J. Chem. Thermodynamics 59 (2013) 195–208
Contents lists available at SciVerse ScienceDirect
J. Chem. Thermodynamics
journal homepage: www.elsevier.com/locate/jct
Thermodynamics of 1-alkanol + linear polyether mixtures
Juan Antonio González ⇑, Ángela Mediavilla, Isaías García De la Fuente, José Carlos Cobos
G.E.T.E.F., Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
a r t i c l e
i n f o
Article history:
Received 3 October 2012
Received in revised form 20 November 2012
Accepted 6 December 2012
Available online 31 December 2012
Keywords:
1-Alkanol
Polyether
Calorimetric data
Volumetric data
Interactions
Dipolar
Flory
a b s t r a c t
Experimental densities, q, and speeds of sound, u, have been measured at (293.15–303.15) K for the systems methanol, 1-butanol or 1-decanol + 3,6,9-trioxaundecane using a vibrating-tube densimeter and
sound analyzer Anton Paar model DSA-5000. These values were used to calculate excess molar volumes,
V Em , excess adiabatic compressibilities, jES , and excess speeds of sound, uE. Data available in the literature
on excess molar enthalpies, HEm , and on excess molar isobaric heat capacities, C Ep;m , of 1-alkanol + linear
polyether mixtures indicate that: (i) interactions are mainly of dipolar type, particularly for solutions
with longer 1-alkanols; (ii) the ability of the ether to break the alcohol self-association increases with
the number of CH2CH2O groups in the oxaalkane. The enthalpies of the alcohol-ether interactions,
DHOHO, have been determined. In mixtures with a given polyether, DHOHO increases with the alcohol
size. For 1-alkanol + CH3O(CH2CH2O)nCH3 systems, DHOHO decreases for increased n values. Alcoholether interactions are stronger in mixtures with linear polyethers than in those with monoethers.V Em data
show the existence of free volume effects in solutions including methanol or
These effects
ethanol.
E
become more important for large n values, which is supported by values of @V@Tm . The Flory model
P
has been used to investigate orientational effects in the systems under study. It is shown that orientational effects are relevant in mixtures with methanol or ethanol, and that the behaviour of the remaining
systems is close to that of random mixing. Solutions with 3,6-dioxaoctane slightly differ from this trend
and are characterized by weak orientational effects. We have also applied the Flory model to 1-alkanol + PEG-250, or +PEG-350 mixtures, which behave similarly to those including linear polyethers. Orientational effects are much stronger in 1-alkanol + linear monoether systems, and are roughly independent
of the mixture components. Results obtained in this work are consistent with those obtained previously
when applying the Kirkwood–Buff formalism.
Ó 2012 Elsevier Ltd. All rights reserved.
1. Introduction
Interest on alcohol + ether mixtures is consequence of their wide
variety of applications. This type of systems is used as gasoline additives due to their octane-enhancing and pollution reducing properties [1,2]. Solutions of alcohols (refrigerant) with absorbents as
polyethers or polyethylene glycols (PEG) have been proposed as
working fluids for absorption refrigerant machines in order to improve the cycle machine [3]. Alkanol + ether mixtures are industrially relevant because alkanols are basic components in the
synthesis of oxaalkanes and therefore are contained as an impurity.
Mixtures of short chain 1-alkanols with linear polyethers are also
interesting as can be considered as simple models of the complex
systems water + PEG, widely used in biochemical and biomedical
processes [4]. From a theoretical point of view, the study of 1-alkanol + ether mixtures is particularly important due to their complexity, related to the partial destruction of the H-bonds between
alcohol molecules by the active ether molecules, and to the new
⇑ Corresponding author. Tel.: +34 983 423757; fax: +34 983 423136.
E-mail address: jagl@termo.uva.es (J.A. González).
0021-9614/$ - see front matter Ó 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jct.2012.12.007
OH–O bonds created upon mixing [5,6]. On the other hand, in solutions formed by 1-alkanol and a linear polyether, strong dipole-dipole interactions can be expected. Note the rather high upper
critical solution temperatures of the mixtures 2,5,8,11-tetraoxadodecane + dodecane or of 2,5,8,11,14-pentaoxapentadecane + decane (280.81 K and 291,98 K, respectively [7]). This may explain
that, in order to attain a better representation of the thermodynamic properties of the 1-propanol + 2,5,8-trioxanonane, or
+2,5,8,11-tetraoxadodecane systems by means of the ERAS model
[8], these polyethers were treated as self-associated compounds [9].
The present work is part of a general experimental and theoretical investigation on 1-alkanol + linear or cyclic polyether mixtures. Thus, we have provided excess molar volumes, V Em , [10–14]
and enthalpies, HEm [15–17] for this type of systems. In addition,
we have investigated solutions of methanol, ethanol or 1-propanol
with some linear or cyclic polyethers [18] using the Kirkwood–Buff
formalism [19]; and 1-alkanol + 1,3-dioxolane, or +1,3-dioxane, or
+1,4-dioxane, or +1,3,5-trioxane systems [6] in terms of the DISQUAC [20] and ERAS models. It should be mentioned that we have
also developed detailed studies on 1-alkanol + linear or cyclic
monoether mixtures using different theories (DISQUAC, ERAS,
196
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
Flory [21] or the Kirkwood–Buff integrals) [5,6,22]. As continuation, we report now densities, speeds of sound, adiabatic compressibilities, and the corresponding excess functions V Em ; uE , and
jES , for the methanol, 1-butanol or 1-decanol + 3,6,9-trioxaundecane mixtures over the temperature range (293.15–303.15) K. V Em
data at 298.15 K for the methanol or 1-butanol systems are available in the literature [13,23]. The Flory model has also been applied
to the investigated solutions in order to gain insight into their
interactions and structure. We have already shown that this theory
is an appropriate tool for the study of orientational effects in liquid
solutions [22,24–27].
2. Experimental
2.1. Materials
3,6,9-Trioxaundecane (Chromasolv for HPLC P 99%), 1-butanol
(Chromasolv plus for HPLC P 99.7%) and 1-decanol (Assay P 99%)
were from Sigma Aldrich, and methanol (Assay P 99.8% GC) was
from Fluka and used without further purification. The q and u values of the pure liquids are in good agreement with those reported
in the literature (table 1).
and the error in the final mole fraction is estimated to be
less than ±0.0001. Conversion to molar quantities was based
on the relative atomic mass Table of 2005 issued by IUPAC
[28].
The densities and speeds of sound of both pure liquids and of
the mixtures were measured using a vibrating-tube densimeter
and sound analyzer, Anton Paar model DSA-5000, automatically
thermostated within ±0.01 K. Temperature measurements were
taken using a Pt-100, calibrated at the triple point of water
(0.01 °C) and at the melting point of gallium (29.7646 °C)
according to the ITS-90 scale. The calibration of the densimeter
was carried out with deionised double-distilled water, heptane,
octane, isooctane, cyclohexane and benzene, using q values from
the literature [29–31]. The accuracy for the q and u measurements are ±1 105 g cm3 and ± 0.1 m s1, respectively, and
the corresponding precisions are ±1 106 g cm3 and ±
0.01 m s1. The experimental technique was checked by determining V Em and u of the standard mixtures: cyclohexane +
benzene at the temperatures (293.15, 298.15 and 303.15) K and
2-ethoxyethanol + heptane at 298.15 K. Our results agree well
with published values [32–35]. The accuracy in V Em is believed
to be less than ð0:01 V Em; max þ 0:005Þ cm3 mol , where
1
V Em; max denotes the maximum experimental value of the excess
2.2. Apparatus and procedure
Binary mixtures were prepared by mass in small vessels
of about 10 cm3. Caution was taken to prevent evaporation,
molar volume with respect to the mole fraction. The accuracies
of uE and jES are estimated to be 0.015 juEj and 0:02 jES ,
respectively.
TABLE 1
Physical propertiesa of pure compounds at temperature T and atmospheric pressure: q, density; u, speed of sound; aP, isobaric thermal expansion coefficient; jS, adiabatic
compressibility; jT, isothermal compressibility; and CP, isobaric heat capacity.
Property
T/K
Exp.
Lit.
Exp.
Lit.
Exp.
Lit.
Exp.
Lit.
q/g cm3
293.15
0.79155
0.80989
0.80956b
0.82995
0.9063b
0.78720
0.80647
0.80575b
0.8064g
0.82695
0.8302c
0.83028e
0.82698e
0.8268c
0.90673
298.15
0.90288
303.15
0.78244
0.80222
0.80196b
0.8023g
0.82315
0.82285j
0.89722
0.90150b
0.90281h
0.9033i
0.8966b
293.15
298.15
303.15
298.15
1118
1101.4
1086.6
1.16
0.78172b
0.7915d
0.78637b
0.78720f
0.7868g
0.78172b
0.78248d
0.7820d
1119k
1102k
1086k
1.196b
1256.2
1239.6
1223.8
0.95
1257 k
1241k
1224k
0.948b
1397.1
1380.3
1364.1
0.82
293.15
298.15
303.15
298.15
1010.7
1047.3
1082.5
1246.7
1009k
1047k
1083k
1248b
782.4
806.9
832.2
947
782k
806k
832k
942b
617
635
653
738
u/m s1
aP/103 K1
jS/TPa1
jT/TPa
1
CP/J mol1 K1
a
Methanol
81.47b
298.15
Uncertainties, e, are: e(q) = ±0.01 kg m
Reference [29].
