Saltar para o conteúdo

Resposta policlonal das células B

Origem: Wikipédia, a enciclopédia livre.
Resposta policlonal das células B contra epítopos linhais.[1]
Exemplos de substancias reconhecidas como alheias (impróprias).

A resposta policlonal das células B é um tipo natural de resposta imune que o sistema imunitário adaptativo dos mamíferos apresenta. Possibilita que um determinado antígeno seja reconhecido e atacado pelas suas partes sobrepostas, chamadas epítopos, por múltiplos clones de células B.[1][2]

No decurso duma resposta imunitária normal, algumas partes do patogénio (por exemplo, uma bactéria) são reconhecidas pelo sistema imunitário como algo alheio (impróprio), e eliminadas ou neutralizadas para reduzir os possíveis danos que poderiam causar. A substância reconhecível é chamada antígeno. O sistema imunitário pode responder de muitas maneiras ao antígeno; uma característica fundamental desta resposta é a produção de anticorpos pelas células B (ou linfócitos B) que intervêm num conjunto de acções do sistema imunitário chamado imunidade humoral. Os anticorpos são solúveis e não requerem um contacto directo célula a célula entre o patógeno e a célula B para o seu funcionamento.

Os antígenos podem ser substâncias grandes e complexas, e qualquer anticorpo pode apenas ligar-se a uma área pequena e específica do antígeno. Como consequência, uma resposta imune efectiva implica, frequentemente, a produção de muitos anticorpos distintos pelas células B contra o mesmo antígeno. Daí o termo "policlonal", que deriva das palavras gregas poly, que significa 'muitos', e klon, 'broto', 'raminho'.[3][4][5] Um clone é um grupo de células que se originam a partir da divisão duma célula "parental" comum. Os anticorpos assim produzidos numa resposta policlonal são denominados anticorpos policlonais. Os anticorpos policlonais são heterogéneos e distintos das moléculas de anticorpos monoclonais, as quais são idênticas e reagem contra um só epítopo, ou seja, são mais específicas.

Embora a resposta policlonal confira certas vantagens ao sistema imunitário, como ter uma maior probabilidade de reagir contra os patógenos, também aumenta as possibilidades de desenvolver certas doenças auto-imunes que resultam da reacção do sistema imunitário contra moléculas nativas produzidas pelo própio hóspede.

Resposta humoral a uma infecção

Ver artigo principal: Sistema imunitário

As doenças que podem transmitir-se dum organismo para outro denominam-se doenças infecciosas, e o agente biológico que as causa denomina-se patógeno. O processo pelo qual o patógeno se introduz no corpo denomina-se inoculação,[nota 1][6] e o organismo afectado denomina-se hospedeiro. Quando o agente patogénico se estabelece numa etapa chamada colonização,[7] pode provocar uma infecção,[7] danificando o hóspede directamente ou por meio da produção de substancias prejudiciais chamadas toxinas.[7] Isto dá origem aos diversos sintomas e sinais característicos duma doença infecciosa como a pneumonia ou a difteria.

É muito importante neutralizar as doenças infecciosas para garantir a sobrevivência do organismo e da espécie. Isto consegue-o o hóspede eliminando o patógeno e as suas toxinas ou tornando-os não-funcionais. O conjunto de células, tecidos e órgãos que se especializam na protecção do corpo contra as infecções constituem o sistema imunitário. O sistema imunitário realiza este trabalho por meio do contacto directo que certos leucócitos estabelecem com o patógeno invasor, formando uma rede do sistema imunitário chamada imunidade mediada por células, ou produzindo substâncias que se movem pelo corpo até chegar a sítios distantes de onde se segregaram, "procuram" células causantes da doença e toxinas unindo-se especificamente[nota 2] a elas, e neutralizando-as no processo chamado imunidade humoral. Tais substâncias defensivas são os anticorpos solúveis, que desempenham funções importantes na luta contra infecções, inclusive:

  • Recobrem o patógeno, impedindo-o de aderir-se à célula hospedeira e impossibilitando assim a colonização.
  • Fazem com que precipitem (que se agreguem e "afundem" deixando de circular ao unirem-se a eles) os antígenos solúveis, e promovem a sua remoção dos tecidos e sangue por outras células do sistema imunitário.
  • Recobrem o microorganismo, o que atrai células que fagocitam o patógeno. Este recobrimento chama-se opsonização. Deste modo, o anticorpo actua como uma opsonina.
  • Activam o sistema do complemento, que causa perforações na envoltura externa do patógeno (a sua membrana plasmática), o que o mata.
  • Marcam células do hóspede infectadas por vírus para que sejam destruídas num processo chamado citotoxicidade mediada por células dependente de anticorpos.[8]

Resposta das células B

Diagrama esquemático que explica os mecanismos da selecção clonal das células B[8]

Os anticorpos realizam várias funções na protecção do hóspede contra o patógeno. As suas formas solúveis (anticorpos) que levam a cabo estas funções são produzidas pelas células B plasmáticas, um tipo de linfócito B. Esta produção é estreitamente regulada e requer a activação de células B pelas células T activadas (outro tipo de leucócito), que é um procedimento sequêncial. Os principais passos implicados são:[9]

Fases da produção de anticorpos pelas células B: 1. Reconhece-se o antígeno e é fagocitado pela célula B. 2. O antígeno é processado. 3. O antígeno processado é apresentado sobre a superfície da célula B. 4. As células B e T activam-se mutuamente. 5. As células B diferenciam-se em células plasmáticas para produzir anticorpos solúveis.

Reconhecimento de patogénicos

Os patógenos sintetizam proteínas que podem servir como antígenos reconhecíveis; podem expressar essas moléculas na sua superfície ou libertá-las nos seus arredores (fluidos corporais). O que faz com que estas substâncias sejam reconhecíveis é que se unem muito especificamente e com alguma força a certas proteínas do hóspede chamadas anticorpos. Os anticorpos podem estar ancorados à superfície das células do sistema imunitário, e neste caso servem como receptores imunitários, ou podem ser segregados para o sangue (anticorpos solúveis). À escala molecular, as proteínas são relativamente grandes, pelo que não podem ser reconhecidas no seu conjunto total; pelo contrário, têm segmentos mais pequenos chamados epítopos, que são os que serão reconhecidos.[1] Um epítopo põem-se em contacto com uma pequena região (de 15 a 22 aminoácidos) da molécula de anticorpo; esta região é conhecida como parátopo.[1] No sistema imunitário, os anticorpos unidos à membrana são o receptor de células B (BCR). Além disso, embora o receptor de células T (TCR) não se classifique bioquimicamente como um anticorpo, realiza uma função semelhante na qual se une especificamente a epítopos complexados a moléculas do complexo principal de histocompatibilidade (MHC).[nota 4][10] A união entre um parátopo e o seu antígeno correspondente é muito específica devido à sua estrutura, e é estabelecida por meio de várias ligações não-covalentes, de modo não muito diferente ao apareamento de outros tipos de ligantes (quaisquer átomo, ião ou molécula que se liga a um receptor com pelo menos algum grau de especificidade e força). A especificidade da ligação não se origina por um tipo de interacção rígida de chave e fechadura, mas sim necessita que tanto o parátopo como o epítopo experimentem ligeiras alterações conformacionais quando estão um na presença do outro.[11]

Reconhecimento específico do epítopo pelas células B

Ver artigos principais: Epítopo linear e Epítopo conformacional
Reconhecimento de epítopos conformacionais pelas células B. Os segmentos muito separados na estrutura primária põem-se em contacto na estrutura terciária tridimensional e passam a fazer parte do mesmo epítopo.[1]

Na figura da esquerda, os diversos segmentos que formam o epítopo são co-lineares de forma contínua, ou seja, são sequenciais; porém, no que diz respeito ao reconhecimento de antígenos a partir das células B, esta explicação é muito simplista. Tais epítopos conhecem-se como sequenciais ou lineares, uma vez que todos os aminoácidos que os formam estão na mesma sequência (linha). Esta forma de reconhecimento só é possível quando o péptido é pequeno (com cerca de seis a oito aminoácidos de comprimento), e é empregue pelas células T.

Porém, as células B de memória/virgens reconhecem as proteínas intactas presentes na superfície do patogénio.[nota 5] Nesta situação, a proteína na sua estrutura terciária está tão enovelada que alguns bucles da sequência de aminoácidos ficam situados no interior da proteína, e os segmentos que os flanqueiam podem ficar na superfície. O parátopo no receptor de células B põe-se em contacto apenas com aqueles aminoácidos que estão situados na superfície da proteína. Os aminoácidos da superfície podem na realidade não estar em sequência contínua na estrutura primária da proteína, mas ficam juntos depois do enovelamento da proteína (como se pode ver na figura anexa). Tais epítopos são conhecidos como epítopos conformacionais e tendem a ser mais compridos (de 15 a 22 resíduos de aminoácidos) do que os epítopos lineares.[1] Da mesma forma, os anticorpos produzidos pelas células plasmáticas que pertencem ao mesmo clone unir-se-ão aos mesmos epítopos conformacionais das proteínas do patógeno.[12][13][14][15]

