Drug Design, Development and Therapy Dovepress submit your manuscript | www.dovepress.com Dovepre... more Drug Design, Development and Therapy Dovepress submit your manuscript | www.dovepress.com Dovepress 2383 O r i g i n a l r e s e a r c h open access to scientific and medical research Open access Full Text article http://dx.
Defensins are a family of antimicrobial cationic peptides that act as a rapid response force agai... more Defensins are a family of antimicrobial cationic peptides that act as a rapid response force against microbial invasion in a wide range of organisms, including plants, insects, animals and humans. In humans, defensins are produced predominantly by leukocytes and epithelial cells and are an important factor of innate immunity. In addition to their major role as natural antibiotics, defensins are increasingly recognized as signaling molecules in adaptive immunity and aberrant defensin expression has been associated with infectious diseases. In this review, we discuss the role of human defensins in relation to infectious disease and the possibility of novel defensin-based therapeutic approaches.
The Escherichia coli twin arginine translocation (Tat) system mediates Sec-independent export of ... more The Escherichia coli twin arginine translocation (Tat) system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. The genes tatA, tatB, tatC and tatE code for integral membrane proteins that are components of the Tat pathway. Cells co-overexpressing tatABCDE show an increased rate of export of a signal peptide-defective Tat precursor protein and a complex containing the TatA and TatB proteins can be purified from the membranes of such cells. The purified TatAB complex has an apparent molecular mass of 600 kDa as measured by gel permeation chromatography and, like the membranes of wild-type cells, contains a large molar excess of TatA over TatB. Negative stain electron microscopy of the complex reveals cylindrical structures that may correspond to the Tat protein transport channel.
The Escherichia coli Tat apparatus is a membranebound protein translocase that serves to export f... more The Escherichia coli Tat apparatus is a membranebound protein translocase that serves to export folded proteins synthesized with N-terminal twinarginine signal peptides. The essential TatC component of the Tat translocase is an integral membrane protein probably containing six transmembrane helices. Sequence analysis identified conserved TatC amino acid residues, and the role of these side-chains was assessed by single alanine substitution. This approach identified three classes of TatC mutants. Class I mutants included F94A, E103A and D211A, which were completely devoid of Tat-dependent protein export activity and thus represented residues essential for TatC function. Cross-complementation experiments with class I mutants showed that coexpression of D211A with either F94A or E103A regenerated an active Tat apparatus. These data suggest that different class I mutants may be blocked at different steps in protein transport and point to the coexistence of at least two TatC molecules within each Tat translocon. Class II mutations identified residues important, but not essential, for Tat activity, the most severely affected being L99A and Y126A. Class III mutants showed no significant defects in protein export. All but three of the essential and important residues are predicted to cluster around the cytoplasmic N-tail and first cytoplasmic loop regions of the TatC protein. . Predicted structure and topology of the E. coli TatC protein. Positioning of the transmembrane helices was initially estimated by TMHMM version 2.0. Transmembrane segments are refered to as helices I-VI as read from N-to C-terminus, respectively, and the predicted position of the lipid bilayer is shown in yellow. The protein sequence begins at S2, and every 10th residue is numbered (the initiator methionine is posttranslationally removed; F. Sargent and B. C. Berks, unpublished data). Conserved residues targeted for mutagenesis are highlighted: class I mutations are coloured red, class II mutations are coloured blue, and class III mutations are coloured black. The double arrow indicates a point of TatC truncation.
The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded... more The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded proteins across the inner membrane. The integral membrane proteins TatA, TatB and TatC are essential components of this pathway. Substrate proteins are directed to the Tat apparatus by specialized N-terminal signal peptides bearing a consensus twin-arginine sequence motif. Here we have systematically examined the Tat complexes that can be purified from overproducing strains. Our data suggest that the TatA, TatB and TatC proteins are found in at least two major types of high molecular mass complex in detergent solution, one consisting predominantly of TatA but with a small quantity of TatB, and the other based on a TatBC unit but also containing some TatA protein. The latter complex is shown to be capable of binding a Tat signal peptide. Using an alternative purification strategy we show that it is possible to isolate a TatABC complex containing a high molar excess of the TatA component.
