login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053164
4th root of largest 4th power dividing n.
23
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,16
COMMENTS
Multiplicative with a(p^e) = p^[e/4]. - Mitch Harris, Apr 19 2005
FORMULA
a(n) = A000188(A000188(n)) = A008835(n)^(1/4).
Multiplicative with a(p^e) = p^[e/4].
Dirichlet g.f.: zeta(4s-1)*zeta(s)/zeta(4s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ 90*zeta(3)*n/Pi^4 + 3*zeta(1/2)*sqrt(n)/Pi^2. - Vaclav Kotesovec, Dec 01 2020
a(n) = Sum_{d^4|n} phi(d). - Ridouane Oudra, Dec 31 2020
G.f.: Sum_{k>=1} phi(k) * x^(k^4) / (1 - x^(k^4)). - Ilya Gutkovskiy, Aug 20 2021
EXAMPLE
a(32) = 2 since 2 = 16^(1/4) and 16 is the largest 4th power dividing 32.
MAPLE
A053164 := proc(n) local a, f, e, p ; for f in ifactors(n)[2] do e:= op(2, f) ; p := op(1, f) ; a := a*p^floor(e/4) ; end do ; a ; end proc: # R. J. Mathar, Jan 11 2012
MATHEMATICA
f[list_] := list[[1]]^Quotient[list[[2]], 4]; Table[Apply[Times, Map[f, FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
PROG
(Scheme, with memoization macro definec)
(definec (A053164 n) (if (= 1 n) n (* (expt (A020639 n) (A002265 (A067029 n))) (A053164 (A028234 n)))))
(define (A002265 n) (floor->exact (/ n 4))) ;; For MIT/GNU Scheme
;; Antti Karttunen, Sep 13 2017
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Henry Bottomley, Feb 29 2000
EXTENSIONS
More terms from Antti Karttunen, Sep 13 2017
STATUS
approved