diff --git a/stmhal/Makefile b/stmhal/Makefile new file mode 100644 index 0000000000000..fc85808297851 --- /dev/null +++ b/stmhal/Makefile @@ -0,0 +1,233 @@ +include ../py/mkenv.mk + +# qstr definitions (must come before including py.mk) +QSTR_DEFS = qstrdefsport.h + +# include py core make definitions +include ../py/py.mk + +CMSIS_DIR=cmsis +HAL_DIR=hal +#STMUSB_DIR=stmusb +#STMUSBD_DIR=stmusbd +#STMUSBH_DIR=stmusbh +#FATFS_DIR=fatfs +#CC3K_DIR=cc3k +DFU=../tools/dfu.py + +CROSS_COMPILE = arm-none-eabi- + +INC = -I. +INC += -I$(PY_SRC) +INC += -I$(CMSIS_DIR)/inc +INC += -I$(CMSIS_DIR)/devinc +INC += -I$(HAL_DIR)/inc +#INC += -I$(STMUSB_DIR) +#INC += -I$(STMUSBD_DIR) +#INC += -I$(STMUSBH_DIR) +#INC += -I$(FATFS_DIR) +#INC += -I$(CC3K_DIR) + +CFLAGS_CORTEX_M4 = -mthumb -mtune=cortex-m4 -mabi=aapcs-linux -mcpu=cortex-m4 -mfpu=fpv4-sp-d16 -mfloat-abi=hard -fsingle-precision-constant -Wdouble-promotion +CFLAGS = $(INC) -Wall -Werror -ansi -std=gnu99 $(CFLAGS_CORTEX_M4) $(COPT) + +BOARD = STM32F4DISC +BOARD ?= PYBOARD4 +ifeq ($(wildcard boards/$(BOARD)/.),) +$(error Invalid BOARD specified) +endif +CFLAGS += -Iboards/$(BOARD) + +#Debugging/Optimization +ifeq ($(DEBUG), 1) +CFLAGS += -g -DPENDSV_DEBUG +COPT = -O0 +else +COPT += -Os -DNDEBUG +endif + +LDFLAGS = --nostdlib -T stm32f405.ld -Map=$(@:.elf=.map) --cref +LIBS = + +# uncomment this if you want libgcc +#LIBS += $(shell $(CC) -print-libgcc-file-name) + +SRC_C = \ + main.c \ + system_stm32f4xx.c \ + +# printf.c \ +# math.c \ +# stm32fxxx_it.c \ +# string0.c \ +# malloc0.c \ +# systick.c \ +# pendsv.c \ +# gccollect.c \ +# lexerfatfs.c \ +# import.c \ +# pyexec.c \ +# led.c \ +# gpio.c \ +# lcd.c \ +# servo.c \ +# flash.c \ +# storage.c \ +# accel.c \ +# usart.c \ +# usb.c \ +# timer.c \ +# audio.c \ +# sdcard.c \ +# i2c.c \ +# adc.c \ +# rtc.c \ +# file.c \ +# pin.c \ +# pin_named_pins.c \ +# pin_map.c \ +# exti.c \ +# usrsw.c \ +# pybmodule.c \ +# pybwlan.c \ + +SRC_S = \ + startup_stm32f40xx.s \ + +# gchelper.s \ + +SRC_HAL = $(addprefix $(HAL_DIR)/src/,\ + stm32f4xx_hal.c \ + stm32f4xx_hal_cortex.c \ + ) + +SRC_STMPERIPH = $(addprefix $(STMPERIPH_DIR)/,\ + stm_misc.c \ + stm32f4xx_rcc.c \ + stm32f4xx_syscfg.c \ + stm32f4xx_flash.c \ + stm32f4xx_dma.c \ + stm32f4xx_gpio.c \ + stm32f4xx_exti.c \ + stm32f4xx_tim.c \ + stm32f4xx_sdio.c \ + stm32f4xx_pwr.c \ + stm32f4xx_rtc.c \ + stm32f4xx_usart.c \ + stm32f4xx_spi.c \ + stm32f4xx_dac.c \ + stm32f4xx_rng.c \ + stm32f4xx_i2c.c \ + stm32f4xx_adc.c \ + stm324x7i_eval.c \ + stm324x7i_eval_sdio_sd.c \ + ) + +SRC_STMUSB = $(addprefix $(STMUSB_DIR)/,\ + usb_core.c \ + usb_bsp.c \ + usb_dcd.c \ + usb_dcd_int.c \ + usb_hcd.c \ + usb_hcd_int.c \ + ) +# usb_otg.c \ + +SRC_STMUSBD = $(addprefix $(STMUSBD_DIR)/,\ + usbd_core.c \ + usbd_ioreq.c \ + usbd_req.c \ + usbd_usr.c \ + usbd_desc.c \ + usbd_pyb_core.c \ + usbd_pyb_core2.c \ + usbd_cdc_vcp.c \ + usbd_msc_bot.c \ + usbd_msc_data.c \ + usbd_msc_scsi.c \ + usbd_storage_msd.c \ + ) + +SRC_STMUSBH = $(addprefix $(STMUSBH_DIR)/,\ + usbh_core.c \ + usbh_hcs.c \ + usbh_stdreq.c \ + usbh_ioreq.c \ + usbh_usr.c \ + usbh_hid_core.c \ + usbh_hid_mouse.c \ + usbh_hid_keybd.c \ + ) + +SRC_FATFS = $(addprefix $(FATFS_DIR)/,\ + ff.c \ + diskio.c \ + ccsbcs.c \ + ) + +SRC_CC3K = $(addprefix $(CC3K_DIR)/,\ + cc3000_common.c \ + evnt_handler.c \ + hci.c \ + netapp.c \ + nvmem.c \ + security.c \ + socket.c \ + wlan.c \ + ccspi.c \ + pybcc3k.c \ + ) + +OBJ = +#OBJ += $(PY_O) +OBJ += $(addprefix $(BUILD)/, $(SRC_C:.c=.o)) +OBJ += $(addprefix $(BUILD)/, $(SRC_S:.s=.o)) +OBJ += $(addprefix $(BUILD)/, $(SRC_HAL:.c=.o)) +#OBJ += $(addprefix $(BUILD)/, $(SRC_STMUSB:.c=.o)) +#OBJ += $(addprefix $(BUILD)/, $(SRC_STMUSBD:.c=.o)) +#OBJ += $(addprefix $(BUILD)/, $(SRC_STMUSBH:.c=.o)) +#OBJ += $(addprefix $(BUILD)/, $(SRC_FATFS:.c=.o)) +#OBJ += $(addprefix $(BUILD)/, $(SRC_CC3K:.c=.o)) +#OBJ += $(BUILD)/pins_$(BOARD).o + +all: $(BUILD)/flash.dfu + +$(BUILD)/flash.dfu: $(BUILD)/flash0.bin $(BUILD)/flash1.bin + $(ECHO) "Create $@" + $(Q)python $(DFU) -b 0x08000000:$(BUILD)/flash0.bin -b 0x08020000:$(BUILD)/flash1.bin $@ + +$(BUILD)/flash0.bin: $(BUILD)/flash.elf + $(Q)$(OBJCOPY) -O binary -j .isr_vector $^ $@ + +$(BUILD)/flash1.bin: $(BUILD)/flash.elf + $(Q)$(OBJCOPY) -O binary -j .text -j .data $^ $@ + +$(BUILD)/flash.elf: $(OBJ) + $(ECHO) "LINK $@" + $(Q)$(LD) $(LDFLAGS) -o $@ $(OBJ) $(LIBS) + $(Q)$(SIZE) $@ + +MAKE_PINS = boards/make-pins.py +BOARD_PINS = boards/$(BOARD)/pins.csv +AF_FILE = boards/stm32f4xx-af.csv +PREFIX_FILE = boards/stm32f4xx-prefix.c +GEN_PINS_SRC = $(BUILD)/pins_$(BOARD).c +GEN_PINS_HDR = $(BUILD)/pins.h + +# Making OBJ use an order-only depenedency on the generated pins.h file +# has the side effect of making the pins.h file before we actually compile +# any of the objects. The normal dependency generation will deal with the +# case when pins.h is modified. But when it doesn't exist, we don't know +# which source files might need it. +#$(OBJ): | $(BUILD)/pins.h + +# Use a pattern rule here so that make will only call make-pins.py once to make +# both pins_$(BOARD).c and pins.h +$(BUILD)/%_$(BOARD).c $(BUILD)/%.h: boards/$(BOARD)/%.csv $(MAKE_PINS) $(AF_FILE) $(PREFIX_FILE) + $(ECHO) "Create $@" + $(Q)python $(MAKE_PINS) --board $(BOARD_PINS) --af $(AF_FILE) --prefix $(PREFIX_FILE) --hdr $(GEN_PINS_HDR) > $(GEN_PINS_SRC) + +$(BUILD)/pins_$(BOARD).o: $(BUILD)/pins_$(BOARD).c + $(call compile_c) + +include ../py/mkrules.mk diff --git a/stmhal/boards/NETDUINO_PLUS_2/mpconfigboard.h b/stmhal/boards/NETDUINO_PLUS_2/mpconfigboard.h new file mode 100644 index 0000000000000..9bc5149ecf85e --- /dev/null +++ b/stmhal/boards/NETDUINO_PLUS_2/mpconfigboard.h @@ -0,0 +1,38 @@ +#define NETDUINO_PLUS_2 + +#define MICROPY_HW_BOARD_NAME "NetduinoPlus2" + +#define MICROPY_HW_HAS_SWITCH (1) + +// On the netuino, the sdcard appears to be wired up as a 1-bit +// SPI, so the driver needs to be converted to support that before +// we can turn this on. +#define MICROPY_HW_HAS_SDCARD (0) +#define MICROPY_HW_HAS_MMA7660 (0) +#define MICROPY_HW_HAS_LIS3DSH (0) +#define MICROPY_HW_HAS_LCD (0) +#define MICROPY_HW_HAS_WLAN (0) +#define MICROPY_HW_ENABLE_RNG (1) +#define MICROPY_HW_ENABLE_RTC (0) +#define MICROPY_HW_ENABLE_TIMER (1) +#define MICROPY_HW_ENABLE_SERVO (1) +#define MICROPY_HW_ENABLE_AUDIO (0) + +// USRSW is pulled low. Pressing the button makes the input go high. +#define USRSW_PIN (pin_B11) +#define USRSW_PUPD (GPIO_PuPd_NOPULL) +#define USRSW_EXTI_EDGE (EXTI_Trigger_Rising) +#define USRSW_PRESSED (1) + +/* LED */ +#define PYB_LED1 (pin_A10) // Blue LED +#define PYB_LED2 (pin_C13) // White LED (aka Power) +#define PYB_LED3 (pin_A10) // Same as Led(1) +#define PYB_LED4 (pin_C13) // Same as Led(2) + +#define PYB_OTYPE (GPIO_OType_PP) + +#define PYB_LED_ON(pin) (pin->gpio->BSRRL = pin->pin_mask) +#define PYB_LED_OFF(pin) (pin->gpio->BSRRH = pin->pin_mask) + +#define HSE_VALUE (25000000) diff --git a/stmhal/boards/NETDUINO_PLUS_2/pins.csv b/stmhal/boards/NETDUINO_PLUS_2/pins.csv new file mode 100644 index 0000000000000..f9b94a6c8716a --- /dev/null +++ b/stmhal/boards/NETDUINO_PLUS_2/pins.csv @@ -0,0 +1,28 @@ +D0,PC7 +D1,PC6 +D2,PA3 +D3,PA2 +D4,PB12 +D5,PB8 +D6,PB9 +D7,PA1 +D8,PA0 +D9,PA6 +D10,PB10 +D11,PB15 +D12,PB14 +D13,PB13 +A0,PC0 +A1,PC1 +A2,PC2 +A3,PC3 +A4,PC4 +A5,PC5 +LED,PA10 +SW,PB11 +PWR_LED,PC13 +PWR_SD,PB1 +PWR_HDR,PB2 +PWR_ETH,PC15 +RST_ETH,PD2 + diff --git a/stmhal/boards/PYBOARD3/mpconfigboard.h b/stmhal/boards/PYBOARD3/mpconfigboard.h new file mode 100644 index 0000000000000..29e23eaab6a27 --- /dev/null +++ b/stmhal/boards/PYBOARD3/mpconfigboard.h @@ -0,0 +1,32 @@ +#define PYBOARD3 + +#define MICROPY_HW_BOARD_NAME "PYBv3" + +#define MICROPY_HW_HAS_SWITCH (1) +#define MICROPY_HW_HAS_SDCARD (1) +#define MICROPY_HW_HAS_MMA7660 (1) +#define MICROPY_HW_HAS_LIS3DSH (0) +#define MICROPY_HW_HAS_LCD (0) +#define MICROPY_HW_HAS_WLAN (0) +#define MICROPY_HW_ENABLE_RNG (1) +#define MICROPY_HW_ENABLE_RTC (1) +#define MICROPY_HW_ENABLE_TIMER (1) +#define MICROPY_HW_ENABLE_SERVO (1) +#define MICROPY_HW_ENABLE_AUDIO (0) + +// USRSW has no pullup or pulldown, and pressing the switch makes the input go low +#define USRSW_PIN (pin_A13) +#define USRSW_PUPD (GPIO_PuPd_UP) +#define USRSW_EXTI_EDGE (EXTI_Trigger_Falling) +#define USRSW_PRESSED (0) + +/* LED */ +#define PYB_LED1 (pin_A8) // R1 - red +#define PYB_LED2 (pin_A10) // R2 - red +#define PYB_LED3 (pin_C4) // G1 - green +#define PYB_LED4 (pin_C5) // G2 - green + +#define PYB_OTYPE (GPIO_OType_PP) + +#define PYB_LED_ON(pin) (pin->gpio->BSRRH = pin->pin_mask) +#define PYB_LED_OFF(pin) (pin->gpio->BSRRL = pin->pin_mask) diff --git a/stmhal/boards/PYBOARD3/pins.csv b/stmhal/boards/PYBOARD3/pins.csv new file mode 100644 index 0000000000000..cc07b1544575e --- /dev/null +++ b/stmhal/boards/PYBOARD3/pins.csv @@ -0,0 +1,37 @@ +B13,PB13 +B14,PB14 +B15,PB15 +C6,PC6 +C7,PC7 +A13,PA13 +A14,PA14 +A15,PA15 +B3,PB3 +B4,PB4 +B6,PB6 +B7,PB7 +B8,PB8 +B9,PB9 +C0,PC0 +C1,PC1 +C2,PC2 +C3,PC3 +A0,PA0 +A1,PA1 +A2,PA2 +A3,PA3 +A4,PA4 +A5,PA5 +A6,PA6 +A7,PA7 +B0,PB0 +B1,PB1 +B10,PB10 +B11,PB11 +B12,PB12 +LED_R1,PA8 +LED_R2,PA10 +LED_G1,PC4 +LED_G2,PC5 +SW,PA13 + diff --git a/stmhal/boards/PYBOARD4/mpconfigboard.h b/stmhal/boards/PYBOARD4/mpconfigboard.h new file mode 100644 index 0000000000000..155901da1b88a --- /dev/null +++ b/stmhal/boards/PYBOARD4/mpconfigboard.h @@ -0,0 +1,33 @@ +#define PYBOARD4 + +#define MICROPY_HW_BOARD_NAME "PYBv4" + +#define MICROPY_HW_HAS_SWITCH (1) +#define MICROPY_HW_HAS_SDCARD (1) +#define MICROPY_HW_HAS_MMA7660 (1) +#define MICROPY_HW_HAS_LIS3DSH (0) +#define MICROPY_HW_HAS_LCD (1) +#define MICROPY_HW_HAS_WLAN (0) +#define MICROPY_HW_ENABLE_RNG (1) +#define MICROPY_HW_ENABLE_RTC (1) +#define MICROPY_HW_ENABLE_TIMER (1) +#define MICROPY_HW_ENABLE_SERVO (1) +#define MICROPY_HW_ENABLE_AUDIO (1) + +// USRSW has no pullup or pulldown, and pressing the switch makes the input go low +#define USRSW_PIN (pin_B3) +#define USRSW_PUPD (GPIO_PuPd_UP) +#define USRSW_EXTI_EDGE (EXTI_Trigger_Falling) +#define USRSW_PRESSED (0) + +/* LED */ +#define PYB_LED1 (pin_A13) // red +#define PYB_LED2 (pin_A14) // green +#define PYB_LED3 (pin_A15) // yellow +#define PYB_LED4 (pin_B4) // blue + +#define PYB_OTYPE (GPIO_OType_PP) + +#define PYB_LED_ON(pin) (pin->gpio->BSRRL = pin->pin_mask) +#define PYB_LED_OFF(pin) (pin->gpio->BSRRH = pin->pin_mask) + diff --git a/stmhal/boards/PYBOARD4/pins.csv b/stmhal/boards/PYBOARD4/pins.csv new file mode 100644 index 0000000000000..2ca7fef184b4f --- /dev/null +++ b/stmhal/boards/PYBOARD4/pins.csv @@ -0,0 +1,45 @@ +X1,PA0 +X2,PA1 +X3,PA2 +X4,PA3 +X5,PA4 +X6,PA5 +X7,PA6 +X8,PA7 +X9,PB6 +X10,PB7 +X11,PC4 +X12,PC5 +X13,Reset +X14,GND +X15,3.3V +X16,VIN +X17,PB3 +X18,PC13 +X19,PC0 +X20,PC1 +X21,PC2 +X22,PC3 +X23,A3.3V +X24,AGND +Y1,PC6 +Y2,PC7 +Y3,PB8 +Y4,PB9 +Y5,PB12 +Y6,PB13 +Y7,PB14 +Y8,PB15 +Y9,PB10 +Y10,PB11 +Y11,PB0 +Y12,PB1 +Y13,Reset +Y14,GND +Y15,3.3V +Y16,VIN +LED_BLUE,PB4 +LED_RED,PA13 +LED_GREEN,PA14 +LED_YELLOW,PA15 +SW,PB3 diff --git a/stmhal/boards/STM32F4DISC/mpconfigboard.h b/stmhal/boards/STM32F4DISC/mpconfigboard.h new file mode 100644 index 0000000000000..b463c90ad3d64 --- /dev/null +++ b/stmhal/boards/STM32F4DISC/mpconfigboard.h @@ -0,0 +1,33 @@ +#define STM32F4DISC + +#define MICROPY_HW_BOARD_NAME "F4DISC" + +#define MICROPY_HW_HAS_SWITCH (1) +#define MICROPY_HW_HAS_SDCARD (0) +#define MICROPY_HW_HAS_MMA7660 (0) +#define MICROPY_HW_HAS_LIS3DSH (1) +#define MICROPY_HW_HAS_LCD (0) +#define MICROPY_HW_HAS_WLAN (0) +#define MICROPY_HW_ENABLE_RNG (1) +#define MICROPY_HW_ENABLE_RTC (1) +#define MICROPY_HW_ENABLE_TIMER (1) +#define MICROPY_HW_ENABLE_SERVO (0) +#define MICROPY_HW_ENABLE_AUDIO (0) + +// USRSW is pulled low. Pressing the button makes the input go high. +#define USRSW_PIN (pin_A0) +#define USRSW_PUPD (GPIO_PuPd_NOPULL) +#define USRSW_EXTI_EDGE (EXTI_Trigger_Rising) +#define USRSW_PRESSED (1) + +/* LED */ +#define PYB_LED1 (pin_D14) // red +#define PYB_LED2 (pin_D12) // green +#define PYB_LED3 (pin_D13) // orange +#define PYB_LED4 (pin_D15) // blue + +#define PYB_OTYPE (GPIO_OType_PP) + +#define PYB_LED_ON(pin) (pin->gpio->BSRRL = pin->pin_mask) +#define PYB_LED_OFF(pin) (pin->gpio->BSRRH = pin->pin_mask) + diff --git a/stmhal/boards/STM32F4DISC/pins.csv b/stmhal/boards/STM32F4DISC/pins.csv new file mode 100644 index 0000000000000..4049fef7d919c --- /dev/null +++ b/stmhal/boards/STM32F4DISC/pins.csv @@ -0,0 +1,85 @@ +PC0,PC0 +PC1,PC1 +PC2,PC2 +PC3,PC3 +PA0,PA0 +PA1,PA1 +PA2,PA2 +PA3,PA3 +PA4,PA4 +PA5,PA5 +PA6,PA6 +PA7,PA7 +PC4,PC4 +PC5,PC5 +PB0,PB0 +PB1,PB1 +PB2,PB2 +PE7,PE7 +PE8,PE8 +PE9,PE9 +PE10,PE10 +PE11,PE11 +PE12,PE12 +PE13,PE13 +PE14,PE14 +PE15,PE15 +PB10,PB10 +PB11,PB11 +PB12,PB12 +PB13,PB13 +PB14,PB14 +PB15,PB15 +PD8,PD8 +PD9,PD9 +PD10,PD10 +PD11,PD11 +PD12,PD12 +PD13,PD13 +PD14,PD14 +PD15,PD15 +PC6,PC6 +PC7,PC7 +PC8,PC8 +PC9,PC9 +PA8,PA8 +PA9,PA9 +PA10,PA10 +PA13,PA13 +PA14,PA14 +PA15,PA15 +PC10,PC10 +PC11,PC11 +PC12,PC12 +PD0,PD0 +PD1,PD1 +PD2,PD2 +PD3,PD3 +PD4,PD4 +PD5,PD5 +PD6,PD6 +PD7,PD7 +PB4,PB4 +PB5,PB5 +PB6,PB6 +PB7,PB7 +PB8,PB8 +PB9,PB9 +PE0,PE0 +PE1,PE1 +PE2,PE2 +PE3,PE3 +PE4,PE4 +PE5,PE5 +PE6,PE6 +PC13,PC13 +PC14,PC14 +PC15,PC15 +PH0,PH0 +PH1,PH1 +LED_GREEN,PD12 +LED_ORANGE,PD13 +LED_RED,PD14 +LED_BLUE,PD15 +SW,PA0 + diff --git a/stmhal/boards/STM32F4DISC/stm32f4xx_hal_conf.h b/stmhal/boards/STM32F4DISC/stm32f4xx_hal_conf.h new file mode 100644 index 0000000000000..0953cfd2e28f7 --- /dev/null +++ b/stmhal/boards/STM32F4DISC/stm32f4xx_hal_conf.h @@ -0,0 +1,392 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_conf.h + * @author MCD Application Team + * @version V1.0.1 + * @date 26-February-2014 + * @brief HAL configuration file. + ****************************************************************************** + * @attention + * + *
Lib
folder.
+ * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
+ * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
+ * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
+ * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
+ * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
+ * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
+ *
+ * The library functions are declared in the public file arm_math.h
which is placed in the Include
folder.
+ * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+ * public header file arm_math.h
for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+ * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
+ * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
+ *
+ * Examples
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Toolchain Support
+ *
+ * The library has been developed and tested with MDK-ARM version 4.60.
+ * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+ *
+ * Building the Library
+ *
+ * The library installer contains project files to re build libraries on MDK Tool chain in the CMSIS\\DSP_Lib\\Source\\ARM
folder.
+ * - arm_cortexM0b_math.uvproj
+ * - arm_cortexM0l_math.uvproj
+ * - arm_cortexM3b_math.uvproj
+ * - arm_cortexM3l_math.uvproj
+ * - arm_cortexM4b_math.uvproj
+ * - arm_cortexM4l_math.uvproj
+ * - arm_cortexM4bf_math.uvproj
+ * - arm_cortexM4lf_math.uvproj
+ *
+ *
+ * The project can be built by opening the appropriate project in MDK-ARM 4.60 chain and defining the optional pre processor MACROs detailed above.
+ *
+ * Pre-processor Macros
+ *
+ * Each library project have differant pre-processor macros.
