Гасовит џин
Гасовит џин — џиновска планета составена претежно од водород и хелиум. Се нарекува и неуспешна ѕвезда бидејќи ги има истите основни елементи како ѕвездите. Во Сончевиот Систем вакви планети се Јупитер и Сатурн. Поимот во прво време имал исто значење како „џиновска планета“, но во 1990-тите станало јасно дека џиновските планети Уран и Нептун припаѓаат на своја класа со потешки испарливи супстанции (наречени „мразови“) и затоа денес се нарекуваат ледени џинови.
Јупитер и Сатурн се состојат претежно од водород и хелиум, при што потешките елементи сочинуваат меѓу 3 и 13 отсто од масата.[1] Се смета дека имаат надворешен слој од молекуларен водород кој покрива слој од металичен водород и веројатно растопено карпесто јадро. Најнадворешниот слој на водородната атмосфера има многу слоеви од видливи облаци од вода и амонијак. Највеќето од планетата се состои од металичниот вородод зазема најголем дел од планетата, а се нарекува „металичен“ поради електроспроводливоста на водородот при таков крајно висок притисок. Јадрата им се состојат од потешки елементи на толку високи температури (20.000 K) и притисок, што нивните својства се слабо познати.[1]
Главната црта која го одликува кафеавото џуџе со многу мала маса од гасовитиот џин (со проц. 13 Јупитерови маси) е предмет на спор.[2] Едни сметаат дека тоа зависи од образбата, додека пак други за најважна ја сметаат физиката на внатрешноста.[2] Дел од спорот се однесува на тоа дали „кафеавите џуџиња“ неопходно мора да доживеале јадрено соединување во некој миг од минатото.
Терминологија
[уреди | уреди извор]Поимот гасовит џин прв го смислил научнофантастичниот писател Џејмс Блиш во 1952 г.[3] и првично се однесувал на сите џиновски планети. Ова име не е баш исправно бидејќи џиновските планети се под толку висок притисок, што материјата не е во гасовита состојба.[4] Осцвен цврстите делови во јадрото и горните слоеви на атмосферата, сета материја во нив се наоѓа над критичната точка, каде нема разлика помеѓу течностите и гасовите. Изразот сепак се задржал бидејќи планетолозите користат поими како „карпа“, „гас“ и „мраз“ без оглед на фазата во која тие се наоѓаат. Во надворешниот Сончев Систем, водородот и хелиумот се нарекуваат „гасови“; водата, метанот и амонијакот се „мразови“; а силикатите и металите се „карпи“. Бидејќи Уран и Нептун претежно се состојат од мразови, а не гасови (според оваа терминологија), денес сè почесто се нарекуваат ледени џинови.
Класификација
[уреди | уреди извор]Гасовитите џинови теоретски се делат на пет класи според атмосферските својства, а со тоа и изгледот: амонијачки облаци (I), водени облаци (II), безоблачни (III), алкалнометални облаци (IV) и силикатни облаци (V). Јупитер и Сатурн се од класата I. Врелите јупитери се од класата IV или V.
Вон Сончевиот Систем
[уреди | уреди извор]Студени гасовити џинови
[уреди | уреди извор]Студените гасовити џинови богати со водород се помасивни од Јупитер, но помалку од 500 M🜨 (1,6 MJ) и по зафатнина се малку поголеми од Јупитер.[5] Кај масите над 500 M🜨, гравитацијата предизвикува собирање на планетата (погл. изродена материја).[5]
Келвин–Хелмхолцовото загревање може да предизвика гасовитиот џин да зрачи повеќе енергија отколку што прима од матичната ѕвезда.[6][7]
Гасовити џуџиња
[уреди | уреди извор]Водородните планети не секогаш се големи колку оние во нашиот Сончев Систем. Меѓутоа, помалите гасовити планети и планетите близу нивните ѕвезди се подложни на побрз хидродинамички губиток на атмосферската маса од поголемите или подалечните.[8][9]
Гасовитото џуџе е планета со карпесто јадро која насобрала дебела обвивка од водород, хелиум и други испарливи материи, и е со големина од 1,7 до 3,9 Земјини полупречници.[10][11]
Најмалата позната гасовита планета е Кеплер-138d, која има иста маса како Земјата но е за 60 % поголема, од што се гледа дека има дебела обвивка од гас.[12]
Гасовитата планета може да има мала маса но големина на џин доколку е на соодветна температура.[13]
Поврзано
[уреди | уреди извор]Наводи
[уреди | уреди извор]- ↑ 1,0 1,1 The Interior of Jupiter, Guillot et al., in Jupiter: The Planet, Satellites and Magnetosphere, Bagenal et al., editors, Cambridge University Press, 2004
- ↑ 2,0 2,1 Burgasser, A. J. (June 2008). „Brown dwarfs: Failed stars, super Jupiters“ (PDF). Physics Today. Посетено на 11 January 2016.
- ↑ Science Fiction Citations, Citations for gas giant n.
- ↑ D'Angelo, G.; Durisen, R. H.; Lissauer, J. J. (2011). „Giant Planet Formation“. Во S. Seager. (уред.). Exoplanets. University of Arizona Press, Tucson, AZ. стр. 319–346. arXiv:1006.5486. Bibcode:2010exop.book..319D.
- ↑ 5,0 5,1 Seager, S.; Kuchner, M.; Hier-Majumder, C. A.; Militzer, B. (2007). „Mass-Radius Relationships for Solid Exoplanets“. The Astrophysical Journal. 669 (2): 1279–1297. arXiv:0707.2895. Bibcode:2007ApJ...669.1279S. doi:10.1086/521346.
- ↑ Patrick G. J. Irwin (2003). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. Springer. ISBN 3-540-00681-8.
- ↑ „Class 12 – Giant Planets – Heat and Formation“. 3750 – Planets, Moons & Rings. Colorado University, Boulder. 2004. Архивирано од изворникот на 2008-06-21. Посетено на 2008-03-13.
- ↑ Feng Tian; Toon, Owen B.; Pavlov, Alexander A.; De Sterck, H. (March 10, 2005). „Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres“. The Astrophysical Journal. 621 (2): 1049–1060. Bibcode:2005ApJ...621.1049T. CiteSeerX 10.1.1.122.9085. doi:10.1086/427204.
- ↑ Mass-radius relationships for exoplanets, Damian C. Swift, Jon Eggert, Damien G. Hicks, Sebastien Hamel, Kyle Caspersen, Eric Schwegler, and Gilbert W. Collins
- ↑ Three regimes of extrasolar planets inferred from host star metallicities, Buchhave et al.
- ↑ D'Angelo, G.; Bodenheimer, P. (2016). „In Situ and Ex Situ Formation Models of Kepler 11 Planets“. The Astrophysical Journal. 1606: in press. arXiv:1606.08088. Bibcode:2016arXiv160608088D.
- ↑ Cowen, Ron (2014). „Earth-mass exoplanet is no Earth twin“. Nature. doi:10.1038/nature.2014.14477.
- ↑ *Mass-Radius Relationships for Very Low Mass Gaseous Planets, Konstantin Batygin, David J. Stevenson, 18 Apr 2013