Grupuri punctuale în spațiul tridimensional
Simetrie involutivă Cs , (*) [ ] =
Simetrie ciclică Cnv , (*nn) [n] =
Simetrie diedrală Dnh , (*n22) [n,2] =
Grup poliedric , [n,3], (*n32)
Simetrie tetraedrică Td , (*332) [3,3] =
Simetrie octaedrică Oh , (*432) [4,3] =
Simetrie icosaedrică Ih , (*532) [5,3] =
Domeniile fundamentale ale simetriei icosaedrice
Minge de fotbal , un exemplu comun de icosaedru trunchiat sferic , are simetrie icosaedrică completă
Rotațiile și reflexiile formează grupul de simetrie al marelui icosaedru
Simetria icosaedrică este cea a icosaedruui regulat, care are 60 de simetrii de rotație (care conservă orientarea ) și 120 de simetrii în total. Acestea includ transformări care combină o reflexie și o rotație . Un dodecaedru are același set de simetrii, deoarece este dualul icosaedrului.
Grupul de simetrie completă (inclusiv reflexiile) este cunoscut sub numele de grupul Coxeter H3 și este reprezentat prin notația Coxeter [5,3] și diagrama Coxeter . Setul de simetrii care conservă orientarea formează un subgrup care este izomorf cu grupul A5 (grupul altern de 5 elemente).
În afară de cele două serii infinite de simetrie prismatică și antiprismatică, simetria icosaedrică de rotație sau simetria icosaedrică chirală a obiectelor chirale și simetria icosaedrică completă sau simetria icosaedrică achirală sunt simetrii de puncte discrete (sau, echivalent, simetrii pe sferă) cu cele mai mari grupuri de simetrie .
Simetria icosaedrică nu este compatibilă cu simetria de translație , așa că nu există grupuri de puncte cristalografice sau grupuri spațiale (d ) asociate.
Prezentările (d ) corespunzătoare celor de mai sus sunt:
I
:
⟨
s
,
t
∣
s
2
,
t
3
,
(
s
t
)
5
⟩
{\displaystyle I:\langle s,t\mid s^{2},t^{3},(st)^{5}\rangle \ }
I
h
:
⟨
s
,
t
∣
s
3
(
s
t
)
−
2
,
t
5
(
s
t
)
−
2
⟩
.
{\displaystyle I_{h}:\langle s,t\mid s^{3}(st)^{-2},t^{5}(st)^{-2}\rangle .\ }
Acestea corespund grupurilor icosaedrice (de rotație și complete) fiind grupurile triunghiului (d ) (2,3,5).
Prima prezentare a fost făcută de William Rowan Hamilton în 1856, în lucrarea sa despre calculul icosian .[ 1]
Sunt posibile și alte prezentări, de exemplu ca grup altern (pentru I ).
Laturile unui compus de cinci octaedre sferic reprezintă cele 15 plane de oglindire ca cercuri mari colorate. Fiecare octaedru poate reprezenta 3 plane de oglindire ortogonale care conțin laturile sale.
Simetria piritoedrică este un subgrup cu indice 5 de simetrie icosaedrică, cu 3 linii de reflexie ortogonale verzi și 8 puncte de rotație de ordinul 3 roșii. Există 5 orientări diferite ale simetriei piritoedrice.
Grupul de rotație icosaedric I este de ordinul 60. Grupul I este izomorf cu A 5 , grupul altern al permutărilor pare a cinci obiecte. Acest izomorfism poate fi realizat prin I care acționează asupra diverșilor compuși, în special compusul de cinci cuburi (care se înscrie în dodecaedru ), compusul de cinci octaedre , sau oricare dintre cei doi compuși de cinci tetraedre (care sunt enantiomorfi , și se înscriu în dodecaedru).
Grupul conține 5 versiuni de T h cu 20 de versiuni de D3 (10 axe, 2 pe axă) și 6 versiuni de D5 .
Grupul icosaedric complet Ih are ordinul 120. Are I ca subgrup normal (d ) de indice (d ) 2. Grupul Ih este izomorf la I × Z 2 sau A 5 × Z 2 , cu inversiunea față de centru corespunzătoare elementului (identitate, −1), unde Z 2 se scrie multiplicativ.
Ih acționează asupra compusului de cinci cuburi și compusului de cinci octaedre, dar −1 acționează ca identitate (deoarece cuburile și octaedrele au simetrie față de centru ). Acționează asupra compusului de zece tetraedre : I acționează asupra celor două jumătăți chirale (compușii de cinci tetraedre ), iar −1 interschimbă cele două jumătăți. De remarcat că el nu acționează ca S 5 , iar aceste grupuri nu sunt izomorfe.
Grupul conține 10 versiuni de D3d și 6 versiuni de D5d (simetrii ca ale antiprismelor ).
I este izomorf și cu PSL2 (5), dar Ih nu este izomorf cu SL2 (5).
Este util să se descrie explicit cum arată izomorfismul dintre I și A5 . În tabelul următor permutările Pi și Qi acționează asupra a 5 și respectiv 12 elemente, în timp ce matricile de rotație Mi sunt elementele I . Dacă Pk este produsul permutării Pi cu aplicarea Pj , atunci pentru aceleași valori ale lui i , j și k este adevărat și că Qk este produsul Qi cu aplicarea Qj , și că înmulțirea unui vector cu Mk este același lucru cu înmulțirea acelui vector cu Mi și apoi înmulțirea acelui rezultat cu Mj , adică Mk = Mj × Mi . Deoarece permutările Pi sunt toate cele 60 de permutări pare ale lui 1 2 3 4 5, corespondența unu-la-unu este explicită, deci și izomorfismul.