Human neutrophil α-defensins (HNPs) are cationic antimicrobial peptides that are synthesized in v... more Human neutrophil α-defensins (HNPs) are cationic antimicrobial peptides that are synthesized in vivo as inactive precursors (proHNPs). Activation requires proteolytic excision of their anionic N-terminal inhibitory pro peptide. The pro peptide of proHNP1 also interacts specifically with and inhibits the antimicrobial activity of HNP1 inter-molecularly. In the light of the opposite net charges segregated in proHNP1, functional inhibition of the C-terminal defensin domain by its propeptide is generally thought to be of electrostatic nature. Using a battery of analogs of the propeptide and of proHNP1, we identified residues in the propeptide region important for HNP1 binding and inhibition. Only three anionic residues in the propeptide, Glu 15 , Asp 20 and Glu 23 , were modestly important for interactions with HNP1. By contrast, the hydrophobic residues in the central part of the propeptide, and the conserved hydrophobic motif Val 24 Val 25 Val 26 Leu 28 in particular, were critical for HNP1 binding and inhibition. Neutralization of all negative charges in the propeptide only partially activated the bactericidal activity of proHNP1. Our data indicate that hydrophobic forces have a dominant role in mediating the interactions between HNP1 and its propeptidea finding largely contrasting the commonly held view that the interactions are of an electrostatic nature.
Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomer... more Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomers. They bind protein toxins, such as anthrax lethal factor (LF), and kill bacteria, including Escherichia coli and Staphylococcus aureus, among other functions. There are six members of the human α-defensin family: four human neutrophil peptides, including HNP1, and two enteric human defensins, including HD5. We subjected HD5 to comprehensive alanine scanning mutagenesis. We then assayed LF binding by surface plasmon resonance, LF activity by enzyme kinetic inhibition, and antibacterial activity by the virtual colony count assay. Most mutations could be tolerated, resulting in activity comparable with that of wild type HD5. However, the L29A mutation decimated LF binding and bactericidal activity against Escherichia coli and Staphylococcus aureus. A series of unnatural aliphatic and aromatic substitutions at position 29, including aminobutyric acid (Abu) and norleucine (Nle) correlated hydrophobicity with HD5 function. The crystal structure of L29Abu-HD5 depicted decreased hydrophobic contacts at the dimer interface, whereas the Nle-29-HD5 crystal structure depicted a novel mode of dimerization with parallel β strands. The effect of mutating Leu(29) is similar to that of a C-terminal hydrophobic residue of HNP1, Trp(26). In addition, in order to further clarify the role of dimerization in HD5 function, an obligate monomer was generated by N-methylation of the Glu(21) residue, decreasing LF binding and antibacterial activity against S. aureus. These results further characterize the dimer interface of the α-defensins, revealing a crucial role of hydrophobicity-mediated dimerization.
Mammalian ␣-defensins, expressed primarily in leukocytes and epithelia, play important roles in i... more Mammalian ␣-defensins, expressed primarily in leukocytes and epithelia, play important roles in innate and adaptive immune responses to microbial infection. Six invariant cysteine residues forming three indispensable disulfide bonds and one Gly residue required structurally for an atypical -bulge are totally conserved in the otherwise diverse sequences of all known mammalian ␣-defensins. In addition, a pair of oppositely charged residues (Arg/Glu), forming a salt bridge across a protruding loop in the molecule, is highly conserved. To investigate the structural and functional roles of the conserved Arg 6 -Glu 14 salt bridge in human ␣-defensin 5 (HD5), we chemically prepared HD5 and its precursor proHD5 as well as their corresponding salt bridge-destabilizing analogs E14Q-HD5 and E57Q-proHD5. The Glu-to-Gln mutation, whereas significantly reducing the oxidative folding efficiency of HD5, had no effect on the folding of proHD5. Bovine trypsin productively and correctly processed proHD5 in vitro but spontaneously degraded E57Q-proHD5. Significantly, HD5 was resistant to trypsin treatment, whereas E14Q-HD5 was highly susceptible. Further, degradation of E14Q-HD5 by trypsin was initiated by the cleavage of the Arg 13 -Gln 14 peptide bond in the loop region, a catastrophic proteolytic event resulting directly in quick digestion of the whole defensin molecule. The E14Q mutation did not alter the bactericidal activity of HD5 against Staphylococcus aureus but substantially enhanced the killing of Escherichia coli. By contrast, proHD5 and E57Q-proHD5 were largely inactive against both strains at the concentrations tested. Our results confirm that the primary function of the conserved salt bridge in HD5 is to ensure correct processing of proHD5 and subsequent stabilization of mature ␣-defensin in vivo. . The abbreviations used are: HNP, human neutrophil peptide; HD5, human ␣-defensin 5; HPLC, high pressure liquid chromatography; RP-HPLC, reverse phase-HPLC; ESI-MS, electrospray ionization-mass spectrometer; Boc, t-butoxycarbonyl.
