login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231689
a(n) = Sum_{i=0..n} digsum(i)^4, where digsum(i) = A007953(i).
5
0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 15334, 15350, 15431, 15687, 16312, 17608, 20009, 24105, 30666, 40666, 40682, 40763, 41019, 41644, 42940, 45341, 49437, 55998, 65998, 80639, 80720, 80976, 81601, 82897, 85298, 89394, 95955, 105955, 120596, 141332, 141588, 142213, 143509, 145910, 150006, 156567, 166567, 181208, 201944, 230505, 231130, 232426, 234827, 238923
OFFSET
0,3
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 263-271.
Robert E. Kennedy and Curtis N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums, Fibonacci Quarterly, Vol. 29, No. 2 (1991), pp. 145-149.
J.-L. Mauclaire and Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
Harald Riede, Asymptotic estimation of a sum of digits, Fibonacci Quarterly, Vol. 36, No. 1 (1998), pp. 72-75.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
MAPLE
See A037123.
MATHEMATICA
Accumulate[Table[Total[IntegerDigits[n]]^4, {n, 0, 60}]] (* Harvey P. Dale, May 12 2014 *)
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i)^4); \\ Michel Marcus, Sep 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved