\ell )\)-weakly orthogonal, if and only if, \(\vert \rho _n(\gamma _n(S'))\vert \ge \ell \), for all \(S'\subseteq S\) of size k. This is equivalent to the following: for any \({\mathcal {I}} \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) with \(\vert {\mathcal {I}}\vert \le \ell -1\), we have \(\vert (\rho _n \circ \gamma _n)^{-1}({\mathcal {I}}) \cap S\vert \le k-1\). In other words, for any \({\mathcal {I}} \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) with \(\vert {\mathcal {I}}\vert \le \ell -1\), we have \(\sum _{\textbf{w} \in {\mathcal {I}}}t_{\textbf{w},S} \le k-1\).

  2. (2)

    By Lemma 3.7, \({\mathcal {F}}\) is \((k,\ell )\)-feebly orthogonal, if and only if, \(\vert \mu _n({\mathcal {E}})\vert \ge \ell \), for all \({\mathcal {E}}\subseteq {\mathcal {F}}\) of size k. This is equivalent to the following: for all \({\mathcal {R}} \subseteq \textrm{Gr}_{s,n}({\mathbb {F}}_q)\) with \(\vert {\mathcal {R}}\vert \le \ell -1\), we have \(\vert \mu _n^{-1}({\mathcal {R}}) \cap {\mathcal {F}}\vert \le k-1\). In other words, for any \({\mathcal {R}} \subseteq \textrm{Gr}_{s,n}({\mathbb {F}}_q)\) with \(\vert {\mathcal {R}}\vert \le \ell -1\), we have \(\sum _{W \in {\mathcal {R}}}t_{W,S} \le k-1\).

\(\square \)

3.1.1 Proof of Theorem 1.10

Lower bound of (1.3). Take \(S_0 \subseteq {\mathbb {B}}_n\) satisfying \(\vert (\rho _n \circ \gamma _n)^{-1}(\textbf{z})\cap S_0\vert = \left\lfloor \frac{k-1}{\ell -1}\right\rfloor \) for all \(\textbf{z} \in {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\). Note that, for any \(S' \subseteq S_0\) of size k, we have \((\rho _n \circ \gamma _n)(S') \ge \ell \). Thus, by Lemma 3.7, \(S_0\) is \((k,\ell )\)-weakly orthogonal. Therefore

$$\begin{aligned} \Delta _{n}^{(k,\ell )} \ge \vert S_0\vert = \left\lfloor \frac{k-1}{\ell -1}\right\rfloor \frac{q^n-1}{q-1}. \end{aligned}$$

-Upper bound of (1.3). Let \(S \subseteq {\mathbb {B}}_n\) be a \((k,\ell )\)-weakly orthogonal set of maximum size. By Lemma 3.8 (3.8), we have

$$\begin{aligned} \vert S\vert = \sum _{\textbf{w}\in {\mathbb {P}}^{n-1}({\mathbb {F}}_q)}t_{\textbf{w},S}=\frac{\sum _{{\mathcal {I}} \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q),\vert {\mathcal {I}}\vert =\ell -1}\sum _{\textbf{w} \in {\mathcal {I}}}t_{\textbf{w},S}}{\left( {\begin{array}{c}\frac{q^n-1}{q-1}-1\\ \ell -2\end{array}}\right) }\le \frac{\left( {\begin{array}{c}\frac{q^n-1}{q-1}\\ \ell -1\end{array}}\right) (k-1)}{\left( {\begin{array}{c}\frac{q^n-1}{q-1}-1\\ \ell -2\end{array}}\right) }= \frac{k-1}{\ell -1} \cdot \frac{q^n-1}{q-1}, \end{aligned}$$

and so

$$\begin{aligned} \Delta _{n}^{(k,\ell )}=\vert S\vert \le \left\lfloor \frac{k-1}{\ell -1} \cdot \frac{q^n-1}{q-1}\right\rfloor . \end{aligned}$$

-Equation (1.4). From the discussion above, it is easy to see that

$$\begin{aligned} \Delta ^{(k,\ell )}_{n}=\max \left\{ \left. \sum _{i=1}^{\frac{q^n-1}{q-1}}t_i\,\,\right| \sum _{i \in I}t_i \le k-1,\,\,\text {for all}\,\, I \subseteq \left[ \frac{q^n-1}{q-1}\right] \,\, \text {of size}\,\, \ell -1\right\} . \end{aligned}$$

3.1.2 Proof of Theorem 1.12

The approach is quite similar to the proof of Theorem 1.10 in §3.1.1.