We performed a comprehensive alanine scan of human ␣-defensin HNP1 and tested the ability of the ... more We performed a comprehensive alanine scan of human ␣-defensin HNP1 and tested the ability of the resulting analogs to kill Staphylococcus aureus, inhibit anthrax lethal factor, and bind human immunodeficiency virus-1 gp120. By far, the most deleterious mutation for all of these functions was W26A. The activities lost by W26A-HNP1 were restored progressively by replacing W26 with non-coded, straight-chain aliphatic amino acids of increasing chain length. The hydrophobicity of residue 26 also correlated with the ability of the analogs to bind immobilized wild type HNP1 and to undergo further self-association. Thus, the hydrophobicity of residue 26 is not only a key determinant of the direct interactions of HNP1 with target molecules, but it also governs the ability of this peptide to form dimers and more complex quaternary structures at micromolar concentrations. Although all defensin peptides are cationic, their amphipathicity is at least as important as their positive charge in enabling them to participate in innate host defense.
Self-assembling proteins that form crystalline surface layers on many microorganisms can be invol... more Self-assembling proteins that form crystalline surface layers on many microorganisms can be involved in bacterial-host adhesion via specific interactions with components of the extracellular matrix. Here, we describe the interaction of the Lactobacillus brevis ATCC 8287 surface-layer protein SlpA with fibronectin, laminin, fibrinogen and collagen using surface plasmon resonance. SlpA was found to interact with high affinity to fibronectin and laminin, with a respective binding constant of 89.8 and 26.7 nM. The interaction of SlpA with collagen and fibrinogen was found to be of much lower affinity, with respective binding constants of 31.8 and 26.1 mM. The serine protease inhibitor benzamidine greatly reduced the affinity of SlpA for fibronectin, whereas the affinity for laminin remained unaffected. No protease activity of the purified SlpA protein could be detected. These data suggest that L. brevis may interact with host cells directly through high affinity interactions with laminin and fibronectin predominantly, involving distinct regions of the SlpA protein.
Defensins are cationic antimicrobial peptides that contribute to regulation of host cell function... more Defensins are cationic antimicrobial peptides that contribute to regulation of host cell function also. Here, we report on the regulation of cell death by Human Defensin 5, the major antimicrobial peptide of ileal Paneth cells. We find that Human Defensin 5-mediated cellular effects depend on functional expression of Tumor Necrosis Factor receptors and downstream mediators of TNF signaling. Our data indicate the involvement of interactions between Human Defensin 5 and the extra-cellular domain of Tumor Necrosis Factor receptor 1. Human Defensin-5 also induces apoptosis intrinsically by targeting the mitochondrial membrane.
FtsY, the Escherichia coli homologue of the eukaryotic SRP receptor (SRa), is located both in the... more FtsY, the Escherichia coli homologue of the eukaryotic SRP receptor (SRa), is located both in the cytoplasm and in the inner membrane of E. coli. Similar to SRa, FtsY consists of two major domains: a strongly acidic N-terminal domain (A) and a C-terminal GTP binding domain (NG) of which the crystal structure has recently been determined. The domains were expressed both in vivo and in vitro to examine their subcellular localization. The results suggest that both domains associate with the membrane but that the nature of the association differs.
Keywords: Human defensin 5 Interleukin 8 Antimicrobial peptide a b s t r a c t Defensins constitu... more Keywords: Human defensin 5 Interleukin 8 Antimicrobial peptide a b s t r a c t Defensins constitute a major family of natural antimicrobial peptides that protect the host against microbial invasion. Here, we report on the antibacterial properties and cellular interaction of Human Defensin 5 as a function of its positive charge and hydrophobicity. We find that selective replacement of arginine residues in HD-5 by alanine or charge-neutral lysine residues reduces antibacterial killing as well as host cell interaction. We identify arginines at positions 9 and 28 in the HD-5 sequence as particularly important for its function. Replacement of arginine at position 13 to Histidine, as observed in a Crohn's disease patient, reduced bacterial killing strain-selectively. Finally, we find that HD-5 interacts with host cells via receptor-mediated mechanisms.