Reference [99].
d
Reference [100].
e
Reference [101].
f
Reference [102].
g
Reference [103].
h
Reference [10].
i
Reference [104].
j
Reference [105].
k
Reference [106].
l
Reference [107].
m
Reference [108].
n
Reference [109].
o
Reference [110].
p
Reference [5].
q
Reference [111].
r
Reference [112].
b
c
1-Butanol
; e(u) = ±0.1 m s
3
1-Decanol
177.07b
3,6,9-Trioxaundecane
1380.0 j
1364.5j
0.843m
0.819n
635.1j
654.2j
740.9p
1259.4
1239.9
1221.8
1.05
694.9
720.5
746.2
891.4
372.98r
; e(aP) = ±0.025 aP; e(jS) = ±0.0002 jS; e(jT) = ±0.012 jT; and for pressure, e(P) = ±0.1 kPa.
1
1241.9l
1.077l
1.07o
720
900q
897m
347.5
i
197
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
their V Em value for the methanol system is 9% higher than that provided here (figure 1).
3. Experimental results
3.1. Equations
The thermodynamic properties for which values are derived
most directly from the experimental measurements are the density, q, the molar volume, V, and the isentropic compressibility,
jS. Values of aP (isobaric thermal expansion coefficient) for pure
compounds were obtained from a linear dependence of q with T.
Assuming that the absorption of the acoustic wave is negligible,
jS can be calculated using the Newton-Laplace’s equation:
jS ¼
1
qu2
ð1Þ
:
For an ideal mixture at the same temperature and pressure than the
system under study, the values Fid of the thermodynamic property,
F, are calculated using the equations [32,36,37]:
F id ¼ x1 F 1 þ x2 F 2
ðF ¼ V; C P Þ;
ð2Þ
and
F id ¼ /1 F 1 þ /2 F 2
ðF ¼ aP ;
jT Þ;
ð3Þ
xi V i
V id
where Cp is the isobaric heat capacity, /i ¼
the volume fraction,
jT, the isothermal compressibility, and Fi, the F value of component
i, respectively. For jS and u, the ideal values are calculated according to [36,37]:
jidS ¼ jidT
TV id aid2
P
C id
P
;
ð4Þ
and
uid ¼
1
id
id
S
q j
1=2
;
ð5Þ
where qid = (x1M1 + x2M2)/Vid (Mi, molecular mass of the i component). In this work, we have determined the excess functions:
F E ¼ F F id ;
ð6Þ
3.2. Experimental results
Table 2 lists values of densities, calculated V Em and of u vs. x1, the
mole fraction of the 1-alkanol. Table 3 contains the derived quantities jES and uE. The data were fitted by unweighted least-squares
polynomial regression to the equation:
ð7Þ
i¼0
where F stands for the properties cited above. The number of coefficients k used in Eq. (7) for each mixture was determined by applying an F-test [38] at the 99% confidence level. Table 4 lists the
parameters Ai obtained in the regression, together with the standard deviations r, defined by:
rðF E Þ ¼
2 1=2
1 X E
;
F cal F Eexp
Nk
4.1. Flory model
The main hypotheses of the theory are the following [21,39–
42]. (i) Molecules are divided into segments, which are arbitrarily
chosen isomeric portions of the molecule. (ii) The mean intermolecular energy per contact is proportional to g/vs (where g is a positive constant which characterizes the energy of interaction for a
pair of neighbouring sites and vs is the segment volume). (iii) When
stating the configurational partition function, the number of external degrees of freedom of the segments is considered to be lower
than 3. This is necessary to take into account restrictions on the
precise location of a given segment by its neighbours in the same
chain. (iv) Random mixing is assumed. The probability of having
species of kind i neighbours to any given site is equal to hi, the site
fraction. In the case of very large total number of contact sites, the
probability of formation of an interaction between contacts sites
belonging to different liquids is h1h2. Under these hypotheses, the
Flory equation of state is given by:
PV
V 1=3
1
¼
;
T
V 1=3 1 VT
ð9Þ
where V ¼ V=V ; P ¼ P=P and T ¼ T=T are the reduced volume,
pressure and temperature, respectively. Eq. (9) is valid for pure liquids and liquid mixtures. For pure liquids, the reduction parameters, V i , P i and T i are obtained from aPi and jTi data. The
corresponding expressions for reduction parameters for mixtures
are given elsewhere [25]. HEm is determined from
HEm ¼
x1 V 1 h2 X 12
V
þ x1 V 1 P1
1
V1
1
V
þ x2 V 2 P 2
1
V2
ð8Þ
where N is the number of direct experimental values. Results on V Em
and jES are shown graphically in figures 1 and 2. The present V Em
data for the methanol solution at 298.15 K are in good agreement
with those previously measured in our laboratory [13] (figure 1).
For the 1-butanol mixture, our V Em data are also in good agreement
with those reported by Pal and Kumar [23]. However, at x1 = 0.5,
1
V
:
ð10Þ
All the symbols have their usual meaning [25] The reduced volume
of the mixture, V, in Eq. (10) is obtained from the equation of state.
Therefore, the molar excess volume can be also calculated:
V Em ¼ x1 V 1 þ x2 V 2 ðV u1 V 1 u2 V 2 Þ:
for F = V, jS and u.
k1
X
F E ¼ x1 ð1 x1 Þ Ai ð2x1 1Þi ;
4. Theory
ð11Þ
4.1.1. Estimation of the Flory interaction parameter
X12 is determined from a HEm measurement at given composition
from the equation [22,24,25]:
X 12 ¼
x1 P1 V 1 1 TT1 þ x2 P2 V 2 1 TT2
x1 V 1 h2
ð12Þ
;
For the application of this expression, it must be noted that VT is a
function of HEm :
HEm ¼
x1 P1 V 1
V1
þ
x2 P2 V 2
V2
þ
1
VT
x1 P1 V 1 T 1 þ x2 P2 V 2 T 2
ð13Þ
and that from the equation of state, V ¼ VðTÞ. More details have
been given elsewhere [22,24,25]. Eq. (12) is generalization of that
previously given to calculate X12 from HEm at x1 = 0.5 [43]. Properties
of the pure compounds at 298.15 K, molar volumes, aPi and jTi, and
the corresponding reduction parameters, Pi and V i ði ¼ 1; 2Þ, needed
for calculations are listed in table 5. X12 values determined from
experimental HEm data at x1 = 0.5 are collected in table 6.
5. Theoretical results
Results on HEm and V Em obtained from the Flory model using X12
values at x1 = 0.5 are listed in tables 6 and 7, respectively.
198
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
TABLE 2
Densities, q, molar excess volumes, V mE , and speeds of sound for 1-alkanol(1) + 3,6,9-trioxaundecane(2) mixtures at temperature T and atmospheric pressure.a
x1
q/g cm3
V Em =cm3 mol
0.1141
0.1553
0.1987
0.2490
0.2972
0.3651
0.3841
0.4206
0.4696
0.5133
0.90490
0.90405
0.90307
0.90179
0.90038
0.89801
0.89727
0.89572
0.89332
0.89089
0.2584
0.3334
0.4122
0.4958
0.5674
0.6493
0.6697
0.7054
0.7407
0.7679
0.1296
0.1589
0.1917
0.2627
0.2904
0.3505
0.3925
0.4241
0.4639
0.5181
0.90000
0.89940
0.89867
0.89683
0.89602
0.89401
0.89241
0.89101
0.88909
0.88601
0.1058
0.1571
0.1991
0.2309
0.2886
0.3249
0.3748
0.4216
0.4730
0.5164
u/m s1
q/g cm3
V Em =cm3 mol
u/m s1
Methanol(1) + 3,6,9-trioxaundecane(2); T = 293.15 K
1259.4
0.5624
0.88761
1259.4
0.6126
0.88369
1259.2
0.6545
0.87981
1258.6
0.6980
0.87507
1257.7
0.7575
0.86711
1255.9
0.8037
0.85925
1255.2
0.8469
0.85024
1253.7
0.9023
0.83503
1251.3
0.9467
0.81874
1248.6
0.7774
0.7781
0.7666
0.7421
0.6891
0.6228
0.5461
0.4015
0.2485
1244.7
1240.0
1235.1
1229.0
1218.6
1208.1
1196.0
1175.4
1153.6
0.2671
0.3254
0.3878
0.5042
0.5472
0.6274
0.6773
0.7034
0.7353
0.7625
Methanol(1) + 3,6,9-trioxaundecane(2); T = 298.15 K
1240.0
0.5637
0.88297
1239.9
0.6132
0.87912
1239.7
0.6207
0.87844
1239.0
0.6959
0.87083
1238.5
0.7434
0.86468
1237.1
0.8007
0.85537
1235.8
0.8481
0.84546
1234.4
0.9005
0.83108
1232.6
0.9476
0.81397
1229.3
0.7749
