OFFSET
0,2
COMMENTS
It appears that the sequence coincides with its third-order absolute difference. - John W. Layman, Sep 05 2003
It appears that, for n > 0, the (unsigned) a(n) = 3*|A057682(n)| = 3*|Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j+1)|. - John W. Layman, Sep 05 2003
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (-3,-3).
FORMULA
G.f.: 1/((1+x)^3-x^3).
a(n) = A007653(3^n).
a(n) = -3*a(n-1) - 3*a(n-2). - Paul Curtz, May 12 2008
a(n) = Sum_{k=1..n} binomial(k,n-k)*(-3)^(k) for n > 0; a(0)=1. - Vladimir Kruchinin, Feb 07 2011
G.f.: 1/(1 + 3*x /(1 - x /(1+x))). - Michael Somos, May 12 2012
G.f.: G(0)/2, where G(k) = 1 + 1/( 1 - 3*x*(2*k+1 + x)/(3*x*(2*k+2 + x) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 09 2014
a(n) = 2*3^(n/2)*sin((1-5*n)*Pi/6). - Jean-François Alcover, Mar 12 2014
a(n) = (-1)^n * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+2,3*k+2). - Seiichi Manyama, Aug 05 2024
a(n) = (i*sqrt(3)/3)*((-3/2 - i*sqrt(3)/2)^(n+1) - (-3/2 + i*sqrt(3)/2)^(n+1)), where i = sqrt(-1). - Taras Goy, Jan 20 2025
a(n) = -2*a(n-1) + 3*a(n-3). - Taras Goy, Jan 26 2025
EXAMPLE
G.f. = 1 - 3*x + 6*x^2 - 9*x^3 + 9*x^4 - 27*x^6 + 81*x^7 - 162*x^8 + ...
MAPLE
A000748:=(-1-2*z-3*z**2-3*z**3+18*z**5)/(-1+z+9*z**5); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from signs
a:= n-> (Matrix([[ -3, 1], [ -3, 0]])^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Sep 06 2008
MATHEMATICA
a[n_] := 2*3^(n/2)*Sin[(1-5*n)*Pi/6]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 12 2014 *)
LinearRecurrence[{-3, -3}, {1, -3}, 40] (* Jean-François Alcover, Feb 11 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff(1 / (1 + 3*x + 3*x^2) + x * O(x^n), n))}; /* Michael Somos, Jun 07 2005 */
(PARI) {a(n) = if( n<0, 0, 3^((n+1)\2) * (-1)^(n\6) * ((-1)^n + (n%3==2)))}; /* Michael Somos, Sep 29 2007 */
(Magma) I:=[1, -3]; [n le 2 select I[n] else -3*Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 11 2016
CROSSREFS
KEYWORD
sign,easy,eigen,changed
AUTHOR
STATUS
approved