login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355201
Normalized Schur self-convolution expansion coefficients K_{n+1}^n / n giving the coefficients of the Laurent series (compositionally) inverse to f(z) = c_0 z + c_1 + c_2 / z + c_3 / z^2 + ... . Irregular triangle for partition polynomials, with row lengths A000041(n) - 1 except for the first two, which are both of length 1.
1
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 3, 1, 1, 6, 4, 2, 12, 6, 2, 4, 4, 1, 1, 10, 5, 10, 30, 10, 10, 10, 20, 10, 5, 5, 5, 1, 1, 15, 6, 30, 60, 15, 5, 60, 30, 60, 20, 15, 15, 30, 30, 15, 3, 6, 6, 6, 1, 1, 21, 7, 70, 105, 21, 35, 210, 70, 140, 35, 35, 105, 105, 105, 105, 35, 7, 42, 21, 21, 42, 42, 21, 7, 7, 7, 7, 1
OFFSET
0,8
COMMENTS
For the formal Laurent series f(z) = a_0 z + a_1 + a_2 / z + a_3 / z^2 + ..., the formal compositional inverse is g(z) = b_0 z + b_1 + b_2 / z + b_3 / z^2 + ..., whose coefficients are partition polynomials whose numerical factors are those of this irregular triangle T(n,k). For the Schur coefficients defined in the formula section, -b_n = K_{n}^{n-1} / (n-1) for n > 1.
Analytic proofs of the relationship between the partition polynomials of the compositional inverse pair of Laurent series and Schur's self-convolution expansion coefficients are given in Schur (beware of a sign error) and in Airault and Ren.
Explicit examples (with a_0=1) of K_{n}^{n-1} up through n=5 are in Airault and Bouali on p. 182.
Various formulas for the b_n in terms of the associahedra (A133437), noncrossing (A134264), reciprocal (A263633), and Faber partition (A263916) polynomials are given in Copeland as well as a derivation of the explicit multi-factorial expression in the formula section and a combinatorial model.
LINKS
H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bulletin des Sciences Mathématiques, Volume 130, Issue 3, April-May 2006, pages 179-222.
H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bulletin des Sciences Mathématiques, Volume 126, Issue 5, June 2002, pages 343-367.
I. Schur, Identities in the theory of power series, American Journal of Mathematics, Volume 69, No. 1, Jan 1947, pages 14-26.
FORMULA
The index notations b(n), b_n, and bn are used interchangeably in this entry for indeterminates.
For n > 1, b_n(a_0,a_1,...,a_n) is a sum of monomials of the form a0^{e0} a1^{e1} a2^{e2} ... an^{en} with e1 * 1 + e2 * 2 + ... + en * n = n. When a_0 is not set to unity, e0 + e1 + ... + en = n - 1. (a1^n is not present.)
From a combinatorial argument in Copeland, the unsigned numerical coefficient of the monomial is given by (n-2)! / [(n - 1 - (e1 + e2 + ... + en))! e1! e2! ... en!].
The partition polynomials are generated by a subset of the Schur self-convolution expansion coefficients as -b_n = K_{n}^{n-1} / (n-1) =(D_{x=0}^n / n!) (a_0 + a_1 x + a_2 x^2 + ... + a_n x^n)^{n-1} / (n-1).
Row sums are the Catalan numbers A000108, ignoring the overall sign, for b_1 onwards.
Reduces to the Narayana triangle A001263 with a_0 = t and all the other indeterminates unity, ignoring the overall sign, for b_2 onwards.
Reduces to A091869 (reversed A091187) with a_1 = t and all the other indeterminates unity, ignoring the overall sign, for b_2 onwards.
b_n(c_1,...,c_n) = - Sum_{k=0}^{n-1} b_k(c_1,...,c_k) N_{n-k}(c_1,...,c_{n-k}) with c_0 = 1 and N_k(c_1,...,c_k) the noncrossing partition polynomials of A134264.
[b] = [R][N], representing the substitution of the noncrossing partition polynomials of A134264 for the indeterminates of the signed reciprocal polynomials of A263633 defined by R_n = 1 / (1 + c_1 x + c_2 x^2 + ...).
Conversely, [R][b] = [N] since the substitution transformation denoted by [R] is an involution, i.e., [R]^2 = [I], the identity substitution.
[b] = [R][A][R], a substitutional conjugation of the set of associahedra partition polynomials of A133147, or A111785, with re-indexing and (1') = 1, e.g., A_0 = 1, A_1 = -c_1, and A_2 = 2 c_1^2 - c_2.
Conversely, [A] = [R][b][R].
EXAMPLE
Triangle begins:
1) 1
2) 1
3) 1
4) 1, 1
5) 1, 1, 2, 1
6) 1, 3, 3, 3, 3, 1
7) 1, 6, 4, 2, 12, 6, 2, 4, 4, 1
8) 1, 10, 5, 10, 30, 10, 10, 10, 20, 10, 5, 5, 5, 1
...
The first few partition polynomials, with the monomials in the order of the partitions on p. 831 of Abramowitz and Stegun, are
b0 = 1 / a0
b1 = - a1 / a0
b2 = - a2
b3 = -(a1 a2 + a0 a3)
b4 = -(a1^2 a2 + a0 a2^2 + 2 a0 a1 a3 + a0^2 a4)
b5 = -(a1^3 a2+ 3 a0 a1 a2^2 + 3 a0 a1^2 a_3 + 3 a0^2 a2 a3 + 3 a0^2 a1 a4
+ a0^3 a_5)
b6 = -(a1^4 a2 + 6 a0 a1^2 a2^2 + 4 a0 a1^3 a3 + 2 a0^2 a2^3 + 12 a0^2 a1 a2 a3
+ 6 a0^2 a1^2 a4 + 2 a0^3 a3^2 + 4a0^3 a2 a4 + 4 a0^3 a1 a5 + a0^4 a6)
b7 = -(a1^5 a2 + 10 a_0 a1^3 a2^2 + 5 a0 a1^4 a3 + 10 a0^2 a1 a2^3
+ 30 a0^2 a1^2 a2 a3 + 10 a0^2 a1^3 a4 + 10 a0^3 a2^2 a3 + 10 a0^3 a1 a3^2
+ 20 a0^3 a1 a2 a4 + 10 a0^3 a1^2 a5 + 5 a0^4 a3 a4 + 5 a0^4 a2 a5
+ 5 a0^4 a1 a6 + a0^5 a7)
_____________________
MATHEMATICA
row[0] = row[1] = {1};
row[n_] := With[{s = Expand[Coefficient[Sum[c[k] x^k, {k, 0, n}]^(n-1), x, n] / (n-1)]}, Table[Coefficient[s, Product[c[t], {t, p}]], {p, Reverse[Sort[Sort /@ IntegerPartitions[n, {n-1}, Range[0, n]]]]}]];
Table[row[n], {n, 0, 8}] // Flatten (* Andrey Zabolotskiy, Feb 05 2023 *)
KEYWORD
nonn,tabf
AUTHOR
Tom Copeland, Jun 23 2022
EXTENSIONS
Rows 8-9 added by Andrey Zabolotskiy, Feb 05 2023
STATUS
approved