A união de um antígeno específico com as moléculas correspondentes BCR resulta no aumento da produção de moléculas MHC-II. Isto tem importância, já que o mesmo não acontece quando o mesmo antígeno é interiorizado por um processo relativamente não-específico chamado pinocitose, no qual o antígeno juntamente com o fluído que o rodeia é absorvido formando uma pequena vesícula pela célula B. Portanto, esse antígeno denomina-se antígeno não-específico e não conduz à activação da célula B, nem à produção de anticorpos contra ele.

Reconhecimento não-específico pelos macrófagos

Os macrófagos e as células dendríticas empregam um mecanismo diferente para reconhecer o patógeno. Os seus receptores reconhecem certos motivos presentes nos patógenos invasores que é muito improvável que estejam presentes numa célula hóspede. Esses motivos repetidos são reconhecidos pelos receptores de reconhecimento de padrões (PRRs) como os receptores do tipo Toll (TLRs) expressados pelos macrófagos.[1][16] Como o mesmo receptor poderia unir-se a um determinado motivo presente nas superfícies de microorganismos muito diferentes, esta forma de reconhecimento é relativamente não-específica e constitui uma resposta imunitária inata.

Processamento de antigénios

Ver artigo principal: Processamento de antigénios
Fases da ingestão dum patogénico por um macrófago.

Depois de reconhecer um antigénio, uma célula apresentadora do antigénio, como o macrófago ou o linfócito B, fagocita-o por completo num processo chamado fagocitose. A partícula fagocitada, juntamente com parte do material que a rodeia, passa a fazer parte de uma vesícula endocítica (ou fagossoma), que se funde depois com lisossomas. Dentro do lisossoma em digestão, o antigénio é rompido em pequenos fragmentos chamados péptidos pela acção de proteases (enzimas que degradam as grandes proteínas). Cada péptido é depois acomplexado com moléculas do complexo principal de histocompatibilidade de classe II (MHC-II) localizadas no lisossoma (este método de "manejo" do antigénio denomina-se processamento por via endocítica ou exógena que é diferente da via citosólica ou endógena,[16][17][18] a qual acomplexa as proteínas anormais produzidas dentro da célula (por exemplo, sob influência duma infecção viral ou numa célula tumoral) com moléculas de MHC-I.

Uma via alternativa de processamento endocítico demonstrou-se também quando certas proteínas como o fibrinogénio e a mioglobina podem ligar-se como um todo a moléculas de MHC-II para depois serem desnaturalizadas e reduzidas as suas ligações dissulfeto (o que rompe a ligação ao acrescentar-lhe átomos de hidrogénio). Posteriormente, as proteases degradam as regiões expostas do complexo proteína-MHC II.[18]

Apresentação do antigénio

Uma vez que o antigénio (péptido) processado forma o complexo com a molécula do MHC, ambos migram juntos para a membrana plasmática, onde são exibidos (elaborados) como um complexo que pode ser reconhecido pela célula CD 4+ (ou linfócito T colaborador) (um tipo de linfócito).[nota 6][19] Isto denomina-se apresentação de antigénios. Porém, os epítopos (conformacionais) que são reconhecidos pela célula B antes da sua digestão não podem ser os mesmos que os apresentados à célula T colaboradora. Adicionalmente, uma célula B pode apresentar diferentes péptidos acomplexados a diferentes moléculas MHC-II.[20]

Estimulação das células T colaboradoras

Ver artigo principal: Célula T colaboradora

As células CD4+ através do seu complexo receptor de células T-CD3 reconhecem as moléculas MHC II ligadas a epítopos na superfície de células apresentadoras do antigénio, e são assim activadas. Com esta activação, estas células T proliferam e diferenciam-se em células Th2.[20][21] Isto faz com que comecem a produzir sinais químicos solúveis que promovem a sua própria sobrevivência. Porém, outra importante função que levam a cabo é a estimulação das células B ao estabelecerem um contacto físico directo com elas.[10]

