Acoustics for Engineers
Ning Xiang Jens Blauert
•
Acoustics for Engineers
Troy Lectures
Third Edition
123
Ning Xiang
Program in Architectural Acoustics
Rensselaer Polytechnic Institute (RPI)
Troy, NY, USA
Jens Blauert
Institute of Communication Acoustics
Ruhr-Universität Bochum (RUB)
Bochum, Germany
ISBN 978-3-662-63341-0
ISBN 978-3-662-63342-7
https://doi.org/10.1007/978-3-662-63342-7
(eBook)
Jointly published with ASA Press
1st & 2nd editions: © Springer-Verlag Berlin Heidelberg 2008, 2009
3rd edition: © Springer-Verlag GmbH Germany, part of Springer Nature 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publishers, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publishers nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publishers remain neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of
Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany
The ASA Press
ASA Press, which represents a collaboration between the Acoustical Society of
America and Springer Nature, is dedicated to encouraging the publication of
important new books as well as the distribution of classic titles in acoustics. These
titles, published under a dual ASA Press/Springer imprint, are intended to reflect the
full range of research in acoustics. ASA Press titles can include all types of books
that Springer publishes, and may appear in any appropriate Springer book series.
Editorial Board
Mark F. Hamilton (Chair), University of Texas at Austin
James Cottingham, Coe College
Timothy F. Duda, Woods Hole Oceanographic Institution
Robin Glosemeyer Petrone, Threshold Acoustics
William M. Hartmann (Ex Officio), Michigan State University
Darlene R. Ketten, Boston University
James F. Lynch (Ex Officio), Woods Hole Oceanographic Institution
Philip L. Marston, Washington State University
Arthur N. Popper (Ex Officio), University of Maryland
Christine H. Shadle, Haskins Laboratories
G. Christopher Stecker, Boys Town National Research Hospital
Stephen C. Thompson, The Pennsylvania State University
Ning Xiang, Rensselaer Polytechnic Institute
The Acoustical Society of America
On 27 December 1928 a group of scientists and engineers met at Bell Telephone
Laboratories in New York City to discuss organizing a society dedicated to the field
of acoustics. Plans developed rapidly, and the Acoustical Society of America
(ASA) held its first meeting on 10–11 May 1929 with a charter membership of
about 450. Today, ASA has a worldwide membership of about 7000.
The scope of this new society incorporated a broad range of technical areas that
continues to be reflected in ASA’s present-day endeavors. Today, ASA serves the
interests of its members and the acoustics community in all branches of acoustics,
both theoretical and applied. To achieve this goal, ASA has established Technical
Committees charged with keeping abreast of the developments and needs of
membership in specialized fields, as well as identifying new ones as they develop.
The Technical Committees include acoustical oceanography, animal bioacoustics, architectural acoustics, biomedical acoustics, engineering acoustics, musical
acoustics, noise, physical acoustics, psychological and physiological acoustics,
signal processing in acoustics, speech communication, structural acoustics and
vibration, and underwater acoustics. This diversity is one of the Society’s unique
and strongest assets since it so strongly fosters and encourages cross-disciplinary
learning, collaboration, and interactions.
ASA publications and meetings incorporate the diversity of these Technical
Committees. In particular, publications play a major role in the Society. The
Journal of the Acoustical Society of America (JASA) includes contributed papers
and patent reviews. JASA Express Letters (JASA-EL) and Proceedings of Meetings
on Acoustics (POMA) are online, open-access publications, offering rapid publication. Acoustics Today, published quarterly, is a popular open-access magazine.
Other key features of ASA’s publishing program include books, reprints of classic
acoustics texts, and videos. ASA’s biannual meetings offer opportunities for
attendees to share information, with strong support throughout the career continuum, from students to retirees. Meetings incorporate many opportunities for
vii
viii
The Acoustical Society of America
professional and social interactions, and attendees find the personal contacts a
rewarding experience. These experiences result in building a robust network of
fellow scientists and engineers, many of whom become lifelong friends and
colleagues.
From the Society’s inception, members recognized the importance of developing
acoustical standards with a focus on terminology, measurement procedures, and
criteria for determining the effects of noise and vibration. The ASA Standards
Program serves as the Secretariat for four American National Standards Institute
Committees and provides administrative support for several international standards
committees.
Throughout its history to present day, ASA’s strength resides in attracting the
interest and commitment of scholars devoted to promoting the knowledge and
practical applications of acoustics. The unselfish activity of these individuals in the
development of the Society is largely responsible for ASA’s growth and present
stature.
Preface
This book provides the material for an introductory course in engineering acoustics
for students with basic knowledge of mathematics. The contents are based on
extensive teaching experience at the university level.
Under the guidance of an academic teacher, the book is sufficient as the sole
textbook for the subject. Each chapter deals with a well-defined topic and represents
the material for a two-hour lecture. The chapters alternate between more theoretical
and more application-oriented concepts.
For self-study, we advise our readers to consult complementary introductory
material. Chapter 16 lists several textbooks for this purpose.
Thanks go to various colleagues and graduate students who most willingly
helped with corrections, proofreading, and stylistic improvement, and last but not
the least, to the reviewers of the first edition, in particular, to Profs. Gerhard Sessler
and Dominique J. Chéenne. Nevertheless, the authors assume full responsibility for
all contents. For the current edition, we reversed the authors’ order. Ning Xiang is
now the corresponding author, and Jens Blauert acts as the co-author.
In this (third) edition, we corrected recognized errors and typos, and edited
several figures, notations, and equations to increase the clarity of the presentation.
Also, we made some appropriate amendments.
At every chapter’s end, we offer exercise problems. Chapter 15 proposes
approaches to solving them. The problems provide our readers with the opportunity
to explore the underlying mathematical background in more detail. However, the
study of the problems and their proposed solutions is no prerequisite for comprehending the material presented in the book’s main body.
Troy, NY, USA
Bochum, Germany
April 2021
Ning Xiang
Jens Blauert
ix
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Definition of Three Basic Terms . . . . . . .
1.2
Specialized Areas within Acoustics . . . . .
1.3
About the History of Acoustics . . . . . . . .
1.4
Relevant Quantities in Acoustics . . . . . . .
1.5
Some Numerical Examples . . . . . . . . . . .
1.6
Logarithmic Level Ratios and Logarithmic
Ratios . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7
Double-Logarithmic Plots . . . . . . . . . . . .
1.8
Exercises . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
1
1
3
4
5
6
...............
...............
...............
7
10
11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Frequency
2
Mechanic and Acoustic Oscillations . . . . . . . . . . . . . . . . . . . .
2.1
Basic Elements of Linear, Oscillating, Mechanic Systems
2.2
Parallel Mechanic Oscillators . . . . . . . . . . . . . . . . . . . . .
2.3
Free Oscillations of Parallel Mechanic Oscillators . . . . . .
2.4
Forced Oscillation of Parallel Mechanic Oscillators . . . . .
2.5
Energies and Dissipation Losses . . . . . . . . . . . . . . . . . .
2.6
Basic Elements of Linear, Oscillating, Acoustic Systems .
2.7
The Helmholtz Resonator . . . . . . . . . . . . . . . . . . . . . . . .
2.8
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
15
16
18
19
21
24
25
26
27
3
Electromechanic and Electroacoustic Analogies . . . . . . . .
3.1
The Electromechanic Analogies . . . . . . . . . . . . . . . .
3.2
The Electroacoustic Analogy . . . . . . . . . . . . . . . . . .
3.3
Levers and Transformers . . . . . . . . . . . . . . . . . . . . .
3.4
Rules for Deriving Analog Electric Circuits . . . . . . .
3.5
Synopsis of Electric Analogies of Simple Oscillators .
3.6
Circuit Fidelity, Impedance Fidelity and Duality . . . .
3.7
Examples of Mechanic and Acoustic Oscillators . . . .
3.8
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
31
32
33
33
35
36
36
38
39
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
xi
xii
Contents
Electromechanic and Electroacoustic Transduction . . . . . . . . .
4.1
Electromechanic Couplers as Two- or Three-Port Elements
4.2
The Carbon Microphone—A Controlled Coupler . . . . . . .
4.3
Fundamental Equations of Electroacoustic Transducers . . .
4.4
Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5
Coupling of Electroacoustic Transducers to the Sound
Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6
Pressure and Pressure-Gradient Receivers . . . . . . . . . . . . .
4.7
Further Directional Characteristics . . . . . . . . . . . . . . . . . .
4.8
Absolute Calibration of Transducers . . . . . . . . . . . . . . . . .
4.9
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
43
44
45
46
49
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
50
52
56
58
59
5
Magnetic-Field Transducers . . . . . . . . . . . . . . . . . . . . . .
5.1
The Magnetodynamic Transduction Principle . . . . .
5.2
Magnetodynamic Sound Emitters and Receivers . . .
5.3
The Electromagnetic Transduction Principle . . . . . .
5.4
Electromagnetic Sound Emitters and Receivers . . . .
5.5
The Magnetostrictive Transduction Principle . . . . . .
5.6
Magnetostrictive Sound Transmitters and Receivers
5.7
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
63
65
66
73
75
76
77
77
6
Electric-Field Transducers . . . . . . . . . . . . . . . . . . .
6.1
The Piezoelectric Transduction Principle . . . . .
6.2
Piezoelectric Sound Emitters and Receivers . .
6.3
The Electrostrictive Transduction Principle . . .
6.4
Electrostrictive Sound Emitters and Receivers .
6.5
The Dielectric Transduction Principle . . . . . . .
6.6
Dielectric Sound Emitters and Receivers . . . .
6.7
Further Transducer and Coupler Principles . . .
6.8
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
79
79
82
86
87
87
90
93
94
7
The Wave Equation in Fluids . . . . . . . . . . . . . . . . . . . . . . .
7.1
Derivation of the One-Dimensional Wave Equation . .
7.2
Three-Dimensional Wave Equation in Cartesian
Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3
Solutions of the Wave Equation . . . . . . . . . . . . . . . .
7.4
Field Impedance and Power Transport in Plane Waves
7.5
Transmission-Line Equations and Reflectance . . . . . . .
7.6
The Acoustic Measuring Tube . . . . . . . . . . . . . . . . . .
7.7
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
......
......
97
99
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
104
106
108
108
111
113
Horns
8.1
8.2
8.3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
117
118
120
122
4
8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
and Stepped Ducts . . . . . . . . . . . . . . . . . . . . . . . .
Webster’s Differential Equation—The Horn Equation
Conical Horns . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exponential Horns . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
Contents
8.4
8.5
8.6
8.7
xiii
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
124
126
127
130
Spherical Waves, Harmonics, and Line Arrays . . . . . . .
9.1
The Spherical Wave Equation . . . . . . . . . . . . . . .
9.2
Spherical Sound Sources of the First Order . . . . .
9.3
Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . .
9.4
Higher-Order Spherical Sound Sources . . . . . . . . .
9.5
Line Arrays of Monopoles . . . . . . . . . . . . . . . . . .
9.6
Analogies to Fourier Transform in Signal Theory .
9.7
Directional Equivalence of Sources and Receivers .
9.8
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
133
134
138
140
143
144
146
149
150
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
153
154
155
156
158
164
166
11 Dissipation, Reflection, Refraction, and Absorption . . . . .
11.1 Dissipation During Sound Propagation in Air . . . . . .
11.2 Sound Propagation in Porous Media . . . . . . . . . . . . .
11.3 Reflection and Refraction . . . . . . . . . . . . . . . . . . . .
11.4 Wall (Surface) Impedance and Degree of Absorption
11.5 Porous Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . .
11.6 Resonance Absorbers . . . . . . . . . . . . . . . . . . . . . . .
11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
167
169
170
173
174
177
179
182
12 Geometric Acoustics and Diffuse Sound Fields .
12.1 Mirror Sound Sources and Ray Tracing . .
12.2 Flutter Echoes . . . . . . . . . . . . . . . . . . . . .
12.3 Impulse Responses of Rectangular Rooms
12.4 Diffuse Sound Fields . . . . . . . . . . . . . . . .
12.5 Reverberation-Time Formulas . . . . . . . . .
12.6 Application of Diffuse Sound Fields . . . . .
12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . .
9
10 Piston
10.1
10.2
10.3
10.4
10.5
10.6
Radiation Impedances and Sound Radiation
Steps in the Area Function . . . . . . . . . . . .
Stepped Ducts . . . . . . . . . . . . . . . . . . . . . .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
Membranes, Diffraction and Scattering . . . . .
The Rayleigh Integral . . . . . . . . . . . . . . . . . . .
Fraunhofer’s Approximation . . . . . . . . . . . . . .
The Far-Field of Piston Membranes . . . . . . . . .
The Near-Field of Piston Membranes . . . . . . .
General Remarks on Diffraction and Scattering .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
185
186
189
191
193
196
199
202
13 Insulation of Air- and Structure-Borne Sound . . . . . .
13.1 Sound in Solids—Structure-Borne Sound . . . . . .
13.2 Radiation of Airborne Sound by Bending Waves
13.3 Sound-Transmission Loss of Single-Leaf Walls .
13.4 Sound-Transmission Loss of Double-Leaf Walls .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
205
205
207
209
213
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
xiv
Contents
13.5
13.6
13.7
13.8
The Weighted Sound-Reduction Index . . . . . . . . . .
Insulation of Vibrations . . . . . . . . . . . . . . . . . . . . .
Insulation of Floors with Regard to Impact Sounds .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
215
217
220
221
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Paths .
......
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
223
224
224
229
230
231
238
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
241
241
249
258
266
279
289
300
308
318
339
349
359
366
380
16 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1 Complex Notation of Sinusoidal Signals . .
16.2 Complex Notation of Power and Intensity
16.3 Supplementary Textbooks for Self Study .
16.4 Letter Symbols, Notations, and Units . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
399
399
400
402
403
14 Noise
14.1
14.2
14.3
14.4
14.5
14.6
Control—A Survey . . . . . . . . . . . . . . .
Origins of Noise . . . . . . . . . . . . . . . . .
Radiation of Noise . . . . . . . . . . . . . . .
Noise Reduction as a System Problem .
Noise Reduction at the Source . . . . . . .
Noise Reduction Along the Propagation
Exercises . . . . . . . . . . . . . . . . . . . . . .
15 Solutions to the Exercise Problems
15.1 Chapter 1 . . . . . . . . . . . . . .
15.2 Chapter 2 . . . . . . . . . . . . .
15.3 Chapter 3 . . . . . . . . . . . . . .
15.4 Chapter 4 . . . . . . . . . . . . . .
15.5 Chapter 5 . . . . . . . . . . . . . .
15.6 Chapter 6 . . . . . . . . . . . . . .
15.7 Chapter 7 . . . . . . . . . . . . . .
15.8 Chapter 8 . . . . . . . . . . . . . .
15.9 Chapter 9 . . . . . . . . . . . . . .
15.10 Chapter 10 . . . . . . . . . . . . .
15.11 Chapter 11 . . . . . . . . . . . . .
15.12 Chapter 12 . . . . . . . . . . . . .
15.13 Chapter 13 . . . . . . . . . . . . .
15.14 Chapter 14 . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
About the Authors
Ning Xiang, Ph.D. is professor of Acoustics and Signal Processing at the
Rensselaer Polytechnic Institute (RPI) in Troy, New York. He is the director of
RPI’s Program in Architectural Acoustics.
Jens Blauert, Dr.-Ing., Dr.-Tech. h.c. is emeritus professor of Acoustics and
Electrical Engineering at the Ruhr-University Bochum (RUB) in Bochum,
Germany. He is the founder and former director of RUB’s Institute of
Communication Acoustics.
xv