0.7791
0.7754
0.7465
0.7062
0.6336
0.5437
0.4029
0.2457
1225.8
1221.2
1220.4
1210.9
1203.0
1190.8
1177.7
1158.6
1135.9
0.89527
0.89427
0.89331
0.89258
0.89089
0.88971
0.88788
0.88591
0.88340
0.88090
0.1943
0.3005
0.3783
0.4440
0.5250
0.5737
0.6323
0.6809
0.7225
0.7441
Methanol(1) + 3,6,9-trioxaundecane(2); T = 303.15 K
1221.5
0.5681
0.87747
1221.5
0.6092
0.87433
1221.4
0.6548
0.87007
1220.9
0.6984
0.86535
1220.4
0.7448
0.85928
1219.5
0.8012
0.84999
1218.2
0.8484
0.84019
1216.5
0.9007
0.82594
1214.1
0.9489
0.80825
1211.5
0.7616
0.7724
0.7530
0.7313
0.6902
0.6103
0.5274
0.3922
0.2244
1207.7
1204.1
1199.0
1193.3
1185.6
1173.9
1161.1
1142.6
1119.6
0.1284
0.2205
0.3190
0.3623
0.4157
0.4529
0.4963
0.5481
0.6523
0.7018
0.90130
0.89611
0.88985
0.88686
0.88292
0.87996
0.87635
0.87171
0.86130
0.85573
0.0785
0.1330
0.1774
0.1943
0.2115
0.2145
0.2193
0.2196
0.2134
0.2018
1-Butanol(1) + 3,6,9-trioxaundecane(2); T = 293.15 K
1262.2
0.7934
0.84415
1263.3
0.8942
0.82914
1264.1
0.9397
0.82136
1264.3
1264.5
1264.4
1264.4
1264.3
1263.6
1263.3
0.1654
0.1069
0.0689
1262.1
1260.2
1258.9
0.1245
0.2149
0.3175
0.4078
0.4543
0.5047
0.5543
0.6137
0.6973
0.7951
0.89677
0.89176
0.88538
0.87900
0.87540
0.87125
0.86684
0.86113
0.85218
0.84007
0.0789
0.1285
0.1754
0.2015
0.2109
0.2177
0.2191
0.2151
0.2028
0.1697
1-Butanol(1) + 3,6,9-trioxaundecane(2); T = 298.15 K
1242.5
0.8466
0.83280
1243.8
0.9449
0.81686
1244.9
1245.5
1245.6
1245.7
1245.7
1245.5
1245.3
1244.5
0.1407
0.0621
1243.9
1241.7
0.0738
0.1419
0.2180
0.3020
0.3764
0.5002
0.5541
0.6056
0.6997
0.7961
0.89447
0.89096
0.88673
0.88157
0.87651
0.86690
0.86216
0.85729
0.84732
0.83544
0.0445
0.0826
0.1235
0.1606
0.1862
0.2101
0.2115
0.2118
0.1974
0.1667
1-Butanol(1) + 3,6,9-trioxaundecane(2); T = 303.15 K
1223.5
0.8493
0.82796
1224.8
0.8896
0.82180
1225.9
0.9431
0.81286
1227.0
1227.7
1228.3
1228.4
1228.5
1228.4
1227.9
0.1363
0.1093
0.0655
1227.4
1226.8
1225.8
0.0632
0.1084
0.2052
0.2940
0.90186
0.89794
0.88979
0.88249
0.0739
0.1195
0.1859
0.2288
1-Decanol(1) + 3,6,9-trioxaundecane(2); T = 293.15 K
1267.1
0.7863
0.84492
1272.6
0.8872
0.83776
1284.5
0.9441
0.83382
1295.5
0.1696
0.0987
0.0455
1363.0
1378.8
1388.1
1
x1
1
199
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
TABLE 2 (continued)
x1
q/g cm3
V Em =cm3 mol
0.3930
0.4943
0.5430
0.5932
0.6872
0.87457
0.86666
0.86292
0.85911
0.85212
0.2528
0.2602
0.2571
0.2496
0.2206
0.0605
0.1110
0.1588
0.2062
0.3020
0.3947
0.5040
0.5920
0.6553
0.89798
0.89368
0.88969
0.88579
0.87808
0.87077
0.86239
0.85580
0.85116
0.0715
0.1206
0.1572
0.1862
0.2269
0.2520
0.2544
0.2408
0.2199
u/m s1
q/g cm3
x1
V Em =cm3 mol
1-Decanol(1) + 3,6,9-trioxaundecane(2); T = 298.15 K
1247.8
0.7443
0.84472
1254.1
0.7923
0.84132
1260.1
0.8362
0.83823
1266.1
0.8836
0.83493
1278.3
0.9400
0.83105
1290.4
1305.0
1317.3
1326.4
0.89300
0.88954
0.88523
0.88099
0.87394
0.86702
0.85829
0.85560
0.84746
Experimental and theoretical values for HEm are compared
graphically in figures 3–7. For the sake of clarity, Table 6 also
includes the relative standard deviations for HEm defined as
2
!2 31=2
E
E
X
H
H
1
m;
exp
m;calc
5 ;
rr HEm ¼ 4
N
HEm; exp
ð14Þ
where N (=19) is the number of data points, and HEm; exp stands for
the smoothed HEm values calculated at Dx1 = 0.05 in the composition
range [0.05, 0.95] from polynomial expansions given in the original
works. In order to obtain detailed information on the concentration
dependence of X12, this magnitude has been determined using Eq.
(12) and the mentioned HEm; exp values at Dx1 = 0.05. The X12(x1) variation is estimated from the equation:
Di ¼
jDX 12 jmax
i
;
jX 12 ðx1 ¼ 0:5Þj
u/m s1
1
1308.1
1321.4
1327.9
1334.7
1348.1
1-Decanol(1) + 3,6,9-trioxaundecane(2); T = 303.15 K
0.0715
1229.6
0.7409
0.84090
0.1076
1234.8
0.7915
0.83736
0.1487
1241.6
0.8318
0.83456
0.1823
1248.3
0.8856
0.83089
0.2218
1260.0
0.9364
0.82744
0.2442
1271.7
0.2455
1287.6
0.2421
1292.7
0.2177
1308.7
1
E
E
Uncertainties, e, are: eðx1 Þ ¼ 0:0001; e V m ¼ 0:01 V m; max þ 0:005 cm3 mol ; eðuÞ ¼ 0:1 m s1 ; eðPÞ ¼ 0:1 kPa.
0.0605
0.1016
0.1540
0.2064
0.2953
0.3846
0.5006
0.5369
0.6486
a
1
ð15Þ
where jDX 12 jmax
is the maximum absolute value of the X12(x1) X12
i
(x1 = 0.5) difference in the ranges [0.05,0.45] (i = 1) and [0.55,0.95]
(i = 2). The corresponding values are listed in table 8 (see also figure
8).
6. Discussion
Hereafter, we are referring to thermodynamic properties at
equimolar composition and T = 298.15 K.
6.1. Calorimetric data
For a deeper understanding of the interactions and structure of
1-alkanol + linear polyether mixtures, we must start showing a
brief summary of the main features of 1-alkanol + alkane, or +linear monoether systems [5]. In the case of solutions with a given
monoether, HEm increases from methanol to ethanol or 1-propanol
and then smoothly decreases. This variation is similar to that observed for 1-alkanol + fixed n-alkane mixtures. In addition, the
HEm curves are skewed towards low mole fractions of the alcohol
0.1845
0.1555
0.1285
0.0940
0.0483
1339.5
1347.0
1353.8
1361.4
1370.4
0.1783
0.1502
0.1283
0.0871
0.0494
1322.6
1330.4
1336.7
1345.4
1353.5
in both types of mixtures, and their C Ep;m values are high and posi1
tive. For example, C Ep;m =J mol K1 ¼ 11:7 for ethanol + heptane [44], and 7.2 for ethanol + methyl butyl ether [45]. All these
features point out that self-association of the1-alkanol plays
an
important role in such solutions. However, TSEm ¼ HEm GEm values
of 1-alkanol + alkane, or +linear monooxalkane largely differ. Thus,
for the 1-propanol + hexane system, GEm ¼ 1295 [46], HEm ¼ 533
[47] and TSEm ¼ 762 (all values in J mol1), while for the 1-propanol + dipropyl ether solution, GEm ¼ 840 [48], HEm ¼ 714 [48] and
TSEm ¼ 74 (values also in J mol1). The much higher TSEm values
and the lower C Ep;m values of monoether systems reveal the existence of dipolar interactions in such solutions [5]. On the other
hand,HEm (monoether) > HEm (alkane), which indicates that linear
monoethers are more active molecules when breaking the alcohol
self-association [5].
For mixtures with a given linear polyether, HEm increases
with the chain length of the 1-alkanol (table 6, figures 3–7),
C Ep;m values are lower than for solutions with alkanes or linear
monoethers (C Ep;m ¼ 4:4 J mol
1
K1 for 1-propanol + 2,5,8-
TSEm
trioxanonane [45]), and
values are rather high and
positive, although they strongly depend on the alcohol and
ether sizes. For systems containing 2,5,8-trioxanonane,
GEm ð308:15 KÞ=J mol
1
[49];
HEm =J
1
mol
¼ 283 (methanol) and 313 (1-propanol)
¼ 440 (methanol) and 1214 (1-propanol)
[50]. Therefore, TSEm =J mol 157 (methanol) and 901 (1-propanol). For the methanol + 2,5,8,11-tetraoxadodecane system,
1
GEm ð303:15 KÞ ¼ 59 J mol
TSEm
1
[51]; HEm ¼ 581 J mol
1
[52] and
1
522 J mol . Such features show that dipolar interactions
are very important in this type of solutions, and that their contribution to HEm increases with the alcohol size. If 2,5-dioxahex-
ane solutions are considered, the HEm curve is shifted to lower
mole fractions of methanol, while for mixtures with the remainder 1-alkanols, the corresponding HEm curves are nearly symmetrical [15] (figure 3, see also figures 4 and 5). That is, association
effects are more relevant in the methanol system.
200
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
TABLE 3
Excess speeds of sound, uE, and excess adiabatic compressibilities, jES , of 1-alcohol(1)
+ 3,6,9-trioxaundecane(2) mixtures at 298.15 K and atmospheric pressurea .
x1
uE/m s1
0.1296
0.1589
0.1917
0.2627
0.2904
0.3505
0.3925
0.4241
0.4639
0.5181
0.5637
0.6132
0.6207
0.6959
0.7434
0.8007
0.8481
0.9005
0.9476
Methanol(1) + 3,6,9-trioxaundecane(2)
7.2
8.7
10.5
14.3
15.7
18.7
20.8
22.2
24.1
26.3
28.0
29.7
29.8
31.4
31.7
30.8
28.5
23.3
15.3
0.1245
0.2149
0.3175
0.4078
0.4543
0.5047
0.5543
0.6137
0.6973
0.7951
0.8466
0.9449
1-Butanol(1) + 3,6,9-trioxaundecane(2)
3.1
4.8
6.4
7.4
7.7
8.0
8.1
8.1
7.9
6.9
6.0
3.0
0.0605
0.1110
0.1588
0.2062
0.3020
0.3947
0.5040
0.5920
0.6553
0.6922
0.7443
0.7923
0.8362
0.8836
0.9400
1-Decanol(1) + 3,6,9-trioxaundecane(2)
0.3
0.6
0.8
1.1
1.6
2.2
2.6
2.8
2.7
2.6
2.5
2.1
1.8
1.3
0.7
jES =TPa1
TABLE 4
Coefficients Ai and standard deviations, r (FE) (Eq. 8) for representation of the F E a
property at temperature T and atmospheric pressure for 1-alcohol(1) + 3,6,9-trioxaundecane(2) systems by Eq. (7).
9.63
11.80
14.28
19.64
21.73
26.25
29.50
31.75
34.76
38.59
41.70
45.10
45.47
49.72
51.70
52.51
50.79
44.20
31.22
3.95
6.27
8.43
9.83
10.36
10.79
11.07
11.09
10.99
9.84
8.62
4.31
T/K
Property
FE
293.15
V Em
298.15
303.15
293.15
298.15
303.15
293.15
298.15
303.15
a
b
V Em
uE
jES
V Em
V Em
V Em
uE
jES
V Em
V Em
V Em
uE
jES
V Em
A0
A1
A2
A3
Mehanol(1) + 3,6,9-trioxaundecane(2)
3.036 0.95
0.45
0.48
A4
0.55
r(FE)b
0.002
0.002
3.017
0.98
0.61
0.66
102.5
150.2
80.2
134
60
100
70
183
2.956
1.03
0.44
0.58
0.005
1-Butanol(1) + 3,6,9-trioxaundecane(2)
0.881 0.14
0.04
0.24
0.002
50
190
0.085
0.48
0.001
0.866
0.178
0.093
0.15
31.87
42.98
8.1
14.4
8.7
13
10.1
15
0.838
0.199
0.09
0.16
0.001
1-Decanol(1) + 3,6,9-trioxaundecane(2)
1.043
0.06
0.08
0.18
0.002
6
9
0.03
0.04
1.017
0.12
0.07
0.12
0.001
10.38
14.15
6.5
4.7
1.8
2.1
3.6
4
0.03
0.03
0.989
0.13
0.07
0.11
0.002
F E ¼ V Em , units: cm3 mol1; FE = uE, units: m s1; F E ¼ jES , units: TPa1.
units are the same that for FE.
0.68
1.17
1.53
1.90
2.64
3.25
3.65
3.67
3.50
3.36
3.06
2.57
2.13
1.51
0.85
E
Uncertainties, e, are: e(x1) = ±0.0001; eðuE Þ ¼ 0:015 juE j; e jS ¼ 0:02
jES ; eðPÞ ¼ 0:1 kPa.
a
Interestingly, for mixtures with a fixed 1-alkanol, the HEm variation with the selected solvent (alkane, linear mono or polyether)
depends on the alcohol considered. In the case of methanol solutions, HEm ðlinear monoetherÞ > HEm (linear polyether). Thus,
1
HEm =J mol ¼ 445 (diethyl ether [50]); 338 (2,5-dioxahexane
[15]); 609 (dipropyl ether [53]); 440 (2,5,8-trioxanonane [50]);
788 (dibutyl ether) [54]; 344 (3,6-dioxaoctane [50]). For mixtures
including the remainder 1-alkanols, HEm increases in the sequence:
alkane < linear monoether < linear polyether. For 1-propanol solutions: 685 (octane) [55] < 864 (dibutyl ether) [54] < 1123 (3,6,9-trioxaundecane [16]) (all values in J mol1). The lower HEm values of
methanol + linear polyether mixtures reveal the existence of
strong interactions between unlike molecules (see below), which
may also explain, at least partially, the rather large and negative
V Em values of these systems (table 7). It is remarkable that HEm of
mixtures formed by a given 1-alkanol and CH3–O–(CH2CH2O)nCH3
FIGURE 1. V Em at 298.15 K and atmospheric pressure for 1-alkanol(1) + 3,6,9trioxaundecane(2) mixtures. Symbols: experimental results: () (this work); (j)
[13], (O) [23], methanol; (.), (this work), (h) [23], 1-butanol; (), 1-decanol (this
work). Full lines, results from Redlich–Kister expansions using parameters listed in
table 4.
increases with n. In the case of 1-propanol mixtures,
1
HEm =J mol ¼ 1040 ðn ¼ 1Þ [15] < 1214 (n = 2) [50] < 1401
(n = 3) [8] < 1514 (n = 4) [56]. In addition, the HEm curves become
shifted to higher concentrations of the alcohol for increased n values (figures 3–7). Therefore, one can conclude that the ability of
polyethers to disrupt the alcohol self-association increases with
n. Dielectric measurements support this conclusion [57].
Let’s now evaluate the enthalpy of the OH–O interactions in 1alkanol + linear polyether mixtures. The starting equation is [5,58–
61]:
201
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
molar enthalpy at infinite dilution of the first component) of 1-alkanol or ether + heptane systems. So,
E;1
DHOHO ¼ HE;1
m1 ð1 alkanol þ linear polyetherÞ H m1 ð1
alkanol þ heptaneÞ HE;1
m1 ðlinear polyether
þ heptaneÞ
FIGURE 2. jES at 298.15 K and atmospheric pressure for 1-alkanol(1) + 3,6,9trioxaundecane(2) mixtures. Symbols: experimental results (this work): (), methanol; (j), 1-butanol; (N), 1-decanol. Full lines, results from Redlich–Kister
expansions using parameters listed in table 4.
HEm ¼ DHOHOH þ DHOO þ DHOHO
ð16Þ
which merely expresses that, neglecting structural effects [62,63],
HEm is the result of three contributions: two of them DHOHOH,DHOO, are positive and are related to the breaking of alkanol-alkanol and ether-ether interactions upon mixing, respectively; DHOHO
is a negative contribution due to the new OH–O interactions created
during the mixing process. Eq. (16) may be extended to x1 ? 0
[5,61,64] to evaluate DHOHO, the enthalpy of the H-bonds between
1-alkanols and linear polyethers in the studied solutions. In such
case, DHOHOH and DHOO can be replaced by HE;1
m1 (partial excess
ð17Þ
This is a rough estimation of DHOHO due to: (i) HE;1
m1 data used were
calculated from HEm measurements over the entire mole fraction
range. (ii) For 1-alkanol + n-alkane systems, it was assumed that
HE;1
m1 is independent of the alcohol, a common approach when applying association theories [8,65–68]. We have used in this work
1
[69–71]. From inspection of DHOH-O results
HE;1
m1 ¼ 23:2 kJ mol
collected in table 9, some interesting conclusions can be stated. (i)
For a given polyether, DHOHO slightly increases with the 1-alkanol
size, that is, interactions between unlike molecules become weaker,
probably because the OH group is more sterically hindered in longer
1-alkanols. The contribution to HEm from the breaking of the etherether interactions increases with the aliphatic surface of the alcohol,
as HEm of polyether + n-alkane mixtures also increases with the chain
length of the alkane. The HEm values of solutions involving 2,5,8,11tetraoxadodecane are (in J mol1) [72]: 1704 (heptane) < 1877 (octane) < 2110 (decane) < 2214 (dodecane). This may explain the observed HEm increase, much steeper when replacing methanol by
ethanol, than when this alcohol is replaced by 1-propanol (table 6;
figures 3, 5, 7). (ii) In the case of mixtures containing the same 1-alkanol and 2,5-dioxahexane or 3,6-dioxaoctane, no meaningful difference is encountered between the corresponding DHOHO values.
However, HEm (2,5-dioxahexane) > HEm (3,6-dioxaoctane) (table 6),
which is due to a higher DHOO term in the case of 2,5-dioxahexane
solution, i.e., to a higher positive contribution to HEm from the
breaking of the ether-ether interactions.Note that HE;1
m1 (2,5-dioxahexane + heptane) = 5.48 kJ mol1 [73] > HE;1
(3,6-dioxaoctane
+
m1
heptane) = 4.53 kJ mol1 [74].The same behaviour is expected for
mixtures with 2,5,8-trioxanonane, or 3,6,9-trioxaundecane.(iii) The
increase of n in the ether when is mixed with a certain 1-alkanol
leads to lower DHOHO values, that is, to stronger interactions between unlike molecules.However, HEm increases in the opposite sequence (see above).This variation is parallel to that of DHOO
(table 9).In fact, for CH3-O-(CH2CH2O)nCH3 + heptane mixtures,
TABLE 5
Flory parametersa of pure compounds at T = 298.15 K and atmospheric pressure.
a
b
c
d
e
f
g
h
Compound
Vi/cm3 mol1
ap/103 K1
jT/TPa1
V i =cm3 mol
Methanol
Ethanol
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Octanol
1-Nonanol
1-Decanol
2,5-Dioxahexane
3,6-Dioxaoctane
2,5,8-Trioxanonane
3,6.9-Trioxaundecane
2,5,8,11-Tetraoxadodecane
2,5,8,11,14-Pentaoxapentadecane
40.75b
58.69b
75.16b
91.98c
108.68c
125.31c
141.89d
158.48d
174.97e
191.58d
104.34b
141.33g
142.93f
179.68h
181.72f
221.02f
1.196b
1.096b
1.004b
0.9493c
0.9090c
0.8805c
0.8599d
0.8442d
0.8398e
0.8272d
1.268f
1.225g
1.060f
1.05h
0.965f
0.921f
1248b
1153b
1026b
949.2c
886.5c
842.3c
808.6d
780.9d
752e
740.9d
1114.5f
1140.5g
821.6f
891.4h
707.1f
589.6f
31.67
46.32
60.20
74.34
88.45
102.33
116.47
130.45
144.14
158.18
80.25
109.38
118.25
142.84
146.49
179.51
1
P i =J cm3
472.9
454.9
454.8
456.4
461.6
465.9
470.6
475.7
490.6
488.3
573.4
534.6
610.6
555.7
626.1
706.1
Vi, molar volume, ap, isobaric thermal expansion coefficient; jT, isothermal compressibility; V i , reduction parameter for volume and P i , reduction parameter for pressure.
