login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025487
Least integer of each prime signature A124832; also products of primorial numbers A002110.
618
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
OFFSET
1,2
COMMENTS
All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10001 (first 291 terms from Will Nicholes)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
Kevin Broughan, Equivalents of the Riemann Hypothesis, Vol. 1: Arithmetic Equivalents, Cambridge University Press, 2017. See section 8.2, "Hardy-Ramanujan Numbers".
YoungJu Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol. 19, No. 2 (2007), pp. 357-372. See section 5, p. 367.
Asaf Cohen Antonir and Asaf Shapira, An Elementary Proof of a Theorem of Hardy and Ramanujan (2022). arXiv:2207.09410 [math.NT]
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, pp. 9-10.
G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. Also published in the book Collected Papers of Srinivasa Ramanujan, Chelsea, 1962, pages 245-261.
Jeffery Kline, On the eigenstructure of sparse matrices related to the prime number theorem, Linear Algebra and its Applications (2020) Vol. 584, 409-430.
L. B. Richmond, Asymptotic results for partitions (I) and the distribution of certain integers, Journal of Number Theory, Vol. 8, No. 4 (1976), pp. 372-389. See page 388.
FORMULA
What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020
EXAMPLE
The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
MAPLE
isA025487 := proc(n)
local pset, omega ;
pset := sort(convert(numtheory[factorset](n), list)) ;
omega := nops(pset) ;
if op(-1, pset) <> ithprime(omega) then
return false;
end if;
for i from 1 to omega-1 do
if padic[ordp](n, ithprime(i)) < padic[ordp](n, ithprime(i+1)) then
return false;
end if;
end do:
true ;
end proc:
A025487 := proc(n)
option remember ;
local a;
if n = 1 then
1 ;
else
for a from procname(n-1)+1 do
if isA025487(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A025487(n), n=1..100) ; # R. J. Mathar, May 25 2017
MATHEMATICA
PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
(* Second program: generate all terms m <= A002110(n): *)
f[n_] := {{1}}~Join~
Block[{lim = Product[Prime@ i, {i, n}],
ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
Map[Block[{w = #, k = 1},
Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
Do[
If[# < lim,
Sow[#]; k = 1,
If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
If[k == 1,
MapAt[# + 1 &, w, k],
PadLeft[#, Length@ w, First@ #] &@
Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
{i, Infinity}] ][[-1]]
] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
PROG
(PARI) isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) factfollow(n)={local(fm, np, n2);
fm=factor(n); np=matsize(fm)[1];
if(np==0, return([2]));
n2=n*nextprime(fm[np, 1]+1);
if(np==1||fm[np, 2]<fm[np-1, 2], [n*fm[np, 1], n2], [n2])}
al(n) = {local(r, ms); r=vector(n);
ms=[1];
for(k=1, n,
r[k]=ms[1];
ms=vecsort(concat(vector(#ms-1, j, ms[j+1]), factfollow(ms[1]))));
r} /* Franklin T. Adams-Watters, Dec 01 2011 */
(PARI) is(n) = {if(n==1, return(1)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2], , 4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
(PARI) upto(Nmax)=vecsort(concat(vector(logint(Nmax, 2), n, select(t->t<=Nmax, if(n>1, [factorback(primes(#p), Vecrev(p)) || p<-partitions(n)], [1, 2]))))) \\ M. F. Hasler, Jul 17 2019
(PARI)
\\ For fast generation of large number of terms, use this program:
A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista, 2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista, t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
v025487 = A025487list(101);
A025487(n) = v025487[n];
for(n=1, #v025487, print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
(Haskell)
import Data.Set (singleton, fromList, deleteFindMin, union)
a025487 n = a025487_list !! (n-1)
a025487_list = 1 : h [b] (singleton b) bs where
(_ : b : bs) = a002110_list
h cs s xs'@(x:xs)
| m <= x = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
| otherwise = x : h (x:cs) (s `union` fromList (map (* x) (x:cs))) xs
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Apr 06 2013
(Sage)
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
N = 2310
nmax = 2^floor(log(N, 2))
sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
# Giuseppe Coppoletta, Jan 26 2015
CROSSREFS
Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.
Sequence in context: A324850 A362804 A095810 * A333964 A279537 A325238
KEYWORD
nonn,easy,nice,core
EXTENSIONS
Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010
STATUS
approved