Lompat ke isi

Sebaran Log-normal

Ti Wikipédia Sunda, énsiklopédi bébas

Dina kamungkinan jeung statistik, sebaran log-normal nyaéta probability distribution nu raket hubunganna jeung sebaran normal: lamun X mangrupa variabel acak dina sebaran normal, maka exp(X) mibanda sebaran log-normal. Dina basa séjén: variabel natural logarithm sebaran log-normal mibanda sebaran normal.

"Log-normal" ogé disebut "log normal" atawa "lognormal".

Variable bisa dimodélkeun salaku log-normal lamun mangrupa product hasil kali tina sababaraha faktor bébas. Conto tipena nyaéta angka ti return rate bursa efek dina waktu nu lila: bisa dianggap salalu produk harian return rate.

Sebaran log-normal mibanda probability density function

keur x > 0, nu mana μ and σ nyaéta mean jeung simpangan baku tina variabel logaritma. Nilai ekspektasi nyaéta

jeung varian nyaéta

.

Hubungan geometrik mean jeung geometrik simpangan baku

[édit | édit sumber]

Sebaran log-normal, geometric mean, jeung geometri simpangan baku mangrupa hal nu pakait. Dina kasus , géometric méan sarua jeung sarta géometric simpangan baku sarua jeung .

Lamun sampel data nu ditangtukeun asalna ti populasi sebaran log-normal, géometric méan jeung géometric simpangan baku bisa dipaké keur nga-estimasi confidence interval ku jalan arithmetic méan jeung simpangan baku nu digunakeun keur nga-estimasi confidence interval dina sebaran normal.

Confidence interval bounds log space géometric
3σ lower bound
2σ lower bound
1σ lower bound
1σ upper bound
2σ upper bound
3σ upper bound

nu mana géometric méan jeung géometri simpangan baku

Tempo oge

[édit | édit sumber]