Co-estimulação de células B por células T colaboradoras activadas

Ver artigo principal: Activação das células B

A estimulação completa das células T colaboradoras necessita da proteína B7 presente na célula apresentadora do antigénio para se unir com a molécula CD28 presente à superfície da célula T (em estreita proximidade com o receptor da célula T).[10] Da mesma forma, uma segunda interacção entre o ligante CD40 ou CD154 (CD40L) presente à superfície da célula T e o CD40 presente na superfice da célula B, é também necessária.[21] As mesmas interacções que estimulam a célula T colaboradora também estimulam a célula B, daí que se utilize o termo co-estimulação. O mecanismo inteiro assegura que uma célula T activada só estimula a célula B que reconhece o antigénio que contém o mesmo epítopo que reconhece o receptor TCR da célula T colaboradora co-estimulante. A célula B fica estimulada, para além aplicar a co-estimulação directa, por certos factores de crescimento, como as interleucinas IL-2, IL-4, IL-5 e IL-6 de maneira parácrina. Estes factores são geralmente produzidos pelas células T colaboradoras acabadas de activar.[22] Contudo, esta activação ocorre só depois de o receptor da célula B presente numa célula B de memória ou na própria célula B virgem se ligue ao epítopo correspondente, sem o qual os passos que iniciam a fagocitose e o processamento do antigénio não teriam ocorrido.

Notas

  1. O termo "inoculação" utiliza-se maioritariamente no contexto duma imunização activa, ou seja, a introdução deliberada da substância antigéncia no hóspede. Porém, em muitas discussões de doenças infecciosas, é relativamente frequente usar este termo para se referir a um evento espontâneo (ou seja, sem a intervenção humana) que tem como resultado a introdução do organismo causante no corpo, como ao beber água contaminada com Salmonella typhi, o agente causante da febre tifoide. Em tais situações o organismo causante denomina-se inóculo, e o número de organismos introduzidos "dose do inóculo".
  2. A "especificidade" implica que dois patógenos diferentes serão vistos pelo sistema imunológico como duas entidades diferentes, e serão neutralizados usando diferentes moléculas de anticorpos solúveis.
  3. Proliferação neste contexto significa multiplicação por mitose e diferenciação.
  4. O complexo principal de histocompatibilidade é uma região genética no ADN que codifica a síntese de moléculas do complexo principal de histocompatibilidade de classe I e de classe II e outras proteínas envolvidas no funcionamento do sistema do complemento (MHC de classe III). Os primeiros dois produtos são importantes na apresentação de antígenos. A compatibilidade do MHC é algo essencial para realizar transplantes de órgãos, e nos humanos também se chama antígeno leucocitário humano (HLA).
  5. Aqui, intactas significa que se reconhece a proteína não-digerida e não que o parátopo do receptor da célula B se ponha ao mesmo tempo em contacto com a estrutura completa da proteína; o parátopo permanecerá em contacto só com uma porção restringida do antígeno exposto na sua superfície.
  6. Existem muitos tipos de células sanguíneas. A forma mais comum de classificá-las é de acordo com a sua aparência vista ao microscópio óptico depois de serem tingidas com corantes químicos. No entanto, com o avanço da tecnologia apareceram novos métodos de classificação. Um deles emprega anticorpos monoclonais, que podem unir-se especificamente a cada tipo de célula. Além disso, o mesmo tipo de glóbulo branco expressa moléculas típicas suas na sua membrana plasmática em vários estádios do seu desenvolvimento. Os anticorpos monoclonais que podem ligar-se especificamente com uma determinada molécula da superfície celular são considerados um grupo ou cluster de diferenciação (CD). Qualquer anticorpo monoclonal ou grupo de anticorpos monoclonais que não reagem com moléculas da superfície dos linfócitos conhecidas, senão apenas com uma molécula da superfície ainda não reconhecida seria considerado um novo cluster de diferenciação e dar-se-lhe-ia um número. Cada cluster de diferenciação abrevia-se como CD seguido de um número (que geralmente indica a ordem da sua descoberta). Assim, uma célula que possua uma molécula de superfície (ligante) que se liga especificamente a um cluster de diferenciação 4 denominar-se-ia célula CD4+. Da mesma forma, umaa célula CD8+ será aquela que possui o ligante CD8 e se ligue a anticorpos monoclonais CD8.

Referências

  1. a b c d e f g Goldsby, Richard; Kindt, TJ; Osborne, BA; Janis Kuby (2003). «Antigens (Chapter 3)». Immunology Fifth ed. New York: W. H. Freeman and Company. pp. 57–75. ISBN 0716749475 
  2. «Definition of Polyclonal from MedicineNet.com». Webster's New World Medical Dictionary. Consultado em 3 de maio de 2008 
  3. Frank, Steven A. (2002). «Specificity and Cross-Reactivity (Chapter 4)». Immunology and Evolution of Infectious Disease. [S.l.]: Princeton University. pp. 33–56. ISBN 0691095957. Consultado em 23 de junho de 2008 
  4. «Etymology of "clone"». Online etymology dictionary. Consultado em 26 de junho de 2008 
  5. Bansal, R.K. (2005). «Reproductive Cloning-An Act Of Human Rights Violation» (PDF). Indian Association of Forensic Medicine. Journal of Indian Association of Forensic Medicine. 27 (3): 971–973. Consultado em 23 de junho de 2008 
  6. «Definition of inoculation». TheFreeDictionary.com (citing Dorland's Medical Dictionary for Health Consumers. © 2007 by Saunders, an imprint of Elsevier, Inc.). Consultado em 10 de junho de 2008 
  7. a b c Pier, Gerald B. (2005) [1945]. «Molecular mechanisms of microbial pathogenesis (Capítulo 105)». In: Kasper, Braunwald, Fauci, Hauser, Longo, Jameson. Harrison's Principles of Internal Medicine. 1 Sixteenth ed. [S.l.]: McGraw-Hill. 700 páginas. ISBN 0-07-123983-9 
  8. a b Goldsby. «Organization and Expression of Immunoglobulin Genes (Chapter 5)». Immunology Fifth ed. New York: [s.n.] pp. 105–136. ISBN 0-7167-6764-3 
  9. Nairn, Roderick (2004) [1954]. «Immunology (Capítulo 8)». In: Geo F. Brooks; Janet S. Butel; Stephen A. Morse. Jawetz, Melnick, & Adelberg's Medical Microbiology Twenty-Third Edition International ed. [S.l.]: Lange publications/McGraw-Hill. pp. 133–135, 138–139. ISBN 0-07-123983-9 
  10. a b c Goldsby. «T-Cell Maturation, Activation and Differentiation (Chapter 10)». Immunology Fifth ed. [S.l.: s.n.] pp. 221–246. ISBN 0-7167-6764-3 
  11. Nair, Deepak; Singh Kavita; Siddiqui Zaved; Nayak Bishnu; Rao Kanury; Salunke Dinakar (9 de janeiro de 2002). «Epitope Recognition by Diverse Antibodies Suggests Conformational Convergence in an Antibody Response» (PDF). The American Association of Immunologists. The Journal of Immunology. 168 (5): 2371–2382. PMID 11859128. doi:10.4049/jimmunol.168.5.2371. Consultado em 3 de maio de 2008 
  12. «Immunochemical Applications». Technical Tips. EMD biosciences. Consultado em 7 de maio de 2008. Arquivado do original em 11 de abril de 2008 
  13. Davis, Cheryl. «Antigens». Biology course. Western Kentucky University. Consultado em 12 de maio de 2008. Arquivado do original em 29 de março de 2008 
  14. Ceri, Howard. «Antigens». Immunology course. University of Calgary. Consultado em 12 de maio de 2008 
  15. Khudyakov, Yury; Howard A. Fields (2002). Artificial DNA: Methods and Applications. Florida: CRC Press. 227 páginas. ISBN 0-8493-1426-7 
  16. a b Goldsby. «Overview of the Immune System (Capítulo 1)». Immunology Fifth ed. [S.l.: s.n.] pp. 1–23. ISBN 0-7167-6764-3 
  17. Goldsby. «Antigen Processing and Presentation (Chapter 8)». Immunology Fifth ed. [S.l.: s.n.] pp. 188–194. ISBN 0-7167-6764-3 
  18. a b Ojcius, DM; L Gapin; JM Kanellopoulos; P Kourilsky (Setembro de 1994). «Is antigen processing guided by major histocompatibility complex molecules?» (PDF). The FASEB Journal. 8 (5): 974–978. PMID 8088463. Consultado em 20 de junho de 2008 
  19. Goldsby. «Cells and Organs of the Immune System (Chapter 2)». Immunology Fifth ed. [S.l.: s.n.] pp. 24–56. ISBN 0-7167-6764-3 
  20. a b Myers, CD (1991). «Role of B cell antigen processing and presentation in the humoral immune response» (PDF). The FASEB Journal. 5 (11): 2547–2553. PMID 1907935. Consultado em 20 de junho de 2008 
  21. a b Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome goldsby11
  22. McPhee, Stephen; Ganong, William (2006). Pathophysiology of Disease: An Introduction to Clinical Medicine. [S.l.]: Lange Medical Books/McGraw-Hill. 39 páginas. ISBN 0-07-144159-X