OFFSET
1,16
COMMENTS
Multiplicative with a(p^e) = p^[e/4]. - Mitch Harris, Apr 19 2005
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
Henry Bottomley, Some Smarandache-type multiplicative sequences.
FORMULA
Multiplicative with a(p^e) = p^[e/4].
Dirichlet g.f.: zeta(4s-1)*zeta(s)/zeta(4s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ 90*zeta(3)*n/Pi^4 + 3*zeta(1/2)*sqrt(n)/Pi^2. - Vaclav Kotesovec, Dec 01 2020
a(n) = Sum_{d^4|n} phi(d). - Ridouane Oudra, Dec 31 2020
G.f.: Sum_{k>=1} phi(k) * x^(k^4) / (1 - x^(k^4)). - Ilya Gutkovskiy, Aug 20 2021
EXAMPLE
a(32) = 2 since 2 = 16^(1/4) and 16 is the largest 4th power dividing 32.
MAPLE
A053164 := proc(n) local a, f, e, p ; for f in ifactors(n)[2] do e:= op(2, f) ; p := op(1, f) ; a := a*p^floor(e/4) ; end do ; a ; end proc: # R. J. Mathar, Jan 11 2012
MATHEMATICA
f[list_] := list[[1]]^Quotient[list[[2]], 4]; Table[Apply[Times, Map[f, FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
PROG
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Henry Bottomley, Feb 29 2000
EXTENSIONS
More terms from Antti Karttunen, Sep 13 2017
STATUS
approved