Reference [29].
Reference [92].
Reference [5].
Reference [113].
Reference [114].
Reference [87].
[This work].
202
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
TABLE 6
Molar excess enthalpies, HEm at 298.15 K, atmospheric pressure and equimolar
composition for 1-alkanol(1) + polyether(2) systems. The interaction parameters, X12,
calculated from HEm at equimolar composition are also included.
1-Alkanol
HEm =J mol
X12/J cm3
rr HEm
a
Reference
Polyether: 2,5-dioxahexane
31.02
55.74
60.40
57.70
59.44
57.38
55.62
55.15
54.62
53.91
0.963
0.172
0.070
0.055
0.033
0.019
0.020
0.027
0.028
0.022
15
15
15
9
15
15
15
15
15
15
Methanol
Ethanol
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
344
742
870
842
877
941
Polyether: 3,6-dioxaoctane
29.55
47.60
46.31
38.9
36.22
35.35
0.370
0.419
0.206
0.121
0.084
0.116
50
50
50
115
115
115
Methanol
Ethanol
1-Propanol
1-Heptanol
440
962
1214
1222
1624
Polyether: 2,5,8-trioxanonane
38.03
0.626
61.54
0.140
63.91
0.062
64.33
0.024
54.51
0.043
50
50
50
9
50
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Nonanol
1123
1254
1312
1406
1475
1636
Polyether: 3,6,9-trioxaundecane
55.82
0.102
53.36
0.053
49.36
0.035
47.80
0.072
45.99
0.007
44.31
0.016
16
16
16
17
16
16
1-Propanol
Polyether: 2,5,8,11-tetraoxadodecane
1401
69.50
0.0156
9
Methanol
1-Propanol
1-Butanol
1-Pentanol
Polyether: 2,5,8,11,14-pentaoxapentadecane
581
47.20
0.356
1597
75.92
0.028
1853
74.81
0.026
1986
70.37
0.063
52
56
56
56
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Octanol
1-Nonanol
1-Alkanol
HE;1
¼ 5:48ðn ¼ 1Þ [73] < 8.16 (n = 2) [75] < 10.84 (n = 3)
m;1 =kJ mol
[72] < 13.33 (n = 4) [76].Consequently, HEm of polyether + heptane
mixtures also increases with n:1285 (n = 1) [73] < 1621 (n = 2)
[75] < 1704 (n = 3) [72] < 1897 (n = 4) [76] (values in J mol1).Interestingly, these values seem to be slightly higher than those of1-hexanol + CH3–O–(CH2CH2O)nCH3 mixtures (table 6), which suggests
the importance of dipolar interactions in solutions including longer
1-alkanols. Experimental work is undertaken to investigate carefully
this point.
On the other hand, alcohol–oxaalkane interactions are stronger
in mixtures with linear polyethers than in systems with linear
monoethers. For example, DHOHO/kJ mol1 = 21.1 and 16.40
for the methanol + diethyl ether, or 1-propanol + dibutyl ether
mixtures, respectively [5].
1
Flory
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Nonanol
Polyether:2,5-dioxahexane
0.499
0.314
0.481
0.194
0.783
0.197
0.068
1.020
0.071
0.067
0.069
0.014
1.139
0.064
1.188
0.113
1.226
0.168
1.250
0.278
1.216
13
116
13
23
10
117
116
9
23
116
12
14
14
Methanol
Ethanol
1-Propanol
1-Hexanol
1-Nonanol
Polyether: 3,6-dioxaoctane
0.717
0.305
0.433
0.697
0.385
0.825
0.303
0.825
0.183
13
13
10
12
14
Polyether: 2,5,8-trioxanonane
0.611
0.212
0.542
0.258
0.642
0.223
0.068
0.909
0.067
0.138
0.268
0.369
1.322
0.559
13
23
13
23
10
9
23
12
14
14
Methanol
Ethanol
1-Propanol
Methanol
Ethanol
Relative standard deviation (Eq. (14)).
Reference
V Em (0.5)/cm3 mol1
Exp.
338
803
1040
993
1174
1263
1340
1433
1517
1588
Methanol
Ethanol
1-Propanol
a
1
TABLE 7
Molar excess volumes, V Em at 298.15 K, atmospheric pressure and equimolar
composition for 1-alkanol(1) + polyether(2) systems. Comparison of experimental
(Exp.) results with Flory calculations using interaction parameters listed in Table 6.
1-Propanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Nonanol
Methanol
Ethanol
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
1-Nonanol
1-Decanol
Methanol
Ethanol
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Nonanol
Methanol
6.2. Volumetric data
Ethanol
For 1-alkanol + given alkane mixtures, it is well known that the
different contributions to V Em , such as changes in the alcohol selfassociation, breaking of interactions between like molecules, or
structural effects (changes in free volume, or interstitial accommodation) are sensitive to the lengths of the mixture components
1-Propanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Nonanol
Polyether: 3,6,9-trioxaundecane
0.754
0.686
0.769
0.430
0.397
0.304
0.857
0.324
0.216
0.989
0.209
0.149
1.046
0.0283
1.116
0.178
0.254
this work
23
13
13
23
10
94
this work
23
23
12
14
this work
Polyether: 5,8,11-trioxapentadecane
0.683
0.661
0.415
0.419
0.352
0.364
0.276
0.239
0.233
0.188
0.078
13
116
13
23
10
116
23
116
12
14
14
Polyether: 2,5,8,11-tetraoxadodecane
0.718
0.655
0.351
0.337
0.199
0.821
0.120
0.142
0.311
0.430
0.668
13
23
13
23
117
9
23
12
14
14
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
203
TABLE 7 (continued)
1-Alkanol
Exp.
Methanol
Ethanol
1-Hexanol
1-Heptanol
1-Nonanol
Reference
V Em (0.5)/cm3 mol1
Flory
Polyether: 2,5,8,11,14-pentaoxapentadecane
0.797
0.004
0.426
0.308
0.453
0.723
13
13
12
14
14
FIGURE 5. HEm at 298.15 K and atmospheric pressure for 1-alkanol(1) + 2,5,8trioxanonane(2) mixtures. Symbols: experimental results: (), methanol [50]; (j),
ethanol [50]; (N), 1-propanol [9]; (.), 1-heptanol [50]. Solid lines, results from the
Flory model using interaction parameters listed in table 6.
FIGURE 3. HEm at 298.15 K and atmospheric pressure for 1-alkanol(1) + 2,5-dioxahexane(2) mixtures. Symbols: experimental results: (), methanol [15]; (j), 1propanol [9]; (N), 1-pentanol [15]; (.), 1-heptanol [15]; (), 1-nonanol [15]. Solid
lines, results from the Flory model using interaction parameters listed in table 6.
FIGURE 6. HEm at 298.15 K and atmospheric pressure for 1-alkanol(1) + 3,6,9trioxaundecane(2) mixtures. Symbols: experimental results [16]: (), 1-propanol;
(j), 1-pentanol; (N), 1-heptanol; (.), 1-nonanol. Solid lines, results from the Flory
model using interaction parameters listed in table 6.
FIGURE 4. HEm at 298.15 K and atmospheric pressure for 1-alkanol(1) + 3,6dioxaoctane(2) mixtures. Symbols: experimental results: (), methanol [50]; (j),
1-butanol [115]; (N), 1-hexanol [115]. Solid lines, results from the Flory model
using interaction parameters listed in table 6.
[77]. Thus, V Em is positive over the whole concentration range when
the effects of the disruption of the H-bonds between alcohol molecules and non-specific interactions are predominant over the less
significant contribution from structural effects. If the latter are
dominant, as for solutions including long chain 1-alkanols and
short alkanes, where interstitial accommodation exists, V Em becomes negative [77–79]. The V Em variation of 1-alkanol + fixed linear monoether mixtures is similar to that of the corresponding
systems with heptane [5]. For a given alcohol, V Em (heptane) > V Em
204
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
TABLE 8
Variations of the X12 parameter, Di, or 1-alkanol(1) + polyether(2) mixtures in the
concentration ranges [0.05, 0.5] (i = 1) and [0.5,0.95] (i = 2) calculated according to Eq.
(25).