-Lower bound of (1.5). Take \({\mathcal {F}}_0 \subseteq \textrm{Gr}_{s,n}({\mathcal {K}})\) satisfying \(\vert \mu _n^{-1}(W)\cap {\mathcal {F}}_0\vert = \left\lfloor \frac{k-1}{\ell -1}\right\rfloor \) for all \(W \in \textrm{Gr}_{s,n}({\mathbb {F}}_q)\). Note that, for any \({\mathcal {E}} \subseteq {\mathcal {F}}_0\) of size k, we have \(\vert \mu _n({\mathcal {E}})\vert \ge \ell \). By Lemma 3.7, \({\mathcal {F}}_0\) is \((k,\ell )\)-feebly orthogonal. Therefore

$$\begin{aligned} \Delta _{n,s}^{(k,\ell )} \ge \vert {\mathcal {F}}_0\vert \ge \left\lfloor \frac{k-1}{\ell -1}\right\rfloor {n \brack s}_{q}. \end{aligned}$$

-Upper bound of (1.5). Let \({\mathcal {F}} \subseteq \textrm{Gr}_{s,n}({\mathcal {K}})\) be a \((k,\ell )\)-feebly orthogonal set of maximum size. By Lemma 3.8 (3.8), we have

$$\begin{aligned} & \vert {\mathcal {F}}\vert = \sum _{W \in \textrm{Gr}_{s,n}({\mathbb {F}}_q)} t_{W,{\mathcal {F}}}=\frac{\sum _{{\mathcal {R}} \subseteq \textrm{Gr}_{s,n}({\mathbb {F}}_q),\vert {\mathcal {R}}\vert =\ell -1}\sum _{W \in {\mathcal {R}}}t_{W,{\mathcal {F}}}}{\left( {\begin{array}{c}\vert \textrm{Gr}_{s,n}({\mathbb {F}}_q)\vert -1\\ \ell -2\end{array}}\right) } \\ & \quad \le \frac{\left( {\begin{array}{c}\vert \textrm{Gr}_{s,n}({\mathbb {F}}_q)\vert \\ \ell -1\end{array}}\right) (k-1)}{\left( {\begin{array}{c}\vert \textrm{Gr}_{s,n}({\mathbb {F}}_q)\vert -1\\ \ell -2\end{array}}\right) }=\frac{k-1}{\ell -1} \cdot \vert \textrm{Gr}_{s,n}({\mathbb {F}}_q)\vert , \end{aligned}$$

and so

$$\begin{aligned} \Delta _{n,s}^{(k,\ell )}=\vert {\mathcal {F}}\vert \le \left\lfloor \frac{k-1}{\ell -1} \cdot {n \brack s}_{q}\right\rfloor . \end{aligned}$$

-Equation (1.6). From the discussion above, it is easy to see that

$$\begin{aligned} \Delta ^{(k,\ell )}_{n,s}=\max \left\{ \left. \sum _{i=1}^{{n \brack s }_{q}}t_i\,\,\right| \sum _{i \in I}t_i \le k-1,\,\,\text {for all}\,\, I \subseteq \left[ {n \brack s }_{q}\right] \,\, \text {of size}\,\, \ell -1\right\} . \end{aligned}$$

3.2 Orthogonal sets

In this section, we give a proof of Theorem 1.17 and establish another results. Our approach is based on the notion of wedge product, and we refer the reader to [14] for more details.

Lemma 3.9

(Wedge product norm) Let \(\textbf{v}_1,\dots , \textbf{v}_\ell \in {\mathcal {K}}^n {\setminus } \{\textbf{0}\}\). Then

$$\begin{aligned} \Vert \textbf{v}_1 \wedge \dots \wedge \textbf{v}_\ell \Vert =\max _{1\le j_1<\dots<j_{\ell }\le n}\left| \det ((v_{i,j_k})_{1\le i,k \le \ell }) \right| =\max _{1\le j_1<\dots <j_{\ell }\le n}\left| \sum _{\sigma \in \textrm{Sym}(\ell )}{\text {sgn}}(\sigma )\prod _{i=1}^{\ell } v_{i,j_{\sigma (i)}}\right| .\nonumber \\ \end{aligned}$$
(3.1)

In particular, if \(\ell =n\), then

$$\begin{aligned} \Vert \textbf{v}_1 \wedge \dots \wedge \textbf{v}_n\Vert =\left| \det ({\textbf{v}}_1,\dots ,{\textbf{v}}_n)\right| =\left| \sum _{\sigma \in \textrm{Sym}(n)} \textrm{sgn}(\sigma ) \prod _{i=1}^n v_{i,\sigma (i)} \right| . \end{aligned}$$

Lemma 3.10

(Hadamard’s inequality) Let \(\textbf{v}_1,\dots , \textbf{v}_\ell \in {\mathcal {K}}^n {\setminus } \{\textbf{0}\}\). Then

$$\begin{aligned} \Vert \textbf{v}_1 \wedge \dots \wedge \textbf{v}_\ell \Vert \le \Vert \textbf{v}_1\Vert \dots \Vert \textbf{v}_\ell \Vert , \end{aligned}$$

with equality if and only if \(\{\textbf{v}_1,\dots , \textbf{v}_\ell \}\) is orthogonal; in this case \(\textbf{v}_1,\dots , \textbf{v}_\ell \) are linearly independent over \({\mathcal {K}}\).