+ *
+ * - UNALIGNED_SUPPORT_DISABLE:
+ *
+ * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
+ *
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * - ARM_MATH_MATRIX_CHECK:
+ *
+ * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
+ *
+ * - ARM_MATH_ROUNDING:
+ *
+ * Define macro ARM_MATH_ROUNDING for rounding on support functions
+ *
+ * - ARM_MATH_CMx:
+ *
+ * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+ * and ARM_MATH_CM0 for building library on cortex-M0 target, ARM_MATH_CM0PLUS for building library on cortex-M0+ target.
+ *
+ * - __FPU_PRESENT:
+ *
+ * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+ *
+ * Copyright Notice
+ *
+ * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
+ */
+
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures. For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ * + * typedef struct + * { + * uint16_t numRows; // number of rows of the matrix. + * uint16_t numCols; // number of columns of the matrix. + * float32_t *pData; // points to the data of the matrix. + * } arm_matrix_instance_f32; + *+ * There are similar definitions for Q15 and Q31 data types. + * + * The structure specifies the size of the matrix and then points to + * an array of data. The array is of size
numRows X numCols
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ * + * pData[i*numCols + j] + *+ * + * \par Init Functions + * There is an associated initialization function for each type of matrix + * data structure. + * The initialization function sets the values of the internal structure fields. + * Refer to the function
arm_mat_init_f32()
, arm_mat_init_q31()
+ * and arm_mat_init_q15()
for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ * + *+ * wherearm_matrix_instance_f32 S = {nRows, nColumns, pData};
+ *arm_matrix_instance_q31 S = {nRows, nColumns, pData};
+ *arm_matrix_instance_q15 S = {nRows, nColumns, pData};
+ *
nRows
specifies the number of rows, nColumns
+ * specifies the number of columns, and pData
points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ * + * ARM_MATH_SIZE_MISMATCH + *+ * Otherwise the functions return + *
+ * ARM_MATH_SUCCESS + *+ * There is some overhead associated with this matrix size checking. + * The matrix size checking is enabled via the \#define + *
+ * ARM_MATH_MATRIX_CHECK + *+ * within the library project settings. By default this macro is defined + * and size checking is enabled. By changing the project settings and + * undefining this macro size checking is eliminated and the functions + * run a bit faster. With size checking disabled the functions always + * return
ARM_MATH_SUCCESS
.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
+
+#if defined (ARM_MATH_CM4)
+#include "core_cm4.h"
+#elif defined (ARM_MATH_CM3)
+#include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+#include "core_cm0.h"
+#define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_CM0PLUS)
+#include "core_cm0plus.h"
+#define ARM_MATH_CM0_FAMILY
+#else
+#include "ARMCM4.h"
+#warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
+#endif
+
+#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
+#include "string.h"
+#include "math.h"
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define DELTA_Q31 (0x100)
+#define DELTA_Q15 0x5
+#define INDEX_MASK 0x0000003F
+#ifndef PI
+#define PI 3.14159265358979f
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define TABLE_SIZE 256
+#define TABLE_SPACING_Q31 0x800000
+#define TABLE_SPACING_Q15 0x80
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+ /**
+ * @brief Macro for Unaligned Support
+ */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+ #define ALIGN4
+#else
+ #if defined (__GNUC__)
+ #define ALIGN4 __attribute__((aligned(4)))
+ #else
+ #define ALIGN4 __align(4)
+ #endif
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /**
+ * @brief Error status returned by some functions in the library.
+ */
+
+ typedef enum
+ {
+ ARM_MATH_SUCCESS = 0, /**< No error */
+ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
+ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
+ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
+ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
+ ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+ ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
+ } arm_status;
+
+ /**
+ * @brief 8-bit fractional data type in 1.7 format.
+ */
+ typedef int8_t q7_t;
+
+ /**
+ * @brief 16-bit fractional data type in 1.15 format.
+ */
+ typedef int16_t q15_t;
+
+ /**
+ * @brief 32-bit fractional data type in 1.31 format.
+ */
+ typedef int32_t q31_t;
+
+ /**
+ * @brief 64-bit fractional data type in 1.63 format.
+ */
+ typedef int64_t q63_t;
+
+ /**
+ * @brief 32-bit floating-point type definition.
+ */
+ typedef float float32_t;
+
+ /**
+ * @brief 64-bit floating-point type definition.
+ */
+ typedef double float64_t;
+
+ /**
+ * @brief definition to read/write two 16 bit values.
+ */
+#if defined __CC_ARM
+#define __SIMD32_TYPE int32_t __packed
+#define CMSIS_UNUSED __attribute__((unused))
+#elif defined __ICCARM__
+#define CMSIS_UNUSED
+#define __SIMD32_TYPE int32_t __packed
+#elif defined __GNUC__
+#define __SIMD32_TYPE int32_t
+#define CMSIS_UNUSED __attribute__((unused))
+#else
+#error Unknown compiler
+#endif
+
+#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
+
+#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
+
+#define __SIMD64(addr) (*(int64_t **) & (addr))
+
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
+ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
+
+#endif
+
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+
+#endif
+
+
+ /**
+ * @brief Clips Q63 to Q31 values.
+ */
+ static __INLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ static __INLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ static __INLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ static __INLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+
+ static __INLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y)));
+ }
+
+
+#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
+#define __CLZ __clz
+#endif
+
+#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
+
+ static __INLINE uint32_t __CLZ(
+ q31_t data);
+
+
+ static __INLINE uint32_t __CLZ(
+ q31_t data)
+ {
+ uint32_t count = 0;
+ uint32_t mask = 0x80000000;
+
+ while((data & mask) == 0)
+ {
+ count += 1u;
+ mask = mask >> 1u;
+ }
+
+ return (count);
+
+ }
+
+#endif
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+ */
+
+ static __INLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ q31_t * pRecipTable)
+ {
+
+ uint32_t out, tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 1;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 1;
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t) (in >> 24u);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0u; i < 2u; i++)
+ {
+ tempVal = (q31_t) (((q63_t) in * out) >> 31u);
+ tempVal = 0x7FFFFFFF - tempVal;
+ /* 1.31 with exp 1 */
+ //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
+ out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1u);
+
+ }
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+ */
+ static __INLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ q15_t * pRecipTable)
+ {
+
+ uint32_t out = 0, tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 17;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 17;
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = in >> 8;
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0; i < 2; i++)
+ {
+ tempVal = (q15_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFF - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+
+ }
+
+
+ /*
+ * @brief C custom defined intrinisic function for only M0 processors
+ */
+#if defined(ARM_MATH_CM0_FAMILY)
+
+ static __INLINE q31_t __SSAT(
+ q31_t x,
+ uint32_t y)
+ {
+ int32_t posMax, negMin;
+ uint32_t i;
+
+ posMax = 1;
+ for (i = 0; i < (y - 1); i++)
+ {
+ posMax = posMax * 2;
+ }
+
+ if(x > 0)
+ {
+ posMax = (posMax - 1);
+
+ if(x > posMax)
+ {
+ x = posMax;
+ }
+ }
+ else
+ {
+ negMin = -posMax;
+
+ if(x < negMin)
+ {
+ x = negMin;
+ }
+ }
+ return (x);
+
+
+ }
+
+#endif /* end of ARM_MATH_CM0_FAMILY */
+
+
+
+ /*
+ * @brief C custom defined intrinsic function for M3 and M0 processors
+ */
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+
+ /*
+ * @brief C custom defined QADD8 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q7_t r, s, t, u;
+
+ r = (q7_t) x;
+ s = (q7_t) y;
+
+ r = __SSAT((q31_t) (r + s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
+ t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
+ u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
+
+ sum =
+ (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
+ (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB8 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s, t, u;
+
+ r = (q7_t) x;
+ s = (q7_t) y;
+
+ r = __SSAT((r - s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
+ t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
+ u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
+
+ sum =
+ (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
+ 0x000000FF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r + s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined SHADD16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (s >> 1));
+ s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r - s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSUB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t diff;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (s >> 1));
+ s = (((x >> 17) - (y >> 17)) << 16);
+
+ diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return diff;
+ }
+
+ /*
+ * @brief C custom defined QASX for M3 and M0 processors
+ */
+ static __INLINE q31_t __QASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum =
+ ((sum +
+ clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHASX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (y >> 17));
+ s = (((x >> 17) + (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+
+ /*
+ * @brief C custom defined QSAX for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum =
+ ((sum +
+ clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSAX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (y >> 17));
+ s = (((x >> 17) - (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SMUSDX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUSDX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t) (((short) x * (short) (y >> 16)) -
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined SMUADX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUADX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t) (((short) x * (short) (y >> 16)) +
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined QADD for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x + y);
+ }
+
+ /*
+ * @brief C custom defined QSUB for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x - y);
+ }
+
+ /*
+ * @brief C custom defined SMLAD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLAD(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLADX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLADX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLSDX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLSDX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum - ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLALD for M3 and M0 processors
+ */
+ static __INLINE q63_t __SMLALD(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLALDX for M3 and M0 processors
+ */
+ static __INLINE q63_t __SMLALDX(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) y)) +
+ ((short) x * (short) (y >> 16));
+ }
+
+ /*
+ * @brief C custom defined SMUAD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUAD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMUSD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUSD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (-((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+
+ /*
+ * @brief C custom defined SXTB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SXTB16(
+ q31_t x)
+ {
+
+ return ((((x << 24) >> 24) & 0x0000FFFF) |
+ (((x << 8) >> 8) & 0xFFFF0000));
+ }
+
+
+#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] *S points to an instance of the Q7 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ * @return none
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] *S points to an instance of the Q15 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+ * numTaps
is not a supported value.
+ */
+
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] *S points to an instance of the Q31 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] *S points to an instance of the floating-point FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q15;
+
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+
+
+ } arm_biquad_casd_df1_inst_f32;
+
+
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q31;
+
+
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @param[in] *pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @param[in] *pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] *pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t * pData);
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t * pData);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t * pData);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+#ifdef ARM_MATH_CM0_FAMILY
+ q15_t A1;
+ q15_t A2;
+#else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] *S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] *S is an instance of the floating-point PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q31 PID Control structure
+ * @return none
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the q15 PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues; /**< nValues */
+ float32_t x1; /**< x1 */
+ float32_t xSpacing; /**< xSpacing */
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q15;
+
+ arm_status arm_cfft_radix2_init_q15(
+ arm_cfft_radix2_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ void arm_cfft_radix2_q15(
+ const arm_cfft_radix2_instance_q15 * S,
+ q15_t * pSrc);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q31;
+
+ arm_status arm_cfft_radix2_init_q31(
+ arm_cfft_radix2_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ void arm_cfft_radix2_q31(
+ const arm_cfft_radix2_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f32(
+ arm_cfft_radix2_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f32(
+ const arm_cfft_radix2_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_f32;
+
+ void arm_cfft_f32(
+ const arm_cfft_instance_f32 * S,
+ float32_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q15;
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q31;
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+
+typedef struct
+ {
+ arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+ arm_rfft_fast_instance_f32 * S,
+ uint16_t fftLen);
+
+void arm_rfft_fast_f32(
+ arm_rfft_fast_instance_f32 * S,
+ float32_t * p, float32_t * pOut,
+ uint8_t ifftFlag);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q31 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q15 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_f32(
+ float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q7(
+ q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q15(
+ q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q31(
+ q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q7(
+ q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q15(
+ q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q31(
+ q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_f32(
+ float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q7(
+ q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q15(
+ q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q31(
+ q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+
+ void arm_conv_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+ void arm_conv_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+ void arm_conv_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q7 sequences
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_f32;
+
+
+
+ /**
+ * @brief Processing function for the floating-point FIR decimator.
+ * @param[in] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR decimator.
+ * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q31(
+ arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] *S points to an instance of the filter data structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pkCoeffs,
+ float32_t * pvCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pkCoeffs,
+ q31_t * pvCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pkCoeffs,
+ q15_t * pvCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+
+ } arm_lms_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @return none.
+ */
+ void arm_correlate_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @return none.
+ */
+
+ void arm_correlate_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+ void arm_correlate_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /*
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cos output.
+ * @return none.
+ */
+
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t * pSinVal,
+ float32_t * pCcosVal);
+
+ /*
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cosine output.
+ * @return none.
+ */
+
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t * pSinVal,
+ q31_t * pCosVal);
+
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * S
points to an instance of the PID control data structure. in
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ * + * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] + * A0 = Kp + Ki + Kd + * A1 = (-Kp ) - (2 * Kd ) + * A2 = Kd+ * + * \par + * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant + * + * \par + * \image html PID.gif "Proportional Integral Derivative Controller" + * + * \par + * The PID controller calculates an "error" value as the difference between + * the measured output and the reference input. + * The controller attempts to minimize the error by adjusting the process control inputs. + * The proportional value determines the reaction to the current error, + * the integral value determines the reaction based on the sum of recent errors, + * and the derivative value determines the reaction based on the rate at which the error has been changing. + * + * \par Instance Structure + * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. + * A separate instance structure must be defined for each PID Controller. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Reset Functions + * There is also an associated reset function for each data type which clears the state array. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. + * - Zeros out the values in the state buffer. + * + * \par + * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the PID Controller functions. + * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup PID + * @{ + */ + + /** + * @brief Process function for the floating-point PID Control. + * @param[in,out] *S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + */ + + + static __INLINE float32_t arm_pid_f32( + arm_pid_instance_f32 * S, + float32_t in) + { + float32_t out; + + /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ + out = (S->A0 * in) + + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q31 PID Control. + * @param[in,out] *S points to an instance of the Q31 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using an internal 64-bit accumulator. + * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. + * Thus, if the accumulator result overflows it wraps around rather than clip. + * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. + * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. + */ + + static __INLINE q31_t arm_pid_q31( + arm_pid_instance_q31 * S, + q31_t in) + { + q63_t acc; + q31_t out; + + /* acc = A0 * x[n] */ + acc = (q63_t) S->A0 * in; + + /* acc += A1 * x[n-1] */ + acc += (q63_t) S->A1 * S->state[0]; + + /* acc += A2 * x[n-2] */ + acc += (q63_t) S->A2 * S->state[1]; + + /* convert output to 1.31 format to add y[n-1] */ + out = (q31_t) (acc >> 31u); + + /* out += y[n-1] */ + out += S->state[2]; + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q15 PID Control. + * @param[in,out] *S points to an instance of the Q15 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using a 64-bit internal accumulator. + * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. + * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. + * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. + * Lastly, the accumulator is saturated to yield a result in 1.15 format. + */ + + static __INLINE q15_t arm_pid_q15( + arm_pid_instance_q15 * S, + q15_t in) + { + q63_t acc; + q15_t out; + +#ifndef ARM_MATH_CM0_FAMILY + __SIMD32_TYPE *vstate; + + /* Implementation of PID controller */ + + /* acc = A0 * x[n] */ + acc = (q31_t) __SMUAD(S->A0, in); + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + vstate = __SIMD32_CONST(S->state); + acc = __SMLALD(S->A1, (q31_t) *vstate, acc); + +#else + /* acc = A0 * x[n] */ + acc = ((q31_t) S->A0) * in; + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc += (q31_t) S->A1 * S->state[0]; + acc += (q31_t) S->A2 * S->state[1]; + +#endif + + /* acc += y[n-1] */ + acc += (q31_t) S->state[2] << 15; + + /* saturate the output */ + out = (q15_t) (__SSAT((acc >> 15), 16)); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @} end of PID group + */ + + + /** + * @brief Floating-point matrix inverse. + * @param[in] *src points to the instance of the input floating-point matrix structure. + * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + + arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + + + /** + * @ingroup groupController + */ + + + /** + * @defgroup clarke Vector Clarke Transform + * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. + * Generally the Clarke transform uses three-phase currents
Ia, Ib and Ic
to calculate currents
+ * in the two-phase orthogonal stator axis Ialpha
and Ibeta
.
+ * When Ialpha
is superposed with Ia
as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and Ia + Ib + Ic = 0
, in this condition Ialpha
and Ibeta
+ * can be calculated using only Ia
and Ib
.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where Ia
and Ib
are the instantaneous stator phases and
+ * pIalpha
and pIbeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ */
+
+ static __INLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta =
+ ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
+
+ }
+
+ /**
+ * @brief Clarke transform for Q31 version
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+ static __INLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q31(
+ q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where pIa
and pIb
are the instantaneous stator phases and
+ * Ialpha
and Ibeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ */
+
+
+ static __INLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
+
+ }
+
+ /**
+ * @brief Inverse Clarke transform for Q31 version
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+
+ static __INLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q15(
+ q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the Ialpha
and the Ibeta
currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where Ialpha
and Ibeta
are the stator vector components,
+ * pId
and pIq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+
+ static __INLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+
+ }
+
+ /**
+ * @brief Park transform for Q31 version
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+
+
+ static __INLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_float(
+ q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where pIalpha
and pIbeta
are the stator vector components,
+ * Id
and Iq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ */
+
+ static __INLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+
+ }
+
+
+ /**
+ * @brief Inverse Park transform for Q31 version
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+
+ static __INLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_float(
+ q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup LinearInterpolate Linear Interpolation
+ *
+ * Linear interpolation is a method of curve fitting using linear polynomials.
+ * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
+ *
+ * \par
+ * \image html LinearInterp.gif "Linear interpolation"
+ *
+ * \par
+ * A Linear Interpolate function calculates an output value(y), for the input(x)
+ * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
+ *
+ * \par Algorithm:
+ * + * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) + * where x0, x1 are nearest values of input x + * y0, y1 are nearest values to output y + *+ * + * \par + * This set of functions implements Linear interpolation process + * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single + * sample of data and each call to the function returns a single processed value. + *
S
points to an instance of the Linear Interpolate function data structure.
+ * x
is the input sample value. The functions returns the output value.
+ *
+ * \par
+ * if x is outside of the table boundary, Linear interpolation returns first value of the table
+ * if x is below input range and returns last value of table if x is above range.
+ */
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+
+ static __INLINE float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x)
+ {
+
+ float32_t y;
+ float32_t x0, x1; /* Nearest input values */
+ float32_t y0, y1; /* Nearest output values */
+ float32_t xSpacing = S->xSpacing; /* spacing between input values */
+ int32_t i; /* Index variable */
+ float32_t *pYData = S->pYData; /* pointer to output table */
+
+ /* Calculation of index */
+ i = (int32_t) ((x - S->x1) / xSpacing);
+
+ if(i < 0)
+ {
+ /* Iniatilize output for below specified range as least output value of table */
+ y = pYData[0];
+ }
+ else if((uint32_t)i >= S->nValues)
+ {
+ /* Iniatilize output for above specified range as last output value of table */
+ y = pYData[S->nValues - 1];
+ }
+ else
+ {
+ /* Calculation of nearest input values */
+ x0 = S->x1 + i * xSpacing;
+ x1 = S->x1 + (i + 1) * xSpacing;
+
+ /* Read of nearest output values */
+ y0 = pYData[i];
+ y1 = pYData[i + 1];
+
+ /* Calculation of output */
+ y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
+
+ }
+
+ /* returns output value */
+ return (y);
+ }
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ static __INLINE q31_t arm_linear_interp_q31(
+ q31_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q31_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20);
+
+ if(index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* shift left by 11 to keep fract in 1.31 format */
+ fract = (x & 0x000FFFFF) << 11;
+
+ /* Read two nearest output values from the index in 1.31(q31) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 2.30 format */
+ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
+
+ /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
+ y += ((q31_t) (((q63_t) y1 * fract) >> 32));
+
+ /* Convert y to 1.31 format */
+ return (y << 1u);
+
+ }
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ static __INLINE q15_t arm_linear_interp_q15(
+ q15_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q63_t y; /* output */
+ q15_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20u);
+
+ if(index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 13.35 format */
+ y = ((q63_t) y0 * (0xFFFFF - fract));
+
+ /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
+ y += ((q63_t) y1 * (fract));
+
+ /* convert y to 1.15 format */
+ return (y >> 20);
+ }
+
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+
+
+ static __INLINE q7_t arm_linear_interp_q7(
+ q7_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q7_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ uint32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ if (x < 0)
+ {
+ return (pYData[0]);
+ }
+ index = (x >> 20) & 0xfff;
+
+
+ if(index >= (nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index and are in 1.7(q7) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
+ y = ((y0 * (0xFFFFF - fract)));
+
+ /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
+ y += (y1 * fract);
+
+ /* convert y to 1.7(q7) format */
+ return (y >> 20u);
+
+ }
+
+ }
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+
+ float32_t arm_sin_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q31_t arm_sin_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q15_t arm_sin_q15(
+ q15_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+
+ float32_t arm_cos_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q31_t arm_cos_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q15_t arm_cos_q15(
+ q15_t x);
+
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ * + * x1 = x0 - f(x0)/f'(x0) + *+ * where
x1
is the current estimate,
+ * x0
is the previous estimate, and
+ * f'(x0)
is the derivative of f()
evaluated at x0
.
+ * For the square root function, the algorithm reduces to:
+ * + * x0 = in/2 [initial guess] + * x1 = 1/2 * ( x0 + in / x0) [each iteration] + *+ */ + + + /** + * @addtogroup SQRT + * @{ + */ + + /** + * @brief Floating-point square root function. + * @param[in] in input value. + * @param[out] *pOut square root of input value. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + *
in
is negative value and returns zero output for negative values.
+ */
+
+ static __INLINE arm_status arm_sqrt_f32(
+ float32_t in,
+ float32_t * pOut)
+ {
+ if(in > 0)
+ {
+
+// #if __FPU_USED
+#if (__FPU_USED == 1) && defined ( __CC_ARM )
+ *pOut = __sqrtf(in);
+#else
+ *pOut = sqrtf(in);
+#endif
+
+ return (ARM_MATH_SUCCESS);
+ }
+ else
+ {
+ *pOut = 0.0f;
+ return (ARM_MATH_ARGUMENT_ERROR);
+ }
+
+ }
+
+
+ /**
+ * @brief Q31 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
+ * @param[out] *pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q31(
+ q31_t in,
+ q31_t * pOut);
+
+ /**
+ * @brief Q15 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
+ * @param[out] *pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q15(
+ q15_t in,
+ q15_t * pOut);
+
+ /**
+ * @} end of SQRT group
+ */
+
+
+
+
+
+
+ /**
+ * @brief floating-point Circular write function.
+ */
+
+ static __INLINE void arm_circularWrite_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const int32_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief floating-point Circular Read function.
+ */
+ static __INLINE void arm_circularRead_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ int32_t * dst,
+ int32_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (int32_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+ /**
+ * @brief Q15 Circular write function.
+ */
+
+ static __INLINE void arm_circularWrite_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q15_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief Q15 Circular Read function.
+ */
+ static __INLINE void arm_circularRead_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q15_t * dst,
+ q15_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q15_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular write function.
+ */
+
+ static __INLINE void arm_circularWrite_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q7_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief Q7 Circular Read function.
+ */
+ static __INLINE void arm_circularRead_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q7_t * dst,
+ q7_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q7_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Mean value of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_mean_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+ /**
+ * @brief Mean value of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Mean value of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Floating-point complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t numSamples,
+ q31_t * realResult,
+ q31_t * imagResult);
+
+ /**
+ * @brief Q31 complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t numSamples,
+ q63_t * realResult,
+ q63_t * imagResult);
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t numSamples,
+ float32_t * realResult,
+ float32_t * imagResult);
+
+ /**
+ * @brief Q15 complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_q15(
+ q15_t * pSrcCmplx,
+ q15_t * pSrcReal,
+ q15_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_q31(
+ q31_t * pSrcCmplx,
+ q31_t * pSrcReal,
+ q31_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_f32(
+ float32_t * pSrcCmplx,
+ float32_t * pSrcReal,
+ float32_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Minimum value of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+ /**
+ * @brief Minimum value of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[in] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[out] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+ void arm_min_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[out] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Q15 complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ */
+ void arm_float_to_q31(
+ float32_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q15 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none
+ */
+ void arm_float_to_q15(
+ float32_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q7 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none
+ */
+ void arm_float_to_q7(
+ float32_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_q15(
+ q31_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_q7(
+ q31_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the Q15 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_float(
+ q15_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_q31(
+ q15_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_q7(
+ q15_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup BilinearInterpolate Bilinear Interpolation
+ *
+ * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
+ * The underlying function f(x, y)
is sampled on a regular grid and the interpolation process
+ * determines values between the grid points.
+ * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
+ * Bilinear interpolation is often used in image processing to rescale images.
+ * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
+ *
+ * Algorithm
+ * \par
+ * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
+ * For floating-point, the instance structure is defined as:
+ * + * typedef struct + * { + * uint16_t numRows; + * uint16_t numCols; + * float32_t *pData; + * } arm_bilinear_interp_instance_f32; + *+ * + * \par + * where
numRows
specifies the number of rows in the table;
+ * numCols
specifies the number of columns in the table;
+ * and pData
points to an array of size numRows*numCols
values.
+ * The data table pTable
is organized in row order and the supplied data values fall on integer indexes.
+ * That is, table element (x,y) is located at pTable[x + y*numCols]
where x and y are integers.
+ *
+ * \par
+ * Let (x, y)
specify the desired interpolation point. Then define:
+ * + * XF = floor(x) + * YF = floor(y) + *+ * \par + * The interpolated output point is computed as: + *
+ * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) + * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) + * + f(XF, YF+1) * (1-(x-XF))*(y-YF) + * + f(XF+1, YF+1) * (x-XF)*(y-YF) + *+ * Note that the coordinates (x, y) contain integer and fractional components. + * The integer components specify which portion of the table to use while the + * fractional components control the interpolation processor. + * + * \par + * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. + */ + + /** + * @addtogroup BilinearInterpolate + * @{ + */ + + /** + * + * @brief Floating-point bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + + + static __INLINE float32_t arm_bilinear_interp_f32( + const arm_bilinear_interp_instance_f32 * S, + float32_t X, + float32_t Y) + { + float32_t out; + float32_t f00, f01, f10, f11; + float32_t *pData = S->pData; + int32_t xIndex, yIndex, index; + float32_t xdiff, ydiff; + float32_t b1, b2, b3, b4; + + xIndex = (int32_t) X; + yIndex = (int32_t) Y; + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 + || yIndex > (S->numCols - 1)) + { + return (0); + } + + /* Calculation of index for two nearest points in X-direction */ + index = (xIndex - 1) + (yIndex - 1) * S->numCols; + + + /* Read two nearest points in X-direction */ + f00 = pData[index]; + f01 = pData[index + 1]; + + /* Calculation of index for two nearest points in Y-direction */ + index = (xIndex - 1) + (yIndex) * S->numCols; + + + /* Read two nearest points in Y-direction */ + f10 = pData[index]; + f11 = pData[index + 1]; + + /* Calculation of intermediate values */ + b1 = f00; + b2 = f01 - f00; + b3 = f10 - f00; + b4 = f00 - f01 - f10 + f11; + + /* Calculation of fractional part in X */ + xdiff = X - xIndex; + + /* Calculation of fractional part in Y */ + ydiff = Y - yIndex; + + /* Calculation of bi-linear interpolated output */ + out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; + + /* return to application */ + return (out); + + } + + /** + * + * @brief Q31 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q31_t arm_bilinear_interp_q31( + arm_bilinear_interp_instance_q31 * S, + q31_t X, + q31_t Y) + { + q31_t out; /* Temporary output */ + q31_t acc = 0; /* output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q31_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q31_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20u); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20u); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* shift left xfract by 11 to keep 1.31 format */ + xfract = (X & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + /* 20 bits for the fractional part */ + /* shift left yfract by 11 to keep 1.31 format */ + yfract = (Y & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); + + /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); + + /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* Convert acc to 1.31(q31) format */ + return (acc << 2u); + + } + + /** + * @brief Q15 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q15_t arm_bilinear_interp_q15( + arm_bilinear_interp_instance_q15 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q15_t x1, x2, y1, y2; /* Nearest output values */ + q31_t xfract, yfract; /* X, Y fractional parts */ + int32_t rI, cI; /* Row and column indices */ + q15_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ + + /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ + /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ + out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); + acc = ((q63_t) out * (0xFFFFF - yfract)); + + /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); + acc += ((q63_t) out * (xfract)); + + /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* acc is in 13.51 format and down shift acc by 36 times */ + /* Convert out to 1.15 format */ + return (acc >> 36); + + } + + /** + * @brief Q7 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q7_t arm_bilinear_interp_q7( + arm_bilinear_interp_instance_q7 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q7_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q7_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ + out = ((x1 * (0xFFFFF - xfract))); + acc = (((q63_t) out * (0xFFFFF - yfract))); + + /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ + out = ((x2 * (0xFFFFF - yfract))); + acc += (((q63_t) out * (xfract))); + + /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y1 * (0xFFFFF - xfract))); + acc += (((q63_t) out * (yfract))); + + /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y2 * (yfract))); + acc += (((q63_t) out * (xfract))); + + /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ + return (acc >> 40); + + } + + /** + * @} end of BilinearInterpolate group + */ + + +#if defined ( __CC_ARM ) //Keil +//SMMLAR + #define multAcc_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) + +//SMMLSR + #define multSub_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) + +//SMMULR + #define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) + +//Enter low optimization region - place directly above function definition + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + +//Exit low optimization region - place directly after end of function definition + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + +//Enter low optimization region - place directly above function definition + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + +//Exit low optimization region - place directly after end of function definition + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__ICCARM__) //IAR + //SMMLA + #define multAcc_32x32_keep32_R(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + + //SMMLS + #define multSub_32x32_keep32_R(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +//SMMUL + #define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + +//Enter low optimization region - place directly above function definition + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + +//Exit low optimization region - place directly after end of function definition + #define LOW_OPTIMIZATION_EXIT + +//Enter low optimization region - place directly above function definition + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + +//Exit low optimization region - place directly after end of function definition + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__GNUC__) + //SMMLA + #define multAcc_32x32_keep32_R(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + + //SMMLS + #define multSub_32x32_keep32_R(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +//SMMUL + #define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + + #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) + + #define LOW_OPTIMIZATION_EXIT + + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#endif + + + + + +#ifdef __cplusplus +} +#endif + + +#endif /* _ARM_MATH_H */ + + +/** + * + * End of file. + */ diff --git a/stmhal/cmsis/inc/core_cm0.h b/stmhal/cmsis/inc/core_cm0.h new file mode 100644 index 0000000000000..1b6b54ef44031 --- /dev/null +++ b/stmhal/cmsis/inc/core_cm0.h @@ -0,0 +1,682 @@ +/**************************************************************************//** + * @file core_cm0.h + * @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File + * @version V3.20 + * @date 25. February 2013 + * + * @note + * + ******************************************************************************/ +/* Copyright (c) 2009 - 2013 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#if defined ( __ICCARM__ ) + #pragma system_include /* treat file as system include file for MISRA check */ +#endif + +#ifdef __cplusplus + extern "C" { +#endif + +#ifndef __CORE_CM0_H_GENERIC +#define __CORE_CM0_H_GENERIC + +/** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions + CMSIS violates the following MISRA-C:2004 rules: + + \li Required Rule 8.5, object/function definition in header file.
FatFs is a generic FAT file system module for small embedded systems. The FatFs is written in compliance with ANSI C and completely separated from the disk I/O layer. Therefore it is independent of hardware architecture. It can be incorporated into low cost microcontrollers, such as AVR, 8051, PIC, ARM, Z80, 68k and etc..., without any change. Petit FatFs module is also available here.
+ +FatFs module provides following functions to the applications. In other words, this list describes what FatFs can do to access the FAT volumes.
+Since the FatFs module is completely separated from disk I/O layer, it requires following functions to access the physical media. When O/S related feature is enabled, it will require process/memory functions in addition. However the low level disk I/O module is not a part of FatFs module, so that it must be provided by user. The sample implementations are also available in the downloads.
+The FatFs module is a free software opened for education, research and development. You can use, modify and/or redistribute it for personal projects or commercial products without any restriction under your responsibility. For further information, refer to the application note.
+FatFs͏K͂ȑgݍ݃VXe̔ėpFATt@CVXeEW[łBANSI CŃn[hEFAEA[LeN`ɂ͈ˑȂ̂ŁAKvȃ[NEGAmۂłA8051, PIC, AVR, SH, Z80, 68k, H8, ARMȂLjȃ}CRłgp\łBFatFsVNՂFatFs܂B
+FatFsW[́AAvP[VECɑÃt@C(API)܂B܂ÃXgFatFsɂł邱ƂVvɎĂ܂B
+FatFsW[́APȂt@CEVXeECȂ̂ŁAfBA䃌C͊܂܂܂Bgp郁fBAɑΉ́A[UɂĒKv܂BFatFsW[́AʃCɑȂƂ̃C^[tF[Xv܂BOS֘A@\LɂƂ́AăvZX/֘AKvɂȂ܂BTvEvWFNgɉʃC̎܂B
+FatFsW[̓t[E\tgEFAƂċEEJpɌJĂ܂Bǂ̂悤ȗpړIilp珤p܂ŁjłgpEρEzzɂĈ̐͂܂ASėp҂̐ӔC̉ł̗pƂ܂Bڂ̓AvP[VEm[gQƂĂB
+The FatFs module is assuming following conditions on portability.
+The dependency diagram shown below is a typical configuration of the embedded system with FatFs module.
+You need to provide only low level disk I/O functions that required by FatFs module and nothing else. If a working disk module for the target is already existing, you need to write only glue functions to attach it to the FatFs module. If not, you need to port any other disk module or write it from scratch. Most of defined functions are not that always required. For example, disk write function is not required in read-only configuration. Following table shows which function is required depends on configuration options.
+Function | Required when: | Note |
---|---|---|
disk_initialize disk_status disk_read | Always | Disk I/O functions. Samples available in ffsample.zip. There are many implementations on the web. |
disk_write get_fattime disk_ioctl (CTRL_SYNC) | _FS_READONLY == 0 | |
disk_ioctl (GET_SECTOR_COUNT) disk_ioctl (GET_BLOCK_SIZE) | _USE_MKFS == 1 | |
disk_ioctl (GET_SECTOR_SIZE) | _MAX_SS > 512 | |
disk_ioctl (CTRL_ERASE_SECTOR) | _USE_ERASE == 1 | |
ff_convert ff_wtoupper | _USE_LFN >= 1 | Unicode support functions. Available in option/cc*.c. |
ff_cre_syncobj ff_del_syncobj ff_req_grant ff_rel_grant | _FS_REENTRANT == 1 | O/S dependent functions. Samples available in option/syscall.c. |
ff_mem_alloc ff_mem_free | _USE_LFN == 3 |
ARM7 32bit | ARM7 Thumb | CM3 Thumb-2 | AVR | H8/300H | PIC24 | RL78 | V850ES | SH-2A | RX600 | IA-32 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Compiler | GCC | GCC | GCC | GCC | CH38 | C30 | CC78K0R | CA850 | SHC | RXC | VC6 |
_WORD_ACCESS | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
text (Full, R/W) | 10591 | 7119 | 6565 | 13240 | 10864 | 11619 | 13192 | 8031 | 8960 | 5977 | 7856 |
text (Min, R/W) | 6671 | 4595 | 4293 | 8512 | 7232 | 7674 | 9033 | 5235 | 5768 | 3923 | 5129 |
text (Full, R/O) | 4695 | 3121 | 2861 | 6218 | 5162 | 5466 | 6418 | 3799 | 3964 | 2847 | 3687 |
text (Min, R/O) | 3523 | 2463 | 2275 | 4558 | 4058 | 4212 | 4948 | 2959 | 3096 | 2199 | 2857 |
bss | V*4 + 2 | V*4 + 2 | V*4 + 2 | V*2 + 2 | V*4 + 2 | V*2 + 2 | V*2 + 2 | V*4 + 2 | V*4 + 2 | V*4 + 2 | V*4 + 2 |
Work area (_FS_TINY == 0) | V*560 + F*550 | V*560 + F*550 | V*560 + F*550 | V*560 + F*544 | V*560 + F*550 | V*560 + F*544 | V*560 + F*544 | V*560 + F*544 | V*560 + F*550 | V*560 + F*550 | V*560 + F*550 |
Work area (_FS_TINY == 1) | V*560 + F*36 | V*560 + F*36 | V*560 + F*36 | V*560 + F*32 | V*560 + F*36 | V*560 + F*32 | V*560 + F*32 | V*560 + F*36 | V*560 + F*36 | V*560 + F*36 | V*560 + F*36 |
These are the memory usage on some target systems with following condition. The memory sizes are in unit of byte, V denotes number of volumes and F denotes number of open files. All samples are optimezed in code size.
++FatFs R0.10 options: +_FS_READONLY 0 (R/W), 1 (R/O) +_FS_MINIMIZE 0 (Full function), 3 (Minimized function) +_USE_STRFUNC 0 (Disable string functions) +_USE_MKFS 0 (Disable f_mkfs function) +_USE_FORWARD 0 (Disable f_forward function) +_USE_FASTSEEK 0 (Disable fast seek feature) +_CODE_PAGE 932 (Japanese Shift-JIS) +_USE_LFN 0 (Disable LFN) +_MAX_SS 512 (Fixed sector size) +_FS_RPATH 0 (Disable relative path feature) +_FS_LABEL 0 (Disable volume label functions) +_VOLUMES V (Number of logical drives to be used) +_MULTI_PARTITION 0 (Single partition per drive) +_FS_REENTRANT 0 (Disable reentrancy) +_FS_LOCK 0 (Disable file lock control) ++
Follwing table shows which API function is removed by configuration options for the module size reduction.
+Function | _FS_MINIMIZE | _FS_READONLY | _USE_STRFUNC | _FS_RPATH | _FS_LABEL | _USE_MKFS | _USE_FORWARD | _MULTI_PARTITION | |||||||||||
0 | 1 | 2 | 3 | 0 | 1 | 0 | 1/2 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | |
f_mount | |||||||||||||||||||
f_open | |||||||||||||||||||
f_close | |||||||||||||||||||
f_read | |||||||||||||||||||
f_write | x | ||||||||||||||||||
f_sync | x | ||||||||||||||||||
f_lseek | x | ||||||||||||||||||
f_opendir | x | x | |||||||||||||||||
f_closedir | x | x | |||||||||||||||||
f_readdir | x | x | |||||||||||||||||
f_stat | x | x | x | ||||||||||||||||
f_getfree | x | x | x | x | |||||||||||||||
f_truncate | x | x | x | x | |||||||||||||||
f_unlink | x | x | x | x | |||||||||||||||
f_mkdir | x | x | x | x | |||||||||||||||
f_chmod | x | x | x | x | |||||||||||||||
f_utime | x | x | x | x | |||||||||||||||
f_rename | x | x | x | x | |||||||||||||||
f_chdir | x | ||||||||||||||||||
f_chdrive | x | ||||||||||||||||||
f_getcwd | x | x | |||||||||||||||||
f_getlabel | x | ||||||||||||||||||
f_setlabel | x | x | |||||||||||||||||
f_forward | x | ||||||||||||||||||
f_mkfs | x | x | |||||||||||||||||
f_fdisk | x | x | x | ||||||||||||||||
f_putc | x | x | |||||||||||||||||
f_puts | x | x | |||||||||||||||||
f_printf | x | x | |||||||||||||||||
f_gets | x |
The FatFs module has started to support long file name (LFN) at revision 0.07. The two different file names, SFN and LFN, of a file is transparent in the file functions except for f_readdir function. To enable LFN feature, set _USE_LFN to 1, 2 or 3, and add a Unicode code conversion function ff_convert() and ff_wtoupper() to the project. The LFN feature requiers a certain working buffer in addition. The buffer size can be configured by _MAX_LFN corresponding to the available memory size. The size of long file name will reach up to 255 characters, so that the _MAX_LFN should be set to 255 for full featured LFN operation. If the size of working buffer is insufficient for the given file name, the file function fails with FR_INVALID_NAME. When enable the LFN feature with re-entrant feature, _USE_LFN must be set to 2 or 3. In this case, the file function allocates the working buffer on the stack or heap. The working buffer occupies (_MAX_LFN + 1) * 2 bytes.
+Code page | Program size |
---|---|
SBCS | +3.7K |
932(Shift-JIS) | +62K |
936(GBK) | +177K |
949(Korean) | +139K |
950(Big5) | +111K |
When the LFN feature is enabled, the module size will be increased depends on the selected code page. Right table shows how many bytes increased when LFN feature is enabled with some code pages. Especially, in the CJK region, tens of thousands of characters are being used. Unfortunately, it requires a huge OEM-Unicode bidirectional conversion table and the module size will be drastically increased that shown in the table. As the result, the FatFs with LFN feature with those code pages will not able to be implemented to most 8-bit microcontrollers.
+Note that the LFN feature on the FAT file system is a patent of Microsoft Corporation. This is not the case on FAT32 but most FAT32 drivers come with the LFN feature. FatFs can swich the LFN feature off by configuration option. When enable LFN feature on the commercial products, a license from Microsoft may be required depends on the final destination.
+By default, FatFs uses ANSI/OEM code set on the API under LFN configuration. FatFs can also switch the character encoding to Unicode on the API (_LFN_UNICODE). This means the FatFs supports the True-LFN feature. For more information, refer to the description in the file name.
+The file operations to the different volume is always re-entrant and can work simultaneously. The file operations to the same volume is not re-entrant but it can also be configured to thread-safe with _FS_REENTRANT option. In this case, also the OS dependent synchronization object control functions, ff_cre_syncobj(), ff_del_syncobj(), ff_req_grant() and ff_rel_grant() must be added to the project.
+When a file function is called while the volume is in use by any other task, the file function is suspended until that task leaves file function. If wait time exceeded a period defined by _TIMEOUT, the file function will abort with FR_TIMEOUT. The timeout feature might not be supported by some RTOS.
+There is an exception for f_mount(), f_mkfs(), f_fdisk() function. These functions are not re-entrant to the same volume or corresponding physical drive. When use these functions, all other tasks must unmount the volume and avoid to access the volume.
+Note that this section describes on the re-entrancy of the FatFs module itself but also the low level disk I/O layer will need to be re-entrant.
+FatFs module does not support the shareing controls of duplicated file access in default. It is permitted when open method to a file is only read mode. The duplicated open in write mode to a file is always prohibited and open file must not be renamed, deleted, or the FAT structure on the volume can be collapted.
+The file shareing control can also be available when _FS_LOCK is set to 1 or grater. The value specifies the number of files to manage simultaneously. In this case, if any open, rename or remove that violating the file shareing rule that described above is attempted, the file function will fail with FR_LOCKED. If number of open objects gets larger than _FS_LOCK, the f_open()/f_opendir() function will fail with FR_TOO_MANY_OPEN_FILES.
+For good performance to read/write files on the small embedded system, application programmer should consider what process is done in the FatFs module. The file data on the volume is transferred in following sequence by f_read() function.
+Figure 1. Sector miss-aligned read (short)
+
+
Figure 2. Sector miss-aligned read (long)
+
+
Figure 3. Sector aligned read
+
+
The file I/O buffer is a sector buffer to read/write a partial data on the sector. The sector buffer is either file private sector buffer on each file object or shared sector buffer in the file system object. The buffer configuration option _FS_TINY determins which sector buffer is used for the file data transfer. When tiny buffer (1) is selected, data memory consumption is reduced 512 bytes each file object. In this case, FatFs module uses only a sector buffer in the file system object for file data transfer and FAT/directory access. The disadvantage of the tiny buffer configuration is: the FAT data cached in the sector buffer will be lost by file data transfer and it must be reloaded at every cluster boundary. However it will be suitable for most application from view point of the decent performance and low memory comsumption.
+Figure 1 shows that a partial sector, sector mis-aligned part of the file, is transferred via the file I/O buffer. On long data transfer shown in Figure 2, middle of transfer data that covers one or more sector is transferred to the application buffer directly. Figure 3 shows that the case of entier transfer data is aligned to the sector boundary. In this case, file I/O buffer is not used. On the direct transfer, the maximum extent of sectors are read with disk_read() function at a time but the multiple sector transfer never across the cluster boundary even if it is contiguous.
+Therefore taking effort to sector aligned read/write accesss avoids buffered data transfer and the read/write performance will be improved. Besides the effect, cached FAT data will not be flushed by file data transfer at the tiny configuration, so that it can achieve same performance as non-tiny configuration with small memory footprint.
+To maximize the write performance of flash memory media, such as SDC and CFC, it must be controlled in consideration of its characteristitcs.
+The write throughput of the flash memory media becomes the worst at single sector write and it increases proportional to the number of sectors per a write transaction. This effect more appers at more fast bus clock and its ratio often becomes grater than ten. The number of write transaction also affects the life time of the media. Therefore the application program should write the data in large block as possible. The ideal block size is cluster size or power of 2 bytes and the byte offset should be aligned to the block. Of course all layers between the application and the media must support multiple sector write feature, however most of open-source disk drivers lack it. Do not split a multiple sector write request into single sector writes or the write throughput gets poor. Note that FatFs module and its sample disk drivers supprt multiple sector read/write feature.
+When remove a file with f_remove() function, the data clusters occupied by the file are marked 'free' on the FAT. But the data sectors containing the file data are not that applied any process, so that the file data left occupies a part of the flash memory array as 'live block'. If the file data is forced erased on removing the file, the number of free blocks on the flash memory will be increased. This may skip internal block erase operation to the data block on next write. As the result the write performance might be improved. To enable this feature, set _USE_ERASE to 1. Note that this is a feature with expectation of internal process of the flash memory media. It may not always effective and f_remove() function will take a time to remove a large file. Most applications will not need this feature.
+If a write operation to the FAT volume is interrupted due to any accidental failure, such as sudden blackout, incorrect disk removal and unrecoverable disk error, the FAT structure on the volume can be collapted. Following images shows the critical section of the FatFs module.
+An interruption in the red section can cause a cross link; as a result, the object being changed can be lost. If an interruption in the yellow section is occured, there is one or more possibility listed below.
+Each case does not affect the files that not opened in write mode. To minimize risk of data loss, the critical section can be minimized by minimizing the time that file is opened in write mode or using f_sync() function as shown in Figure 5.
+These are examples of extended use of FatFs APIs. New item will be added whenever a useful code is found.
+ +This is a copy of the FatFs license document that included in the source codes.
+/*----------------------------------------------------------------------------/ +/ FatFs - FAT file system module R0.10 (C)ChaN, 2013 +/-----------------------------------------------------------------------------/ +/ FatFs module is a generic FAT file system module for small embedded systems. +/ This is a free software that opened for education, research and commercial +/ developments under license policy of following trems. +/ +/ Copyright (C) 2013, ChaN, all right reserved. +/ +/ * The FatFs module is a free software and there is NO WARRANTY. +/ * No restriction on use. You can use, modify and redistribute it for +/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY. +/ * Redistributions of source code must retain the above copyright notice. +/ +/-----------------------------------------------------------------------------/+
Therefore FatFs license is one of the BSD-style license but there is a significant feature. Because FatFs is for embedded projects, the conditions for redistributions in binary form, such as embedded code, hex file and binary library, are not specified to increase its usability. The documentation of the distributions need not include about FatFs and its license document, and it may also. This is equivalent to the BSD 1-Clause License. Of course FatFs is compatible with the projects under GNU GPL. When redistribute the FatFs with any modification, the license can also be changed to GNU GPL or BSD-style license.
+The f_chdir function changes the current directory of a drive.
++FRESULT f_chdir ( + const TCHAR* path /* [IN] Path name */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_PATH, +FR_INVALID_NAME, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+The f_chdir() function changes the current directory of the logical drive. The current directory of a drive is initialized to the root directory when the drive is auto-mounted. Note that the current directory is retained in the each file system object so that it also affects other tasks that using the volume.
+Available when _FS_RPATH >= 1.
++ /* Change current direcoty of the current drive (dir1 under root dir) */ + f_chdir("/dir1"); + + /* Change current direcoty of drive 2 (parent dir) */ + f_chdir("2:.."); ++
The f_chdrive function changes the current drive.
++FRESULT f_chdrive ( + const TCHAR* path /* [IN] Logical drive number */ +); ++
+FR_OK, +FR_INVALID_DRIVE +
+The f_chdrive() function changes the current drive. The initial value of the current drive number is 0. Note that the current drive is retained in a static variable so that it also affects other tasks that using the file functions.
+Available when _FS_RPATH >= 1 and _VOLUMES >= 2.
+The f_chmod function changes the attribute of a file or sub-directory.
++FRESULT f_chmod ( + const TCHAR* path, /* [IN] Object name */ + BYTE attr, /* [IN] Attribute flags */ + BYTE mask /* [IN] Attribute masks */ +); ++
Attribute | Description |
---|---|
AM_RDO | Read only |
AM_ARC | Archive |
AM_SYS | System |
AM_HID | Hidden |
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+The f_chmod() function changes the attribute of a file or sub-directory.
+Available when _FS_READONLY == 0 and _FS_MINIMIZE == 0.
+
+ /* Set read-only flag, clear archive flag and others are retained. */
+ f_chmod("file.txt", AR_RDO, AR_RDO | AR_ARC);
+
+The f_close function closes an open file.
++FRESULT f_close ( + FIL* fp /* [IN] Pointer to the file object */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The f_close() function closes an open file object. If any data has been written to the file, the cached information of the file is written back to the volume. After the function succeeded, the file object is no longer valid and it can be discarded.
+Note that if the file object is in read-only mode and _FS_LOCK option is not enabled, the file object can also be discarded without this process. However it is not recommended for future compatibility.
+Always available.
+The f_closedir function closes an open directory.
++FRESULT f_closedir ( + DIR* dp /* [IN] Pointer to the directory object */ +); ++
+FR_OK, +FR_INT_ERR, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The f_closedir() function closes an open directory object. After the function succeeded, the file object is no longer valid and it can be discarded.
+Note that the directory object can also be discarded without this process unless _FS_LOCK option is not enabled. However it is not recommended for future compatibility.
+Available when _FS_MINIMIZE <= 1.
+The disk_initialize function initializes the disk drive.
++DSTATUS disk_initialize ( + BYTE pdrv /* [IN] Physical drive number */ +); ++
This function returns a disk status as the result. For details of the disk status, refer to the disk_status() function.
+This function initializes a physical drive and put it ready to generic read/write data. When the function succeeded, STA_NOINIT flag in the return value is cleared.
+Application program MUST NOT call this function while FatFs is in use, or FAT structure on the volume can be corrapted. To re-initialize the file system, use f_mount() function instead. This function is called on volume mount process by FatFs module to manage the media change.
+The disk_ioctl function cntrols device specific features and miscellaneous functions other than generic read/write.
++DRESULT disk_ioctl ( + BYTE pdrv, /* [IN] Drive number */ + BYTE cmd, /* [IN] Control command code */ + void* buff /* [I/O] Parameter and data buffer */ +); ++
The FatFs module uses only device independent commands described below. Any device dependent function is not used.
+Command | Description |
---|---|
CTRL_SYNC | Make sure that the disk drive has finished pending write process. When the disk I/O module has a write back cache, flush the dirty sector immediately. This command is not used in read-only configuration. |
GET_SECTOR_SIZE | Returns sector size of the drive into the WORD variable pointed by buff. This command is not used in fixed sector size configuration, _MAX_SS is 512. |
GET_SECTOR_COUNT | Returns number of available sectors on the drive into the DWORD variable pointed by buff. This command is used by only f_mkfs() function to determine the volume size to be created. |
GET_BLOCK_SIZE | Returns erase block size of the flash memory in unit of sector into the DWORD variable pointed by buff. The allowable value is 1 to 32768 in power of 2. Return 1 if the erase block size is unknown or disk devices. This command is used by only f_mkfs() function and it attempts to align data area to the erase block boundary. |
CTRL_ERASE_SECTOR | Erases a part of the flash memory specified by a DWORD array {<start sector>, <end sector>} pointed by buff. This is similar command to Trim command of ATA command set. When this feature is not supported or not a flash memory media, this command has no effect. The FatFs does not check the result code and the file function is not affected even if the sectors are not erased well. This command is called on removing a cluster chain when _USE_ERASE is 1. |
The disk_read function reads sector(s) from the disk drive.
++DRESULT disk_read ( + BYTE pdrv, /* [IN] Physical drive number */ + BYTE* buff, /* [OUT] Pointer to the read data buffer */ + DWORD sector, /* [IN] Start sector number */ + UINT count /* [IN] Number of sectros to read */ +); ++
The memory address specified by buff is not that always aligned to word boundary because the type of argument is defined as BYTE*. The misaligned read/write request can occure at direct transfer. If the bus architecture, especially DMA controller, does not allow misaligned memory access, it should be solved in this function. There are some workarounds described below to avoid this issue.
+The disk_status function returns the current disk status.
++DSTATUS disk_status ( + BYTE pdrv /* [IN] Physical drive number */ +); ++
The disk status is returned in combination of following flags. FatFs refers only STA_NOINIT and STA_PROTECTED.
+The disk_write writes sector(s) to the disk.
++DRESULT disk_write ( + BYTE drv, /* [IN] Physical drive number */ + const BYTE* buff, /* [IN] Write data (may be non aligned) */ + DWORD sector, /* [IN] Sector number to write */ + UINT count /* [IN] Number of sectors to write */ +); ++
This function is not required in read only configuration. The specified memory address is not that always aligned to word boundary because the type of pointer is defined as BYTE. For more information, read description in disk_read function.
+Application program MUST NOT call this function while FatFs is in use, or FAT structure on the volume can be corrapted.
+The f_eof function tests for end-of-file on a file.
++int f_eof ( + FIL* fp /* [IN] File object */ +); ++
The f_eof() function returns a non-zero value if the read/write pointer has reached end of the file; otherwise it returns a zero.
+In this revision, this function is implemented as a macro.
+
+#define f_eof(fp) (((fp)->fptr) == ((fp)->fsize) ? 1 : 0)
+
+Always available.
+The f_error tests for an error on a file.
++int f_error ( + FIL* fp /* [IN] File object */ +); ++
Returns a non-zero value if a hard error has occured; otherwise it returns a zero.
+In this revision, this function is implemented as a macro.
+
+#define f_error(fp) (((fp)->flag & FA__ERROR) ? 1 : 0)
+
+Always available.
+The get_fattime function gets current time.
++DWORD get_fattime (void); ++
Currnet time is returned with packed into a DWORD value. The bit field is as follows:
+The get_fattime() function must return any valid time even if the system does not support a real time clock. If a zero is returned, the file will not have a valid time. This fucntion is not required in read only configuration.
+The f_fdisk fucntion divides a physical drive.
++FRESULT f_fdisk ( + BYTE pdrv, /* [IN] Physical drive number */ + const DWORD part[], /* [IN] Partition size */ + void* work /* [IN] Work area */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_NOT_READY, +FR_WRITE_PROTECTED, +FR_INVALID_PARAMETER +
+The f_fdisk() function creates a partition table into the MBR of the physical drive. The partitioning rule is in generic FDISK format, so that it can create upto four primary partitions. Extended partition is not supported. The part[] array with four items specifies how to divide the physical drive. The first item specifies the size of first primary partition and fourth item specifies the fourth primary partition. If the value is less than or equal to 100, it means percentage of the partition in the entire disk space. If it is larger than 100, it means partition size in unit of sector.
+Available when _FS_READOLNY == 0, _USE_MKFS == 1 and _MULTI_PARTITION == 1.
++ /* Volume management table defined by user (required when _MULTI_PARTITION == 1) */ + + PARTITION VolToPart[] = { + {0, 1}, /* Logical drive 0 ==> Physical drive 0, 1st partition */ + {0, 2}, /* Logical drive 1 ==> Physical drive 0, 2nd partition */ + {1, 0} /* Logical drive 2 ==> Physical drive 1, auto detection */ + }; ++
+ /* Initialize a brand-new disk drive mapped to physical drive 0 */ + + FATFS fs; + DWORD plist[] = {50, 50, 0, 0}; /* Divide drive into two partitions */ + BYTE work[_MAX_SS]; + + f_fdisk(0, plist, work); /* Divide physical drive 0 */ + + f_mount(&fs, "0:", 0); /* Register work area to the logical drive 0 */ + f_mkfs("0:", 0, 0); /* Create FAT volume on the logical drive 0. 2nd argument is ignored. */ + f_mount(0, "0:", 0); /* Unregister work area from the logical drive 0 */ + + f_mount(&fs, "1:", 0); /* Give a work area to the logical drive 1 */ + f_mkfs("1:", 0, 0); /* Create FAT volume on the logical drive 1. 2nd argument is ignored. */ + f_mount(0, "1:", 0); /* Unregister work area from the logical drive 1 */ + ++
The format of path name on the FatFs module is similer to the filename specs of DOS/Windos as follows:
+"[drive#:][/]directory/file"+
The FatFs module supports long file name (LFN) and 8.3 format file name (SFN). The LFN can be used when LFN feature is enabled (_USE_LFN > 0). The sub directories are separated with a \ or / in the same way as DOS/Windows API. Duplicated separators are skipped and ignored. Only a difference is that the logical drive is specified in a numeral with a colon. When the drive number is omitted, it is assumed as default drive (drive 0 or current drive).
+Control characters ('\0' to '\x1F') are recognized as end of the path name. Leading/embedded spaces in the path name are valid as a part of the name at LFN configuration but they are recognized as end of the path name at non-LFN configuration. Trailing spaces and dots are ignored.
+In default configuration (_FS_RPATH == 0), it does not have a concept of current directory like OS oriented file system. All objects on the volume are always specified in full path name that follows from the root directory. Dot directory names are not allowed. Heading separator is ignored and it can be exist or omitted. The default drive number is fixed to 0.
+When relative path feature is enabled (_FS_RPATH == 1), specified path is followed from the root directory if a heading separator is exist. If not, it is followed from the current directory set with f_chdir function. Dot names are also allowed for the path name. The default drive is the current drive set with f_chdrive function.
+Path name | _FS_RPATH == 0 | _FS_RPATH == 1 |
file.txt | A file in the root directory of the drive 0 | A file in the current directory of the current drive |
/file.txt | A file in the root directory of the drive 0 | A file in the root directory of the current drive |
The root directory of the drive 0 | The current directory of the current drive | |
/ | The root directory of the drive 0 | The root directory of the current drive |
2: | The root directory of the drive 2 | The current directory of the drive 2 |
2:/ | The root directory of the drive 2 | The root directory of the drive 2 |
2:file.txt | A file in the root directory of the drive 2 | A file in the current directory of the drive 2 |
../file.txt | Invalid name | A file in the parent directory |
. | Invalid name | This directory |
.. | Invalid name | Parent directory of the current directory |
dir1/.. | Invalid name | The current directory |
/.. | Invalid name | The root directory (sticks the top level) |
The path names are input/output in either ANSI/OEM code (SBCS/DBCS) or Unicode depends on the configuration options. The type of arguments which specify the file names are defined as TCHAR. It is an alias of char in default. The code set used to the file name string is ANSI/OEM specifid by _CODE_PAGE. When _LFN_UNICODE is set to 1, the type of the TCHAR is switched to WCHAR to support Unicode (UTF-16 encoding). In this case, the LFN feature is fully supported and the Unicode specific characters, such as ✝☪✡☸☭, can also be used for the path name. It also affects data types and encoding of the string I/O functions. To define literal strings, _T(s) and _TEXT(s) macro are available to select either ANSI/OEM or Unicode automatically. The code shown below is an example to define the literal strings.
++ f_open(fp, "filename.txt", FA_READ); /* ANSI/OEM string */ + f_open(fp, L"filename.txt", FA_READ); /* Unicode string */ + f_open(fp, _T("filename.txt"), FA_READ); /* Changed by configuration */ ++
The FatFs module needs dynamic work area called file system object for each volume (logical drive). It is registered to the FatFs module by f_mount() function. By default, each logical drive is bound to the physical drive with the same drive number and an FAT volume on the drive is serched by auto detect feature. It loads boot sectors and checks it if it is an FAT boot sector in order of sector 0 as SFD format, 1st partition, 2nd partition, 3rd partition and 4th partition as FDISK format.
+When _MULTI_PARTITION == 1 is specified by configuration option, each individual logical drive is bound to the partition on the physical drive specified by volume management table. The volume management table must be defined by user to resolve relationship between logical drives and partitions. Following code is an example of a volume management table.
++Example: Logical drive 0-2 are tied to three pri-partitions on the physical drive 0 (fixed disk) + Logical drive 3 is tied to an FAT volume on the physical drive 1 (removable disk) + +PARTITION VolToPart[] = { + {0, 1}, /* Logical drive 0 ==> Physical drive 0, 1st partition */ + {0, 2}, /* Logical drive 1 ==> Physical drive 0, 2nd partition */ + {0, 3}, /* Logical drive 2 ==> Physical drive 0, 3rd partition */ + {1, 0} /* Logical drive 3 ==> Physical drive 1 (auto detection) */ +}; ++
There are some considerations on using _MULTI_PARTITION configuration.
+The f_forward function reads the file data and forward it to the data streaming device.
++FRESULT f_forward ( + FIL* fp, /* [IN] File object */ + UINT (*func)(const BYTE*,UINT), /* [IN] Data streaming function */ + UINT btf, /* [IN] Number of bytes to forward */ + UINT* bf /* [OUT] Number of bytes forwarded */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The f_forward() function reads the data from the file and forward it to the outgoing stream without data buffer. This is suitable for small memory system because it does not require any data buffer at application module. The file pointer of the file object increases in number of bytes forwarded. In case of *bf is less than btf without error, it means the requested bytes could not be transferred due to end of file or stream goes busy during data transfer.
+Available when _USE_FORWARD == 1 and _FS_TINY == 1.
++/*------------------------------------------------------------------------*/ +/* Sample code of data transfer function to be called back from f_forward */ +/*------------------------------------------------------------------------*/ + +UINT out_stream ( /* Returns number of bytes sent or stream status */ + const BYTE *p, /* Pointer to the data block to be sent */ + UINT btf /* >0: Transfer call (Number of bytes to be sent). 0: Sense call */ +) +{ + UINT cnt = 0; + + + if (btf == 0) { /* Sense call */ + /* Return stream status (0: Busy, 1: Ready) */ + /* When once it returned ready to sense call, it must accept a byte at least */ + /* at subsequent transfer call, or f_forward will fail with FR_INT_ERR. */ + if (FIFO_READY) cnt = 1; + } + else { /* Transfer call */ + do { /* Repeat while there is any data to be sent and the stream is ready */ + FIFO_PORT = *p++; + cnt++; + } while (cnt < btf && FIFO_READY); + } + + return cnt; +} + + +/*------------------------------------------------------------------------*/ +/* Sample code using f_forward function */ +/*------------------------------------------------------------------------*/ + +FRESULT play_file ( + char *fn /* Pointer to the audio file name to be played */ +) +{ + FRESULT rc; + FIL fil; + UINT dmy; + + /* Open the audio file in read only mode */ + rc = f_open(&fil, fn, FA_READ); + if (rc) return rc; + + /* Repeat until the file pointer reaches end of the file */ + while (rc == FR_OK && fil.fptr < fil.fsize) { + + /* any other processes... */ + + /* Fill output stream periodicaly or on-demand */ + rc = f_forward(&fil, out_stream, 1000, &dmy); + } + + /* Close the file and return */ + f_close(&fil); + return rc; +} ++
The f_getcwd function retrieves the current directory.
++FRESULT f_getcwd ( + TCHAR* buff, /* [OUT] Buffer to return path name */ + UINT len /* [IN] The length of the buffer */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+The f_getcwd() function retrieves full path name of the current directory of the current drive. When _VOLUMES is larger than 1, a logical drive number is added to top of the path name.
+Available when _FS_RPATH == 2.
+The f_getfree function gets number of the free clusters.
++FRESULT f_getfree ( + const TCHAR* path, /* [IN] Logical drive number */ + DWORD* nclst, /* [OUT] Number of free clusters */ + FATFS** fatfs /* [OUT] Corresponding file system object */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT +
+The f_getfree() function gets number of free clusters on the volume. The member csize in the file system object indicates number of sectors per cluster, so that the free space in unit of sector can be calcurated with this information. When FSINFO structure on the FAT32 volume is not in sync, this function can return an incorrect free cluster count. To avoid this problem, FatFs can be forced full FAT scan by _FS_NOFSINFO option.
+Available when _FS_READONLY == 0 and _FS_MINIMIZE == 0.
++ FATFS *fs; + DWORD fre_clust, fre_sect, tot_sect; + + + /* Get volume information and free clusters of drive 1 */ + res = f_getfree("1:", &fre_clust, &fs); + if (res) die(res); + + /* Get total sectors and free sectors */ + tot_sect = (fs->n_fatent - 2) * fs->csize; + fre_sect = fre_clust * fs->csize; + + /* Print the free space (assuming 512 bytes/sector) */ + printf("%10lu KiB total drive space.\n%10lu KiB available.\n", + tot_sect / 2, fre_sect / 2); ++
The f_getlabel function returns volume label and volume serial number of a drive.
++FRESULT f_getlabel ( + const TCHAR* path, /* [IN] Drive number */ + TCHAR* buff, /* [OUT] Volume label */ + DWORD* sn /* [OUT] Volume serial number */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT +
+Available when _USE_LABEL == 1.
++ char str[12]; + + /* Get volume label of the default drive */ + f_getlabel("", str, 0); + + /* Get volume label of the drive 2 */ + f_getlabel("2:", str, 0); ++
The f_gets reads a string from the file.
++TCHAR* f_gets ( + TCHAR* buff, /* [OUT] Read buffer */ + int len, /* [IN] Size of the read buffer */ + FIL* fp /* [IN] File object */ +); ++
When the function succeeded, buff will be returuned.
+The f_gets() function is a wrapper function of f_read() function. The read operation continues until a '\n' is stored, reached end of the file or the buffer is filled with len - 1 characters. The read string is terminated with a '\0'. When no character to read or any error occured during read operation, it returns a null pointer. The status of EOF and error can be examined with f_eof() and f_error() macros.
+When FatFs is configured to Unicode API (_LFN_UNICODE == 1), data types on the srting fuctions, f_putc(), f_puts(), f_printf() and f_gets(), is also switched to Unicode. The character encoding on the file to be read/written via those functions is selected by _STRF_ENCODE option.
+Available when _USE_STRFUNC is 1 or 2. When it is set to 2, '\r's contained in the file are stripped out.
+The f_lseek function moves the file read/write pointer of an open file object. It can also be used to expand the file size (cluster pre-allocation).
+ ++FRESULT f_lseek ( + FIL* fp, /* [IN] File object */ + DWORD ofs /* [IN] File read/write pointer */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The f_lseek() function moves the file read/write pointer of an open file. The offset can be specified in only origin from top of the file. When an offset beyond the file size is specified in write mode, the file size is expanded to the specified offset. The file data in the expanded area is undefined because no data is written to the file. This is suitable to pre-allocate a cluster chain quickly, for fast write operation. After the f_lseek() function succeeded, the current read/write pointer should be checked in order to make sure the read/write pointer has been moved correctry. In case of the current read/write pointer is not the expected value, either of followings has been occured.
+Fast seek feature is enabled when _USE_FASTSEEK is set to 1 and the member cltbl in the file object is not NULL. This feature enables fast backward/long seek operations without FAT access by using cluster link map table (CLMT). It is also applied to f_read()/f_write() function. In this mode, the file cannot be expanded by f_write()/f_lseek() function.
+The CLMT must be created in the user defined DWORD array prior to use the fast seek feature. To create the CLMT, set address of the DWORD array to the member cltbl in the file object, set the array size in unit of items into the first item and call the f_lseek() function with ofs = CREATE_LINKMAP. After the function succeeded and CLMT is created, no FAT access is occured in subsequent f_read()/f_write()/f_lseek() function to the file. If the function failed with FR_NOT_ENOUGH_CORE, the given array size is insufficient for the file and number of items required is returned into the first item of the array. The required array size is (number of fragments + 1) * 2 items. For example, when the file is fragmented in 5, 12 items will be required for the CLMT.
+Available when _FS_MINIMIZE <= 2.
++ /* Open file */ + fp = malloc(sizeof (FIL)); + res = f_open(fp, "file.dat", FA_READ|FA_WRITE); + if (res) ... + + /* Move to offset of 5000 from top of the file */ + res = f_lseek(fp, 5000); + + /* Move to end of the file to append data */ + res = f_lseek(fp, f_size(fp)); + + /* Forward 3000 bytes */ + res = f_lseek(fp, f_tell(fp) + 3000); + + /* Rewind 2000 bytes (take care on wraparound) */ + res = f_lseek(fp, f_tell(fp) - 2000); ++
+/* Cluster pre-allocation (to prevent buffer overrun on streaming write) */ + + res = f_open(fp, recfile, FA_CREATE_NEW | FA_WRITE); /* Create a file */ + + res = f_lseek(fp, PRE_SIZE); /* Expand file size (cluster pre-allocation) */ + if (res || f_tell(fp) != PRE_SIZE) ... /* Check if the file has been expanded */ + + res = f_lseek(fp, DATA_START); /* Record data stream WITHOUT cluster allocation delay */ + ... /* DATA_START and write block size should be aligned to sector boundary */ + + res = f_truncate(fp); /* Truncate unused area */ + res = f_lseek(fp, 0); /* Put file header */ + ... + + res = f_close(fp); ++
+/* Using fast seek feature */ + + DWORD clmt[SZ_TBL]; /* Cluster link map table buffer */ + + res = f_lseek(fp, ofs1); /* This is normal seek (cltbl member is nulled on file open) */ + + fp->cltbl = clmt; /* Enable fast seek feature */ + clmt[0] = SZ_TBL; /* Set table size */ + res = f_lseek(fp, CREATE_LINKMAP); /* Create CLMT */ + ... + + res = f_lseek(fp, ofs2); /* This is fast seek */ ++
The f_mkdir function creates a new directory.
++FRESULT f_mkdir ( + const TCHAR* path /* [IN] Directory name */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_PATH, +FR_INVALID_NAME, +FR_DENIED, +FR_EXIST, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+This function creates a new directory.
+Available when _FS_READONLY == 0 and _FS_MINIMIZE == 0.
++ res = f_mkdir("sub1"); + if (res) die(res); + res = f_mkdir("sub1/sub2"); + if (res) die(res); + res = f_mkdir("sub1/sub2/sub3"); + if (res) die(res); ++
The f_mkfs fucntion creates an FAT file system on the logical drive.
++FRESULT f_mkfs ( + const TCHAR* path, /* [IN] Logical drive number */ + BYTE sfd, /* [IN] Partitioning rule */ + UINT au /* [IN] Size of the allocation unit */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_NOT_READY, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_MKFS_ABORTED, +FR_INVALID_PARAMETER +
+The f_mkfs() function creates an FAT volume on the logical drive. When FDISK format is specified, a primary partition occupies the entire disk space is created and then an FAT volume is created on the partition. When SFD format is specified, the FAT volume starts from the first sector of the physical drive.
+If the logical drive has been bound to any partition (1-4) by multiple partition feature (_MULTI_PARTITION), the FAT volume is created into the specified partition. In this case, the second argument sfd is ignored. The physical drive must have been partitioned with f_fdisk() function or any other partitioning tool prior to use this function.
+Note that there are two partitioning rules, FDISK and SFD. The FDISK partitioning is usually used for harddisk, MMC, SDC, CFC and U Disk. It can divide a physical drive into one or more partitions with a partition table on the MBR. However Windows does not support multiple partition on the removable media. The SFD is non-partitioned method. The FAT volume starts from the first sector on the physical drive without partition table. It is usually used for floppy disk, Microdrive, optical disk and super-floppy media.
+The FAT sub-type, FAT12/FAT16/FAT32, is determined by number of clusters on the volume and nothing else, according to the FAT specification issued by Microsoft. Thus which FAT sub-type is selected, is depends on the volume size and the specified cluster size. The cluster size affects performance of the file system and large cluster increases the performance.