Matrice de rotație
Permutare de 5 pe 1 2 3 4 5
Permutare de 12 pe 1 2 3 4 5 6 7 8 9 10 11 12
M
1
=
[
1
0
0
0
1
0
0
0
1
]
{\displaystyle M_{1}={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}}
P
1
{\displaystyle P_{1}}
= ()
Q
1
{\displaystyle Q_{1}}
= ()
M
2
=
[
−
1
2
1
2
ϕ
ϕ
2
−
1
2
ϕ
ϕ
2
−
1
2
−
ϕ
2
−
1
2
−
1
2
ϕ
]
{\displaystyle M_{2}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
2
{\displaystyle P_{2}}
= (3 4 5)
Q
2
{\displaystyle Q_{2}}
= (1 11 8)(2 9 6)(3 5 12)(4 7 10)
M
3
=
[
−
1
2
−
1
2
ϕ
−
ϕ
2
1
2
ϕ
ϕ
2
−
1
2
ϕ
2
−
1
2
−
1
2
ϕ
]
{\displaystyle M_{3}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
3
{\displaystyle P_{3}}
= (3 5 4)
Q
3
{\displaystyle Q_{3}}
= (1 8 11)(2 6 9)(3 12 5)(4 10 7)
M
4
=
[
−
1
2
1
2
ϕ
−
ϕ
2
1
2
ϕ
−
ϕ
2
−
1
2
−
ϕ
2
−
1
2
1
2
ϕ
]
{\displaystyle M_{4}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
4
{\displaystyle P_{4}}
= (2 3)(4 5)
Q
4
{\displaystyle Q_{4}}
= (1 12)(2 8)(3 6)(4 9)(5 10)(7 11)
M
5
=
[
ϕ
2
1
2
1
2
ϕ
1
2
−
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
ϕ
2
−
1
2
]
{\displaystyle M_{5}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
5
{\displaystyle P_{5}}
= (2 3 4)
Q
5
{\displaystyle Q_{5}}
= (1 2 3)(4 5 6)(7 9 8)(10 11 12)
M
6
=
[
−
1
2
ϕ
−
ϕ
2
1
2
ϕ
2
−
1
2
−
1
2
ϕ
1
2
1
2
ϕ
ϕ
2
]
{\displaystyle M_{6}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
6
{\displaystyle P_{6}}
= (2 3 5)
Q
6
{\displaystyle Q_{6}}
= (1 7 5)(2 4 11)(3 10 9)(6 8 12)
M
7
=
[
ϕ
2
1
2
−
1
2
ϕ
1
2
−
1
2
ϕ
ϕ
2
1
2
ϕ
−
ϕ
2
−
1
2
]
{\displaystyle M_{7}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
7
{\displaystyle P_{7}}
= (2 4 3)
Q
7
{\displaystyle Q_{7}}
= (1 3 2)(4 6 5)(7 8 9)(10 12 11)
M
8
=
[
0
−
1
0
0
0
1
−
1
0
0
]
{\displaystyle M_{8}={\begin{bmatrix}0&-1&0\\0&0&1\\-1&0&0\end{bmatrix}}}
P
8
{\displaystyle P_{8}}
= (2 4 5)
Q
8
{\displaystyle Q_{8}}
= (1 10 6)(2 7 12)(3 4 8)(5 11 9)
M
9
=
[
−
ϕ
2
1
2
1
2
ϕ
1
2
1
2
ϕ
ϕ
2
1
2
ϕ
ϕ
2
−
1
2
]
{\displaystyle M_{9}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
9
{\displaystyle P_{9}}
= (2 4)(3 5)
Q
9
{\displaystyle Q_{9}}
= (1 9)(2 5)(3 11)(4 12)(6 7)(8 10)
M
10
=
[
−
1
2
ϕ
ϕ
2
1
2
−
ϕ
2
−
1
2
1
2
ϕ
1
2
−
1
2
ϕ
ϕ
2
]
{\displaystyle M_{10}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
10
{\displaystyle P_{10}}
= (2 5 3)
Q
10
{\displaystyle Q_{10}}
= (1 5 7)(2 11 4)(3 9 10)(6 12 8)
M
11
=
[
0
0
−
1
−
1
0
0
0
1
0
]
{\displaystyle M_{11}={\begin{bmatrix}0&0&-1\\-1&0&0\\0&1&0\end{bmatrix}}}
P
11
{\displaystyle P_{11}}
= (2 5 4)
Q
11
{\displaystyle Q_{11}}
= (1 6 10)(2 12 7)(3 8 4)(5 9 11)
M
12
=
[
1
2
ϕ
−
ϕ
2
1
2
−
ϕ
2
−
1
2
−
1
2
ϕ
1
2
−
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{12}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
12
{\displaystyle P_{12}}
= (2 5)(3 4)
Q
12
{\displaystyle Q_{12}}
= (1 4)(2 10)(3 7)(5 8)(6 11)(9 12)
M
13
=
[
1
0
0
0
−
1
0
0
0
−
1
]
{\displaystyle M_{13}={\begin{bmatrix}1&0&0\\0&-1&0\\0&0&-1\end{bmatrix}}}
P
13
{\displaystyle P_{13}}
= (1 2)(4 5)
Q
13
{\displaystyle Q_{13}}
= (1 3)(2 4)(5 8)(6 7)(9 10)(11 12)
M
14
=
[
−
1
2
1
2
ϕ
ϕ
2
1
2
ϕ
−
ϕ
2
1
2
ϕ
2
1
2
1
2
ϕ
]
{\displaystyle M_{14}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
14
{\displaystyle P_{14}}
= (1 2)(3 4)
Q
14
{\displaystyle Q_{14}}
= (1 5)(2 7)(3 11)(4 9)(6 10)(8 12)
M
15
=
[
−
1
2
−
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
−
ϕ
2
1
2
−
ϕ
2
1
2
1
2
ϕ
]
