Racionalna funkcija
Funkcija | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x ↦ f (x) | |||||||||||||||||||||||||||||||||
Primeri po domeni in kodomeni | |||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
Razredi/lastnosti | |||||||||||||||||||||||||||||||||
Konstantna · Identiteta · Linearna · Polinom · Racionalna · Algebraična · Analitična · Gladka · Zvezna · Merna · Injektivna · Surjektivna · Bijektivna | |||||||||||||||||||||||||||||||||
Konstrukcije | |||||||||||||||||||||||||||||||||
Restrikcija · Kompozitum · λ · Inverzna | |||||||||||||||||||||||||||||||||
Posplošitve | |||||||||||||||||||||||||||||||||
Parcialna · Z več vrednostmi · Implicitna | |||||||||||||||||||||||||||||||||
Rácionalna fúnkcija je v matematiki funkcija v obliki ulomka, ki ima v števcu in imenovalcu polinom. Po navadi privzamemo, da polinom v imenovalcu ni konstantno enak nič.
Značilnosti racionalne funkcije
[uredi | uredi kodo]Racionalna funkcija je definirana za vsak razen za tistega, ki je ničla polinoma v imenovalcu.
Po osnovnem izreku algebre lahko polinom v števcu in v imenovalcu razcepimo. Če je ulomek okrajšan, dobimo pri tem v števcu ničle racionalne funkcije, v imenovalcu pa pole racionalne funkcije. V polih se graf racionalne funkcije pretrga in se približuje navpični asimptoti.
Ko gre proti neskončno ali proti minus neskončno, se racionalna funkcija približuje asimptotskemu polinomu , ki ga dobimo kot količnik pri deljenju števca z imenovalcem. Pri tem deljenju dobimo tudi ostanek - če obstaja točka, kjer je ostanek enak 0, potem tam racionalna funkcija seka asimptotski polinom. Če je asimptotski polinom prve stopnje, ga imenujemo asimptotska premica oziroma (glavna) asimptota.
Zgled
[uredi | uredi kodo]Racionalna funkcija ima:
- ničle
Ničle racionalne funkcije, so ničle števca:
- pola
Poli racionalne funkcije so ničle imenovalca:
- asimptoto
Izračun asimptote:
- seštejemo z
- -ostanek, ker ne moremo več deliti z
Končni rezultat: