login
A299267
Partial sums of A299266.
51
1, 6, 15, 37, 74, 131, 213, 330, 475, 653, 882, 1163, 1485, 1862, 2307, 2821, 3398, 4043, 4773, 5598, 6499, 7481, 8574, 9779, 11073, 12470, 13995, 15649, 17414, 19295, 21321, 23502, 25807, 28241, 30846, 33623, 36537, 39602, 42855, 46297, 49898, 53663, 57633, 61818, 66175, 70709, 75474, 80471, 85653, 91034, 96663
OFFSET
0,2
LINKS
FORMULA
From _Colin Barker_, Feb 15 2018: (Start)
G.f.: (1 +4*x +5*x^2 +16*x^3 +14*x^4 +24*x^5 +18*x^6 +20*x^7 +5*x^8 + x^10 -4*x^11 +4*x^12)/((1 -x)^4*(1 +x)*(1 +x^2)^2*(1 +x +x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 3*a(n-3) - 2*a(n-4) - 2*a(n-7) + 3*a(n-8) - 2*a(n-9) + 2*a(n-10) - a(n-11) for n>12.
(End)
MATHEMATICA
CoefficientList[Series[(1 +4*x +5*x^2 +16*x^3 +14*x^4 +24*x^5 +18*x^6 +20*x^7 +5*x^8 + x^10 -4*x^11 +4*x^12)/((1 -x)^4*(1 +x)*(1 +x^2)^2*(1 +x +x^2)), {x, 0, 50}], x] (* _G. C. Greubel_, Feb 20 2018 *)
LinearRecurrence[{2, -2, 3, -2, 0, 0, -2, 3, -2, 2, -1}, {1, 6, 15, 37, 74, 131, 213, 330, 475, 653, 882, 1163, 1485}, 60] (* _Harvey P. Dale_, Sep 03 2018 *)
PROG
(PARI) Vec((1 + 4*x + 5*x^2 + 16*x^3 + 14*x^4 + 24*x^5 + 18*x^6 + 20*x^7 + 5*x^8 + x^10 - 4*x^11 + 4*x^12) / ((1 - x)^4*(1 + x)*(1 + x^2)^2*(1 + x + x^2)) + O(x^60)) \\ _Colin Barker_, Feb 15 2018
(Magma) I:=[15, 37, 74, 131, 213, 330, 475, 653, 882, 1163, 1485]; [1, 6] cat [n le 11 select I[n] else 2*Self(n-1) -2*Self(n-2) +3*Self(n-3)-2*Self(n-4)-2*Self(n-7) +3*Self(n-8) -2*Self(n-9)+2*Self(n-10)-Self(n-11): n in [1..30]]; // _G. C. Greubel_, Feb 20 2018
CROSSREFS
Cf. A299266.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A135854 A221905 A083011 * A254008 A277089 A271545
KEYWORD
nonn,easy
AUTHOR
_N. J. A. Sloane_, Feb 07 2018
STATUS
approved