OFFSET
0,4
COMMENTS
Coefficients are listed in Abramowitz and Stegun order (A036036).
The formula for the inversion of the power series y = F(x) = x*G(x) = x*(1 + Sum_{k>=1} g[k]*(x^k)) is obtained as a corollary of Lagrange's inversion theorem. The result is F^{(-1)}(y)= Sum_{n>=1} P(n-1)*y^n, where P(n):=sum over partitions of n of a(n,k)* G[k], with G[k]:=g[1]^e(k,1)*g[2]^e(k,2)*...*g[n]^e(k,n) if the k-th partition of n, in Abramowitz-Stegun order(see the given ref, pp. 831-2), is [1^e(k,1),2^e(k,2),...,n^e(k,n)], for k=1..p(n):= A000041(n) (partition numbers).
The sequence of row lengths is A000041(n) (partition numbers).
The signs are given by (-1)^m(n,k), with the number of parts m(n,k) = Sum_{j=1..n} e(k,j) of the k-th partition of n. For m(n,k) see A036043.
The proof that the unsigned row sums give Schroeder's little numbers A001003(n) results from their formula ((d^(n-1)/dx^(n-1)) ((1-x)/(1-2*x))^n)/n!|_{x=0}, n >= 1. This formula for A001003 can be proved starting with the compositional inverse of the g.f. of A001003 (which is given there in a comment) and using Lagrange's inversion theorem to recover the original sequence A001003.
For alternate formulations and relation to the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. [Tom Copeland, Sep 29 2008]
The coefficients of the row polynomials P(n) with monomials in lexicographically descending order e.g. P(6) = -1*g[6] + 8*g[5]*g[1] + 8*g[4]*g[2] - 36*g[4]*g[1]^2 + 4*g[3]^2 - 72*g[3]*g[2]*g[1] - 12*g[2]^3 + 120*g[3]*g[1]^3 + 180*g[2]^2*g[1]^2 - 330*g[2]*g[1]^4 + 132*g[1]^6 are given in A304462. [Herbert Eberle, Aug 16 2018]
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 150, Table 4.1 (unsigned).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16, 3.6.25.
Bartomeu Fiol and Alan Rios Fukelman, On the planar free energy of matrix models, arXiv:2111.14783 [hep-th], 2021. See also J. High Energy Phys. (2022) Iss. 2.
Wolfdieter Lang, First 10 rows and a formula.
Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8.
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
For row n >= 1 the row polynomial in the variables g[1], ..., g[n] is P(n) = (1/(n+1)!)*(d^n/dx^n)(1/G(x)^(n+1))|_{x=0}. P(0):=1. (d^k/dx^k)G(x)|_{x=0} = k!*g[k], k>=1; G(0)=1.
a(n, k) is the coefficient in P(n) of g[1]^e(k, 1)*g[2]^e(k, 2)*..*g[n]^e(k, n) with the k-th partition of n written as [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] in Abramowitz-Stegun order (e(k, j) >= 0; if e(k, j)=0 then j^0 is not recorded).
T(n,k) = (-1)^j*(n+j)!/((n+1)!*Product_{i>=1} s_i!), where (1*s_1 + 2*s_2 + ... = n) is the k-th partition of n and j = s_1 + s_2 ... is the number of parts. - Andrew Howroyd, Feb 01 2022
EXAMPLE
[ +1];
[ -1];
[ -1, 2];
[ -1, 5, -5];
[ -1, 6, 3, -21, 14];
[ -1, 7, 7, -28, -28, 84, -42];
[ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132]; ...
The seventh row, [ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132], stands for the row polynomial P(6) with monomials in lexicographically ascending order P(6) = -1*g[0]^5*g[6] + 8*g[0]^4*g[1]*g[5] + 8*g[0]^4*g[2]*g[4] + 4*g[0]^4*g[3]^2 - 36*g[0]^3*g[1]^2*g[4] - 72*g[0]^3*g[1]*g[2]*g[3] - 12*g[0]^3*g[2]^3 + 120*g[0]^2*g[1]^3*g[3] + 180*g[0]^2*g[1]^2*g[2]^2 - 330*g[0]*g[1]^4*g[2] + 132*g[1]^6 = (1/7!)*(differentiate 1/G(x)^7 six times and evaluate at x = 0). This gives the coefficient of y^7 of F^{(-1)}(y).
MATHEMATICA
(* Graded Colex Ordering: by length, then reverse lexicographic by digit *)
ClearAll[P, L, T, c, g]
P[0] := 1
P[n_] := -Total[
Multinomial @@ # c[Total@# - 1] Times @@
Power[g[#] & /@ Range[0, n - 1], #] & /@
Table[ Count[p, i], {p, Drop[IntegerPartitions[n + 1], 1]}, {i,
n}]]
L[n_] := Join @@ GatherBy[IntegerPartitions[n], Length]
T[1] := {1}
T[n_] := Coefficient[ Do[g[i] = P[i], {i, 0, n - 1}];
P[n - 1], #] & /@ (Times @@@ Map[c, L[n - 1], {2}])
Array[T, 9] // Flatten (* Bradley Klee and Michael Somos, Apr 14 2017 *)
PROG
(Sage)
def A111785_list(dim): # returns the first dim rows
C = [[0 for k in range(m+1)] for m in range(dim+1)]
C[0][0] = 1; F = [1]; i = 1
X = lambda n: 1 if n == 1 else var('x'+str(n))
while i <= dim: F.append(F[i-1]*X(i)); i += 1
for m in (1..dim):
C[m][m] = -C[m-1][m-1]/F[1]
for k in range(m-1, 0, -1):
C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1] for i in (2..m-k+1)))/F[1]
P = [expand((-1)^m*C[m][1]) for m in (1..dim)]
R = PolynomialRing(ZZ, [X(i) for i in (2..dim)], order='lex')
return [R(p).coefficients()[::-1] for p in P]
A111785_list(8) # Peter Luschny, Apr 14 2017
(PARI)
sv(n)={eval(Str("'s", n))}
Trm(q, v)={my(S=Set(v)); for(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); q=polcoef(q, c, sv(x))); q}
Q(n)={polcoef(serreverse(x + x*sum(k=1, n, x^k*sv(k), O(x*x^n)))/x, n)}
row(n)={my(q=Q(n)); [Trm(q, Vec(v)) | v<-partitions(n)]} \\ Andrew Howroyd, Feb 01 2022
(PARI)
C(v)={my(n=vecsum(v), S=Set(v)); (-1)^#v*(n+#v)!/(n+1)!/prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); c!)}
row(n)=[C(Vec(p)) | p<-partitions(n)]
{ for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Aug 23 2005
EXTENSIONS
Name edited by Andrew Howroyd, Feb 02 2022
STATUS
approved