{\displaystyle M_{15}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
15
{\displaystyle P_{15}}
= (1 2)(3 5)
Q
15
{\displaystyle Q_{15}}
= (1 12)(2 10)(3 8)(4 6)(5 11)(7 9)
M
16
=
[
−
1
2
−
1
2
ϕ
ϕ
2
1
2
ϕ
ϕ
2
1
2
−
ϕ
2
1
2
−
1
2
ϕ
]
{\displaystyle M_{16}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
16
{\displaystyle P_{16}}
= (1 2 3)
Q
16
{\displaystyle Q_{16}}
= (1 11 6)(2 5 9)(3 7 12)(4 10 8)
M
17
=
[
−
1
2
ϕ
ϕ
2
−
1
2
ϕ
2
1
2
1
2
ϕ
1
2
−
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{17}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
17
{\displaystyle P_{17}}
= (1 2 3 4 5)
Q
17
{\displaystyle Q_{17}}
= (1 6 5 3 9)(4 12 7 8 11)
M
18
=
[
ϕ
2
−
1
2
−
1
2
ϕ
1
2
1
2
ϕ
ϕ
2
−
1
2
ϕ
−
ϕ
2
1
2
]
{\displaystyle M_{18}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
18
{\displaystyle P_{18}}
= (1 2 3 5 4)
Q
18
{\displaystyle Q_{18}}
= (1 4 8 6 2)(5 7 10 12 9)
M
19
=
[
−
1
2
ϕ
−
ϕ
2
−
1
2
−
ϕ
2
1
2
−
1
2
ϕ
1
2
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{19}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
19
{\displaystyle P_{19}}
= (1 2 4 5 3)
Q
19
{\displaystyle Q_{19}}
= (1 8 7 3 10)(2 12 5 6 11)
M
20
=
[
0
0
1
−
1
0
0
0
−
1
0
]
{\displaystyle M_{20}={\begin{bmatrix}0&0&1\\-1&0&0\\0&-1&0\end{bmatrix}}}
P
20
{\displaystyle P_{20}}
= (1 2 4)
Q
20
{\displaystyle Q_{20}}
= (1 7 4)(2 11 8)(3 5 10)(6 9 12)
M
21
=
[
1
2
ϕ
ϕ
2
−
1
2
−
ϕ
2
1
2
1
2
ϕ
1
2
1
2
ϕ
ϕ
2
]
{\displaystyle M_{21}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
21
{\displaystyle P_{21}}
= (1 2 4 3 5)
Q
21
{\displaystyle Q_{21}}
= (1 2 9 11 7)(3 6 12 10 4)
M
22
=
[
ϕ
2
−
1
2
1
2
ϕ
1
2
1
2
ϕ
−
ϕ
2
1
2
ϕ
ϕ
2
1
2
]
{\displaystyle M_{22}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
22
{\displaystyle P_{22}}
= (1 2 5 4 3)
Q
22
{\displaystyle Q_{22}}
= (2 3 4 7 5)(6 8 10 11 9)
M
23
=
[
0
1
0
0
0
−
1
−
1
0
0
]
{\displaystyle M_{23}={\begin{bmatrix}0&1&0\\0&0&-1\\-1&0&0\end{bmatrix}}}
P
23
{\displaystyle P_{23}}
= (1 2 5)
Q
23
{\displaystyle Q_{23}}
= (1 9 8)(2 6 3)(4 5 12)(7 11 10)
M
24
=
[
−
ϕ
2
−
1
2
−
1
2
ϕ
1
2
−
1
2
ϕ
−
ϕ
2
1
2
ϕ
−
ϕ
2
1
2
]
{\displaystyle M_{24}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
24
{\displaystyle P_{24}}
= (1 2 5 3 4)
Q
24
{\displaystyle Q_{24}}
= (1 10 5 4 11)(2 8 9 3 12)
M
25
=
[
−
1
2
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
ϕ
2
1
2
ϕ
2
1
2
−
1
2
ϕ
]
{\displaystyle M_{25}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
25
{\displaystyle P_{25}}
= (1 3 2)
Q
25
{\displaystyle Q_{25}}
= (1 6 11)(2 9 5)(3 12 7)(4 8 10)
M
26
=
[
ϕ
2
1
2
1
2
ϕ
−
1
2
1
2
ϕ
ϕ
2
1
2
ϕ
−
ϕ
2
1
2
]
{\displaystyle M_{26}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
26
{\displaystyle P_{26}}
= (1 3 4 5 2)
Q
26
{\displaystyle Q_{26}}
= (2 5 7 4 3)(6 9 11 10 8)
M
27
=
[
−
1
2
ϕ
−
ϕ
2
1
2
−
ϕ
2
1
2
1
2
ϕ
−
1
2
−
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{27}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
27
{\displaystyle P_{27}}
= (1 3 5 4 2)
Q
27
{\displaystyle Q_{27}}
= (1 10 3 7 8)(2 11 6 5 12)
M
28
=
[
−
1
2
−
1
2
ϕ
ϕ
2
−
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
2
−
1
2
1
2
ϕ
]
{\displaystyle M_{28}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
28
{\displaystyle P_{28}}
= (1 3)(4 5)
Q
28
{\displaystyle Q_{28}}
= (1 7)(2 10)(3 11)(4 5)(6 12)(8 9)
M
29
=
[
−
1
2
ϕ
ϕ
2
−
1
2
−
ϕ
2
−
1
2
−
1
2
ϕ
−
1
2
1
2
ϕ
ϕ
2
]