+When the number of clusters gets near the FAT sub-type boundaries, the function can fail with FR_MKFS_ABORTED.
+Available when _FS_READOLNY == 0 and _USE_MKFS == 1.
+The f_mount fucntion registers/unregisters file system object (work area) to the FatFs module.
++FRESULT f_mount ( + FATFS* fatfs, /* [IN] File system object */ + const TCHAR* path, /* [IN] Logical drive number */ + BYTE opt /* [IN] Initialization option */ +); ++
+FR_OK, +FR_INVALID_DRIVE, +FR_DISK_ERR, +FR_NOT_READY, +FR_NO_FILESYSTEM +
+The f_mount() function registers/unregisters a file system object used for the logical drive to the FatFs module as follows:
+The file system object is the work area needed for each logical drive. It must be given to the logical drive with this function prior to use any other file functions. To unregister a work area, specify a NULL to the fatfs, and then the work area can be discarded.
+If forced mount is not specified, this function always succeeds regardless of the physical drive status due to delayed mount feature. It only clears (de-initializes) the given work area and registers its address to the internal table. No activity of the physical drive in this function. It can also be used to force de-initialized the registered work area of a logical drive. The volume mount processes, initialize the corresponding physical drive, find the FAT volume in it and initialize the work area, is performed in the subsequent file access functions when either or both of following condition is true.
+If the function with forced mount failed, it means that the file system object is registered but the volume is currently not available. Mount process will also be attempted in subsequent file access functions.
+If implementation of the disk I/O layer lacks media change detection, application program needs to perform a f_mount() after media change to force cleared the file system object.
+Always available.
+The f_open function creates a file object to be used to access the file.
++FRESULT f_open ( + FIL* fp, /* [OUT] Pointer to the file object structure */ + const TCHAR* path, /* [IN] File name */ + BYTE mode /* [IN] Mode flags */ +); ++
Value | Description |
---|---|
FA_READ | Specifies read access to the object. Data can be read from the file. Combine with FA_WRITE for read-write access. |
FA_WRITE | Specifies write access to the object. Data can be written to the file. Combine with FA_READ for read-write access. |
FA_OPEN_EXISTING | Opens the file. The function fails if the file is not existing. (Default) |
FA_OPEN_ALWAYS | Opens the file if it is existing. If not, a new file is created. +To append data to the file, use f_lseek() function after file open in this method. |
FA_CREATE_NEW | Creates a new file. The function fails with FR_EXIST if the file is existing. |
FA_CREATE_ALWAYS | Creates a new file. If the file is existing, it is truncated and overwritten. |
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_DENIED, +FR_EXIST, +FR_INVALID_OBJECT, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_LOCKED, +FR_NOT_ENOUGH_CORE, +FR_TOO_MANY_OPEN_FILES +
+After f_open() function succeeded, the file object is valid. The file object is used for subsequent read/write functions to identify the file. To close an open file, use f_close() function. If the file is modified and not closed properly, the file data will be collapted.
+If duplicated file open is needed, read here carefully. However duplicated open of a file with write mode flag is always prohibited.
+Before using any file function, a work area (file system object) must be registered to the logical drive with f_mount() function. All API functions except for f_fdisk() function can work after this procedure.
+Always available. The mode flags, FA_WRITE, FA_CREATE_ALWAYS, FA_CREATE_NEW and FA_OPEN_ALWAYS, are not available when _FS_READONLY == 1.
++/* Read a text file and display it */ + +FATFS FatFs; /* Work area (file system object) for logical drive */ + +int main (void) +{ + FIL fil; /* File object */ + char line[82]; /* Line buffer */ + FRESULT fr; /* FatFs return code */ + + + /* Register work area to the default drive */ + f_mount(&FatFs, "", 0); + + /* Open a text file */ + fr = f_open(&fil, "message.txt", FA_READ); + if (fr) return (int)fr; + + /* Read all lines and display it */ + while (f_gets(line, sizeof line, &fil)) + printf(line); + + /* Close the file */ + f_close(&fil); + + return 0; +} ++
+/* Copy a file "file.bin" on the drive 1 to drive 0 */ + +int main (void) +{ + FATFS fs[2]; /* Work area (file system object) for logical drives */ + FIL fsrc, fdst; /* File objects */ + BYTE buffer[4096]; /* File copy buffer */ + FRESULT fr; /* FatFs function common result code */ + UINT br, bw; /* File read/write count */ + + + /* Register work area for each logical drive */ + f_mount(&fs[0], "0:", 0); + f_mount(&fs[1], "1:", 0); + + /* Open source file on the drive 1 */ + fr = f_open(&fsrc, "1:file.bin", FA_OPEN_EXISTING | FA_READ); + if (fr) return (int)fr; + + /* Create destination file on the drive 0 */ + fr = f_open(&fdst, "0:file.bin", FA_CREATE_ALWAYS | FA_WRITE); + if (fr) return (int)fr; + + /* Copy source to destination */ + for (;;) { + fr = f_read(&fsrc, buffer, sizeof buffer, &br); /* Read a chunk of source file */ + if (fr || br == 0) break; /* error or eof */ + fr = f_write(&fdst, buffer, br, &bw); /* Write it to the destination file */ + if (fr || bw < br) break; /* error or disk full */ + } + + /* Close open files */ + f_close(&fsrc); + f_close(&fdst); + + /* Unregister work area prior to discard it */ + f_mount(NULL, "0:", 0); + f_mount(NULL, "1:", 0); + + return (int)fr; +} ++
The f_opendir function opens a directory.
++FRESULT f_opendir ( + DIR* dp, /* [OUT] Pointer to the directory object structure */ + const TCHAR* path /* [IN] Directory name */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_PATH, +FR_INVALID_NAME, +FR_INVALID_OBJECT, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+The f_opendir() function opens an exsisting directory and creates the directory object for subsequent calls.
+Available when _FS_MINIMIZE <= 1.
+The f_printf function writes formatted string to the file.
++int f_printf ( + FIL* fp, /* [IN] File object */ + const TCHAR* fmt, /* [IN] Format stirng */ + ... +); ++
When the function succeeded, it returns number of characters written. When the function failed due to disk full or any error, an EOF (-1) will be returned.
+The f_printf() is a wrapper function of f_write(). The format control directive is a sub-set of standard library shown as follos:
+Available when _FS_READONLY == 0 and _USE_STRFUNC is 1 or 2. When it is set to 2, '\n's contained in the output are converted to "\r\n".
+When FatFs is configured to Unicode API (_LFN_UNICODE == 1), data types on the srting fuctions, f_putc(), f_puts(), f_printf() and f_gets(), is also switched to Unicode. The character encoding on the file to be read/written via those functions is selected by _STRF_ENCODE option.
++ f_printf(&fil, "%d", 1234); /* "1234" */ + f_printf(&fil, "%6d,%3d%%", -200, 5); /* " -200, 5%" */ + f_printf(&fil, "%-6u", 100); /* "100 " */ + f_printf(&fil, "%ld", 12345678L); /* "12345678" */ + f_printf(&fil, "%04x", 0xAB); /* "00ab" */ + f_printf(&fil, "%08LX", 0x123ABCL); /* "00123ABC" */ + f_printf(&fil, "%016b", 0x550F); /* "0101010100001111" */ + f_printf(&fil, "%s", "String"); /* "String" */ + f_printf(&fil, "%5s", "abc"); /* " abc" */ + f_printf(&fil, "%-5s", "abc"); /* "abc " */ + f_printf(&fil, "%c", 'a'); /* "a" */ + f_printf(&fil, "%f", 10.0); /* f_printf lacks floating point support */ ++
The f_putc funciton puts a character to the file.
++int f_putc ( + TCHAR chr, /* [IN] A character to put */ + FIL* fp /* [IN] File object */ +); ++
When the character was written successfuly, it returns number of characters written. When the function failed due to disk full or any error, an EOF (-1) will be returned.
+When FatFs is configured to Unicode API (_LFN_UNICODE == 1), character encoding on the string fuctions, f_putc(), f_puts(), f_printf() and f_gets(), is also switched to Unicode. The character encoding on the file to be read/written via those functions is selected by _STRF_ENCODE option.
+The f_putc() function is a wrapper function of f_write() function.
+Available when _FS_READONLY == 0 and _USE_STRFUNC is 1 or 2. When it is set to 2, a '\n' is converted to "\r\n".
+The f_puts function writes a string to the file.
++int f_puts ( + const TCHAR* str, /* [IN] String */ + FIL* fp /* [IN] File object */ +); ++
When the function succeeded, it returns number of characters written. When the write operation is aborted due to disk full or any error, an EOF (-1) will be returned.
+When FatFs is configured to Unicode API (_LFN_UNICODE == 1), character encoding on the srting fuctions, f_putc(), f_puts(), f_printf() and f_gets(), is also switched to Unicode. The character encoding on the file to be read/written via those functions is selected by _STRF_ENCODE option.
+The f_puts() function is a wrapper function of f_write() function.
+Available when _FS_READONLY == 0 and _USE_STRFUNC is 1 or 2. When it is set to 2, '\n's contained in the string are converted to "\r\n".
+On the FatFs API, most of file functions return common result code as enum type FRESULT. When a function succeeded, it returns zero, otherwise returns non-zero value that indicates type of error.
+ +The f_read function reads data from a file.
++FRESULT f_read ( + FIL* fp, /* [IN] File object */ + void* buff, /* [OUT] Buffer to store read data */ + UINT btr, /* [IN] Number of bytes to read */ + UINT* br /* [OUT] Number of bytes read */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The file read/write pointer of the file object advances number of bytes read. After the function succeeded, *br should be checked to detect the end of file. In case of *br is less than btr, it means the read/write pointer reached end of the file during read operation.
+Always available.
+The f_readdir function reads directory entries.
++FRESULT f_readdir ( + DIR* dp, /* [IN] Directory object */ + FILINFO* fno /* [OUT] File information structure */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+The f_readdir() function reads directory items, file and directory, in sequence. All items in the directory can be read by calling f_readdir() function repeatedly. When relative path feature is enabled (_FS_RPATH >= 1), dot entries ("." and "..") are not filtered out and they will appear in the read items. When all directory items have been read and no item to read, a null string is returned into the fname[] without any error. When a null pointer is given to the fno, the read index of the directory object is rewinded.
+When LFN feature is enabled, lfname and lfsize in the file information structure must be initialized with valid value prior to use it. The lfname is a pointer to the LFN read buffer. The lfsize is size of the LFN read buffer in unit of TCHAR. If the LFN is not needed, set a null pointer to the lfname and the LFN is not returned. A null string will be returned into the LFN read buffer in case of following conditions.
+When the directory item has no LFN information, lower case characters can be contained in the fname[].
+Available when _FS_MINIMIZE <= 1.
++FRESULT scan_files ( + char* path /* Start node to be scanned (also used as work area) */ +) +{ + FRESULT res; + FILINFO fno; + DIR dir; + int i; + char *fn; /* This function is assuming non-Unicode cfg. */ +#if _USE_LFN + static char lfn[_MAX_LFN + 1]; /* Buffer to store the LFN */ + fno.lfname = lfn; + fno.lfsize = sizeof lfn; +#endif + + + res = f_opendir(&dir, path); /* Open the directory */ + if (res == FR_OK) { + i = strlen(path); + for (;;) { + res = f_readdir(&dir, &fno); /* Read a directory item */ + if (res != FR_OK || fno.fname[0] == 0) break; /* Break on error or end of dir */ + if (fno.fname[0] == '.') continue; /* Ignore dot entry */ +#if _USE_LFN + fn = *fno.lfname ? fno.lfname : fno.fname; +#else + fn = fno.fname; +#endif + if (fno.fattrib & AM_DIR) { /* It is a directory */ + sprintf(&path[i], "/%s", fn); + res = scan_files(path); + if (res != FR_OK) break; + path[i] = 0; + } else { /* It is a file. */ + printf("%s/%s\n", path, fn); + } + } + f_closedir(&dir) + } + + return res; +} ++
Renames a file or sub-directory.
++FRESULT f_rename ( + const TCHAR* old_name, /* [IN] Old object name */ + const TCHAR* new_name /* [IN] New object name */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_DENIED, +FR_EXIST, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_LOCKED, +FR_NOT_ENOUGH_CORE +
+Renames a file or sub-directory and can also move it to other directory. The logical drive number is determined by old name, new name must not contain a logical drive number. Do not rename open objects or directry table can be collapted.
+Available when _FS_READONLY == 0 and _FS_MINIMIZE == 0.
++ /* Rename an object */ + f_rename("oldname.txt", "newname.txt"); + + /* Rename and move an object to other directory */ + f_rename("oldname.txt", "dir1/newname.txt"); ++
The DIR structure is used for the work area to read a directory by f_oepndir()/f_readdir() function. Application program must not modify any member in this structure.
++typedef struct { + FATFS* fs; /* Pointer to the owner file system object */ + WORD id; /* Owner file system mount ID */ + WORD index; /* Index of directory entry to start to search next */ + DWORD sclust; /* Table start cluster (0:Root directory) */ + DWORD clust; /* Current cluster */ + DWORD sect; /* Current sector */ + BYTE* dir; /* Pointer to the current SFN entry in the win[] */ + BYTE* fn; /* Pointer to the SFN (in/out) {file[8],ext[3],status[1]} */ +#if _FS_LOCK + UINT lockid; /* Sub-directory lock ID (0:Root directory) */ +#endif +#if _USE_LFN + WCHAR* lfn; /* Pointer to the LFN working buffer */ + WORD lfn_idx; /* Index of top of last matched LFN entris (0xFFFF:No LFN) */ +#endif +} DIR; ++
The f_setlabel function sets/removes the label of a volume.
++FRESULT f_setlabel ( + const TCHAR* name /* [IN] Volume label to be set */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_NAME, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT +
+When the string has a drive number, the volume label will be set to the volume specified by the drive number. If the volume label is a null-string, the volume label on the volume will be removed. The format of the volume label is similar to the SFN but there are some differences shown below:
+Available when _FS_READONLY == 0 and _USE_LABEL == 1.
++ /* Set volume label to the default drive */ + f_setlabel("DATA DISK"); + + /* Set volume label to the drive 2 */ + f_setlabel("2:DISK 3 OF 4"); + + /* Remove volume label of the drive 2 */ + f_setlabel("2:"); ++
The FATFS structure (file system object) holds dynamic work area of individual logical drives. It is given by application program and registerd/unregisterd to the FatFs module with f_mount() function. Initialization is done on first API call after f_mount() function or media change. Application program must not modify any member in this structure.
++typedef struct { + BYTE fs_type; /* FAT sub-type (0:Not mounted) */ + BYTE drv; /* Physical drive number */ + BYTE csize; /* Sectors per cluster (1,2,4,...,128) */ + BYTE n_fats; /* Number of FAT copies (1,2) */ + BYTE wflag; /* win[] flag (b0:win[] is dirty) */ + BYTE fsi_flag; /* FSINFO flags (b7:Disabled, b0:Dirty) */ + WORD id; /* File system mount ID */ + WORD n_rootdir; /* Number of root directory entries (FAT12/16) */ +#if _MAX_SS != 512 + WORD ssize; /* Sector size (512,1024,2048 or 4096) */ +#endif +#if _FS_REENTRANT + _SYNC_t sobj; /* Identifier of sync object */ +#endif +#if !_FS_READONLY + DWORD last_clust; /* FSINFO: Last allocated cluster */ + DWORD free_clust; /* FSINFO: Number of free clusters */ +#endif +#if _FS_RPATH + DWORD cdir; /* Current directory start cluster (0:root) */ +#endif + DWORD n_fatent; /* Number of FAT entries (== Number of clusters + 2) */ + DWORD fsize; /* Sectors per FAT */ + DWORD volbase; /* Volume start sector */ + DWORD fatbase; /* FAT area start sector */ + DWORD dirbase; /* Root directory area start sector (FAT32: Cluster#) */ + DWORD database; /* Data area start sector */ + DWORD winsect; /* Current sector appearing in the win[] */ + BYTE win[_MAX_SS]; /* Disk access window for directory, FAT (and file data at tiny cfg) */ +} FATFS; ++
The FIL structure (file object) holds state of an open file. It is created by f_open() function and discarded by f_close() function. Application program must not modify any member in this structure except for cltbl. Note that a sector buffer is defined in this structure at non-tiny configuration, so that the FIL structures should not be defined as auto variable.
+ ++typedef struct { + FATFS* fs; /* Pointer to the owner file system object */ + WORD id; /* Owner file system mount ID */ + BYTE flag; /* File object status flags */ + BYTE err; /* Abort flag (error code) */ + DWORD fptr; /* File read/write pointer (Byte offset origin from top of the file) */ + DWORD fsize; /* File size in unit of byte */ + DWORD sclust; /* File start cluster */ + DWORD clust; /* Current cluster */ + DWORD dsect; /* Current data sector */ +#if !_FS_READONLY + DWORD dir_sect; /* Sector containing the directory entry */ + BYTE* dir_ptr; /* Ponter to the directory entry in the window */ +#endif +#if _USE_FASTSEEK + DWORD* cltbl; /* Pointer to the cluster link map table (Nulled on file open) */ +#endif +#if _FS_LOCK + UINT lockid; /* Fle lock ID */ +#endif +#if !_FS_TINY + BYTE buf[_MAX_SS]; /* File private data transfer buffer */ +#endif +} FIL; ++ +
The FILINFO structure holds a file information returned by f_readdir() and f_stat() function.
++typedef struct { + DWORD fsize; /* File size */ + WORD fdate; /* Last modified date */ + WORD ftime; /* Last modified time */ + BYTE fattrib; /* Attribute */ + TCHAR fname[13]; /* Short file name (8.3 format) */ +#if _USE_LFN + TCHAR* lfname; /* Pointer to the LFN buffer */ + int lfsize; /* Size of the LFN buffer in unit of TCHAR */ +#endif +} FILINFO; ++
The f_size function gets the size of a file.
++DWORD f_size ( + FIL* fp /* [IN] File object */ +); ++
Returns the size of the file in unit of byte.
+In this revision, the f_size() function is implemented as a macro.
+
+#define f_size(fp) ((fp)->fsize)
+
+Always available.
+The f_stat function checks the existence of a file or sub-directory.
++FRESULT f_stat ( + const TCHAR* path, /* [IN] Object name */ + FILINFO* fno /* [OUT] FILINFO structure */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+The f_stat() function checks the existence of a file or sub-directory. If exist, the function returns with FR_OK and the information of the object is stored to the file information structure. If not exist, the function returns with FR_NO_FILE. For details, refer to the FILINFO structure and f_readdir() function.
+Available when _FS_MINIMIZE == 0.
+The f_sync function flushes the cached information of a writing file.
++FRESULT f_sync ( + FIL* fp /* [IN] File object */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The f_sync() function performs the same process as f_close() function but the file is left opened and can continue read/write/seek operations to the file. This is suitable for the applications that open files for a long time in write mode, such as data logger. Performing f_sync() function of periodic or immediataly after f_write() function can minimize the risk of data loss due to a sudden blackout or an unintentional media removal. For more information, refer to application note.
+However the f_sync() function immediataly before f_close() function has no advantage because it performs f_sync() function in it. In other words, the differnce between those functions is that the file object is invalidated or not.
+Available when _FS_READONLY == 0.
+The f_tell function gets the current read/write pointer of a file.
++DWORD f_tell ( + FIL* fp /* [IN] File object */ +); ++
Returns current read/write pointer of the file.
+In this revision, the f_tell() function is implemented as a macro.
+
+#define f_tell(fp) ((fp)->fptr)
+
+Always available.
+The f_truncate function truncates the file size.
++FRESULT f_truncate ( + FIL* fp /* [IN] File object */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The f_truncate() function truncates the file size to the current file read/write pointer. This function has no effect if the file read/write pointer is already pointing end of the file.
+Available when _FS_READONLY == 0 and _FS_MINIMIZE == 0.
+The f_unlink function removes a file or sub-directory.
++FRESULT f_unlink ( + const TCHAR* path /* [IN] Object name */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_DENIED, +FR_EXIST, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_LOCKED, +FR_NOT_ENOUGH_CORE +
++If condition of the object to be removed is applicable to the following terms, the function will be rejected.
Available when _FS_READONLY == 0 and _FS_MINIMIZE == 0.
+The f_utime function changes the timestamp of a file or sub-directory.
++FRESULT f_utime ( + const TCHAR* path, /* [IN] Object name */ + const FILINFO* fno /* [IN] Time and data to be set */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+The f_utime() function changes the timestamp of a file or sub-directory
+
+FRESULT set_timestamp (
+ char *obj, /* Pointer to the file name */
+ int year,
+ int month,
+ int mday,
+ int hour,
+ int min,
+ int sec
+)
+{
+ FILINFO fno;
+
+ fno.fdate = (WORD)(((year - 1980) * 512U) | month * 32U | mday);
+ fno.ftime = (WORD)(hour * 2048U | min * 32U | sec / 2U);
+
+ return f_utime(obj, &fno);
+}
+
+Available when _FS_READONLY == 0 and _FS_MINIMIZE == 0.
+The f_write writes data to a file.
++FRESULT f_write ( + FIL* fp, /* [IN] Pointer to the file object structure */ + const void* buff, /* [IN] Pointer to the data to be written */ + UINT btw, /* [IN] Number of bytes to write */ + UINT* bw /* [OUT] Pointer to the variable to return number of bytes written */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+The read/write pointer of the file object advances number of bytes written. After the function succeeded, *bw should be checked to detect the disk full. In case of *bw is less than btw, it means the volume got full during the write operation. The function can take a time when the volume is full or close to full.
+Available when _FS_READONLY == 0.