Proof

See [14, Lemma 2.4]. \(\square \)

Lemma 3.11

A set \(\{{\textbf{v}}_1,\dots , {\textbf{v}}_{\ell }\} \subseteq {\mathbb {B}}_n\) is orthogonal if and only if

$$\begin{aligned} \max _{1\le j_1<\dots <j_{\ell }\le n}\left| \sum _{\sigma \in \textrm{Sym}(\ell )}{\text {sgn}}(\sigma )\prod _{i=1}^{\ell } v_{i,j_{\sigma (i)}}\right| =1. \end{aligned}$$
(3.2)

Proof

This follows from Hadamard’s inequality and (3.1). \(\square \)

Lemma 3.11 motivates the following.

Definition 3.12

Let \({\textbf{v}}_1,\dots , {\textbf{v}}_{\ell } \in {\mathbb {B}}_n\). For any \(1\le j_1<\dots <j_{\ell }\le n\), we define the matrix \(C({\textbf{v}}_1,\dots ,{\textbf{v}}_{\ell };j_1,\dots ,j_{\ell })\in M_{\ell }({\mathbb {F}}_q)\) whose the (ik)-th coordinate is \(\gamma (v_{i,j_k})\), that is

$$\begin{aligned} C({\textbf{v}}_1,\dots ,{\textbf{v}}_{\ell };j_1,\dots ,j_{\ell })=\begin{pmatrix} \gamma (v_{1,j_1})& \gamma (v_{1,j_2})& \dots & \gamma (v_{1,j_\ell })\\ \gamma (v_{2,j_1})& \gamma (v_{2,j_2})& \dots & \gamma (v_{2,j_\ell })\\ \vdots & \dots & \ddots & \vdots \\ \gamma (v_{\ell ,j_{1}})& \gamma (v_{\ell ,j_{2}})& \dots & \gamma (v_{\ell ,j_{\ell }}) \end{pmatrix}. \end{aligned}$$

Lemma 3.13

Let \({\textbf{v}}_1,\dots , {\textbf{v}}_{\ell } \in {\mathbb {B}}_n\). Then \(\{{\textbf{v}}_1,\dots ,{\textbf{v}}_{\ell }\}\) is orthogonal if and only if there exist \(1 \le j_1<\dots <j_{\ell } \le n\) such that \(C({\textbf{v}}_1,\dots ,{\textbf{v}}_{\ell };j_1,\dots ,j_{\ell })\in {\text {GL}}_\ell ({\mathbb {F}}_q)\).

Proof

By (3.2), \(\{{\textbf{v}}_1,\dots ,{\textbf{v}}_{\ell }\}\) is orthogonal if and only if

$$\begin{aligned} \max _{1 \le j_1<\dots <j_{\ell }\le n}\left| \sum _{\sigma \in \textrm{Sym}(\ell )}{\text {sgn}}(\sigma )\prod _{i=1}^{\ell }v_{i,j_{\sigma (i)}}\right| =1, \end{aligned}$$

if and only if there exist \(1 \le j_1<\dots <j_{\ell }\le n\) such that

$$\begin{aligned} \sum _{\sigma \in \textrm{Sym}(\ell )}{\text {sgn}}(\sigma )\prod _{i=1}^{\ell } v_{i,j_{\sigma (i)}} \in {\mathcal {O}}^*. \end{aligned}$$

This happens if and only if there exist \(1 \le j_1<\dots <j_{\ell }\le n\) such that

$$\begin{aligned} \sum _{\sigma \in \textrm{Sym}(\ell )}{\text {sgn}}(\sigma )\prod _{i=1}^{\ell } \gamma (v_{i,j_{\sigma (i)}}) \ne 0, \end{aligned}$$

if and only if there exist \(1 \le j_1<\dots <j_{\ell }\le n\) such that \(\det \left( C({\textbf{v}}_1,\dots ,{\textbf{v}}_{\ell };j_1,\dots ,j_{\ell })\right) \ne 0\). \(\square \)

Proposition 3.14

A set \(S=\{\textbf{v}_1,\dots ,\textbf{v}_\ell \} \subseteq {\mathbb {B}}_n\) with \(\ell \le n\) is orthogonal if and only if the vectors \(\gamma _n(\mathbf{v_1}),\dots ,\gamma _n(\mathbf{v_\ell }) \in {\mathbb {F}}_q^n\) are linearly independent. Moreover S is \((k,\ell )\)-orthogonal if and only if for every \(X\subseteq S\) of size k, we have \(\textrm{dim}(\langle \gamma _n(X)\rangle ) \ge \ell \).