{\displaystyle M_{29}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
29
{\displaystyle P_{29}}
= (1 3 4)
Q
29
{\displaystyle Q_{29}}
= (1 9 10)(2 12 4)(3 6 8)(5 11 7)
M
30
=
[
ϕ
2
−
1
2
−
1
2
ϕ
−
1
2
−
1
2
ϕ
−
ϕ
2
1
2
ϕ
ϕ
2
−
1
2
]
{\displaystyle M_{30}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
30
{\displaystyle P_{30}}
= (1 3 5)
Q
30
{\displaystyle Q_{30}}
= (1 3 4)(2 8 7)(5 6 10)(9 12 11)
M
31
=
[
−
ϕ
2
1
2
−
1
2
ϕ
1
2
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
−
ϕ
2
−
1
2
]
{\displaystyle M_{31}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
31
{\displaystyle P_{31}}
= (1 3)(2 4)
Q
31
{\displaystyle Q_{31}}
= (1 12)(2 6)(3 9)(4 11)(5 8)(7 10)
M
32
=
[
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
2
1
2
−
1
2
ϕ
1
2
−
1
2
ϕ
ϕ
2
]
{\displaystyle M_{32}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
32
{\displaystyle P_{32}}
= (1 3 2 4 5)
Q
32
{\displaystyle Q_{32}}
= (1 4 10 11 5)(2 3 8 12 9)
M
33
=
[
1
2
1
2
ϕ
ϕ
2
1
2
ϕ
ϕ
2
−
1
2
−
ϕ
2
1
2
1
2
ϕ
]
{\displaystyle M_{33}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
33
{\displaystyle P_{33}}
= (1 3 5 2 4)
Q
33
{\displaystyle Q_{33}}
= (1 5 9 6 3)(4 7 11 12 8)
M
34
=
[
1
2
ϕ
ϕ
2
1
2
ϕ
2
−
1
2
1
2
ϕ
1
2
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{34}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
34
{\displaystyle P_{34}}
= (1 3)(2 5)
Q
34
{\displaystyle Q_{34}}
= (1 2)(3 5)(4 9)(6 7)(8 11)(10 12)
M
35
=
[
−
ϕ
2
−
1
2
1
2
ϕ
1
2
−
1
2
ϕ
ϕ
2
−
1
2
ϕ
ϕ
2
1
2
]
{\displaystyle M_{35}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
35
{\displaystyle P_{35}}
= (1 3 2 5 4)
Q
35
{\displaystyle Q_{35}}
= (1 11 2 7 9)(3 10 6 4 12)
M
36
=
[
1
2
−
1
2
ϕ
−
ϕ
2
1
2
ϕ
−
ϕ
2
1
2
−
ϕ
2
−
1
2
−
1
2
ϕ
]
{\displaystyle M_{36}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
36
{\displaystyle P_{36}}
= (1 3 4 2 5)
Q
36
{\displaystyle Q_{36}}
= (1 8 2 4 6)(5 10 9 7 12)
M
37
=
[
ϕ
2
1
2
−
1
2
ϕ
−
1
2
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
ϕ
2
1
2
]
{\displaystyle M_{37}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
37
{\displaystyle P_{37}}
= (1 4 5 3 2)
Q
37
{\displaystyle Q_{37}}
= (1 2 6 8 4)(5 9 12 10 7)
M
38
=
[
0
−
1
0
0
0
−
1
1
0
0
]
{\displaystyle M_{38}={\begin{bmatrix}0&-1&0\\0&0&-1\\1&0&0\end{bmatrix}}}
P
38
{\displaystyle P_{38}}
= (1 4 2)
Q
38
{\displaystyle Q_{38}}
= (1 4 7)(2 8 11)(3 10 5)(6 12 9)
M
39
=
[
−
ϕ
2
1
2
1
2
ϕ
−
1
2
−
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
−
ϕ
2
1
2
]
{\displaystyle M_{39}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
39
{\displaystyle P_{39}}
= (1 4 3 5 2)
Q
39
{\displaystyle Q_{39}}
= (1 11 4 5 10)(2 12 3 9 8)
M
40
=
[
−
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
2
−
1
2
1
2
ϕ
−
1
2
−
1
2
ϕ
ϕ
2
]
{\displaystyle M_{40}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
40
{\displaystyle P_{40}}
= (1 4 3)
Q
40
{\displaystyle Q_{40}}
= (1 10 9)(2 4 12)(3 8 6)(5 7 11)
M
41
=
[
0
0
1
1
0
0
0
1
0
]
{\displaystyle M_{41}={\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}}}
P
41
{\displaystyle P_{41}}
= (1 4 5)
Q
41
{\displaystyle Q_{41}}
= (1 5 2)(3 7 9)(4 11 6)(8 10 12)
M
42
=
[
1
2
ϕ
ϕ
2
−
1
2
ϕ
2
−
1
2
−
1
2
ϕ
−
1
2
−
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{42}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
42
{\displaystyle P_{42}}
= (1 4)(3 5)
Q
42
{\displaystyle Q_{42}}
= (1 6)(2 3)(4 9)(5 8)(7 12)(10 11)
M
43
=
[
−
ϕ
2
1
2
−
1
2
ϕ
−
1
2
−
1
2
ϕ
ϕ
2
1
2
ϕ
ϕ
2
1
2
]
{\displaystyle M_{43}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}
P
43
{\displaystyle P_{43}}
= (1 4 5 2 3)
Q
43
{\displaystyle Q_{43}}
= (1 9 7 2 11)(3 12 4 6 10)
M
44
=
[
1
2
ϕ
−
ϕ
2
−
1
2
−
ϕ
2
−
1
2
1
2
ϕ
−
1
2
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{44}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
44
{\displaystyle P_{44}}
= (1 4)(2 3)
Q
44
{\displaystyle Q_{44}}
= (1 8)(2 10)(3 4)(5 12)(6 7)(9 11)
M
45
=
[
1
2
1
2
ϕ
ϕ
2
−
1
2
ϕ
−
ϕ
2
1
2
ϕ
2
−
1
2
−
1
2
ϕ
]
{\displaystyle M_{45}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
45
{\displaystyle P_{45}}
= (1 4 2 3 5)
Q
45
{\displaystyle Q_{45}}
= (2 7 3 5 4)(6 11 8 9 10)
M
46
=
[
1
2
1
2
ϕ
−
ϕ
2
1
2
ϕ
ϕ
2
1
2
ϕ
2
−
1
2
1
2
ϕ
]
{\displaystyle M_{46}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
46
{\displaystyle P_{46}}
= (1 4 2 5 3)
Q
46
{\displaystyle Q_{46}}
= (1 3 6 9 5)(4 8 12 11 7)
M
47
=
[
1
2
−
1
2
ϕ
ϕ
2
−
1
2
ϕ
ϕ
2
1
2
−
ϕ
2
−
1
2
1
2
ϕ
]
{\displaystyle M_{47}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
47
{\displaystyle P_{47}}
= (1 4 3 2 5)
Q
47
{\displaystyle Q_{47}}
= (1 7 10 8 3)(2 5 11 12 6)
M
48
=
[
−
1
0
0
0
1
0
0
0
−
1
]
{\displaystyle M_{48}={\begin{bmatrix}-1&0&0\\0&1&0\\0&0&-1\end{bmatrix}}}
P
48
{\displaystyle P_{48}}
= (1 4)(2 5)
Q
48
{\displaystyle Q_{48}}
= (1 12)(2 9)(3 11)(4 10)(5 6)(7 8)
M
49
=
[
−
1
2
ϕ
ϕ
2
1
2
ϕ
2
1
2
−
1
2
ϕ
−
1
2
1
2
ϕ
−
ϕ
2
]
{\displaystyle M_{49}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}
P
49
{\displaystyle P_{49}}
= (1 5 4 3 2)
Q
49
{\displaystyle Q_{49}}
= (1 9 3 5 6)(4 11 8 7 12)
M
50
=
[
0
0
−
1
1
0
0
0
−
1
0
]
{\displaystyle M_{50}={\begin{bmatrix}0&0&-1\\1&0&0\\0&-1&0\end{bmatrix}}}
P
50
{\displaystyle P_{50}}
= (1 5 2)
Q
50
{\displaystyle Q_{50}}
= (1 8 9)(2 3 6)(4 12 5)(7 10 11)
M
51
=
[
1
2
ϕ
−
ϕ
2
1
2
ϕ
2
1
2
1
2
ϕ
−
1
2
1
2
ϕ
ϕ
2
]
{\displaystyle M_{51}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
51
{\displaystyle P_{51}}
= (1 5 3 4 2)
Q
51
{\displaystyle Q_{51}}
= (1 7 11 9 2)(3 4 10 12 6)
M
52
=
[
ϕ
2
−
1
2
1
2
ϕ
−
1
2
−
1
2
ϕ
ϕ
2
−
1
2
ϕ
−
ϕ
2
−
1
2
]
{\displaystyle M_{52}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
52
{\displaystyle P_{52}}
= (1 5 3)
Q
52
{\displaystyle Q_{52}}
= (1 4 3)(2 7 8)(5 10 6)(9 11 12)
M
53
=
[
0
1
0
0
0
1
1
0
0
]
{\displaystyle M_{53}={\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}}}
P
53
{\displaystyle P_{53}}
= (1 5 4)
Q
53
{\displaystyle Q_{53}}
= (1 2 5)(3 9 7)(4 6 11)(8 12 10)
M
54
=
[
−
ϕ
2
−
1
2
−
1
2
ϕ
−
1
2
1
2
ϕ
ϕ
2
−
1
2
ϕ
ϕ
2
−
1
2
]
{\displaystyle M_{54}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
54
{\displaystyle P_{54}}
= (1 5)(3 4)
Q
54
{\displaystyle Q_{54}}
= (1 12)(2 11)(3 10)(4 8)(5 9)(6 7)
M
55
=
[
1
2
ϕ
ϕ
2
1
2
−
ϕ
2
1
2
−
1
2
ϕ
−
1
2
−
1
2
ϕ
ϕ
2
]
{\displaystyle M_{55}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}
P
55
{\displaystyle P_{55}}
= (1 5 4 2 3)
Q
55
{\displaystyle Q_{55}}
= (1 5 11 10 4)(2 9 12 8 3)
M
56
=
[
−
ϕ
2
−
1
2
1
2
ϕ
−
1
2
1
2
ϕ
−
ϕ
2
1
2
ϕ
−
ϕ
2
−
1
2
]
{\displaystyle M_{56}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}
P
56
{\displaystyle P_{56}}
= (1 5)(2 3)
Q
56
{\displaystyle Q_{56}}
= (1 10)(2 12)(3 11)(4 7)(5 8)(6 9)
M
57
=
[
1
2
−
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
ϕ
2
−
1
2
ϕ
2
1
2
1
2
ϕ
]