+FatFsモジュールは移植性に関して次の点を前提としています。
+下に示す依存関係図は、FatFsモジュール利用の組み込みシステムにおける代表的な構成を示します。
+必要なのは FatFsモジュールの要求するディスク関数を用意することだけで、それ以外にすることはありません。既に動作しているディスク関数があるなら、その APIを FatFsに合わせるかグルー関数でつなぐだけで済みますが、無い場合はほかから移植するか最初から書くかする必要があります。定義されている全ての関数が常に必要なわけではありません。例えば、リード・オンリー構成では書き込み系関数は必要ありません。次の表に構成オプションと要求される関数の対応を示します。
+ユーザ作成関数 | 必要となる条件 | 備考 |
---|---|---|
disk_initialize disk_status disk_read | 常時 | ffsample.zip (サンプル) その他web上に多数 |
disk_write get_fattime disk_ioctl (CTRL_SYNC) | _FS_READONLY == 0 | |
disk_ioctl (GET_SECTOR_COUNT) disk_ioctl (GET_BLOCK_SIZE) | _USE_MKFS == 1 | |
disk_ioctl (GET_SECTOR_SIZE) | _MAX_SS >= 1024 | |
disk_ioctl (CTRL_ERASE_SECTOR) | _USE_ERASE == 1 | |
ff_convert ff_wtoupper | _USE_LFN >= 1 | option/cc*.c |
ff_cre_syncobj ff_rel_grant ff_req_grant ff_del_syncobj | _FS_REENTRANT == 1 | option/syscall.c (サンプル) |
ff_mem_alloc ff_mem_free | _USE_LFN == 3 |
次の表にいくつかのターゲットにおけるメモリ使用量の例を示します。テスト時の構成オプションはその下の通りです。数値の単位はバイトで、Vはボリューム数、Fは同時オープン・ファイル数を示します。コンパイラの最適化オプションはコード・サイズとしています。
+ARM7 32bit | ARM7 Thumb | CM3 Thumb-2 | AVR | H8/300H | PIC24 | RL78 | V850ES | SH-2A | RX600 | IA-32 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Compiler | GCC | GCC | GCC | GCC | CH38 | C30 | CC78K0R | CA850 | SHC | RXC | VC6 |
_WORD_ACCESS | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
text (Full, R/W) | 10591 | 7119 | 6565 | 13240 | 10864 | 11619 | 13192 | 8031 | 8960 | 5977 | 7856 |
text (Min, R/W) | 6671 | 4595 | 4293 | 8512 | 7232 | 7674 | 9033 | 5235 | 5768 | 3923 | 5129 |
text (Full, R/O) | 4695 | 3121 | 2861 | 6218 | 5162 | 5466 | 6418 | 3799 | 3964 | 2847 | 3687 |
text (Min, R/O) | 3523 | 2463 | 2275 | 4558 | 4058 | 4212 | 4948 | 2959 | 3096 | 2199 | 2857 |
bss | V*4 + 2 | V*4 + 2 | V*4 + 2 | V*2 + 2 | V*4 + 2 | V*2 + 2 | V*2 + 2 | V*4 + 2 | V*4 + 2 | V*4 + 2 | V*4 + 2 |
Work area (_FS_TINY == 0) | V*560 + F*550 | V*560 + F*550 | V*560 + F*550 | V*560 + F*544 | V*560 + F*550 | V*560 + F*544 | V*560 + F*544 | V*560 + F*544 | V*560 + F*550 | V*560 + F*550 | V*560 + F*550 |
Work area (_FS_TINY == 1) | V*560 + F*36 | V*560 + F*36 | V*560 + F*36 | V*560 + F*32 | V*560 + F*36 | V*560 + F*32 | V*560 + F*32 | V*560 + F*36 | V*560 + F*36 | V*560 + F*36 | V*560 + F*36 |
+FatFs R0.10 options: +_FS_READONLY 0 (R/W), 1 (R/O) +_FS_MINIMIZE 0 (Full function), 3 (Minimized function) +_USE_STRFUNC 0 (Disable string functions) +_USE_MKFS 0 (Disable f_mkfs function) +_USE_FORWARD 0 (Disable f_forward function) +_USE_FASTSEEK 0 (Disable fast seek feature) +_CODE_PAGE 932 (Japanese Shift-JIS) +_USE_LFN 0 (Disable LFN) +_MAX_SS 512 (Fixed sector size) +_FS_RPATH 0 (Disable relative path feature) +_FS_LABEL 0 (Disable volume label functions) +_VOLUMES V (Number of logical drives to be used) +_MULTI_PARTITION 0 (Single partition per drive) +_FS_REENTRANT 0 (Disable reentrancy) +_FS_LOCK 0 (Disable file lock control) ++
次の表は構成オプションの設定値によりどの機能が削除されるかを示します。
+Function | _FS_MINIMIZE | _FS_READONLY | _USE_STRFUNC | _FS_RPATH | _FS_LABEL | _USE_MKFS | _USE_FORWARD | _MULTI_PARTITION | |||||||||||
0 | 1 | 2 | 3 | 0 | 1 | 0 | 1/2 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0/1 | 2 | |
f_mount | |||||||||||||||||||
f_open | |||||||||||||||||||
f_close | |||||||||||||||||||
f_read | |||||||||||||||||||
f_write | x | ||||||||||||||||||
f_sync | x | ||||||||||||||||||
f_lseek | x | ||||||||||||||||||
f_opendir | x | x | |||||||||||||||||
f_closedir | x | x | |||||||||||||||||
f_readdir | x | x | |||||||||||||||||
f_stat | x | x | x | ||||||||||||||||
f_getfree | x | x | x | x | |||||||||||||||
f_truncate | x | x | x | x | |||||||||||||||
f_unlink | x | x | x | x | |||||||||||||||
f_mkdir | x | x | x | x | |||||||||||||||
f_chmod | x | x | x | x | |||||||||||||||
f_utime | x | x | x | x | |||||||||||||||
f_rename | x | x | x | x | |||||||||||||||
f_chdir | x | ||||||||||||||||||
f_chdrive | x | ||||||||||||||||||
f_getcwd | x | x | |||||||||||||||||
f_getlabel | x | ||||||||||||||||||
f_setlabel | x | x | |||||||||||||||||
f_forward | x | ||||||||||||||||||
f_mkfs | x | x | |||||||||||||||||
f_fdisk | x | x | x | ||||||||||||||||
f_putc | x | x | |||||||||||||||||
f_puts | x | x | |||||||||||||||||
f_printf | x | x | |||||||||||||||||
f_gets | x |
FatFsモジュールはR0.07から長いファイル名(LFN)をサポートしました。ファイルに付けられた2つの異なる名前(短いファル名と長いファイル名)は、f_readdir()を除くファイル操作関数において透過です。LFN機能を有効にするには、_USE_LFNを1,2または3に設定し、Unicode変換関数ff_convert(), ff_wtoupper()をプロジェクトに追加します。これらの関数は、option/cc*.cに含まれています。LFN機能は、加えてある程度のワーク・エリア(LFN操作バッファ)を必要とします。バッファ長は使用できるメモリに応じて_MAX_LFNオプションで構成されることができます。LFNの長さは最大255文字に達するので、LFN完全対応のためには_MAX_LFNは255に設定されるべきです。与えられたファイル名に対してバッファ長が不足した場合、ファイル関数はFR_INVALID_NAMEで失敗します。
+何らかのリエントラント状態の下でLFN機能を使用する場合は、_USE_LFNは2または3に設定されなければなりません。この場合、ファイル関数はバッファをスタックやヒープに確保します。バッファ・サイズは、(_MAX_LFN + 1) * 2バイトになるので、スタック等のサイズはそれを考慮した十分なサイズでなければなりません。
+コードページ | コードサイズ[bytes] |
---|---|
SBCS | +3721 |
932(Shift-JIS) | +62609 |
936(GBK) | +177797 |
949(Korean) | +139857 |
950(Big5) | +111497 |
LFN機能の上手な使い方は、それを使わないということです。実際、組み込み用途ではLFN機能がどうしても必要になるということはほとんど無いはずです。LFNを有効にすると、選択されたコード・ページに応じてモジュール・サイズが増大されます。右の表に各コード・ページにおけるLFNを有効にしたときのモジュール・サイズの違いを示します。特に、CJK地域では数万の文字が使われていますが、不幸なことにそれは巨大なOEM-Unicode相互変換テーブルを要求し、モジュール・サイズは劇的に増大されます。その結果、それらのコード・ページにおいてLFNを有効にしたFatFsモジュールは、AVRを含む殆どの8ビット・マイコンにインプリメントされることができません。
+LFN機能のハードルはそれだけではありません。マイクロソフト社はFATファイル・システムについていくつかの特許を保有しています。いずれもLFN機能の実装に関するもので、その利用に対して$0.25/unitのライセンス料を要求しています。このため、商用製品でLFN機能を利用するときは、最終仕向地によってはライセンスが必要になります。最近のFAT32ドライバの多くはLFN機能を含んでいるため、それらの使用に当たってライセンスが必要になりますが、FatFsではLFN機能を構成オプションで任意にON/OFFできるため、無効にしてライセンス問題を回避することもできます。
+CP932(Shift_JIS)でかつ非LFN構成のときは、拡張文字の小文字(2バイト英字・キリル文字・ギリシャ文字)に対して大文字変換を行わず、小文字のままSFNエントリに記録・検索されます(日本語MSDOS仕様)。このため、非LFN構成で全角小文字を含むファイルを作成すると、NT系Windowsでそのファイルを開けなくなります。LFN構成では大文字変換を行います(NT系Windows仕様)。
+FatFs API上におけるファイル名等の文字列データの入出力は、デフォルトではANSI/OEMコードで行われますが、これをUnicode(UTF-16)に切り替えることもできます(_LFN_UNICODEオプションで設定)。つまり、これはFatFsがLFN機能に完全対応していることを意味します。Unicodeのファイル名に関する詳細は、ファイル名を参照してください。
+互いに異なるボリュームに対するファイル操作はリエントラントで、常に同時平行に動作できます。同じボリュームに対してはデフォルトではリエントラントではありませんが、_FS_REENTRANTオプションでリエントラント(スレッド・セーフ)にすることはできます。この場合、OS依存の同期オブジェクト操作関数ff_cre_syncobj(), ff_del_syncobj(), ff_req_grant(), ff_rel_grant()もまたプロジェクトに追加されなければなりません。サンプル・コードと解説はoption/syncobj.cにあります。
+この場合、あるタスクがボリュームを使用中に他のタスクからそのボリュームに対するファイル関数が呼び出されると、そのアクセスは先のタスクがファイル関数を抜けるまでブロックされます。もし、待ち時間が_TIMEOUTで指定された期間を越すと、その関数はFR_TIMEOUTでアボートします。いくつかのRTOSではタイムアウト機能はサポートされないかも知れません。
+ひとつの例外がf_mount(), f_mkfs(), f_fdisk()にあります。これらの関数は同じボリューム(または関連する物理ドライブ)に対してリエントラントではありません。これらの関数を使用するときは、アプリケーション・レベルで排他制御しなければなりません。
+注: このセクションはFatFsモジュールそれ自体のリエントランシーについて説明しています。その下位のディスクI/Oモジュールのリエントランシーに関しては何の前提もありません。
+FatFsモジュールではデフォルトでは多重アクセス制御機能をサポートしていません。ファイルに対する多重アクセスは、そのアクセス・モードによって制限されます。一つのファイルに対する多重オープンは、それらが全てリード・モードのときに限って許可されます。書き込みモードを含む多重オープン、また開かれているファイルに対するリネームや削除を行ってはなりません。さもないと、そのボリュームのFAT構造が破壊される可能性があります。
+_FS_LOCKに1以上の値(値は同時に管理できるファイル数)をセットすることで多重アクセス制御機能が有効になり、ファイル単位のアクセス制御を自動で行うこともできます。この場合、上記のルールを破ったオープン・リネーム・削除を試みると、その関数はFR_LOCKEDで失敗します。また、_FS_LOCKを越える数のファイルやディレクトリを同時にオープンしようとすると、FR_TOO_MANY_OPEN_FILESで失敗します。
+小規模な組込システムでのファイルの読み書きにおける効率の良いアクセスのため、アプリケーション・プログラマはFatFsモジュールの中でどのような処理が行われているか考慮すべきです。ストレージ上のデータはf_read()により次のシーケンスで転送されます。
+図1. セクタ・ミスアラインド・リード (ショート)
+
+
図2. セクタ・ミスアラインド・リード (ロング)
+
+
図3. セクタ・アラインド・リード
+
+
ファイルI/Oバッファはセクタの一部のデータを読み書きするためのセクタ・バッファを意味します。セクタ・バッファは、それぞれのファイル・オブジェクト内のプライベート・セクタ・バッファまたはファイル・システム・オブジェクト内の共有セクタ・バッファのどちらかです。バッファ構成オプションの_FS_TINYは、データ転送にどちらを使うかを決定します。タイニー・バッファ(1)が選択されるとデータ・メモリの消費はそれぞれのファイル・オブジェクトで512バイト減少されます。この場合、FatFsモジュールはファイル・データの転送とFAT/ディレクトリ・アクセスにファイル・システム・オブジェクト内のセクタ・バッファだけを使用します。タイニー・バッファの欠点は、セクタ・バッファにキャッシュされたFATデータがファイル・データの転送により失われ、クラスタ境界の毎にリロードされなければならないことです。でも、悪くない性能と少ないメモリ消費の視点から多くのアプリケーションに適するでしょう。
+図1はセクタの一部のデータがファイルI/Oバッファを経由で転送されることを示します。図2に示される長いデータの転送では、転送データの中間の1セクタまたはそれ以上のセクタにまたがる転送データがアプリケーション・バッファに直接転送されています。図3は転送データ全体がセクタ境界にアライメントされている場合を示しています。この場合、ファイルI/Oバッファは使用されません。直接転送においては最大の範囲のセクタがdisk_read()で一度に読み込まれますが、クラスタ境界を越えるマルチ・セクタ転送はそれが隣接であっても行われません。
+このように、セクタにアライメントしたファイルの読み書きへの配慮はバッファ経由のデータ転送を避け、読み書き性能は改善されるでしょう。その効果に加え、タイニー構成でキャッシュされたFATデータがファイル・データの転送によりフラッシュされず、非タイニー構成と同じ性能を小さなメモリ・フットプリントで達成できます。
+HDDなどのディスク・メディアとは異なり、SDCやCFCなどのフラッシュ・メモリ・メディアの性能を引き出すには、その特性を意識した制御が必要になります。
+フラッシュ・メモリ・メディアの書き込み速度はシングル・セクタ書き込みの時に最も低いものになり、一回のトランザクションで転送されるセクタ数が大きくなるほど書き込み速度は向上します。この効果はバス速度が高速になるほど顕著で、10倍以上の差が現れることも珍しくありません。書き込みトランザクションの回数はまた、メディアの寿命にも影響してきます。このため、アプリケーションはなるべく大きなブロック(クラスタ・サイズまたは2の累乗セクタ境界にアライメントした)で読み書きを行う必要があります。もちろん、アプリケーションからメディアに至る全てのレイヤがマルチ・セクタ転送に対応していないと意味がありません。残念ながら、既存のオープン・ソースのドライバの多くはマルチ・セクタ転送に未対応です。なお、FatFsモジュールおよびそれ用のサンプル・ドライバはマルチ・セクタ転送に対応しています。
+通常のファイル消去では、記録されたデータに対して何らかの制御が行われるわけではなく、単にFAT上に未使用クラスタとして記録されているだけです。このため、ファイルが消去されたあともそれらは有効なメモリ・ブロックとしてフラッシュ・メモリ上に残ります。そこで、ファイルを消去するとき、占有していたデータ・セクタを明示的に消去(つまり未使用ブロックにする)することにより、メディア内の空きブロックを増やすことができます。これにより、次にそのブロックに書き込むときの消去動作が無くなり、書き込み性能が向上する可能性があります。また、ウェアレベリングに使えるブロックが増え、メディアの耐久性も向上するかも知れません。この機能を有効にするには、構成オプションの_USE_ERASEに1を設定します。これはフラッシュ・メモリ・メディアの内部動作に期待した制御なので、効果があるとは限りません。また、ファイル消去の時間が延びることも考慮に入れるべきです。
+ストレージ上のFAT構造を操作している途中で、停電、不正なメディアの取り外し、回復不能なデータ・エラー等の障害が発生すると、処理が中途半端な状態で中断され、その結果としてFATボリュームの構造が破壊される可能性があります。次にFatFsモジュールにおけるクリチカル・セクションと、その間の障害により起きうるエラーの状態を示します。
+赤で示したセクションを実行中に障害が発生した場合、クロス・リンクが発生して操作対象のファイル・ディレクトリが失われる可能性があります。黄色で示したセクションを実行中に障害が発生した場合、つぎのうちいずれかまたは複数の結果が生じる可能性があります。
+いずれも書き込み中や操作の対象でないファイルには影響はありません。これらのクリチカル・セクションは、ファイルを書き込みモードで開いている時間を最小限にするか、f_sync()を適宜使用することで図5のようにリスクを最小化することができます。
+FatFs APIの拡張的使用例です。有用なコードがあった場合は、随時追加していきます。。
+ +ソース・ファイルのヘッダにライセンス条件が記述されているので、利用の際はそれに従うこと。英語を読めない方のために以下に日本語訳を示しておきます。
+/*----------------------------------------------------------------------------/ +/ FatFs - FAT file system module R0.10 (C)ChaN, 2013 +/-----------------------------------------------------------------------------/ +/ FatFsモジュールは、小規模な組み込みシステム向けの汎用FATファイルシステム・ +/ モジュールです。これはフリー・ソフトウェアとして、教育・研究・開発のために +/ 以下のライセンス・ポリシーの下で公開されています。 +/ +/ Copyright (C) 2013, ChaN, all right reserved. +/ +/ * FatFsモジュールはフリー・ソフトウェアであり、また無保証です。 +/ * 用途に制限はありません。あなたの責任の下において、個人的・非営利的な +/ ものから商用製品の開発に及ぶ目的に使用・改変・再配布することができます。 +/ * ソース・コードを再配布するときは、上記の著作権表示を保持しなければなりません。 +/ +/-----------------------------------------------------------------------------/+
要するにFatFsはタダで自由に使えるということです。ソース・コードを再配布するときは、このブロックをそのまま保持しておくこと。このようにFatFsはBSDライクなライセンスとしていますが、一つ大きな違いがあります。特に組み込み用途での利用価値を高めるため、バイナリ形式(ソース・コードを含まない形式全て)での再配布については、条件は設けていません。その場合は、FatFsおよびそのライセンス文書についてはドキュメントに明記してもしなくてもかまいません。これは、一条項BSDライセンスと等価ということです。もちろんGNU GPLプロジェクトとも共存可能です。何らかの変更を加えて再配布する際は、矛盾しない他のライセンス(GNU GPLや修正BSDライセンスなど)に変更することも可能です。
+JgEfBNgύX܂B
++FRESULT f_chdir ( + const TCHAR* path /* [IN] fBNgւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_NOT_ENOUGH_CORE +
+e{[̃JgEfBNgύX܂BJgEfBNg̓t@CEVXeEIuWFNg̏sꂽƂA[gEfBNgɐݒ肳܂BJgEfBNǵAt@CEVXeEIuWFNgɕێ邽߁Ã{[gpSẴ^XNɑĉe^܂B
+_FS_RPATH == 1̂ƂɎgp\ƂȂ܂B
++ /* JgEhCũJgEfBNgύX ([gdir1) */ + f_chdir("/dir1"); + + /* hCu2̃JgEfBNgύX (efBNg) */ + f_chdir("2:.."); ++
JgEhCuύX܂B
++FRESULT f_chdrive ( + const TCHAR* path /* [IN] ΏۃhCuw肵܂ */ +); ++
+FR_OK, +FR_INVALID_DRIVE +
+JgEhCuύX܂BVXeN̏l0łB̐ݒFatFsW[̐ÓIϐɋL^邽߁ASẴ^XNɑĉe^܂B
+_FS_RPATH == 1̂ƂɎgp\ƂȂ܂B
+t@C܂̓TuEfBNg̑ύX܂B
++FRESULT f_chmod ( + const TCHAR* path, /* [IN] IuWFNgւ̃|C^ */ + BYTE attr, /* [IN] ݒl */ + BYTE mask /* [IN] ύX}XN */ +); ++
l | Ӗ |
---|---|
AM_RDO | [hEI[ |
AM_ARC | A[JCu |
AM_SYS | VXe |
AM_HID | qhD |
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_WRITE_PROTECTED, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_LOCKED, +FR_NOT_ENOUGH_CORE +
+_FS_READONLY == 0ŁA_FS_MINIMIZE == 0̂Ƃgp\łB
+
+ /* [hI[ZbgAA[JCuNAȂ͕ύXȂ */
+ f_chmod("file.txt", AM_RDO, AM_RDO | AM_ARC);
+
+t@C܂B
++FRESULT f_close ( + FIL* fp /* [IN] t@CEIuWFNgւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+t@C܂B炩݂̏̍sꂽt@C̏ꍇALbVꂽ([h/CgEobt@̃f[^AύXꂽFATfBNg)̓fBXNɏ߂܂BIƁÃt@CEIuWFNg͖ɂȂÃł܂B
+t@CEIuWFNgǂݏop[hŁA_FS_LOCKIvVIĂȂꍇ́At@CɃt@CEIuWFNgj邱Ƃł܂BA͏̌݊̓_Ő͂܂B
+SĂ̍\Ŏgp\łB
+fBNg܂B
++FRESULT f_closedir ( + DIR* dp /* [IN] fBNgEIuWFNgւ̃|C^ */ +); ++
+FR_OK, +FR_INT_ERR, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+fBNg܂BIƁÃfBNgEIuWFNg͖ɂȂÃł܂B
+_FS_LOCKIvVIĂȂꍇ́Ȁs킸ɃfBNgEIuWFNgj邱Ƃł܂BA͏̌݊̓_Ő͂܂B
+_FS_MINIMIZE <= 1̂Ƃgp\ɂȂ܂B
+fBXNEhCu܂B
++DSTATUS disk_initialize ( + BYTE pdrv /* [IN] hCuԍ */ +); ++
͖̊߂lƂăfBXNEXe[^XԂ܂BfBXNEXe[^X̏ڍׂɊւĂdisk_status()QƂĂB
+fBXNEhCu܂BƁA߂lSTA_NOINITtONA܂B
+FatFsgp̓AvP[V͂̊ĂяoĂ͂Ȃ܂BȂƁAFAT{[j܂BG[ɂďKvȂƂ́Af_mount()gpĂBFatFsW[́A}EgɂAKvɉĂ̊Ăяo܂B
+ZN^̓ǂݏȊÕfBXNEhCûɑlXȐ܂B
++DRESULT disk_ioctl ( + BYTE pdrv, /* [IN] hCuԍ */ + BYTE cmd, /* [IN] R}h */ + void* buff /* [I/O] f[^nobt@ */ +); ++
hCu̎ނɂT|[gR}h͈قȂ܂AFatFsW[ł́A̔ėpR}ĥݎgpÃn[hEFAɈˑ͍s܂B
+R}h | |
---|---|
CTRL_SYNC | hCũf[^ݏ̊҂BCgEobNELbVȂǂ݂ꍇ́A܂ĂȂf[^߂܂B[hEI[\ł͎gp܂B |
GET_SECTOR_SIZE | buff̎wWORD^ϐɃhCũZN^ETCY(oCgP)Ԃ܂BZN^ETCYŒ(_MAX_SS512)̂Ƃ͂̃R}h͎g܂B |
GET_SECTOR_COUNT | buff̎wDWORD^ϐɃhCȗZN^Ԃ܂Bf_mkfs()ŌĂяoA쐬{[̃TCY肷邽߂Ɏgp܂B |
GET_BLOCK_SIZE | buff̎wDWORD^ϐɃtbVȄubNETCY(ZN^P)Ԃ܂B132768͈̔͂2̗ݏ̒lłȂȂ܂Bsȏꍇ܂̓tbVEȊÕfBAł1Ԃ܂Bf_mkfs()ł̂ݎgpA{[̃f[^̈͂̋EɃACg܂B |
CTRL_ERASE_SECTOR | tbVE̎ẅ̏Bbuff̎wDWORD^zɂ͏̈ {JnZN^,IZN^} w肵ČĂяo܂B_USE_ERASE1̂ƂANX^ƂɌĂяo܂B́AATAR}hEZbgTrimR}hƓŁA̋@\T|[gȂꍇ͉Kv͂܂B܂A߂l̓`FbNꂸASɍsȂƂĂFatFs̓ɂ͉e܂B |
hCuZN^ǂݏo܂B
++DRESULT disk_read ( + BYTE pdrv, /* [IN] hCuԍ */ + BYTE* buff, /* [OUT] ǂݏoobt@ւ̃|C^ */ + DWORD sector, /* [IN] ǂݏoJnZN^ԍ */ + UINT count /* [IN] ǂݏoZN^ */ +); ++
buffBYTE^Ȃ̂ŁAw肳AhXɃ[hEACgĂƂ͌܂BACgEAhXւ̓]́Aړ]ɂĔ邱Ƃ܂BAn[hEFA̐ł̂悤ȓ]s\ȂƂ́Åœi]Ȃǂĉ邩A܂͕ʂ̕@őΉȂȂ܂Bɂ̑Ή@܂(ꂩOK)B
+fBXNEhCȕԂ擾܂B
++DSTATUS disk_status ( + BYTE pdrv /* [IN] hCuԍ */ +); ++
hCȕԂ̃tȎgݍ킹lŕԂ܂B
+fBXNɃf[^݂܂B
++DRESULT disk_write ( + BYTE pdrv, /* [IN] hCuԍ */ + const BYTE* buff, /* [IN] ރf[^ւ̃|C^ */ + DWORD sector, /* [IN] ݊JnZN^ԍ */ + UINT count /* [IN] ރZN^ */ +); ++
[hEI[\ł͕͂̊KvƂ܂B
+FatFs̎gp̓AvP[V͂̊ĂяoĂ͂Ȃ܂BȂƁAFAT{[j܂BG[ɂďKvȂƂ́Af_mount()gpĂBFatFsW[́A}EgɂAKvɉĂ̊Ăяo܂B
+[h/CgE|C^t@CI[ɒBĂ邩ǂׂ܂B.
