Підкільце
Підкільце кільця — це пара , де — кільце, а — мономорфізм (вкладення) кілець.
Таке визначення узгоджується із загальними поняттями:
У класичному визначенні підкільце кільця розглядається як підмножина , замкнута відносно операцій і з основного кільця. Це визначення рівносильне наведеному вище, проте в сучасному визначенні підкреслюється внутрішня структура підкілець і зв'язок між різними кільцями. Воно також легко узагальнюється на випадок довільних математичних об'єктів (алгебричних, геометричних тощо). Різниця між визначеннями аналогічна різниці між теоретико-множинним і теоретико-категорійним поглядом на математику.
Зокрема, різні визначення кільця дають два основні змістовні поняття підкільця. У категорії (всіх) кілець підкільце, як у класичному визначенні, можна розглядати як довільну підмножину кільця, замкнуту за додаванням і множенням. Цікавіша ситуація в категорії кілець з одиницею : морфізми (гомоморфізми) в цій категорії мають відображати одиницю кільця в одиницю кільця (аналогічно гомоморфізму напівгруп з одиницею), тому підкільце кільця також має містити одиницю: .
Категорія влаштована значно краще, ніж . Наприклад, ядро будь-якого гомоморфізму також є об'єктом цієї категорії. Тому, кажучи про підкільця, зазвичай мають на увазі підкільце в , якщо не зазначено інше.
- Приклади
- Будь-який ідеал (лівий, правий, двосторонній) замкнутий відносно додавання і множення, тому є підкільцем у .
- У ідеал є підкільцем тільки тоді, коли містить , тому він має збігатися з усім кільцем. Тому в власні ідеали не є підкільцями.
- У підкільцями в є всі головні ідеали . У не має власних підкілець.
- Кільце цілих чисел є підкільцем поля дійсних чисел і підкільцем кільця многочленів .
- (укр.) Гаврилків В. М. Елементи теорії груп та теорії кілець. — І.-Ф. : Голіней, 2023. — 153 с.
- Винберг Э. Б. Курс алгебри. — 4-е изд. — Москва : МЦНМО, 2011. — 592 с. — ISBN 978-5-94057-685-3.(рос.)
- Атья М., Макдональд И. Введение в коммутативную алгебру. — Москва : Мир, 1972. — 160 с.(рос.)