1-Alkanol
(linear monoether), due to the existence of interactions between
unlike molecules, which are stronger in methanol systems. The
more negative V Em values for the systems including longer 1-alkanols may be explained in terms of interstitial accommodation of
the ether molecules in the alcohol structure [5], as in solutions
with heptane occurs. In contrast, V Em increases with the 1-alkanol
size in mixtures containing a given polyether (table 7). In such
case, V Em is negative for systems with shorter 1-alkanols, and become positive for solutions with longer alcohols (table 7, figure
1). Negative V Em values can be here related to the existence of interactions between unlike molecules. However, free volume effects
are also present, particularly for mixtures with methanol or ethanol, as the concentration dependence of V Em reveals. In fact, the
V Em curves of such solutions are shifted to higher mole fractions
of the alkanol, the smaller mixture component ([13], figure 1). A
similar behaviour is encountered in alkane + alkane mixtures
[80–83]. It is remarkable that for 1-alkanol + fixed polyether mixtures, V Em and HEm vary similarly with the alkanol size. This means
that the observed V Em variation can be ascribed to changes in the
interactional effects, essentially a less negative contribution due
to the weakening of the alkanol-ether interactions and higher positive contributions to V Em from the breaking of interactions between like molecules, For example, in the case of solutions with
1
2,5,8,11-tetraoxadodecane, V Em =cm3 mol ¼ 0:749 (heptane),
0.976 (octane), 1.281 (decane) [84], 1.477 (dodecane) [85].
Next, V Em of 1-alkanol + CH 3-(CH 2)u1-O-(CH2CH 2O)n(CH 2)u1CH3 mixtures decreases when u increases (n constant) (table 7),
which is consistent with a lower positive contribution to V Em from
the breaking of the ether-ether interactions (see above). The same
behaviour is observed for CH3-(CH2)u1-O-(CH2CH2O)n (CH2)u11
CH3 + heptane
mixtures:
V Em =cm3 mol ¼ 1:092ðn ¼ u ¼ 1Þ
[86], 0.743 (n = 1;u = 2) [87].
The V Em variation with n (u fixed) strongly depends on the 1-alkanol size (table 7). Thus, for systems with methanol or ethanol and
D2
Reference
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Octanol
1-Nonanol
15
15
15
9
15
15
15
15
15
15
Methanol
Ethanol
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
1-Alkanol + 3,6-dioxaoctane
0.531
0.366
1.307
0.484
0.456
0.257
0.269
0.151
0.240
0.032
0.220
0.066
50
50
50
115
115
115
Methanol
Ethanol
1-Propanol
FIGURE 7. HEm at 298.15 K and atmospheric pressure for 1-alkanol(1) + linear
polyether(2) mixtures. Symbols: experimental results: (), methanol(1) + 2,5,8,11,
14-pentaoxapentadecane(2) [52]; (j), 1-propanol(1) + 2,5,8,11-tetraoxadodecane(2) [9]; (N), 1-propanol(1) + 2,5,8,11,14-pentaoxapentadecane(2) [56]; (.), 1butanol(1) + 2,5,8,11,14-pentaoxapentadecane(2) [56]; (), 1-pentanol(1) + 2,5,8,
11,14-pentaoxpentadecane(2) [56]. Solid lines, results from the Flory model using
interaction parameters listed in table 6.
D1
1-Alkanol + 2,5-dioxahexane
0.956
0.759
0.473
0.218
0.195
0.067
0.092
0.086
0.103
0.010
0.036
0.034
0.029
0.032
0.023
0.067
0.024
0.041
0.031
0.041
1-Heptanol
1-Alkanol + 2,5,8-trioxanonane
0.596
0.660
0.285
0.164
0.158
0.034
0.038
0.041
0.057
0.122
50
50
50
9
50
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Nonanol
1-Alkanol + 3,6,9-trioxaundecane
0.135
0.154
0.066
0.067
0.038
0.061
0.027
0.011
0.012
0.016
0.027
0.052
16
16
16
17
16
16
1-Propanol
1-Alkanol + 2,5,8,11-tetraoxadodecane
0.043
0.018
9
Methanol
1-Propanol
1-Butanol
1-Pentanol
1-Alkanol + 2,5,8,11,15-pentaoxapentadecane
0.225
0.503
0.038
0.057
0.027
0.067
0.231
0.049
52
56
56
56
methanol
ethanol
1-Propanol
u ¼ 1; V Em is negative and decreases when n increases, the opposite
behaviour to that observed for HEm . This reveals an increase of free
volume effects, as it is also noted by the fact that the V Em curves are
progressively shifted to higher mole fractions of the alcohol (smaller component) when n increases [13]. For mixtures with longer 1alkanols, say 1-hexanol, V Em is positive and increases with n, as HEm
does. Contributions to V Em from interactional effects are here predominant. It is interesting to compare V Em results for systems
including the same 1-alkanol and linear mono or polyethers of
similar size. For example, V Em (3,6-dioxaoctane)/cm3 mol1 = 0.717 (methanol) [13], 0.303 (1-hexanol) [12]; V Em (2,5,8-trioxanonane)/cm3 mol1 = 0.611 (methanol) [13], 0.268 (1-hexanol)
[12]; V Em (dipropyl ether)/cm3 mol1 = 0.339 (methanol) [53],
0.584 (1-hexanol) [88]. The lower V Em values for methanol + polyether mixtures could be ascribed to stronger interactions between
unlike molecules, as HEm values are also lower than for solutions
with linear monoethers. For longer 1-alkanols, V Em is higher for
mixtures with polyethers due to the large positive contribution
to V Em from the disruption of the ether-ether interactions. Note that
V Em (heptane)/cm3 mol1 = 0.256 (dipropyl ether) [89], 0.743 (3,6dioxaoctane) [87], 0.902 (2,5,8-trioxanonane) [90]. However, an
interesting exception is found when comparing V Em values of methanol or ethanol + 2,5-dioxahexane, or +diethyl ether systems. V Em
(2,5-dioxahexane)/cm3 mol1 = 0.499 (methanol); 0.194
205
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
TABLE 9
Partial excess molar enthalpies, HE;1
1 , at T =298.15 K at atmospheric pressure for
solute(1) + organic solvent(2) mixtures, and hydrogen bond interaction enthalpy,
DHOHO, for 1-alkanol(1) + linear polyether(2) systems.
H1E;1 =kJ mol
2,5-Dioxahexane + heptane
3,6-Dioxaoctane + heptane
2,5,8-Trioxanonane + heptane
3,6,9-Trioxaundecane + heptane
2,5,8,11-Tetraoxadodecane + heptane
2,5,8,11,14Pentaoxapentadecane + heptane
Methanol + 2,5-dioxahexane
Ethanol + 2,5-dioxahexane
1-Propanol + 2,5-dioxahexane
5.48 [73]
4.53 [74]
8.16 [75]
5.75 [118]
10.84 [72]
13.33 [76]
1-Butanol + 2,5-dioxahexane
1-Pentanol + 2,5-dioxahexane
1-Hexanol + 2,5-dioxahexane
1-Heptanol + 2,5-dioxahexane
1-octanol + 2,5-dioxahexane
1-Nonanol + 2,5-dioxahexane
Methanol + 3,6-dioxaoctane
Ethanol + 3,6-dioxaoctane
1-Propanol + 3,6-dioxaoctane
1-Butanol + 3,6-dioxaoctane
1-Pentanol + 3,6-dioxaoctane
1-Hexanol + 3,6-dioxaoctane
Methanol + 2,5,8-trioxanonane
Ethanol + 2,5,8-trioxanonane
1-Propanol + 2,5,8-trioxanonane
FIGURE 8. Flory interaction parameters, X12, for 1-alkanol(1) + linear polyether(2)
mixtures at 298.15 K. Points, values determined from HEm at different mole fractions
(see text): () methanol(1) + 2,5-dioxahexane(2) [15] (j), 1-propanol(1) + 3,6,9trioxaundecane(2) [16]; (N), 1-pentanol(1) + 3,6.9-trioxaundecane(2) [16] Solid
lines, X12 values calculated from HEm at x1 = 0.5 (table 6).
1-Heptanol + 2,5,8-trioxanonane
1-Propanol + 3,6,9-trioxaundecane
1-Butanol + 3,6,9-trioxaundecane
1-Pentanol + 3,6,9-trioxaundecane
1-Hexanol + 3,6,9-trioxaundecane
1-Heptanol + 3,6,9-trioxaundecane
1-Nonanol + 3,6,9-trioxaundecane
1-Propanol + 2,5,8,11-tetraoxadodecane
Methanol + 2,5,8,11,14pentaoxapentadecane
1-Propanol + 2,5,8,11,14pentaoxapentadecane
1-Butanol + 2,5,8,11,14pentaoxapentadecane
1-Pentanol + 2,5,8,11,14pentaoxapentadecane
(ethanol) [13]; V Em (diethyl ether)/cm3 mol1 = 0.788 (methanol), 0.654 (ethanol) [91].
E
It is also pertinent to examine the magnitude Ap ¼ @V
(table
@T
p
10). Its sign is the result of the variation in the balance of association/solvation and structural effects with temperature, and depends on the size and shape of the component molecules. For
systems with short 1-alkanol and long n-alkane, Ap is positive over
the whole concentration range (association effects are dominant).
For mixtures of long 1-alkanol and a short n -alkane, Ap shows negative values in the concentration region where interstitial accommodation is important. Similar trends are encountered for
1-alkanol + linear monoether mixtures [5]. For dibutyl ether systems, Ap/cm3 mol1 K1 varies in the order: 0.003 (1-propanol)
[11,88] > 0.001 [92] (1-butanol) > 0.0002 [92] (1-pentanol) >
0.0009 [92] (1-hexanol) > 0.002 (1-heptanol) [5] > 0.003 (1octanol) [5] > 0.005 [5] (1-decanol). This clearly remarks that
association effects are more relevant for those mixtures including
shorter 1-alkanols. In the case of linear polyether + alkane
mixtures, Ap is usually positive and decrease with the size of the
oxaalkane in such way that for the 2,5,8,11,14-pentaoxapentadecane + heptane or +cyclohexane systems becomes negative [93],
as consequence of dominant structural effects. For 1-alkanol +
3,6,9-trioxaundecane mixtures, Ap decreases with the alcohol size:
0.002 (methanol) > 0.0016 (1-propanol) > 0.0011 (1-butanol) >
0.0016 (1-hexanol) 0.0014 (1-decanol) cm 3 mol1 K1
[this work, 11,12,94]. This is probably due to a weakening of
association/solvation effects. The higher Ap values of 1-propanol + linear polyether mixtures compared to those of 1-hexanol
solutions [10–12] can be explained similarly. For 1-propanol systems, we note that Ap changes as follows: 2,5-dioxahexane <
2,5,8-trioxanonane < 2,5,8,11-tetraoxadodecane > 2,5,8,11,
14-pentaoxapentadecane (table 10). This suggests that structural
effects are enough important in the pentaether mixture to provide
a meaningful negative contribution to Ap at high temperatures.
The negative Ap (303.15 K) value of the 1-propanol + PEG-250
mixture (0.001 cm3 mol1 K 1 [95]) is consistent with this
statement.
System
a
2.24
4.30
4.74
4.28
5.25
5.55
6.20
6.45
7.32
7.75
1.40
4.71
4.47
3.94
4.25
4.79
2.77
4.08
4.75
4.23
6.80
4.01
4.38
4.78
5.18
5.67
6.31
4.06
2.38
[15]
[15]
[15]
[9]
[15]
[15]
[15]
[15]
[15]
[15]
[50]
[50]
[50]
[115]
[115]
[115]
[50]
[50]
[50]
[9]
[50]
[16]
[16]
[16]
[17]
[16]
[16]
[9]
[52]
1
DHOHO/
kJ mol1
26.4
24.4
23.9
24.4
23.4
23.1
22.5
22.2
21.4
20.9
26.3
23
23.3
23.8
23.5
22.9
28.6
27.3
26.6
27.1
24.6
24.9
24.6
24.2
23.8
23.3
22.6
30
34.2
4.64 [56]
31.9
5.54 [56]
31
8.48 [56]
28
value obtained from HE data over the whole concentration range.
Values of jES and uE reported in table 3 are rather low. The sign
of these magnitudes is consistent with that of V Em . Mixtures characterized by negative V Em values are less compressible than the
ideal solution, while the speed of sound is larger. The concentration dependence of the jES , uE and V Em curves is also similar. Note
that for the methanol mixture, the curves are very skewed to high
mole fractions of the alcohol (figures 1 and 2). Finally, it should be
mentioned that, at 303.15 K, jES of the methanol + 2,5,8,11,14-pentaoxapentadecane system is-44 TPa1 [96]. That is, it seems that
the behaviour of 1-alkanol + polyether mixtures regarding to jES
and uE magnitudes is close to that of ideal solution.
6.3. Results from Flory model
with methanol or ethanol are characterized by large
Systems
r HEm values (table 6), which reveals the existence of strong ori-
entational effects, particularly in mixtures including methanol. For
the remaining solutions, the rather low rðHEm Þ values obtained
indicate that the random mixing hypothesis is attained in large extent (see below). Mixtures with 1-alkanols (from 1-propanol) and
3,6-dioxaoctane slightly differ from this behaviour and are charac-
206
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
TABLE 10
E
Variation of excess molar volume with temperature, @V@Tm , for 1-alkanol(1) + linear
P
polyether(2) mixtures at 298.15 K and atmospheric pressure.
System
103
1-Propanol + 2,5-dioxahexane
1.23
1.1
1.1
1.6
1-Hexanol + 2,5-dioxahexane
1-Propanol + 2,5,8trioxanonane
1-Hexanol + 2,5,8-trioxanonane
Methanol + 3,6,9trioxaundecane
1-Propanol + 3,6,9trioxaundecane
1-Butanol + 3,6,9trioxaundecane
1-Hexanol + 3,6,9trioxaundecane
1-Decanol + 3,6,9trioxaundecane
1-Propanol + 5,8,11trioxapentadecane
1-Hexanol + 5,8,11trioxapentadecane
1-Propanol + 2,5,8,11tetraoxadodecane
1-Propanol + 2,5,8,11,14pentaoxapentadecane
@V Em
3
@T P =cm
mol
1
K1
Reference
[117]
[10,11]
[11,12]
[117]
2.1
1.75
2.0
[10,11]
[11,12]
This work
1.6
[94]
1.5
1.07
[10,11]
This work
1.6
[11,12]
1.4
This work
1.75
[94]
2.9
1.05
[10,11]
[11,12]
2.24
[117]
1.07
[117]
FIGURE 9. HEm at 298.15 K and atmospheric pressure for 1-alkanol(1) + PEG(2)
mixtures. Symbols: experimental results: (), methanol(1) + PEG-250(2) [52]; (j),
1-propanol(1) + PEG-350(2) [56]; (N), 1-butanol(1) + PEG-350(2) [56]; (.), 1-pentanol(1) + PEG-350(2) [56]. Solid lines, results from the Flory model using interaction parameters listed in table 11.
0:281ðN S ¼ 18Þ [22] and
TABLE 11
Molar excess enthalpies, HEm at 298.15 K, atmospheric pressure and equimolar
composition for 1-alkanol(1) + PEG(2) a systems. The interaction parameters calculated from HmE at equimolar compostion are also included.
1-Alkanol
HEm =J mol
Methanol + PEG-250
1-Propanol + PEG-350
1-Butanol + PEG-350
1-Pentanol + PEG-350
608
1437
1721
1973
1
X12/J cm3
48.15
64.36
64.78
64.62
rr HEm
0.293
0.075
0.080
0.078
b
Reference
52
56
56
56
a
Flory calculations using the following parameters for the PEGs. PEG-250:
V = 271.17cm3 mol1 [119]; ap = 8.83 104 K1 [119] jT = 580 TPa1 [119,120];
⁄
V = 221.69 cm 3 mol1; P⁄ = 679.2 J cm3; PEG-350: V = 313.91cm3 mol1 [121];
ap = 7.84 104 K1 [121] jT = 490TPa1 [121]; V⁄ = 261.21cm 3 mol1; P⁄ = 687.8
J cm3.
terized by weak orientational effects. Note that r HEm values of
these mixtures are higher than those of the corresponding systems
with 2,5-dioxahexane (table 6). This could be due to the oxygen
atoms are more screened in 3,6-dioxaoctane molecules in such
way that the creation of interactions between unlike molecules becomes more difficult, which could lead to enhanced effects related
to the self-association of 1-alkanols. For methanol+CH3O(CH2CH2O)nCH3 mixtures, orientational effects decrease when n is increased, probably due to a certain compensation between effects
related to interactions between like molecules and those ascribed
to interactions between unlike molecules.
A comparison between Flory results for 1-alkanol + linear
mono or polyether mixtures is necessary. We define the mean rel P
r HEm ¼
ative standard deviation as r
rr HEm =NS (NS, number
r HEm ¼
of systems). For mixtures with monoethers, r
0:335ðN S ¼ 26Þ
[22];
while
for
polyether
mixtures,
E
r r Hm ¼ 0:142ðNS ¼ 32Þ (this work). If solutions with methanol
r r HEm ðmonoetherÞ ¼
or
ethanol
are
not
considered,
r r HEm ðpolyetherÞ ¼ 0:059ðNS ¼ 25Þ
(this work). This clearly shows that orientational effects are stronger in mixtures involving linear monoethers. It is remarkable that
this type of effects are roughly independent of the 1-alkanol in systems with linear monoethers. Polyether mixtures behave differently and orientational effects are much relevant in those
systems with methanol or ethanol.
We have applied also the model to 1-alkanol + PEG-250, or
+PEG-350 mixtures (table 11, figure 9), which show similar trends
to those encountered in systems with linear polyethers. Thus, orientational effects are stronger in the methanol + PEG-250 solution,
characterized by a larger r HEm value. The HEm of this system de-
creases with increased T values: 608J mol1 [52] (T = 298.15 K);
576 J mol1 [97] (T = 303.15 K), which suggests that the mentioned orientational effects are mainly of dipolar type. For the
remaining 1-alkanol + PEG-350 systems, their behaviour is close
to that of random mixing. With regard to systems including
2,5,8,11,14-pentaoxapentadecane, solutions with PEGs show higher and more asymmetrical HEm curves (figures 7 and 9). This confirms our previous statement on the increase of CH2CH2O groups
in the ether increases its ability to break the alcohol selfassociation.
On the other hand, in mixtures with a given 1-alkanol, the X12
parameter increases with the alcohol size up to 1-propanol or 1butanol and then decreases (table 6). It is known that HEm is the result
of
two contributions: one related to interactional effects
U EV;m , and another linked to structural effects (equation of state
(eos) contribution). Thus [62,63]:
HEm ¼ U EV;m þ
T aP V Em
jT
:
ð18Þ
In the classical Flory theory, HEm is also expressed as the sum of an
interactional term (directly dependent on X12) and of a term which
depends on the characteristic and reduced parameters of the pure
compounds and of V Em (eos contribution) [39]. Table 7 shows that
the V Em values predicted by the model are positive and much higher
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
than the experimental ones, which, according to Eq. (18), leads to
overestimated values of the eos contribution. This is particularly
important for solutions with long chain 1-alkanols and may explain
the lower X12 values for such systems.
