login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023873
Expansion of Product_{k>=1} (1 - x^k)^(-k^4).
6
1, 1, 17, 98, 490, 2411, 11940, 56093, 256274, 1140980, 4977222, 21273772, 89281011, 368408970, 1496993290, 5996312751, 23700208290, 92510062036, 356887002352, 1361671469470, 5141380256124, 19221678032134, 71190778935805, 261320839754142, 951091521384860
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..3339 (first 801 terms from Alois P. Heinz)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
FORMULA
a(n) ~ exp(Pi * 2^(3/2) * 3^(2/3) * n^(5/6) / (5 * 7^(1/6)) + 3*Zeta(5) / (4*Pi^4)) / (2^(3/4) * 3^(2/3) * 7^(1/12) * n^(7/12)), where Zeta(5) = A013663 = 1.036927755143369926... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_5(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_5(k)*a(n-k). - Seiichi Manyama, Mar 04 2017
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^4, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
max = 27; Series[ Product[1/(1 - x^k)^k^4, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^4)) \\ G. C. Greubel, Oct 30 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^4: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
CROSSREFS
Column k=4 of A144048.
Sequence in context: A231687 A231689 A000538 * A294590 A294586 A265838
KEYWORD
nonn
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006
STATUS
approved