Proof

This follows easily from the definition of \((k,\ell )\)-orthogonality and Lemma 3.13. \(\square \)

Proposition 3.15

(Theorem 1.17 (1)) Let \(k \ge \ell \ge 2\). Then

$$\begin{aligned} \Theta _{n}^{(k,\ell )} \le \Delta _{n}^{(k,\ell )} \le \left\lfloor \frac{k-1}{\ell -1}\cdot \frac{q^n-1}{q-1}\right\rfloor . \end{aligned}$$

Proof

The first inequality is straightforward. The second inequality comes from Theorem 1.10. \(\square \)

Remark 3.16

Note that:

  • \(\Delta _{n}^{(k,2)}=\Theta _{n}^{(k,2)}\);

  • and that \(\Theta _{n}^{(n,n)}\ge n+1\), since \(S=\{{\textbf{e}}_1,\dots , {\textbf{e}}_n,\sum _{i=1}^n \textbf{e}_i\}\subseteq {\mathcal {K}}^n{\setminus }\{\textbf{0}\}\) is (nn)-orthogonal.

Question 3.17

When is \(\Theta _{n}^{(k,\ell )} = \Delta _{n}^{(k,\ell )}\)?

Lemma 3.18

Let \(2 \le \ell \le n\) and let \(S' \subset {\mathbb {B}}_n\) be an \((\ell ,\ell )\)-orthogonal set.

  1. (1)

    \((\rho _n \circ \gamma _n)\vert _{S'}\) is injective. In particular, \(\gamma _n\vert _{S'}\) is injective;

  2. (2)

    \(S'\) is (mm)-orthogonal, for all \(2 \le m \le \ell \).

Proof

  1. (1)

    Let \(\textbf{u}, \textbf{v} \in S'\) be distinct. Since \(\vert S'\vert \ge \ell \), there exists \(X \subset S'\) of size \(\ell \) such that \(\textbf{u},\textbf{v} \in X\). Since X is orthogonal, by Proposition 3.14, \((\rho _n \circ \gamma _n)(\textbf{u}) \ne (\rho _n \circ \gamma _n)(\textbf{v})\). Hence \((\rho _n \circ \gamma _n)\vert _{S'}\) is injective.

  2. (2)

    Let \(2 \le m \le \ell \). Consider a subset \(X \subset S'\) of size m. Since \(\vert S'\vert \ge \ell \), there exists \(Y \subset S'\) of size \(\ell \) containing X. By the \((\ell ,\ell )\)-orthogonality of \(S'\), the set Y is orthogonal, so is X. Consequently \(S'\) is (mm)-orthogonal.

\(\square \)

Proposition 3.19

(Theorem 1.17 (2)) Let \(2 \le \ell \le k\). Then \({\text {Ind}}_{q}(n,k,\ell )\le \Theta _{n}^{(k,\ell )}\). Moreover \(\textrm{Ind}_q(n,\ell ,\ell )=\Theta _n^{(\ell ,\ell )}\).

Proof

For the first statement, let \(S \subset {\mathbb {F}}_q^n {\setminus } \{ \textbf{0}\}\) be a \((k,\ell )\)-independent set of maximum size. Then, by Proposition 3.14, the lift \(\delta _n(S) \subset {\mathbb {B}}_n\) of S is \((k,\ell )\)-orthogonal. Hence \(\textrm{Ind}(n,k,\ell )=\vert S\vert =\vert \delta _n(S)\vert \le \Theta _n^{(k,\ell )}\).

For the second statement, let \(S' \subseteq {\mathbb {B}}_n\) be an \((\ell ,\ell )\)-orthogonal set of maximum size. On the one hand, by Lemma 3.18, we have \(\vert \gamma _n(S')\vert =\vert S'\vert \). On the other hand, by Proposition 3.14, \(\gamma _n(S')\) is \((\ell ,\ell )\)-independent. Hence

$$\begin{aligned} \Theta _n^{(\ell ,\ell )} \ge \vert \gamma _n(S')\vert = \vert S'\vert =\textrm{Ind}_q(n,\ell ,\ell ). \end{aligned}$$

Therefore \(\textrm{Ind}_q(n,\ell ,\ell )=\Theta _n^{(\ell ,\ell )}\) \(\square \)

Question 3.20

When is \({\text {Ind}}_{q}(n,k,\ell )=\Theta _{n}^{(k,\ell )}\)?

Proposition 3.21

(Theorem 1.17 (2)) For every \(2\le k \le q\), we have \(\textrm{Ind}_{q}(n,k,2)=(k-1)\frac{q^n-1}{q-1}\).