{\displaystyle M_{57}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}
P
57
{\displaystyle P_{57}}
= (1 5 2 3 4)
Q
57
{\displaystyle Q_{57}}
= (1 3 8 10 7)(2 6 12 11 5)
M
58
=
[
1
2
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
−
ϕ
2
−
1
2
−
ϕ
2
1
2
−
1
2
ϕ
]
{\displaystyle M_{58}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
58
{\displaystyle P_{58}}
= (1 5 2 4 3)
Q
58
{\displaystyle Q_{58}}
= (1 6 4 2 8)(5 12 7 9 10)
M
59
=
[
1
2
−
1
2
ϕ
ϕ
2
1
2
ϕ
−
ϕ
2
−
1
2
ϕ
2
1
2
−
1
2
ϕ
]
{\displaystyle M_{59}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}
P
59
{\displaystyle P_{59}}
= (1 5 3 2 4)
Q
59
{\displaystyle Q_{59}}
= (2 4 5 3 7)(6 10 9 8 11)
M
60
=
[
−
1
0
0
0
−
1
0
0
0
1
]
{\displaystyle M_{60}={\begin{bmatrix}-1&0&0\\0&-1&0\\0&0&1\end{bmatrix}}}
P
60
{\displaystyle P_{60}}
= (1 5)(2 4)
Q
60
{\displaystyle Q_{60}}
= (1 11)(2 10)(3 12)(4 9)(5 7)(6 8)
Toate grupurile următoare sunt de ordinul 120, dar nu sunt izomorfe:
S 5 , grupul simetric de 5 elemente;
Ih , grupul icosaedric complet (subiectul acestui articol, cunoscut și ca H 3 );
2I , grupul icosaedric binar (d ) .
Acestea corespund următoarelor secvențe:
1
→
A
5
→
S
5
→
Z
2
→
1
{\displaystyle 1\to A_{5}\to S_{5}\to Z_{2}\to 1}
;
I
h
=
A
5
×
Z
2
{\displaystyle I_{h}=A_{5}\times Z_{2}}
;
1
→
Z
2
→
2
I
→
A
5
→
1
{\displaystyle 1\to Z_{2}\to 2I\to A_{5}\to 1}
.
În cuvinte,
A
5
{\displaystyle A_{5}}
este subgrupul normal al
S
5
{\displaystyle S_{5}}
;
A
5
{\displaystyle A_{5}}
este factorul lui
I
h
{\displaystyle I_{h}}
, care este produsul direct (d ) ;
A
5
{\displaystyle A_{5}}
este grupul factor al
2
I
{\displaystyle 2I}
De observat că
A
5
{\displaystyle A_{5}}
are o reprezentare tridimensională ireductibilă obiect excepțional (d ) (ca grupul icosaedric de rotație), dar
S
5
{\displaystyle S_{5}}
nu are o reprezentare tridimensională ireductibilă, corespunzătoare grupului icosaedric complet nefiind grupul simetric.
De asemenea, acestea pot fi legate de grupuri liniare peste corpuri finite cu cinci elemente, care prezintă subgrupurile și grupurile de acoperire direct; niciunul dintre acestea nu este grupul icosaedric complet:
A
5
≅
PSL
(
2
,
5
)
,
{\displaystyle A_{5}\cong \operatorname {PSL} (2,5),}
grup proiectiv liniar (d ) special;
S
5
≅
PGL
(
2
,
5
)
,
{\displaystyle S_{5}\cong \operatorname {PGL} (2,5),}
grupul proiectiv liniar general;
2
I
≅
SL
(
2
,
5
)
,
{\displaystyle 2I\cong \operatorname {SL} (2,5),}
grupul liniar special (d ) .
Cele 120 de simetrii se încadrează în 10 clase de conjugare.
Clase de conjugare
I
clase suplimentare ale Ih
identitate, de ordinul 1;
12 × rotație de ±72°, de ordinul 5, în jurul celor 6 axe prin centrele fețelor dodecaedrului;
12 × rotație de ±144°, de ordinul 5, în jurul celor 6 axe prin centrele fețelor dodecaedrului;
20 × rotație de ±120°, de ordinul 3, în jurul celor 10 axe prin vârfurile dodecaedrului;
15 × rotație de 180°, de ordinul 2, în jurul celor 15 axe prin mijloacele laturilor dodecaedrului.
inversiune față de centru, de ordinul 2
12 × reflexii improprii de ±36°, de ordinul 10, în jurul celor 6 axe prin centrele fețelor dodecaedrului;
12 × reflexii improprii de ±108°, de ordinul 10, în jurul celor 6 axe prin centrele fețelor dodecaedrului;
20 × reflexii improprii de ±60°, de ordinul 6, în jurul celor 10 axe prin vârfurile dodecaedrului;
15 × reflexii, de ordinul 2, față de 15 plane care conțin laturile dodecaedrului.