The Escherichia coli Tat system mediates Secindependent export of protein precursors bearing twin... more The Escherichia coli Tat system mediates Secindependent export of protein precursors bearing twin-arginine signal peptides. The essential Tat pathway components TatA, TatB and TatC are shown to be integral membrane proteins. Upon removal of the predicted N-terminal transmembrane helix TatA becomes a water-soluble protein. In contrast the homologous TatB protein retains weak peripheral interactions with the cytoplasmic membrane when the analogous helix is deleted. Chemical crosslinking studies indicate that TatA forms at least homotrimers, and TatB minimally homodimers, in the native membrane environment. The presence of such homo-oligomeric interactions is supported by size exclusion chromatography.
The mucosal epithelium secretes a variety of antimicrobial peptides that act as part of the innat... more The mucosal epithelium secretes a variety of antimicrobial peptides that act as part of the innate immune system to protect against invading microbes. Here, we describe the functional properties of human defensin (HD) 5, the major antimicrobial peptide produced by Paneth cells in the ileum, in relation to its structure. The antimicrobial activity of HD-5 against Escherichia coli proved to be independent of its structure, whereas the unstructured peptide showed greatly reduced antimicrobial activity against Staphylococcus aureus. We find that HD-5 binds to the cell membrane of intestinal epithelial cells and induced secretion of the chemokine interleukin (IL)-8 in a concentration-and structure-dependent fashion. Incubation of HD-5 in the presence of tumor necrosis factor alpha further increased IL-8 secretion synergistically, suggesting that HD-5 may act as a regulator of the intestinal inflammatory response. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates,... more Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates, acting as effectors of innate immunity against infectious microorganisms. It is generally accepted that defensins are bactericidal by disrupting the anionic microbial membrane. Here, we provide evidence that membrane activity of human a-defensins does not correlate with antibacterial killing. We further show that the a-defensin human neutrophil peptide-1 (HNP1) binds to the cell wall precursor lipid II and that reduction of lipid II levels in the bacterial membrane significantly reduces bacterial killing. The interaction between defensins and lipid II suggests the inhibition of cell wall synthesis as a novel antibacterial mechanism of this important class of host defense peptides.
Drug Design, Development and Therapy Dovepress submit your manuscript | www.dovepress.com Dovepre... more Drug Design, Development and Therapy Dovepress submit your manuscript | www.dovepress.com Dovepress 2383 O r i g i n a l r e s e a r c h open access to scientific and medical research Open access Full Text article http://dx.
Defensins are a family of antimicrobial cationic peptides that act as a rapid response force agai... more Defensins are a family of antimicrobial cationic peptides that act as a rapid response force against microbial invasion in a wide range of organisms, including plants, insects, animals and humans. In humans, defensins are produced predominantly by leukocytes and epithelial cells and are an important factor of innate immunity. In addition to their major role as natural antibiotics, defensins are increasingly recognized as signaling molecules in adaptive immunity and aberrant defensin expression has been associated with infectious diseases. In this review, we discuss the role of human defensins in relation to infectious disease and the possibility of novel defensin-based therapeutic approaches.
The Escherichia coli twin arginine translocation (Tat) system mediates Sec-independent export of ... more The Escherichia coli twin arginine translocation (Tat) system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. The genes tatA, tatB, tatC and tatE code for integral membrane proteins that are components of the Tat pathway. Cells co-overexpressing tatABCDE show an increased rate of export of a signal peptide-defective Tat precursor protein and a complex containing the TatA and TatB proteins can be purified from the membranes of such cells. The purified TatAB complex has an apparent molecular mass of 600 kDa as measured by gel permeation chromatography and, like the membranes of wild-type cells, contains a large molar excess of TatA over TatB. Negative stain electron microscopy of the complex reveals cylindrical structures that may correspond to the Tat protein transport channel.