++int f_eof ( + FIL* fp /* [IN] t@CEIuWFNg */ +); ++
[h/CgE|C^t@CI[ɂǂݏof[^Ȃꍇ́A0ȊO̒lԂ܂BȊO̎0Ԃ܂B
+f_eof́ArWł̓}NƂĎĂ܂B
+
+#define f_eof(fp) (((fp)->fptr) == ((fp)->fsize) ? 1 : 0)
+
+Ɏgp\B
+G[̗Lׂ܂B
++int f_error ( + FIL* fp /* [IN] t@CEIuWFNg */ +); ++
t@C쒆̃G[ɂďfĂꍇ́A0ȊO̒lԂ܂BȊO̎0Ԃ܂B
+f_erroŕArWł̓}NƂĎĂ܂B
+
+#define f_error(fp) (((fp)->flag & FA__ERROR) ? 1 : 0)
+
+Ɏgp\B
+ݎ擾܂B
++DWORD get_fattime (void); ++
݂̃[JE^CDWORDlɃpbNĕԂ܂BrbgEtB[h͎Ɏ悤ɂȂ܂B
+RTCT|[gȂVXełA炩̓tƂėLȒlԂȂȂ܂B0ԂꍇÃt@C͓t܂B[hEI[\ł͕͂̊KvƂ܂B
+hCu܂B
++FRESULT f_fdisk ( + BYTE pdrv, /* [IN] hCuԍ */ + const DWORD part[], /* [IN] }bvEe[u */ + void* work /* [-] [NGA */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_NOT_READY, +FR_WRITE_PROTECTED, +FR_INVALID_PARAMETER +
+̊́Aw肳ꂽhCuMBRɋe[u쐬܂B敪͈ʓIFDISK`ōs߁Aő4̊{쐬邱Ƃł܂Bgɂ͑ΉĂ܂B}bve[upart[]ɂ̓hCuǂ̂悤ɕ邩w肵ēn܂B̔z4̍ڂ琬A擪̍ڂ1Ԗڂ́AŌ̍ڂ4Ԗڂ̋̃TCY܂Bl100ȉ̏ꍇAhCȗeʂɑ銄p[ZgPʂŎw肵܂B100l̏ꍇ̓ZN^̒ڎwɂȂ܂B
+_FS_READOLNY == 0 _USE_MKFS == 1 _MULTI_PARTITION == 1 ̂Ƃgp\łB
++ /* [U`̃{[Ǘe[u (_MULTI_PARTITION == 1 ̂ƂKv) */ + + PARTITION VolToPart[] = { + {0, 1}, /* _hCu 0 ==> hCu 0, 1 */ + {0, 2}, /* _hCu 1 ==> hCu 0, 2 */ + {1, 0} /* _hCu 2 ==> hCu 1, o */ + }; ++
+ /* VhCu(0)̏ */ + + FATFS fs; + DWORD plist[] = {50, 50, 0, 0}; /* 2 */ + BYTE work[_MAX_SS]; + + f_fdisk(0, plist, work); /* hCu 0 ̕ */ + + f_mount(&fs "0:", 0); + f_mkfs("0:", 0, 0); /* _hCu 0 ̃tH[}bg. ͖. */ + f_mount(0, "0:", 0); + + f_mount(&fs, "1:", 0); + f_mkfs("1:", 0, 0); /* _hCu 0 ̃tH[}bg. ͖. */ + f_mount(0, "1:", 0); + ++
FatFsモジュールでのファイル、ディレクトリ、ドライブの指定方法はDOS/Windows APIとほぼ同じです。パス名のフォーマットは次の通りです。
+"[論理ドライブ番号:][/]ディレクトリ名/ファイル名"+
FatFsモジュールは長いファイル名(LFN)および8.3形式ファイル名(SFN)に対応しています。LFNは、(_USE_LFN > 0)のとき使用可能になります。ディレクトリ・セパレータにはDOS/Windows APIと同じく'/'と'\'を使用します。連続したセパレータは無視され1個として扱われます。唯一の違いは、論理ドライブの指定だけです。論理ドライブ番号は、'0'~'9'の一文字の数字とコロンで指定し、省略した場合はデフォルト・ドライブ(0またはカレント・ドライブ)が選択されます。
+ヌル文字と制御文字('\0'~'\x1F')は、パス名の終端として認識されます。パス名に先行あるいは中に含まれるスペースは、LFN構成では名前の一部として有効ですが、非LFN構成ではスペースはパス名の終端として認識されます。
+標準構成(_FS_RPATH == 0)のときは、全てのオブジェクトがルート・ディレクトリから辿る絶対パスで指定されます。OS指向なカレント・ディレクトリという概念は無く、またドット・ディレクトリ("."や"..")は使用できません。パス名先頭のセパレータは無視されます。デフォルト・ドライブ番号は常に0になります。
+相対パスを有効(_FS_RPATH == 1)にしたときは、先行するセパレータの有無によって検索開始ディレクトリが変わり、セパレータがある場合はルート・ディレクトリから、無い場合はf_chdir関数で設定されるカレント・ディレクトリからになります。またパス名にドット・ディレクトリが使用できます。デフォルト・ドライブ番号はf_chdrive関数で設定された値となります。
+パス名の例 | _FS_RPATH == 0 | _FS_RPATH == 1 |
file.txt | ドライブ0のルート・ディレクトリ下のファイル | カレント・ドライブのカレント・ディレクトリ下のファイル |
/file.txt | ドライブ0のルート・ディレクトリ下のファイル | カレント・ドライブのルート・ディレクトリ下のファイル |
ドライブ0のルート・ディレクトリ | カレント・ドライブのカレント・ディレクトリ | |
2: | ドライブ2のルート・ディレクトリ | ドライブ2のカレント・ディレクトリ |
2:file1.txt | ドライブ2のルート・ディレクトリ下のファイル | ドライブ2のカレント・ディレクトリ下のファイル |
2:/ | ドライブ2のルート・ディレクトリ | ドライブ2のルート・ディレクトリ |
../file.txt | 無効 | 親ディレクトリ下のファイル |
. | 無効 | このディレクトリ |
.. | 無効 | カレント・ディレクトリの親ディレクトリ |
dir1/.. | 無効 | カレント・ディレクトリ |
/.. | 無効 | ルート・ディレクトリ(その上は辿れない) |
ファイル関数の入出力のうちファイル名やパス名を指定する引数の型は、TCHARで定義されていますが、これは通常はcharのエリアスになっています。そして、_CODE_PAGEで指定されるANSI/OEMコード(SBCSまたはDBCS)の文字列として扱われます。ファイル名入出力をUnicodeとする構成(_LFN_UNICODE == 1)にしたときは、TCHARはワイド文字(WCHAR, unsigned short)に切り替わり、パス名の入出力にUnicodeを使用するようになります。これによりLFN規格に完全対応となり、ANSI/OEMコードにない文字(たとえば ✝☪✡☸☭など)も使用できます。この設定は文字列入出力関数のデータ型とエンコーディングにも影響を与えます。リテラル文字列を定義するとき、次に示すように_T(s)および_TEXT(s)マクロを使ってANSI/OEMとUnicodeを自動切り替えすることができます。
++ f_open(fp, "filename.txt", FA_READ); /* ANSI/OEM専用コード */ + f_open(fp, L"filename.txt", FA_READ); /* Unicode専用コード */ + f_open(fp, _T("filename.txt"), FA_READ); /* 両用コード(自動切り替え) */ ++
デフォルトの構成では、それぞれの論理ドライブは同じ番号の物理ドライブに1:1で結びつけられていて、自動検出機能によりその物理ドライブ上の一つのFATボリュームがマウントされます。FATボリュームの検出は、セクタ0、第一区画、第二区画、第三区画、第四区画の順に行われます。
+_MULTI_PARTITIONに1を指定すると、それぞれの論理ドライブに対して個別に物理ドライブ番号と区画を指定できるようになります。この構成では、論理ドライブと区画の対応を解決するためのテーブルを次に示すように定義する必要があります。
++例:論理ドライブ0~2を物理ドライブ0(非リムーバブル)の3つの基本区画に割り当て、 + 論理ドライブ3を物理ドライブ1(リムーバブル)に割り当てる場合。 + +PARTITION VolToPart[] = { + {0, 1}, /* 論理ドライブ 0 ==> 物理ドライブ 0, 第1区画 */ + {0, 2}, /* 論理ドライブ 1 ==> 物理ドライブ 0, 第2区画 */ + {0, 3}, /* 論理ドライブ 2 ==> 物理ドライブ 0, 第3区画 */ + {1, 0} /* 論理ドライブ 3 ==> 物理ドライブ 1, 自動検出 */ +}; ++
複数区画指定を使用する場合、次の点に注意しなければなりません。 +
t@Cf[^ǂݏoAMXg[ɒړ]܂B
++FRESULT f_forward ( + FIL* fp, /* [IN] t@CEIuWFNg\ */ + UINT (*func)(const BYTE*,UINT), /* [IN] f[^] */ + UINT btf, /* [IN] ]oCg */ + UINT* bf /* [OUT] ]ꂽoCg */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_DENIED, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+t@C̃f[^obt@ɓǂݏoɑMXg[ɒړ]܂BAvP[VŃf[^Eobt@KvƂȂ̂ŁǍꂽŗLłB[h/CgE|C^͓]ꂽoCgi݂܂Bw肳ꂽoCg̓]Ƀt@C̏I[ɒBꍇMXg[rW[ɂȂꍇA*bfbtfȂ܂B
+_USE_FORWARD == 1ŁA_FS_TINY == 1̂ƂɎgp\łB
++/*-----------------------------------------------------------------------*/ +/* f_forwardĂf[^M̗ */ +/*-----------------------------------------------------------------------*/ + +UINT out_stream ( /* ߂l: ]ꂽoCg܂̓Xg[̏ */ + const BYTE *p, /* ]f[^w|C^ */ + UINT btf /* >0: ]s(oCg). 0: Xg[̏Ԃׂ */ +) +{ + UINT cnt = 0; + + + if (btf == 0) { /* ZXv */ + /* Xg[̏ԂԂ (0: rW[, 1: fB) */ + /* UAfBԂA]vŏȂƂ1oCg */ + /* ]Ȃ f_forward FR_INT_ERR ƂȂB */ + if (FIFO_READY) cnt = 1; + } + else { /* ]v */ + do { /* SẴoCg]邩AXg[rW[ɂȂ܂ŌJԂ */ + FIFO_PORT = *p++; + cnt++; + } while (cnt < btf && FIFO_READY); + } + + return cnt; +} + + +/*-----------------------------------------------------------------------*/ +/* f_forward̎gp */ +/*-----------------------------------------------------------------------*/ + +FRESULT play_file ( + char *fn /* ĐI[fBIEt@Cw|C^ */ +) +{ + FRESULT rc; + FIL fil; + UINT dmy; + + /* t@Cǂݏo[hŊJ */ + rc = f_open(&fil, fn, FA_READ); + if (rc) return rc; + + /* SẴf[^]邩G[܂ő */ + while (rc == FR_OK && fil.fptr < fil.fsize) { + + /* ق̏... */ + + /* I܂͗vɉăf[^Xg[ɑo */ + rc = f_forward(&fil, out_stream, 1000, &dmy); + } + + /* t@CĖ߂ */ + f_close(&fil); + return rc; +} ++
JgEfBNg܂
++FRESULT f_getcwd ( + TCHAR* buff, /* [OUT] obt@ */ + UINT len /* [IN] obt@ETCY */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+JgEhCũJgEfBNg̃tEpX擾܂B_VOLUMES2ȏ̂Ƃ́A_hCuԍ̕tꂽtEpXƂȂ܂B
+_FS_RPATH == 2̂Ƃgp\łB
+_hCu̖gpNX^擾܂B
++FRESULT f_getfree ( + const TCHAR* path, /* [IN] ΏۃhCuw肵܂ */ + DWORD* nclst, /* [OUT] NX^i[ϐւ̃|C^ */ + FATFS** fatfs /* [OUT] t@CEVXeEIuWFNgw|C^ւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT +
+_hCűNX^擾܂BԂꂽt@CEVXeEIuWFNgcsizeoNX^̃ZN^Ă̂ŁAɎۂ̋TCYvZł܂BFAT32{[ɂẮAFSINFOۂ̏ԂƓĂȂꍇAsmȋTCYԂ\܂B̖邽߁A_FS_NOFSINFOIvVFSINFOď̓tFATXL悤ɐݒ肷邱Ƃł܂B
+_FS_READONLY == 0ŁA_FS_MINIMIZE == 0̂Ƃgp\łB
++ FATFS *fs; + DWORD fre_clust, fre_sect, tot_sect; + + + /* hCu1̃{[ƋNX^ */ + res = f_getfree("1:", &fre_clust, &fs); + if (res) die(res); + + /* SZN^ƋZN^vZ */ + tot_sect = (fs->n_fatent - 2) * fs->csize; + fre_sect = fre_clust * fs->csize; + + /* {[Ŝ̃TCYƋ̃TCY\ (512oCg/ZN^Ɖ) */ + printf("%10lu KiB total drive space.\n%10lu KiB available.\n", + tot_sect / 2, fre_sect / 2); ++
{[Ex擾܂B
++FRESULT f_getlabel ( + const TCHAR* path, /* [IN] ΏۃhCu */ + TCHAR* name, /* [OUT] {[i[obt@ */ + DWORD* sn /* [OUT] {[EVAԍi[ϐ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT +
+_USE_LABEL == 1̂ƂɎgp\łB
++ char str[12]; + + /* ftHgEhCũ{[ */ + f_getlabel("", str, 0); + + /* hCu2̃{[ */ + f_getlabel("2:", str, 0); ++
t@C當ǂݏo܂B
++TCHAR* f_gets ( + TCHAR* buff, /* [OUT] obt@ */ + int len, /* [IN] obt@̃TCY */ + FIL* fp /* [IN] t@CEIuWFNg */ +); ++
buffԂ܂B
+̊f_read()̃bp[łBǂݏóAŏ'\n'ǂݍނAt@CI[ɒB邩Alen - 1ǂݏo܂ő܂Bǂݍ܂ꂽ̏I[ɂ'\0't܂BɃt@CI[1ǂݍ܂ȂƂA܂͉炩̃G[Ƃ͎͊skE|C^Ԃ܂Bt@CI[G[f_eof(),f_error()}NŒׂ܂B
+APIUnicodeI(_LFN_UNICODE1)ĂƂ́AbuffUTF-16ɂȂ܂At@C̃GR[h́A_STRF_ENCODEIvVőIł܂BȊO͖̎ϊ(1oCg/1)œǂݏo܂B
+_USE_STRFUNC1܂2̂Ƃgp\łB2̂Ƃ́At@CɊ܂܂'\r'菜ăobt@ɓǂݍ܂܂B
+t@C̃[h/CgE|C^ړ܂B܂AV[N@\gpɂCLMT(q)̍쐬ɂgp܂B
++FRESULT f_lseek ( + FIL* fp, /* [IN] t@CEIuWFNg\̂ւ̃|C^ */ + DWORD ofs /* [IN] ړItZbg */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+t@C̃[h/CgE|C^(ɓǂݏoE݂oCg̃ItZbg)ړ܂BItZbǧ_̓t@C擪łB݃[hŃt@CETCY傫Ȓlw肷ƁA܂Ńt@CETCYgAgꂽ̃f[^͖`ƂȂ܂Bf[^xɏ݂Ƃ́A\߂̊ŕKvȃTCY܂Ńt@CETCYgĂƗǂł傤Bf_lseek()IƂ́A[h/CgE|C^ړ`FbNׂłB[h/CgE|C^w菬Ƃ́Ǎl܂B
+_USE_FASTSEEK1ŁAt@CEIuWFNgcltbloNULLȊO(f_open()NULLɐݒ肳)̂ƂAV[NE[hɂȂ܂B̓t@C̃NX^zu(CLMT)ɕێĂƂɂAFATɃANZX邱ƂȂV[NOEV[Nɍs@\łBV[NE[h́Af_read()/f_wtite()̓ɂKp܂BV[NE[hłf_wtite()/f_lseek()ɂt@CETCY̊g͂ł܂B
+V[NsOɁACLMT쐬ĂKv܂B쐬ɂ́A܂CLMTi[obt@(DWORD^z)Acltbloɂ̃|C^Zbg܂BāAz̐擪vfɂ̔z̃TCY(vf)Af_lseek()ofsCREATE_LINKMAPw肵ČĂяo܂BCLMT쐬Aȍ~f_read()/f_write()/f_lseek()łFATւ̃ANZX͔܂BFR_NOT_ENOUGH_COREŎsƂ͔zTCYsŁA擪vfɂ͎ۂɕKvƂȂvfԂ܂BKvȗvf́A(t@C̕ + 1) * 2 łBƂAt@C5̃tOgɕfĂƂɕKvȗvf́A12ƂȂ܂B
+_FS_MINIMIZE < 3̂Ƃgp\łB
++ /* t@CJ */ + fp = malloc(sizeof (FIL)); + res = f_open(fp, "file.dat", FA_READ|FA_WRITE); + if (res) ... + + /* t@CEItZbg5000ֈړ */ + res = f_lseek(fp, 5000); + + /* t@CI[ֈړ(t@CNjL̏) */ + res = f_lseek(fp, f_size(fp)); + + /* 3000oCgi߂ */ + res = f_lseek(fp, f_tell(fp) + 3000); + + /* 2000oCg߂ (bvAEhɒ) */ + res = f_lseek(fp, f_tell(fp) - 2000); ++
+/* NX^s蓖 (Xg[~OECg̃obt@EI[o[h~) */ + + res = f_open(fp, "record.wav", FA_CREATE_NEW | FA_WRITE); /* t@C쐬 */ + + res = f_lseek(fp, MAX_SIZE); /* \ȃNX^̐s蓖 */ + if (res || f_tell(fp) != PRE_SIZE) ... /* t@Cgꂽ`FbN */ + + res = f_lseek(fp, DATA_START); /* f[^EXg[̋L^(AP[VfBC) */ + ... + + res = f_truncate(fp); /* sv̈̐̂ */ + res = f_lseek(fp, 0); /* wb_̋L^ */ + ... + + res = f_close(fp); ++
+/* V[N@\g */ + + DWORD clmt[SZ_TBL]; /* NE}bvEe[ui[obt@ */ + + res = f_lseek(fp, ofs1); /* ʏV[N (I[vAcltblNULLɏ) */ + + fp->cltbl = clmt; /* V[N@\̗L */ + clmt[0] = SZ_TBL; /* 擪vfɔzvfZbg */ + res = f_lseek(fp, CREATE_LINKMAP); /* CLMT̍쐬 */ + ... + + res = f_lseek(fp, ofs2); /* ȍ~Af_read/f_write/f_lseekFATANZX͔Ȃ */ ++
fBNg쐬܂B
++FRESULT f_mkdir ( + const TCHAR* path /* [IN] 쐬fBNgւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_PATH, +FR_INVALID_NAME, +FR_DENIED, +FR_EXIST, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+̃fBNg쐬܂B
+_FS_READONLY == 0ŁA_FS_MINIMIZE == 0̂Ƃgp\łB
++ res = f_mkdir("sub1"); + if (res) die(res); + res = f_mkdir("sub1/sub2"); + if (res) die(res); + res = f_mkdir("sub1/sub2/sub3"); + if (res) die(res); ++
_hCuFAT{[쐬(tH[}bg)܂B
++FRESULT f_mkfs ( + const TCHAR* path, /* [IN] _hCuԍ */ + BYTE sfd, /* [IN] 쐬@ */ + UINT au /* [IN] NXE^TCY */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_NOT_READY, +FR_NOT_ENABLED, +FR_MKFS_ABORTED, +FR_INVALID_PARAMETER +
+hCuFAT{[쐬܂BFDISK`w肳ꂽꍇ́AhCuŜ߂{(p[e[V)쐬A̒FAT{[쐬܂BSFD`ł́AFAT{[͕hCu̐擪ZN^x^ō쐬܂B
+}`p[e[V@\(_MULTI_PARTITION)ɂAw肳ꂽ_hCű(1`4)ɌѕtĂꍇA̋̒FAT{[쐬܂B̏ꍇAsfd͖A܂Ή镨hCu͂ɐ旧Af_fdisk()܂͑̃c[œKɋݒ肳ĂKv܂B
+p[e[V`ɂ́AFDISK`SFD`̓ʂ肠܂BFDISK`́An[hfBXNAMMCASDCACFCAU DiskȂǂŕWIɎgp܂BFDISK`ł͈̕hCuɈ܂͕̋쐬邱Ƃł܂BǗMBR(hCu̐擪ZN^)ɋL^܂BSFD`͒Pɉ̕sȂ`ŁA{[͕hCu̐擪ZN^Jn܂BSFD`́Atbs[fBXNA}CNhCuAwfBXNAт̑X[p[tbs[fBAŕWIɎgpĂ܂B
+FAT^Cv(FAT12/FAT16/FAT32)́A̘_hCuNX^ɂĂ̂錈܂[FATdl]ɂȂĂāAȊO̗v͂܂BāAǂFAT^CvɂȂ邩̓hCuETCYƃNX^ETCYɈˑ܂BNX^ETCY͑傫قǐ\オAfBXNp͗܂B
+NX^FAT^Cv̋Eɋ߂ȂƂ́AFR_MKFS_ABORTEDŊs\܂B
+_FS_READONLY == 0ŁA_USE_MKFS == 1̂Ƃgp\łB
+_hCuɃt@CEVXeEIuWFNgo^E܂B
++FRESULT f_mount ( + FATFS* fatfs, /* [IN] t@CEVXeEIuWFNg */ + const TCHAR* path, /* [IN] _hCuԍ */ + BYTE opt /* [IN] IvV */ +); ++
+FR_OK, +FR_INVALID_DRIVE, +FR_DISK_ERR, +FR_NOT_READY, +FR_NO_FILESYSTEM +
+FatFsW[ł́Aꂼ̘_hCut@CEVXeEIuWFNgƂ[NEGAKvłB̊͘_hCuɃt@CEVXeEIuWFNgo^薕肵܂B炩̃t@CgpOɁÅł̘_hCũt@CEVXeEIuWFNg^ĂȂȂ܂BfatfsɃkE|C^w肷ƁA̘_hCũt@CEVXeEIuWFNg̓o^͖邾łBo^ꂽt@CEVXeEIuWFNg͉̃ł܂BΏۂ̘_hCuɊJĂt@CfBNgꍇA͑SĖɂȂ܂B͎̊̓̂悤ȏɍs܂B
+opt0w肷ƁA}Eg(hCȕAFAT{[̌ABPB͂t@CEVXeEIuWFNg)͍sꂸA͕hCȕԂɊւ炸ɐ܂Bł͉ʃCւ̃ANZX͔Aw肳ꂽt@CEVXeEIuWFNgNA()ÃAhXzɓo^邾łBPɓo^ς݂̃t@CEVXeEIuWFNgNAړIɂg܂BāAă{[ւ̃ANZXsꂽƂ̂ꂩł^̏ꍇ́Aۂ̃}Eg삪s܂B
+opt1w肷ƁAo^ɑă}Eg삪s܂B}EgɎsƑΉG[Ԃ܂Ao^͗LȂ̂ő{[ւ̃ANZXōĂу}Eg삪s܂B
+
ʃC̎チfBǍoT|[gȂ(disk_status()ɔfȂ)Ƃ́AAvP[V̓fBǍケ̊Ńt@CEVXeEIuWFNgIɃNAčă}Egɍs悤ɂKv܂B
+SĂ̍\Ŏgp\łB
+t@CI[v܂͍쐬܂B
++FRESULT f_open ( + FIL* fp, /* [OUT] ̃t@CEIuWFNg\̂ւ̃|C^ */ + const TCHAR* path, /* [IN] t@C̃tpXւ̃|C^ */ + BYTE mode /* [IN] [htO */ +); ++
l | Ӗ |
---|---|
FA_READ | ǂݏo[hŊJ܂BǂݏꍇFA_WRITEƋɎw肵܂B |
FA_WRITE | ݃[hŊJ܂BǂݏꍇFA_READƋɎw肵܂B |
FA_OPEN_EXISTING | ̃t@CJ܂Bt@CƂ̓G[ɂȂ܂B(ftHg) |
FA_OPEN_ALWAYS | ̃t@CJ܂Bt@CƂ̓t@C쐬܂BNjL̏ꍇ́A̕@ŃI[vAf_lseek()Ńt@C̍ŌɈړĂB |
FA_CREATE_NEW | t@C쐬܂B̃t@Cꍇ́AFR_EXISTŎs܂B |
FA_CREATE_ALWAYS | t@C쐬܂B̃t@Cꍇ́ATCY0ɂĂJ܂B |
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_DENIED, +FR_EXIST, +FR_INVALID_OBJECT, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_LOCKED, +FR_NOT_ENOUGH_CORE, +FR_TOO_MANY_OPEN_FILES +