Relațiile subgrupului
Relațiile subgrupului chiral
Fiecare linie din următorul tabel reprezintă o clasă de subgrupuri conjugate (adică, echivalente geometric). Coloana „Mult.” (multiplicitatea) dă numărul de subgrupuri diferite din clasa de conjugare.
Legenda culorilor: verde = grupurile care sunt generate de reflexii, roșu = grupurile chirale (care conservă orientarea), care conțin doar rotații.
Grupurile sunt descrise geometric în termeni de dodecaedru.
Abrevierea „j.î.s.(latură)” înseamnă „jumătate de întoarcere interschimbând această latură cu latura opusă ei” și, similar, pentru „față” și „vârf”.
Schoe.
Coxeter
Orb.
H-M
Structură
Ciclic
Ordin
Index
Mult.
Descriere
Ih
[5,3]
*532
53 2/m
A5 ×Z2
120
1
1
grup complet
D2h
[2,2]
*222
mmm
D4 ×D2 =D2 3
8
15
5
menținând fixe două laturi opuse, eventual interschimbându-le
C5v
[5]
*55
5m
D10
10
12
6
menținând fixă o față
C3v
[3]
*33
3m
D6 =S3
6
20
10
menținând fix un vârf
C2v
[2]
*22
2mm
D4 =D2 2
4
30
15
menținând fixă o față
Cs
[ ]
*
2 or m
D2
2
60
15
reflexie interschimbând capetele unei laturi
Th
[3+ ,4]
3*2
m3
A4 ×Z2
24
5
5
grup piritoedric
D5d
[2+ ,10]
2*5
10 m2
D20 =Z2 ×D10
20
6
6
menținând fixe două laturi opuse, eventual interschimbându-le
D3d
[2+ ,6]
2*3
3 m
D12 =Z2 ×D6
12
10
10
menținând fixe două vârfuri opuse, eventual interschimbându-le
D1d = C2h
[2+ ,2]
2*
2/m
D4 =Z2 ×D2
4
30
15
jumătate de rotație în jurul punctului din mijloc, plus inversiune față de centru
S10
[2+ ,10+ ]
5×
5
Z10 =Z2 ×Z5
10
12
6
rotație a unei fețe, plus inversiune față de centru
S6
[2+ ,6+ ]
3×
3
Z6 =Z2 ×Z3
6
20
10
rotație în jurul unui vârf, plus inversiune față de centru
S2
[2+ ,2+ ]
×
1
Z2
2
60
1
inversiune față de centru
I
[5,3]+
532
532
A5
60
2
1
toate rotațiile
T
[3,3]+
332
332
A4
12
10
5
rotații ale unui tetraedru conținut
D5
[2,5]+
522
522
D10
10
12
6
rotații în jurul centrului unei fețe și j.î.s.(față)
D3
[2,3]+
322
322
D6 =S3
6
20
10
rotații în jurul unui vârf, și j.î.s.(vârf)
D2
[2,2]+
222
222
D4 =Z2 2
4
30
15
jumătate de întoarcere în jurul punctului de mijloc al laturii și j.î.s.(latură)
C5
[5]+
55
5
Z5
5
24
6
rotații în jurul centrului unei fețe
C3
[3]+
33
3
Z3 =A3
3
40
10
rotații în jurul unui vârf
C2
[2]+
22
2
Z2
2
60
15
jumătate de întoarcere în jurul punctului de mijloc al laturii
C1
[ ]+
11
1
Z1
1
120
1
grup trivial
Stabilizatorii unei perechi opuse de vârfuri pot fi interpretați ca stabilizatori ai axei pe care o generează.
generate.
stabilizatorii de vârfuri din I generează grupuri ciclice C 3 ;
stabilizatorii de vârfuri din Ih generează grupuri diedrale D 3 ;
stabilizatorii unei perechi de vârfuri opuse din I generează grupuri diedrale D 3 ;
stabilizatorii unei perechi de vârfuri opuse din Ih generează
D
3
×
±
1
{\displaystyle D_{3}\times \pm 1}
.
Stabilizatorii unei perechi opuse de laturi pot fi interpretați ca stabilizatori ai dreptunghiului pe care îl generează.
stabilizatorii de laturi din I generează grupuri ciclice Z 2 ;
stabilizatorii de laturi din Ih generează grupuri Klein de patru
Z
2
×
Z
2
{\displaystyle Z_{2}\times Z_{2}}
;
stabilizatorii unei perechi de laturi din I generează grupuri Klein de patru
Z
2
×
Z
2
{\displaystyle Z_{2}\times Z_{2}}
; există 5 dintre acestea, generate prin rotații de 180° în 3 axe perpendiculare;
stabilizatorii unei perechi de laturi din Ih generează
Z
2
×
Z
2
×
Z
2
{\displaystyle Z_{2}\times Z_{2}\times Z_{2}}
; există 5 dintre acestea, generate prin reflexii în 3 axe perpendiculare.
Stabilizatorii unei perechi opuse de fețe pot fi interpretați ca stabilizatori ai antiprismei pe care o generează.
stabilizatorii de fețe din I generează grupuri ciclice C 5
stabilizatorii de fețe din Ih generează grupuri diedrale D 5
stabilizatorii unei perechi de fețe opuse din I generează grupuri diedrale D 5
stabilizatorii unei perechi de fețe opuse din Ih generează
D
5
×
±
1
{\displaystyle D_{5}\times \pm 1}
.