The Escherichia coli Tat apparatus is a membranebound protein translocase that serves to export f... more The Escherichia coli Tat apparatus is a membranebound protein translocase that serves to export folded proteins synthesized with N-terminal twinarginine signal peptides. The essential TatC component of the Tat translocase is an integral membrane protein probably containing six transmembrane helices. Sequence analysis identified conserved TatC amino acid residues, and the role of these side-chains was assessed by single alanine substitution. This approach identified three classes of TatC mutants. Class I mutants included F94A, E103A and D211A, which were completely devoid of Tat-dependent protein export activity and thus represented residues essential for TatC function. Cross-complementation experiments with class I mutants showed that coexpression of D211A with either F94A or E103A regenerated an active Tat apparatus. These data suggest that different class I mutants may be blocked at different steps in protein transport and point to the coexistence of at least two TatC molecules within each Tat translocon. Class II mutations identified residues important, but not essential, for Tat activity, the most severely affected being L99A and Y126A. Class III mutants showed no significant defects in protein export. All but three of the essential and important residues are predicted to cluster around the cytoplasmic N-tail and first cytoplasmic loop regions of the TatC protein. . Predicted structure and topology of the E. coli TatC protein. Positioning of the transmembrane helices was initially estimated by TMHMM version 2.0. Transmembrane segments are refered to as helices I-VI as read from N-to C-terminus, respectively, and the predicted position of the lipid bilayer is shown in yellow. The protein sequence begins at S2, and every 10th residue is numbered (the initiator methionine is posttranslationally removed; F. Sargent and B. C. Berks, unpublished data). Conserved residues targeted for mutagenesis are highlighted: class I mutations are coloured red, class II mutations are coloured blue, and class III mutations are coloured black. The double arrow indicates a point of TatC truncation.
The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded... more The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded proteins across the inner membrane. The integral membrane proteins TatA, TatB and TatC are essential components of this pathway. Substrate proteins are directed to the Tat apparatus by specialized N-terminal signal peptides bearing a consensus twin-arginine sequence motif. Here we have systematically examined the Tat complexes that can be purified from overproducing strains. Our data suggest that the TatA, TatB and TatC proteins are found in at least two major types of high molecular mass complex in detergent solution, one consisting predominantly of TatA but with a small quantity of TatB, and the other based on a TatBC unit but also containing some TatA protein. The latter complex is shown to be capable of binding a Tat signal peptide. Using an alternative purification strategy we show that it is possible to isolate a TatABC complex containing a high molar excess of the TatA component.
Human neutrophil α-defensins (HNPs) are cationic antimicrobial peptides that are synthesized in v... more Human neutrophil α-defensins (HNPs) are cationic antimicrobial peptides that are synthesized in vivo as inactive precursors (proHNPs). Activation requires proteolytic excision of their anionic N-terminal inhibitory pro peptide. The pro peptide of proHNP1 also interacts specifically with and inhibits the antimicrobial activity of HNP1 inter-molecularly. In the light of the opposite net charges segregated in proHNP1, functional inhibition of the C-terminal defensin domain by its propeptide is generally thought to be of electrostatic nature. Using a battery of analogs of the propeptide and of proHNP1, we identified residues in the propeptide region important for HNP1 binding and inhibition. Only three anionic residues in the propeptide, Glu 15 , Asp 20 and Glu 23 , were modestly important for interactions with HNP1. By contrast, the hydrophobic residues in the central part of the propeptide, and the conserved hydrophobic motif Val 24 Val 25 Val 26 Leu 28 in particular, were critical for HNP1 binding and inhibition. Neutralization of all negative charges in the propeptide only partially activated the bactericidal activity of proHNP1. Our data indicate that hydrophobic forces have a dominant role in mediating the interactions between HNP1 and its propeptidea finding largely contrasting the commonly held view that the interactions are of an electrostatic nature.
Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomer... more Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomers. They bind protein toxins, such as anthrax lethal factor (LF), and kill bacteria, including Escherichia coli and Staphylococcus aureus, among other functions. There are six members of the human α-defensin family: four human neutrophil peptides, including HNP1, and two enteric human defensins, including HD5. We subjected HD5 to comprehensive alanine scanning mutagenesis. We then assayed LF binding by surface plasmon resonance, LF activity by enzyme kinetic inhibition, and antibacterial activity by the virtual colony count assay. Most mutations could be tolerated, resulting in activity comparable with that of wild type HD5. However, the L29A mutation decimated LF binding and bactericidal activity against Escherichia coli and Staphylococcus aureus. A series of unnatural aliphatic and aromatic substitutions at position 29, including aminobutyric acid (Abu) and norleucine (Nle) correlated hydrophobicity with HD5 function. The crystal structure of L29Abu-HD5 depicted decreased hydrophobic contacts at the dimer interface, whereas the Nle-29-HD5 crystal structure depicted a novel mode of dimerization with parallel β strands. The effect of mutating Leu(29) is similar to that of a C-terminal hydrophobic residue of HNP1, Trp(26). In addition, in order to further clarify the role of dimerization in HD5 function, an obligate monomer was generated by N-methylation of the Glu(21) residue, decreasing LF binding and antibacterial activity against S. aureus. These results further characterize the dimer interface of the α-defensins, revealing a crucial role of hydrophobicity-mediated dimerization.