+̃t@CJAVt@C쐬܂Bƃt@CEIuWFNg쐬Aȍ~̃t@CɑANZXɎgp܂Bt@CƂ́Af_close()gp܂B炩̕ύXsꂽt@Č㐳ȂꍇÃt@Cjꍇ܂B
+ɊJĂt@CJKvꍇ́AdANZXQƂĂBÃt@Cɑ鏑݃[h܂ޏdI[v͏ɋ֎~łB
+t@CEANZXJnOɁAf_mount()gĂꂼ̘_hCuɃ[NEGA(t@CEVXeEIuWFNg)^Kv܂B̏̌A̘_hCuɑđSẴt@Cg悤ɂȂ܂B
+SĂ̍\Ŏgp\łB_FS_READONLY == 1̂Ƃ́AFA_WRITE, FA_CREATE_ALWAYS, FA_CREATE_NEW, FA_OPEN_ALWAYS̊etO̓T|[g܂B
++/* eLXgt@Cǂݏoĕ\ */ + +FATFS FatFs; /* _hCũ[NEGA(t@CEVXeEIuWFNg) */ + +int main (void) +{ + FIL fil; /* t@CEIuWFNg */ + char line[82]; /* sobt@ */ + FRESULT fr; /* ߂l */ + + + /* ftHgEhCuɃ[NGA^ */ + f_mount(&FatFs, "", 0); + + /* eLXgEt@CJ */ + fr = f_open(&fil, "message.txt", FA_READ); + if (fr) return (int)fr; + + /* 1sǂݏoĕ\ */ + while (f_gets(line, sizeof line, &fil)) + printf(line); + + /* t@C */ + f_close(&fil); + + return 0; +} ++
+/* hCu1̃t@C "file.bin" hCu0փRs[ */ + +int main (void) +{ + FATFS fs[2]; /* _hCũ[NGA(t@CEVXeEIuWFNg) */ + FIL fsrc, fdst; /* t@CEIuWFNg */ + BYTE buffer[4096]; /* File copy buffer */ + FRESULT fr; /* FatFs function common result code */ + UINT br, bw; /* File R/W count */ + + /* hCu0,1Ƀ[NEGA^ */ + f_mount(&fs[0], "0:", 0); + f_mount(&fs[1], "1:", 0); + + /* hCu1̃Rs[t@CJ */ + res = f_open(&fsrc, "1:file.dat", FA_OPEN_EXISTING | FA_READ); + if (fr) return (int)fr; + + /* hCu0ɃRs[t@C쐬 */ + res = f_open(&fdst, "0:file.dat", FA_CREATE_ALWAYS | FA_WRITE); + if (fr) return (int)fr; + + /* Rs[Rs[Ƀf[^] */ + for (;;) { + res = f_read(&fsrc, buffer, sizeof buffer, &br); /* Rs[炩ǂݏo */ + if (res || br == 0) break; /* G[t@CI[ */ + res = f_write(&fdst, buffer, br, &bw); /* Rs[ɏ */ + if (res || bw < br) break; /* G[fBXNt */ + } + + /* SẴt@C */ + f_close(&fsrc); + f_close(&fdst); + + /* [NEGAJ */ + f_mount(NULL, "0:", 0); + f_mount(NULL, "1:", 0); + + return (int)fr; +} ++
fBNgJ܂B
++FRESULT f_opendir ( + DIR* dp, /* [OUT] fBNgEuWFNg\̂ւ̃|C^ */ + const TCHAR* path /* [IN] fBNgւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_PATH, +FR_INVALID_NAME, +FR_INVALID_OBJECT, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+fBNgJ܂BIA쐬ꂽDIR\̂gẴfBNg̍ڂǂݏo܂B
+_FS_MINIMIZE <= 1̂Ƃgp\ɂȂ܂B
+t@Cɏ݂܂B
++int f_printf ( + FIL* fp, /* [IN] t@CEIuWFNg */ + const TCHAR* fmt, /* [IN] 䕶 */ + ... +); ++
ɏ܂ƁA܂ꂽԂ܂BfBXNt܂͂̑G[ɂ萳ɏ܂ȂƂ́A͎sEOF (-1)Ԃ܂B
+̊́Af_putc()f_puts()̃bp[łB@\CWCũTuZbgƂȂĂāA䕶͎Ɏ̂gp\łB
+_FS_READONLY == 0ŁA_USE_STRFUNC 1܂ 2̂Ƃgp\ɂȂ܂B2̎́Ao͂Ɋ܂܂'\n'"\r\n"ɓWJăt@Cɏ܂܂B
+APIUnicodeI(_LFN_UNICODE1)ĂƂ́AfmtUnicodeɂȂ܂At@C̃GR[h́A_STRF_ENCODEIvVőIł܂BȊO͖̎ϊ(1oCg/1)ŏ݂܂B
++ f_printf(&fil, "%d", 1234); /* "1234" */ + f_printf(&fil, "%6d,%3d%%", -200, 5); /* " -200, 5%" */ + f_printf(&fil, "%-6u", 100); /* "100 " */ + f_printf(&fil, "%ld", 12345678L); /* "12345678" */ + f_printf(&fil, "%04x", 0xAB); /* "00ab" */ + f_printf(&fil, "%08LX", 0x123ABCL); /* "00123ABC" */ + f_printf(&fil, "%016b", 0x550F); /* "0101010100001111" */ + f_printf(&fil, "%s", "String"); /* "String" */ + f_printf(&fil, "%5s", "abc"); /* " abc" */ + f_printf(&fil, "%-5s", "abc"); /* "abc " */ + f_printf(&fil, "%c", 'a'); /* "a" */ + f_printf(&fil, "%f", 10.0); /* _͖T|[g */ ++
t@Cɕ݂܂B
++int f_putc ( + TCHAR chr, /* [IN] ޕ */ + FIL* fp /* [IN] t@CEIuWFNg */ +); ++
ɏ܂ƏԂ܂BfBXNt܂̓G[ɂ菑܂ȂƂEOF (-1)Ԃ܂B
+APIUnicodeI(_LFN_UNICODE1)ĂƂ́AchrUTF-16ɂȂ܂At@C̃GR[h́A_STRF_ENCODEIvVőIł܂BȊO͖̎ϊ(1oCg/1)ŏ݂܂B
+1t@Cɏ݂܂B̊f_write()̃bp[łB
+_FS_READONLY == 0ŁA_USE_STRFUNC 1܂ 2̂Ƃgp\łB2w肷ƁA'\n'"\r\n"ɓWJăt@Cɏ܂܂B
+t@Cɕ݂܂B
++int f_puts ( + const TCHAR* str, /* [IN] ޕ */ + FIL* fp /* [IN] t@CEIuWFNg */ +); ++
ɏ܂ƁA܂ꂽԂ܂BfBXNt܂̓G[ɂ菑݂fꂽƂEOF (-1)Ԃ܂B
+APIUnicodeI(_LFN_UNICODE1)ĂƂ́AstrUTF-16ɂȂ܂At@C̃GR[h́A_STRF_ENCODEIvVőIł܂BȊO͖̎ϊ(1oCg/1)ŏ݂܂B
+t@Cɏ݂܂B̊f_write()̃bp[łB
+_FS_READONLY == 0ŁA_USE_STRFUNC 1܂ 2̂Ƃgp\łB2w肷ƁAɊ܂܂'\n'"\r\n"ɓWJăt@Cɏ܂܂B
+FatFsのAPIでは、一部の関数を除き結果に応じた共通のリザルト・コード(FRESULT型(enum))を返します。関数が成功した場合は0を返します。失敗した場合は0以外の値を返し、値はエラーの種類を示します。
+ +t@Cf[^ǂݏo܂B
++FRESULT f_read ( + FIL* fp, /* [IN] t@CEIuWFNg\ */ + void* buff, /* [OUT] ǂݏof[^i[obt@ */ + UINT btr, /* [IN] ǂݏooCg */ + UINT* br /* [OUT] ǂݏoꂽoCg */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_DENIED, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+ǂݍ݊JnʒúÃ݂[h/CgE|C^ɂȂ܂B[h/CgE|C^͓ǂݍ܂ꂽoCgi݂܂BÍA*br̒l`FbNׂłB*brbtrƂ́AǂݍݒɃt@C̏I[ɒBƂĂ܂B
+SĂ̍\Ŏgp\łB
+fBNgڂǂݏo܂
++FRESULT f_readdir ( + DIR* dp, /* [IN] fBNgEuWFNg\̂ւ̃|C^ */ + FILINFO* fno /* [OUT] t@C\̂ւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+fBNg̍(t@CƃfBNg)ǂݏo܂B̊JԂs邱Ƃɂ肻̃fBNg̑SĂ̍ڂǂݏoƂł܂BSĂ̍ڂǂݏoAǂݏoڂƂ́Afname[]oɃkԂ܂BhbgEGg("."A"..")́ApXLȂƂ(_FS_RPATH >= 1)ɂ̂܂Bt@C̏ڍׂɂĂ FILINFO\̂QƂĂBfnoɃkE|C^w肷ƁÃfBNg̃[hECfbNX擪Ɋ߂܂B
+LFN@\LȎ́Af_readdir()̌Ăяoɐ旧FILINFO\̂lfnamelfsizeLȒlŏĂȂȂ܂BlfnameLFNi[obt@ŁAlfsize͂̃obt@̗vfłBLFNǂݏoKvȂƂ́AlfnameɃkE|C^ZbgĂB̏ɈłYꍇ́ALFNi[obt@ɃkԂ܂B
+܂AfBNgڂLFN݂Ȃꍇ́Afname[]ɉp܂܂ꍇ܂B
+_FS_MINIMIZE <= 1̂ƂɎgp\łB
++FRESULT scan_files ( + char* path /* Jnm[h ([NGAƂĂgp) */ +) +{ + FRESULT res; + FILINFO fno; + DIR dir; + int i; + char *fn; /* Unicode\z */ +#if _USE_LFN + static char lfn[_MAX_LFN + 1]; + fno.lfname = lfn; + fno.lfsize = sizeof lfn; +#endif + + + res = f_opendir(&dir, path); /* fBNgJ */ + if (res == FR_OK) { + i = strlen(path); + for (;;) { + res = f_readdir(&dir, &fno); /* fBNgڂ1ǂݏo */ + if (res != FR_OK || fno.fname[0] == 0) break; /* G[܂͍ږ̂Ƃ͔ */ + if (fno.fname[0] == '.') continue; /* hbgGg͖ */ +#if _USE_LFN + fn = *fno.lfname ? fno.lfname : fno.fname; +#else + fn = fno.fname; +#endif + if (fno.fattrib & AM_DIR) { /* fBNg */ + sprintf(&path[i], "/%s", fn); + res = scan_files(path); + if (res != FR_OK) break; + path[i] = 0; + } else { /* t@C */ + printf("%s/%s\n", path, fn); + } + } + f_closedir(&dir); + } + + return res; +} ++
t@C܂̓TuEfBNg̖O̕ύX܂͈ړB
++FRESULT f_rename ( + const TCHAR* old_name, /* [IN] ÂIuWFNg */ + const TCHAR* new_name /* [IN] VIuWFNg */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_EXIST, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_LOCKED +
+t@C܂̓TuEfBNg̖OύX܂B܂Aɕʂ̃fBNgւ̈ړ\łBJĂIuWFNgɑĎgpĂ͂Ȃ܂B
+_FS_READONLY == 0ŁA_FS_MINIMIZE == 0̂ƂɎgp\łB
++ /* t@C܂̓TufBNg̖OύX */ + f_rename("oldname.txt", "newname.txt"); + + /* t@C܂̓TufBNg̖O̕ύXƕʂ̃fBNgւ̈ړ */ + f_rename("oldname.txt", "dir1/newname.txt"); ++
DIR\̂́Af_opendir(), f_readdir()̃[NEGAƂĎgp܂BAvP[V́A̍\̂̃oĂ͂Ȃ܂B
++typedef struct { + FATFS* fs; /* et@CEVXeEIuWFNgւ̃|C^ */ + WORD id; /* et@CEVXeEIuWFNg̃}EgID */ + WORD index; /* ɌJnfBNgECfbNXԍ */ + DWORD sclust; /* e[uJnNX^ (0:[g) */ + DWORD clust; /* ݂̃NX^ԍ */ + DWORD sect; /* ݂̃ZN^ԍ */ + BYTE* dir; /* ݂SFNGgւ̃|C^ */ + BYTE* fn; /* SFNobt@ւ̃|C^ (in/out) {file[8],ext[3],status[1]} */ +#if _FS_LOCK + UINT lockid; /* bNID */ +#endif +#if _USE_LFN + WCHAR* lfn; /* LFNobt@ւ̃|C^ */ + WORD lfn_idx; /* ŌɃ}b`LFNGg̐擪CfbNX (0xFFFF:) */ +#endif +} DIR; ++
{[Ex݂܂B
++FRESULT f_setlabel ( + const TCHAR* name /* [IN] ݒ肷{[ւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_NAME, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT +
+̐擪ɃhCuԍ܂ޏꍇ́A̘_hCuɐݒ肳܂B܂܂Ȃꍇ́AftHgEhCuɐݒ肳܂B{[폜Ƃ́Akw肵܂BÕtH[}bǵAZt@CƂقړłA̓_قȂ܂B
+_FS_READONLY == 0ŁA_USE_LABEL == 1̂ƂɎgp\łB
++ /* ftHgEhCuɃ{[ݒ */ + f_setlabel("DATA DISK"); + + /* hCu2Ƀ{[ݒ */ + f_setlabel("2:DISK 3 OF 4"); + + /* hCu2̃{[폜 */ + f_setlabel("2:"); ++
FATFS\(t@CEVXeEIuWFNg)́AX̘_hCũ_Ci~bNE[NEGAێAf_mount()FatFsW[ɓo^܂Bs^C~ÓAf_mount()܂̓fBǍ̍ŏ̃t@CEANZX̎łBAvP[V́A̍\̂̃oĂ͂Ȃ܂B
+ ++typedef struct { + BYTE fs_type; /* FAT^Cv */ + BYTE drv; /* hCuԍ */ + BYTE csize; /* NX^̃ZN^ (1,2,4,8,...,128)*/ + BYTE n_fats; /* FAT̑d (1,2) */ + BYTE wflag; /* win[]_[eBEtO */ + BYTE fsi_flag; /* FSINFOtO (b7:Disabled, b0:Dirty)*/ + WORD id; /* t@CEVXeE}EgID */ + WORD n_rootdir; /* [gEfBNg̃Gg (FAT12/16) */ +#if _MAX_SS != 512 + WORD ssize; /* ZN^ETCY (512, 1024, 2048 or 4096) */ +#endif +#if _FS_REENTRANT + _SYNC_t sobj; /* IuWFNgID */ +#endif +#if !_FS_READONLY + DWORD last_clust; /* FSINFO: ŌɊ蓖ĂꂽNX^ԍ */ + DWORD free_clust; /* FSINFO: NX^ */ +#endif +#if _FS_RPATH + DWORD cdir; /* JgEfBNg̃NX^ (0:[g) */ +#endif + DWORD n_fatent; /* FATGg (NX^ + 2) */ + DWORD fsize; /* FAT 1̃ZN^ */ + DWORD volbase; /* {[JnZN^ */ + DWORD fatbase; /* FAT̈JnZN^ */ + DWORD dirbase; /* [gEfBNg̈JnZN^(NX^) */ + DWORD database; /* f[^̈JnZN^ */ + DWORD winsect; /* win[]ɌĂZN^ԍ */ + BYTE win[_MAX_SS]; /* fBXNEANZXEEBhE */ +} FATFS; ++
FIL\(t@CEIuWFNg)́Af_open()ŏAȌセ̃t@C̏Ԃێ܂B܂Af_close()Ńt@CƖ܂BAvP[V́A̍\̂̃oĂ͂Ȃ܂(cltbl͗O)B^Cj[\ł́AɃZN^Eobt@mۂ̂ŁALTCYɒӂKvłB
+ ++typedef struct { + FATFS* fs; /* et@CEVXeEIuWFNgւ̃|C^ */ + WORD id; /* et@CEVXeEIuWFNg̃}EgID */ + BYTE flag; /* t@CEXe[^XEtO */ + BYTE err; /* G[ftO */ + DWORD fptr; /* t@Cǂݏ|C^ (t@C擪̃oCgEItZbg) */ + DWORD fsize; /* t@CETCY(oCgP) */ + DWORD sclust; /* t@CJnNX^ԍ (0:蓖Ė) */ + DWORD clust; /* ݂̃NX^ */ + DWORD dsect; /* ݂̃f[^EZN^ */ +#if !_FS_READONLY + DWORD dir_sect; /* ̃t@C̃fBNgEGĝZN^ */ + BYTE* dir_ptr; /* ̃t@C̃fBNgւ̃|C^ */ +#endif +#if _USE_FASTSEEK + DWORD* cltbl; /* t@C̃NX^ENւ̃|C^ (I[vNULLZbg) */ +#endif +#if _FS_LOCK + UINT lockid; /* t@CEbNID */ +#endif +#if !_FS_TINY + BYTE buf[_MAX_SS]; /* t@CEvCx[gEf[^]obt@ */ +#endif +} FIL; ++
FILINFO\̂́Af_stat(), f_readdir()ŕԂt@Cێ܂B
++typedef struct { + DWORD fsize; /* t@CETCY */ + WORD fdate; /* ŌɍXVꂽt */ + WORD ftime; /* ŌɍXVꂽ */ + BYTE fattrib; /* Agr[g */ + TCHAR fname[13]; /* Zt@C (8.3tH[}bg) */ +#if _USE_LFN + TCHAR* lfname; /* t@C̃obt@ւ̃|C^ */ + int lfsize; /* t@C̃obt@̃TCY [] */ +#endif +} FILINFO; ++
t@C̃TCY擾܂B
++DWORD f_size ( + FIL* fp /* [IN] t@CEIuWFNg */ +); ++
oCgPʂ̃t@CETCYԂ܂B
+f_sizéArWł̓}NƂĎĂ܂B
+
+#define f_size(fp) ((fp)->fsize)
+
+Ɏgp\B
+t@C܂̓TuEfBNgׁ݂̑A܂̏擾܂B
++FRESULT f_stat ( + const TCHAR* path, /* [IN] IuWFNgւ̃|C^ */ + FILINFO* fno /* [OUT] t@C\̂ւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+w肳ꂽt@C܂̓TuEfBNgׁ݂̑Aւ(TCYA^CX^vё)܂B݂ꍇFR_OKAAt@C\̂ɂ̏XgA܂B݂Ȃꍇ́AFR_NO_FILEA܂B
+_FS_MINIMIZE == 0̂ƂɎgp\łB
+ݒ̃t@C̃LbVꂽtbV܂B
++FRESULT f_sync ( + FIL* fp /* [IN] t@CEIuWFNg\̂ւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+̊f_close()Ɠs܂At@C͈Jꂽ܂܂ɂȂAǂݏsł܂BMOȂǁA݃[hŒԃt@CJĂAvP[VɂāAI܂̗͋ǂƂł̊gp邱ƂɂAsӂ̓dffBA̎Oɂ莸f[^ŏɂ邱Ƃł܂B̔wiɂẮAAvP[VEm[gQƂĂB
+ۂ̂ƂAf_close()ł͂̊Ăяot@CEIuWFNgĂ邾Ȃ̂ŁAf_close()Of_sync()͈Ӗ܂B
+_FS_READONLY == 0̂ƂɎgp\łB
+݂̃[h/CgE|C^擾܂B
++DWORD f_tell ( + FIL* fp /* [IN] t@CEIuWFNg */ +); ++
݂̃[h/CgE|C^(t@C擪̃oCgPʂ̃ItZbg)Ԃ܂B
+f_telĺArWł̓}NƂĎĂ܂B
+
+#define f_tell(fp) ((fp)->fptr)
+
+Ɏgp\B
+t@Cl߂܂B
++FRESULT f_truncate ( + FIL* fp /* [IN] t@CEIuWFNgւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_DENIED, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+t@C݂̒̃[h/CgE|C^ɐl߂܂B[h/CgE|C^Ƀt@C̏I[wĂƂ́Å͉̌ʂ܂B
+_FS_READONLY == 0ŁA_FS_MINIMIZE == 0̂ƂɎgp\łB
+t@C܂̓TuEfBNg폜܂B
++FRESULT f_unlink ( + const TCHAR* path /* [IN] IuWFNgւ̃|C^ */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_DENIED, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_LOCKED, +FR_NOT_ENOUGH_CORE +
+폜Ώۂ̃IuWFNg̏ɓĂ͂܂ꍇÃANZX͋(FR_DENIED܂FR_LOCKED)͎s܂B +
_FS_READONLY == 0ŁA_FS_MINIMIZE == 0̂ƂɎgp\łB
+t@C܂̓TuEfBNg̃^CX^vύX܂B
++FRESULT f_utime ( + const TCHAR* path, /* [IN] IuWFNgւ̃|C^ */ + const FILINFO* fno /* [IN] ݒ肷t */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_NO_FILE, +FR_NO_PATH, +FR_INVALID_NAME, +FR_WRITE_PROTECTED, +FR_INVALID_DRIVE, +FR_NOT_ENABLED, +FR_NO_FILESYSTEM, +FR_TIMEOUT, +FR_NOT_ENOUGH_CORE +
+IuWFNg̃^CX^vύX܂B
+
+FRESULT set_timestamp (
+ char *obj, /* t@Cւ̃|C^ */
+ int year,
+ int month,
+ int mday,
+ int hour,
+ int min,
+ int sec
+)
+{
+ FILINFO fno;
+
+ fno.fdate = (WORD)(((year - 1980) * 512U) | month * 32U | mday);
+ fno.ftime = (WORD)(hour * 2048U | min * 32U | sec / 2U);
+
+ return f_utime(obj, &fno);
+}
+
+_FS_READONLY == 0ŁA_FS_MINIMIZE == 0̂ƂɎgp\łB
+t@CɃf[^݂܂B
++FRESULT f_write ( + FIL* fp, /* [IN] t@CEIuWFNg */ + const void* buff, /* [IN] ݃f[^ */ + UINT btw, /* [IN] ރoCg */ + UINT* bw /* [OUT] ܂ꂽoCg */ +); ++
+FR_OK, +FR_DISK_ERR, +FR_INT_ERR, +FR_NOT_READY, +FR_DENIED, +FR_INVALID_OBJECT, +FR_TIMEOUT +
+݊JnʒúA[h/CgE|C^̈ʒuɂȂ܂B[h/CgE|C^͎ۂɏ܂ꂽoCgi݂܂BIAvoCg܂ꂽǂ*bw`FbNׂłB*bwbtw菬Ƃ́AfBXNEtӖ܂BfBXNEtĂƂ܂͂ɋ߂Ƃ́A䂪A܂ŎԂꍇ܂B
+_FS_READONLY == 0̂ƂɎgp\łB
+
+
+
|
+
+
+
|
+