Proof

Let \( 2 \le k \le q\). By Proposition 3.15 and Proposition 3.19, we have \( \textrm{Ind}_{q}(n,k,2)\le (k-1)\frac{q^n-1}{q-1}\). Let us consider a lift \(W \subseteq {\mathbb {F}}_q^n \setminus \{\textbf{0}\}\) of \({\mathbb {P}}^{n-1}({\mathbb {F}}_q)\), and let \(\lambda _1,\dots ,\lambda _{k-1} \in {\mathbb {F}}_q^*\) be distinct elements. It is easy to see that \(S=\cup _{i=1}^{k-1}\lambda _{i}W \subset {\mathbb {F}}_q^n {\setminus } \{\textbf{0}\}\) is (k, 2)-independent of size \((k-1)\frac{q^n-1}{q-1}\). Consequently, \(\textrm{Ind}_{q}(n,k,2)=(k-1)\frac{q^n-1}{q-1}\). \(\square \)

The next result follows from Theorem 2.1 and Proposition 3.19.

Lemma 3.22

Assume \(q=2\).

  1. (1)

    For every \(n\ge 3\), we have \(\Theta _{n}^{(3,3)}=2^{n-1}\).

  2. (2)

    For every \(m\ge 0\) and \(n\ge 3\,m+2\), we have \(\Theta _{n}^{(n-m,n-m)}=n+1.\)

  3. (3)

    For every \(m\ge 2\), \(i=0,1\), and \(n=3m+i\), we have \(\Theta _{n}^{(n-m,n-m)}=n+2\).

The next result follows from Theorem 2.2 and Proposition 3.19.

Lemma 3.23

Let \(\ell \ge 2\). Then \(\Theta _{n}^{(\ell ,\ell )}=n+1\) if and only if \(\frac{q}{q+1}(n+1)\le \ell \).

Proposition 3.24

(Theorem 1.17 (2)) Let \(k \ge \ell \ge 2\). Assume that \(\Theta _{n}^{(k,\ell )}={\text {Ind}}_{q}(n,k,\ell )\). Then \(k\le q^{\ell -2}+1\).

Proof

Let \(T\subseteq {\mathbb {F}}_q^n\setminus \{\textbf{0}\}\) be a \((k,\ell )\)-independent set of maximum size. By Proposition 3.14, since \(\Theta _{n}^{(k,\ell )}={\text {Ind}}_q(n,k,\ell )\), the lift \(\delta _n(T) \subseteq {\mathbb {B}}_n\) of T is \((k,\ell )\)-orthogonal of maximum size.

Fix \({\textbf{v}}\in \delta _n(T)\) and \(\textbf{u}\in {\mathcal {K}}^n\) with \(0<\Vert {\textbf{u}}\Vert <1\). Then \({\textbf{v}}+{\textbf{u}}\notin \delta _n(T)\), and so \(\delta _n(T)\cup \{{\textbf{v}}+{\textbf{u}}\}\) is not \((k,\ell )\)-orthogonal. Hence, there exists \(X\subseteq \delta _n(T)\) of size \(k-1\), such that \(X\cup \{{\textbf{v}}+{\textbf{u}}\}\) does not contain an orthogonal set of size \(\ell \).

Now assume on the contrary that \({\textbf{v}}\) is orthogonal to some orthogonal subset \(Y=\{{\textbf{w}}_1,\dots ,{\textbf{w}}_{\ell -1}\}\subseteq X\) of size \(\ell -1\). On the one hand, by Lemma 3.10, since Y and \(\textbf{v}+\textbf{u}\) are not orthogonal, we have

$$\begin{aligned} \Vert ({\textbf{v}}+{\textbf{u}})\wedge {\textbf{w}}_1\wedge \dots \wedge {\textbf{w}}_{\ell -1}\Vert <\Vert {\textbf{v}}+ {\textbf{u}}\Vert \cdot \Vert {\textbf{w}}_1\Vert \cdots \Vert {\textbf{w}}_{\ell -1}\Vert . \end{aligned}$$
(3.3)

On the other hand, again by Lemma 3.10,

$$\begin{aligned} \Vert {\textbf{v}}\wedge {\textbf{w}}_1\wedge \dots \wedge {\textbf{w}}_{\ell -1}\Vert =\Vert {\textbf{v}}\Vert \Vert {\textbf{w}}_1\Vert \cdots \Vert {\textbf{w}}_{\ell -1}\Vert , \end{aligned}$$

and

$$\begin{aligned} \Vert {\textbf{u}}\wedge {\textbf{w}}_1\wedge \dots \wedge {\textbf{w}}_{\ell -1}\Vert \le \Vert \textbf{u} \Vert \Vert \textbf{w}_1 \Vert \dots \Vert \textbf{w}_{\ell -1} \Vert <\Vert {\textbf{v}}\Vert \prod _{i=1}^{\ell -1}\Vert {\textbf{w}}_1\Vert ; \end{aligned}$$

so

$$\begin{aligned} \Vert ({\textbf{v}}+{\textbf{u}})\wedge {\textbf{w}}_1\wedge \cdots \wedge {\textbf{w}}_{\ell -1}\Vert =\Vert {\textbf{v}}\Vert \prod _{i=1}^{\ell -1}\Vert {\textbf{w}}_i\Vert =\Vert {\textbf{v}}+{\textbf{u}}\Vert \prod _{i=1}^{\ell -1}\Vert {\textbf{w}}_i\Vert . \end{aligned}$$
(3.4)