Mammalian ␣-defensins, expressed primarily in leukocytes and epithelia, play important roles in i... more Mammalian ␣-defensins, expressed primarily in leukocytes and epithelia, play important roles in innate and adaptive immune responses to microbial infection. Six invariant cysteine residues forming three indispensable disulfide bonds and one Gly residue required structurally for an atypical -bulge are totally conserved in the otherwise diverse sequences of all known mammalian ␣-defensins. In addition, a pair of oppositely charged residues (Arg/Glu), forming a salt bridge across a protruding loop in the molecule, is highly conserved. To investigate the structural and functional roles of the conserved Arg 6 -Glu 14 salt bridge in human ␣-defensin 5 (HD5), we chemically prepared HD5 and its precursor proHD5 as well as their corresponding salt bridge-destabilizing analogs E14Q-HD5 and E57Q-proHD5. The Glu-to-Gln mutation, whereas significantly reducing the oxidative folding efficiency of HD5, had no effect on the folding of proHD5. Bovine trypsin productively and correctly processed proHD5 in vitro but spontaneously degraded E57Q-proHD5. Significantly, HD5 was resistant to trypsin treatment, whereas E14Q-HD5 was highly susceptible. Further, degradation of E14Q-HD5 by trypsin was initiated by the cleavage of the Arg 13 -Gln 14 peptide bond in the loop region, a catastrophic proteolytic event resulting directly in quick digestion of the whole defensin molecule. The E14Q mutation did not alter the bactericidal activity of HD5 against Staphylococcus aureus but substantially enhanced the killing of Escherichia coli. By contrast, proHD5 and E57Q-proHD5 were largely inactive against both strains at the concentrations tested. Our results confirm that the primary function of the conserved salt bridge in HD5 is to ensure correct processing of proHD5 and subsequent stabilization of mature ␣-defensin in vivo. . The abbreviations used are: HNP, human neutrophil peptide; HD5, human ␣-defensin 5; HPLC, high pressure liquid chromatography; RP-HPLC, reverse phase-HPLC; ESI-MS, electrospray ionization-mass spectrometer; Boc, t-butoxycarbonyl.
We performed a comprehensive alanine scan of human ␣-defensin HNP1 and tested the ability of the ... more We performed a comprehensive alanine scan of human ␣-defensin HNP1 and tested the ability of the resulting analogs to kill Staphylococcus aureus, inhibit anthrax lethal factor, and bind human immunodeficiency virus-1 gp120. By far, the most deleterious mutation for all of these functions was W26A. The activities lost by W26A-HNP1 were restored progressively by replacing W26 with non-coded, straight-chain aliphatic amino acids of increasing chain length. The hydrophobicity of residue 26 also correlated with the ability of the analogs to bind immobilized wild type HNP1 and to undergo further self-association. Thus, the hydrophobicity of residue 26 is not only a key determinant of the direct interactions of HNP1 with target molecules, but it also governs the ability of this peptide to form dimers and more complex quaternary structures at micromolar concentrations. Although all defensin peptides are cationic, their amphipathicity is at least as important as their positive charge in enabling them to participate in innate host defense.
Self-assembling proteins that form crystalline surface layers on many microorganisms can be invol... more Self-assembling proteins that form crystalline surface layers on many microorganisms can be involved in bacterial-host adhesion via specific interactions with components of the extracellular matrix. Here, we describe the interaction of the Lactobacillus brevis ATCC 8287 surface-layer protein SlpA with fibronectin, laminin, fibrinogen and collagen using surface plasmon resonance. SlpA was found to interact with high affinity to fibronectin and laminin, with a respective binding constant of 89.8 and 26.7 nM. The interaction of SlpA with collagen and fibrinogen was found to be of much lower affinity, with respective binding constants of 31.8 and 26.1 mM. The serine protease inhibitor benzamidine greatly reduced the affinity of SlpA for fibronectin, whereas the affinity for laminin remained unaffected. No protease activity of the purified SlpA protein could be detected. These data suggest that L. brevis may interact with host cells directly through high affinity interactions with laminin and fibronectin predominantly, involving distinct regions of the SlpA protein.