Pentru fiecare dintre acestea există 5 copii conjugate, iar acțiunea de conjugare dă o aplicație care este un izomorfism,
I
→
∼
A
5
<
S
5
{\displaystyle I{\stackrel {\sim }{\to }}A_{5}<S_{5}}
.
stabilizatorii tetraedrelor înscrise din I sunt o copie a T
stabilizatorii tetraedrelor înscrise din Ih sunt o copie a T
stabilizatorii cuburilor înscrise (sau perechi opuse de tetraedre sau octaedre) din I sunt o copie a T
stabilizatorii cuburilor înscrise (sau perechi opuse de tetraedre sau octaedre) din Ih sunt o copie a Th
Grupul de simetrie icosaedrică completă [5,3] ( ) de ordinul 120 are generatorii reprezentați de matricile de reflexie R0 , R1 , R2 mai jos în relațiile R0 2 = R1 2 = R2 2 = (R0 ×R1 )5 = (R1 ×R2 )3 = (R0 ×R2 )2 = identitatea. Grupul [5,3]+ ( ) de ordinul 60 este generat de oricare două dintre rotațiile S0,1 , S1,2 , S0,2 . O rotație improprie de ordinul 10 este generată de V0,1,2 , produsul tuturor celor 3 reflexii. Aici
ϕ
=
5
+
1
2
{\displaystyle \phi ={\tfrac {{\sqrt {5}}+1}{2}}}
este secțiunea de aur .
[5,3],
Reflexii
Rotații
Rotații improprii
Nume
R0
R1
R2
S0,1
S1,2
S0,2
V0,1,2
Grup
Ordin
2
2
2
5
3
2
10
Matrice
[
−
1
0
0
0
1
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&1&0\\0&0&1\end{smallmatrix}}\right]}
[
1
−
ϕ
2
−
ϕ
2
−
1
2
−
ϕ
2
1
2
1
−
ϕ
2
−
1
2
1
−
ϕ
2
ϕ
2
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {-\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}
[
1
0
0
0
−
1
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}
[
ϕ
−
1
2
ϕ
2
1
2
−
ϕ
2
1
2
1
−
ϕ
2
−
1
2
1
−
ϕ
2
ϕ
2
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}
[
1
−
ϕ
2
ϕ
2
−
1
2
−
ϕ
2
−
1
2
1
−
ϕ
2
−
1
2
ϕ
−
1
2
ϕ
2
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}
[
−
1
0
0
0
−
1
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}
[
ϕ
−
1
2
−
ϕ
2
1
2
−
ϕ
2
−
1
2
1
−
ϕ
2
−
1
2
ϕ
−
1
2
ϕ
2
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {-\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}
(1,0,0)n
(
ϕ
2
,
1
2
,
ϕ
−
1
2
)
{\displaystyle ({\begin{smallmatrix}{\frac {\phi }{2}},{\frac {1}{2}},{\frac {\phi -1}{2}}\end{smallmatrix}})}
n
(0,1,0)n
(
0
,
−
1
,
ϕ
)
{\displaystyle (0,-1,\phi )}
axis
(
1
−
ϕ
,
0
,
ϕ
)
{\displaystyle (1-\phi ,0,\phi )}
axis
(
0
,
0
,
1
)
{\displaystyle (0,0,1)}
axis
Domeniile fundamentale pentru grupul icosaedric de rotație și grupul icosaedric complet sunt date de:
În tricontaedrul disdiakis o singură față este un domeniu fundamental; alte poliedre cu aceeași simetrie pot fi obținute prin ajustarea orientării fețelor, de exemplu aplatizarea subseturilor selectate de fețe pentru a combina fiecare subset într-o singură față sau înlocuirea fiecărei fețe cu mai multe fețe sau cu o suprafață curbată.
Poliedru platonic
Poliedre Kepler–Poinsot
Poliedre arhimedice
{5,3}
{5/2,5}
{5/2,3}
t{5,3}
t{3,5}
r{3,5}
rr{3,5}
tr{3,5}
Poliedru platonic
Poliedre Kepler–Poinsot
Poliedre Catalan
{3,5} =
{5,5/2} =
{3,5/2} =
V3.10.10
V5.6.6
V3.5.3.5
V3.4.5.4
V4.6.10
en Klein, F. (1878 ). „Ueber die Transformation siebenter Ordnung der elliptischen Functionen” [On the order-seven transformation of elliptic functions]. Mathematische Annalen . 14 (3): 428–471. doi :10.1007/BF01677143 . Translated in Levy, Silvio, ed. (1999 ). The Eightfold Way . Cambridge University Press. ISBN 978-0-521-66066-2 . MR 1722410 .
en Klein, F. (1879 ), „Ueber die Transformation elfter Ordnung der elliptischen Functionen (On the eleventh order transformation of elliptic functions)” , Mathematische Annalen , 15 (3–4): 533–555, doi :10.1007/BF02086276 , collected as pp. 140–165 in Oeuvres, Tome 3
en Klein, Felix (1888 ), Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree , Trübner & Co., ISBN 0-486-49528-0trans . George Gavin Morrice
en Tóth, Gábor (2002 ), Finite Möbius groups, minimal immersions of spheres, and moduli
en Peter R. Cromwell, Polyhedra (1997), p. 296
en John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss (2008), The Symmetries of Things , ISBN: 978-1-56881-220-5
en Kaleidoscopes: Selected Writings of H.S.M. Coxeter , edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN: 978-0-471-01003-6 [1]
en Norman Johnson , Geometries and Transformations , (2018) ISBN: 978-1-107-10340-5 Chapter 11: Finite symmetry groups , 11.5 Spherical Coxeter groups