Equations (3.3) and (3.4) lead to a contradiction. Hence, \({\textbf{v}}\) is not orthogonal to any orthogonal set \(Y\subseteq X\) of size \(\ell -1\).

Therefore, by Proposition 3.14, \(\gamma _n({\textbf{v}})\) belongs to every \(\ell -1\)-dimensional subset of \(\gamma _n(X)\). Consequently we have \(\textrm{dim}\langle \gamma _n(X){\setminus } \{\gamma _n({\textbf{v}})\} \rangle \le \ell -2\) so that

$$\begin{aligned} k-2\le \vert \gamma _n(X)\setminus \{\gamma _n({\textbf{v}})\}\vert \le q^{\ell -2}-1, \end{aligned}$$

and so \(k\le q^{\ell -2}+1\). \(\square \)

Corollary 3.25

Let \(k \ge \ell \ge 2 \). Then \(\textrm{Ind}(n,k,\ell ) < \Theta ^{(k,\ell )}_{n}\), for all \(q^{\ell -2}+2\le k \le q^n-1\).

Proposition 3.26

(Theorem 1.17 (3)) Let \(2 \le \ell \le k\). Then \(\Theta _{n}^{(k,\ell )}\ge \left\lfloor \frac{k-1}{\ell -1}\right\rfloor \Theta _{n}^{(\ell ,\ell )}\).

Proof

Let \(S=\{{\textbf{v}}_1,\dots ,{\textbf{v}}_{m}\}\subseteq {\mathbb {B}}_n\) be an \((\ell ,\ell )\)-orthogonal set of maximum size. Let us choose \(\omega _1,\dots , \omega _{\Big \lfloor \frac{k-1}{\ell -1}\Big \rfloor }\in \gamma ^{-1}(1)\) such that the \(\omega _i \textbf{v}_j\)’s are pairwise distinct. Consider the set

$$\begin{aligned} Y=\left\{ \omega _i{\textbf{v}}_j \Bigm \vert 1 \le i \le \left\lfloor \frac{k-1}{\ell -1}\right\rfloor ,1 \le j \le \vert S\vert \right\} \subseteq {\mathbb {B}}_n, \end{aligned}$$

of size \(\left\lfloor \frac{k-1}{\ell -1}\right\rfloor \Theta _{n}^{(\ell ,\ell )}\). Note that, by Lemma 3.18, the \(\gamma _n(\textbf{v}_j)\)’s are pairwise distinct. Then \(\gamma _n:Y\rightarrow \gamma _n(Y)\) is a \(\Big \lfloor \frac{k-1}{\ell -1}\Big \rfloor \)-1 function. Moreover, by Proposition 3.14, \(\gamma _n(Y)=\gamma _n(S)\) is \((\ell ,\ell )\)-independent.

Claim

The set Y is \((k,\ell )\)-orthogonal.

Proof of the claim

Let \(X\subseteq Y\) be a subset of size \(\vert X\vert =k\). Since \(\vert X\vert = k > (\ell -1)\Big \lfloor \frac{k-1}{\ell -1}\Big \rfloor \), we have \(\vert \gamma _n(X)\vert \ge \ell \). Let us consider a subset \(W\subseteq \gamma _n(X)\) of size \(\ell \). Since \(\gamma _n(Y)\) is \((\ell ,\ell )\)-independent, \(W\subseteq \gamma _n(S)\) is linearly independent. Letting \(X'\) be a lift of W in X, again by Proposition 3.14, \(X'\subseteq X\) is orthogonal of size \(\ell \). Therefore Y is \((k,\ell )\)-orthogonal. \(\square \)

Consequently

$$\begin{aligned} \Theta _{n}^{(k,\ell )}\ge \vert Y\vert =\left\lfloor \frac{k-1}{\ell -1}\right\rfloor \Theta _{n}^{(\ell ,\ell )}. \end{aligned}$$

\(\square \)

Proposition 3.27

(Theorem 1.17 (3)) Let \(2 \le \ell \le k\). Then \(\Theta _{n}^{(k,\ell )}\le (k-\ell +1){\text {Ind}}_{q}(n,k,\ell )\).