Defensins are cationic antimicrobial peptides that contribute to regulation of host cell function... more Defensins are cationic antimicrobial peptides that contribute to regulation of host cell function also. Here, we report on the regulation of cell death by Human Defensin 5, the major antimicrobial peptide of ileal Paneth cells. We find that Human Defensin 5-mediated cellular effects depend on functional expression of Tumor Necrosis Factor receptors and downstream mediators of TNF signaling. Our data indicate the involvement of interactions between Human Defensin 5 and the extra-cellular domain of Tumor Necrosis Factor receptor 1. Human Defensin-5 also induces apoptosis intrinsically by targeting the mitochondrial membrane.
FtsY, the Escherichia coli homologue of the eukaryotic SRP receptor (SRa), is located both in the... more FtsY, the Escherichia coli homologue of the eukaryotic SRP receptor (SRa), is located both in the cytoplasm and in the inner membrane of E. coli. Similar to SRa, FtsY consists of two major domains: a strongly acidic N-terminal domain (A) and a C-terminal GTP binding domain (NG) of which the crystal structure has recently been determined. The domains were expressed both in vivo and in vitro to examine their subcellular localization. The results suggest that both domains associate with the membrane but that the nature of the association differs.
Keywords: Human defensin 5 Interleukin 8 Antimicrobial peptide a b s t r a c t Defensins constitu... more Keywords: Human defensin 5 Interleukin 8 Antimicrobial peptide a b s t r a c t Defensins constitute a major family of natural antimicrobial peptides that protect the host against microbial invasion. Here, we report on the antibacterial properties and cellular interaction of Human Defensin 5 as a function of its positive charge and hydrophobicity. We find that selective replacement of arginine residues in HD-5 by alanine or charge-neutral lysine residues reduces antibacterial killing as well as host cell interaction. We identify arginines at positions 9 and 28 in the HD-5 sequence as particularly important for its function. Replacement of arginine at position 13 to Histidine, as observed in a Crohn's disease patient, reduced bacterial killing strain-selectively. Finally, we find that HD-5 interacts with host cells via receptor-mediated mechanisms.
The Escherichia coli Tat system mediates Secindependent export of protein precursors bearing twin... more The Escherichia coli Tat system mediates Secindependent export of protein precursors bearing twin-arginine signal peptides. The essential Tat pathway components TatA, TatB and TatC are shown to be integral membrane proteins. Upon removal of the predicted N-terminal transmembrane helix TatA becomes a water-soluble protein. In contrast the homologous TatB protein retains weak peripheral interactions with the cytoplasmic membrane when the analogous helix is deleted. Chemical crosslinking studies indicate that TatA forms at least homotrimers, and TatB minimally homodimers, in the native membrane environment. The presence of such homo-oligomeric interactions is supported by size exclusion chromatography.
The mucosal epithelium secretes a variety of antimicrobial peptides that act as part of the innat... more The mucosal epithelium secretes a variety of antimicrobial peptides that act as part of the innate immune system to protect against invading microbes. Here, we describe the functional properties of human defensin (HD) 5, the major antimicrobial peptide produced by Paneth cells in the ileum, in relation to its structure. The antimicrobial activity of HD-5 against Escherichia coli proved to be independent of its structure, whereas the unstructured peptide showed greatly reduced antimicrobial activity against Staphylococcus aureus. We find that HD-5 binds to the cell membrane of intestinal epithelial cells and induced secretion of the chemokine interleukin (IL)-8 in a concentration-and structure-dependent fashion. Incubation of HD-5 in the presence of tumor necrosis factor alpha further increased IL-8 secretion synergistically, suggesting that HD-5 may act as a regulator of the intestinal inflammatory response. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates,... more Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates, acting as effectors of innate immunity against infectious microorganisms. It is generally accepted that defensins are bactericidal by disrupting the anionic microbial membrane. Here, we provide evidence that membrane activity of human a-defensins does not correlate with antibacterial killing. We further show that the a-defensin human neutrophil peptide-1 (HNP1) binds to the cell wall precursor lipid II and that reduction of lipid II levels in the bacterial membrane significantly reduces bacterial killing. The interaction between defensins and lipid II suggests the inhibition of cell wall synthesis as a novel antibacterial mechanism of this important class of host defense peptides.
Uploads
Papers by Erik de Leeuw