login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121670
a(n) = n^3 - 3*n.
9
0, -2, 2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158, 2702, 3330, 4048, 4862, 5778, 6802, 7940, 9198, 10582, 12098, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 32672, 35838, 39202, 42770, 46548, 50542, 54758, 59202, 63880, 68798, 73962
OFFSET
0,2
COMMENTS
Previous name was: Real part of (n + i)^3, companion to A080663.
Reversing the order of terms in (n + i)^3 to (1 + ni)^3 generates the terms of A080663. E.g, A080663(4) = 47 since (1 + 4i)^3 = (-47 - 52i). Or, (n + i)^3 = (a(n) + A080663(a)i) and (1 + ni)^3 = (-A080663(n) - a(n)i).
Also, numbers n such that the polynomial x^6 - n*x^3 + 1 is reducible. - Ralf Stephan, Oct 24 2013
FORMULA
a(n) = Re( (n + i)^3 ).
a(n) = n^3-3*n. a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: -2*x*(x^2-5*x+1) / (x-1)^4. - Colin Barker, Oct 16 2013
a(n)^2 = A028872(n)^3 + 3*A028872(n)^2 for n>1. - Bruno Berselli, May 03 2018
a(n) = A058794(n-2) for n>1. - Altug Alkan, May 03 2018
EXAMPLE
a(4) = 52 since (4 + i)^3 = (52 + 47i); where 47 = A080663(4).
MATHEMATICA
CoefficientList[Series[-2 x (x^2 - 5 x + 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2014 *)
Table[n^3-3n, {n, 0, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, -2, 2, 18}, 60] (* Harvey P. Dale, Nov 30 2021 *)
PROG
(PARI) Vec(-2*x*(x^2-5*x+1)/(x-1)^4 + O(x^100)); \\ Colin Barker, Oct 16 2013
CROSSREFS
Sequence in context: A213271 A096190 A136434 * A001183 A201124 A173785
KEYWORD
sign,easy
AUTHOR
Gary W. Adamson, Aug 14 2006
EXTENSIONS
Terms corrected, new name, and more terms from Colin Barker, Oct 16 2013
STATUS
approved