Proof

Let \(S\subseteq {\mathbb {B}}_n\) be a \((k,\ell )\)-orthogonal set of maximum size.

Claim

For every \(\textbf{z} \in {\mathbb {F}}_q^n\setminus \{\textbf{0}\}\), we have \(\vert \gamma _n^{-1}(\textbf{z}) \cap S\vert \le k-\ell +1\).

Proof of the claim

Assume on the contrary that \(\vert \gamma _n^{-1}({\textbf{u}}) \cap S\vert \ge k-\ell +2\), for some \({\textbf{u}}\in {\mathbb {F}}_q^n{\setminus } \{\textbf{0}\}\). First note that \(\vert S\vert \ge k\). Let us consider \(X\subseteq S{\setminus } \gamma _n^{-1}({\textbf{u}})\) of size at most \(\ell -2\) such that \(Y=X\cup (\gamma _n^{-1}({\textbf{u}}) \cap S)\) has size at least k. Now take \(Z \subseteq Y\) of size \(\ell \). Since \(\vert Z \cap \gamma _n^{-1}({\textbf{u}})\vert \ge 2\), the set Z is not orthogonal. Then Y does not contain an orthogonal set of size \(\ell \). This contradicts the \((k,\ell )\)-orthogonality of S. This completes the proof of the claim. \(\square \)

Therefore we have

$$\begin{aligned} \vert S\vert \le (k-\ell +1)\vert \gamma _n(S)\vert . \end{aligned}$$

By Proposition 3.14, \(\gamma _n(S) \subseteq {\mathbb {F}}_q^n {\setminus } \{\textbf{0}\}\) is \((k,\ell )\)-independent, so \(\Theta _{n}^{(k,\ell )}=\vert S\vert \le (k-\ell +1)\vert \gamma _n(S)\vert \le (k-\ell +1){\text {Ind}}_q(n,k,\ell )\). Consequently \(\Theta _{n}^{(k,\ell )}\le (k-\ell +1){\text {Ind}}_{q}(n,k,\ell )\). \(\square \)

Question 3.28

Let \(\ell \ge 2\). Does the limit \(\lim _{k \rightarrow \infty }\frac{\Theta ^{(k,\ell )}_{n}}{k}\) exist? Is \(\left( \frac{\Theta ^{k,\ell }_{n}}{k}\right) _{k \ge \ell }\) increasing in k?

Proposition 3.29

(Theorem 1.17 (4)) Let \(\ell \ge 2\). Then

$$\begin{aligned} \frac{q^n-1}{q^{\ell -1}-1} \le \limsup _{k\rightarrow \infty }\frac{\Theta _{n}^{(k,\ell )}}{k} \le q^{n}-1. \end{aligned}$$

Proof

-Upper bound. By Propositions 3.27 and 2.3,

$$\begin{aligned} \limsup _{k\rightarrow \infty }\frac{\Theta _{n}^{(k,\ell )}}{k}\le \limsup _{k\rightarrow \infty }\frac{k-\ell +1}{k}{\text {Ind}}_q(n,k,\ell )= \limsup _{k\rightarrow \infty }\frac{k-\ell +1}{k}(q^n-1)=q^n-1. \end{aligned}$$

-Lower bound. Let us consider a \((q^{\ell -1},\ell )\)-independent subset \(S \subseteq {\mathbb {F}}_q^n{\setminus }\{\textbf{0}\}\) of maximum size. Fix \(r \ge 1\) and let \(k_r=r(q^{\ell -1}-1)+1\). For each \(\textbf{z} \in S\), choose \(\Omega _{\textbf{z}} \subseteq \gamma _n^{-1}(\textbf{z})\) of size r. Note that \(\Omega =\cup _{\textbf{z} \in S}\Omega _{\textbf{z}}\) has size \(r\vert S\vert \).

Claim

The set \(\Omega \) is \((k_r,\ell )\)-orthogonal.

Proof of the claim

Let \(Y \subseteq \Omega \) be of size \(k_r\). By the pigeonhole principle, \(\vert \gamma _n(Y)\vert \ge q^{\ell -1}\). Combining the fact that S is \((q^{\ell -1},\ell )\)-independent with Proposition 3.14, we deduce that Y contains an orthogonal subset of size \(\ell \). Hence \(\Omega \) is \((k_r,\ell )\)-orthogonal. \(\square \)

Therefore, by Proposition 2.3, \(\Theta _{n}^{(k_r,\ell )}\ge \vert \Omega \vert =r\vert S\vert =r {\text {Ind}}_q(n,q^{\ell -1},\ell )=r(q^n-1)\), so

$$\begin{aligned} \Theta _{n}^{(k_r,\ell )}\ge \frac{k_r-1}{q^{\ell -1}-1}(q^n-1), \end{aligned}$$

which implies

$$\begin{aligned} \frac{\Theta _{n}^{(k_r,\ell )}}{k_r}\ge \frac{k_r-1}{k_r(q^{\ell -1}-1)}(q^n-1). \end{aligned}$$

Consequently we obtain

$$\begin{aligned} \limsup _{k\rightarrow \infty }\frac{\Theta _{n}^{(k,\ell )}}{k}\ge \limsup _{r\rightarrow \infty }\frac{\Theta _n^{(k_r,\ell )}}{k_r}\ge \frac{q^n-1}{q^{\ell -1}-1}. \end{aligned}$$

\(\square \)

Proposition 3.30

(Theorem 1.17 (5)) Let \(\ell \ge 3\). Then \(\Theta _{n}^{(\ell ,\ell )}<\Delta _{n}^{(\ell ,\ell )}\).

Proof

Let \(S\subseteq {\mathbb {B}}_n\) be an \((\ell ,\ell )\)-orthogonal set of maximum size. First note that, by Lemma 3.18, S is (3, 3)-orthogonal. Take distinct \(\textbf{u}, \textbf{v} \in S\). By Lemma 3.18, since \((\rho _n \circ \gamma _n)(\textbf{u}) \ne (\rho _n \circ \gamma _n)(\textbf{v})\), we have \(\gamma _n(\textbf{u}+\textbf{v}) \ne 0\), so \(\textbf{u}+\textbf{v}\in {\mathbb {B}}_n\). As \(\gamma _n(\textbf{u})\), \(\gamma _n(\textbf{v})\) and \(\gamma _n(\textbf{u}+\textbf{v})\) are linearly dependent, by Proposition 3.14, \(\textbf{u}\), \(\textbf{v}\) and \(\textbf{u}+\textbf{v}\) are not orthogonal. Hence \(\textbf{u}+\textbf{v} \notin S\).

Claim

The set \(S \cup \{\textbf{u}+\textbf{v}\}\) is \((\ell ,\ell )\)-weakly orthogonal.

Proof of the claim

Let \(X\subseteq S \cup \{\textbf{u}+\textbf{v}\}\) be of size \(\ell \). If \(X\subseteq S\), then it is weakly orthogonal, by the \((\ell ,\ell )\)-othogonality of S. Now assume that \(X=X'\cup \{{\textbf{u}}+{\textbf{v}}\}\), for some \(X'\subseteq S\) of size \(\ell -1\). Clearly \(X'\) is weakly orthogonal. Assume on the contrary that X is not weakly orthogonal, that is, there is \({\textbf{w}}\in X'\) such that \({\textbf{u}}+{\textbf{v}}\) and \({\textbf{w}}\) are not orthogonal. Then, by Proposition 3.14, \(\gamma _n({\textbf{u}}+{\textbf{v}})\) and \(\gamma _n({\textbf{w}})\) are linearly dependent, so are \(\gamma _n({\textbf{u}}),\gamma _n({\textbf{v}}), \gamma _n({\textbf{w}})\). Again by Proposition 3.14, \(\{{\textbf{u}},{\textbf{v}},{\textbf{w}}\}\subseteq S\) is not orthogonal, a contradiction. Hence, X is weakly orthogonal. Therefore \(S\cup \{\textbf{u}+\textbf{v}\}\) is \((\ell ,\ell )\)-weakly orthogonal. \(\square \)

Consequently, we have \(\Theta _{n}^{(\ell ,\ell )}<\vert S \cup \{\textbf{u},\textbf{v}\}\vert \le \Delta _{n}^{(\ell ,\ell )}\). \(\square \)

3.3 Strongly orthogonal sets

In this part, we prove Theorem 1.22.

Proposition 3.31

(Theorem 1.22) Let \(k \ge \ell \ge 2\). Then \(\Gamma _{n,q}^{(k,\ell )}=\textrm{Ind}^{\textrm{pro}}_q(n,k,\ell )\).

Proof

By Lemma 3.2, \(X \subseteq {\mathbb {B}}_n\) is weakly orthogonal if and only if \(\vert (\rho _n \circ \gamma _n)(S)\vert =\vert S\vert \). Then a subset \(S \subseteq {\mathbb {B}}_n\) is \((k,\ell )\)-strongly orthogonal, if and only if, \(\vert (\rho _n \circ \gamma _n)(S)\vert =\vert S\vert \), and by Proposition 3.14, for every \(X\subseteq S\) of size k, we have \(\textrm{dim}(\langle \gamma _n(X) \rangle ) \ge \ell \), if and only if \((\rho _n \circ \gamma _n)(S) \subseteq {\mathbb {P}}^{n-1}({\mathbb {F}}_q)\) is \((k,\ell )\)-pro-independent of size \(\vert S\vert \). This completes the proof. \(\square \)