The very large V Em values obtained from the Flory model reveal
that the interactional contribution to this magnitude is overestimated and that structural effects (free volume effects) are not
properly taken into account. Nevertheless, the theory describes
correctly the parallel variation of HEm and V Em for mixtures with a
given polyether when the alkanol size is increased, or the V Em decrease for 1-alkanol+CH3O(CH2CH2O)nCH3 mixtures when n is
increased.
The application of the Kirkwood–Buff formalism to methanol
or 1-propanol+linear polyether systems shows that the local
mole fractions of alcohols (x11) are higher than the bulk ones
(x1) [18]. Differences between x11 and x1 are more relevant at
low 1-alkanol concentrations and decrease when replacing
methanol by 1-propanol [18]. Interestingly, the x11 values are
lower than those of systems with linear monoethers [22]. Figure 8 shows the concentration dependence of X12. Typically,
for the methanol+2,5-dioxahexane mixture, where effects related
to the alcohol self-association are very important, X12 changes
rapidly with x1. For the 1-propanol + 3,6,9-trioxaundecane sys
tem such dependence is much weaker (see the low r HEm value of this system, table 6). On the other hand, the X12 values at
the concentration range [0.05,0.45] are higher than X12 at x1
= 0.5. That is, the model overestimates the interactions between
unlike molecules in that region, which is agreement with the
findings obtained from the application of the Kirkwood–Buff
integrals.
We finish with a comment on the results obtained when
using a generalized statistical thermodynamic formalism based
on an eos type theory of H-bonds in fluid systems [98]. The
model predicts a contribution to HEm which is much lower to that
ascribed to physical effects. At equimolar composition and
298.15 K, the former contribution is 100 J mol1 for the 1-propanol + 2,5-dioxahexane mixture and decreases for the corresponding 1-butanol solution (ca. 0 J mol1) [98]. On the other
hand, the H-bond contribution to HEm is s-shaped, with positive
values at lower mole fractions of the 1-alcohol. We newly see
that effects related to alcohol self-association are more relevant
in that region.
7. Conclusions
Experimental q; u; V Em ; jES and uE values have been reported
for methanol, 1-butanol or 1-decanol + 3,6,9-trioxaundecane
systems. HEm and C Ep;m data of 1-alkanol + linear polyether mixtures reveal that interactions are essentially of dipolar type,
particularly for solutions with longer 1-alkanols. Interactions
between unlike molecules become weaker when the alcohol
size is increased in mixtures with a given polyether. For 1-alkanol + CH3O(CH2CH2O)nCH3 systems, such interactions are
stronger for increased n values, although the ability of the
ether to break the alcohol self-association increases with n.
V Em data show the existence of free volume effects in solutions
including methanol or ethanol. These effects are more important for large n values. This is supported by Ap values. Results
from the Flory model indicate that orientational effects are relevant in systems with methanol or ethanol, and that the
behaviour of the remaining systems is close to that of random
mixing. Solutions with 3,6-dioxaoctane separate of this trend
and are characterized by weak orientational effects. 1-Alkanol + linear polyether, or +PEG-250, or +PEG-350 behave
207
similarly. Orientational effects are much stronger in 1-alkanol +
linear monoether mixtures.
Acknowledgements
The authors gratefully acknowledge the financial support received from the Ministerio de Ciencia e Innovación, under the Project FIS2010-16957. A.M. acknowledges the FPI grant financed by
the Valladolid University.
References
[1] R. Csikos, J. Pallay, J. Laky, E.D. Radchenko, B.A. Englin, J.A. Robert,
Hydrocarbon Process. Int. Ed. 55 (1976) 121–125.
[2] I. Hatzionnidis, E. Voutsas, E. Lois, D.P. Tassios, J. Chem. Eng. Data 43 (1986)
386–392.
[3] U. Nowaczyk, F. Steimle, Int. J. Refrig. 15 (1992) 10–15.
[4] D.S. Soane, Polymer Applications for Biotechnology, Prentice-Hall, Englewood
Cliffs, 1994.
[5] J.A. González, I. Mozo, I. García de la Fuente, J.C. Cobos, N. Riesco, J. Chem.
Thermodyn. 40 (2008) 1495–1598.
[6] J.A. González, I. Mozo, I. García de la Fuente, J.C. Cobos, V.A. Durov, Fluid Phase
Equilib. 245 (2006) 168–184.
[7] T. Treszczanowicz, D. Cieslak, J. Chem. Thermodyn. 25 (1993) 661–665.
[8] A. Heintz, Ber. Bunsenges. Phys. Chem. 89 (1985) 172–181.
[9] S. Mohren, A. Heintz, Fluid Phase Equilib. 133 (1997) 247–264.
[10] A. Serna, I. García de la Fuente, J.A. González, J.C. Cobos, Fluid Phase Equilib.
133 (1997) 187–192.
[11] S. Villa, N. Riesco, F.J. Carmona, I. García de la Fuente, J.A. González, J.C. Cobos,
Thermochim. Acta 362 (2000) 169–177.
[12] A. Serna, S. Villa, I. García de la Fuente, J.A. González, J.C. Cobos, J. Sol. Chem.
30 (2001) 253–261.
[13] F.J. Carmona, F.J. Arroyo, I. García de la Fuente, J.A. González, J.C. Cobos, Can. J.
Chem. 77 (1999) 1608–1616.
[14] F.J. Arroyo, F.J. Carmona, I. García de la Fuente, J.A. González, J.C. Cobos, J.
Solution Chem. 29 (2000) 743–756.
[15] J.C. Cobos, M.A. Villamañán, C. Casanova, J. Chem. Thermodyn. 16 (1984) 861–
864.
[16] J.C. Cobos, I. García, J.A. González, C. Casanova, J. Chem. Thermodyn. 22 (1990)
383–386.
[17] J.C. Cobos, I. García de la Fuente, J.A. González, Can. J. Chem. 80 (2002) 292–
301.
[18] J.A. González, I. García de la Fuente, J.C. Cobos, Thermochim. Acta 525 (2011)
103–113.
[19] J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19 (1954) 774–777.
[20] H.V. Kehiaian, Fluid Phase Equilib. 13 (1983) 243–252.
[21] P.J. Flory, J. Am. Chem. Soc. 87 (1965) 1833–1838.
[22] J.A. González, N. Riesco, I. Mozo, I. García de la Fuente, J.C. Cobos, Ind. Eng.
Chem. Res. 48 (2009) 7417–7429.
[23] A. Pal, A. Kumar, Fluid Phase Equilib. 161 (1999) 153–168.
[24] J.A. González, N. Riesco, I. Mozo, I. García de la Fuente, J.C. Cobos, Ind. Eng.
Chem. Res. 46 (2007) 1350–1359.
[25] J.A. González, Ind. Eng. Chem. Res. 49 (2010) 9511–9524.
[26] J.A. González, I. García de la Fuente, J.C. Cobos, I. Mozo, I. Alonso, Thermochim.
Acta 514 (2011) 1–9.
[27] J.A. González, I. García de la Fuente, J.C. Cobos, N. Riesco, Ind. Eng. Chem. Res.
51 (2012) 5108–5116.
[28] M.E. Wieser, Pure Appl. Chem. 78 (2006) 2051–2066.
[29] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents, Techniques of
Chemistry. Weissberger, A. Ed., Wiley: NewYork, Vol. II, (1986).
[30] J. Nath, J. Chem. Thermodyn. 30 (1998) 885–895.
[31] K.N. Marsh, Recommended Reference Materials for the Realization of Physical
Properties, Blackwell Scientific Publications, Oxford, 1987.
[32] G.C. Benson, C.J. Halpin, A.J. Treszczanowicz, J. Chem. Thermodyn. 13 (1981)
1175–1183.
[33] E. Junquera, G. Tardajos, E. Aicart, J. Chem. Thermodyn. 20 (1988) 1461–1467.
[34] K. Tamura, K. Ohomuro, S. Murakami, J. Chem. Thermodyn. 15 (1983) 859–
868.
[35] K. Tamura, S. Murakami, J. Chem. Thermodyn. 16 (1984) 33–38.
[36] G. Douheret, M.I. Davis, J.C.R. Reis, M.J. Blandamer, Chem. Phys. Chem. 2
(2001) 148–161.
[37] G. Douheret, C. Moreau, A. Viallard, Fluid Phase Equilib. 22 (1985) 277–287.
[38] P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences,
McGraw-Hill, New York, 1969.
[39] A. Abe, P.J. Flory, J. Am. Chem. Soc. 87 (1965) 1838–1846.
[40] P.J. Flory, R.A. Orwoll, A. Vrij, J. Am. Chem. Soc. 86 (1964) 3507–3514.
[41] P.J. Flory, R.A. Orwoll, A. Vrij, J. Am. Chem. Soc. 86 (1964) 3515–3520.
[42] R.A. Orwoll, P.J. Flory, J. Am. Chem. Soc. 89 (1967) 6822–6829.
[43] P.J. Howell, B.J. Skillerne de Bristowe, D. Stubley, J. Chem. Soc. A (1971) 397–
400.
[44] R. Tanaka, S. Toyama, S. Murakami, J. Chem. Thermodyn. 18 (1986) 63–73.
208
J.A. González et al. / J. Chem. Thermodynamics 59 (2013) 195–208
[45] M.A. Villamañán, C. Casanova, G. Roux-Desgranges, J.-P.E. Grolier,
Thermochim. Acta 52 (1982) 279–283.
[46] S.-C. Hwang, R.L. Robinson, J. Chem. Eng. Data 22 (1977) 319–325.
[47] L. Wang, G.C. Benson, B.C.-Y. Lu, J. Chem. Eng. Data 37 (1992) 403–406.
[48] R. Garriga, F. Sánchez, P. Pérez, M. Gracia, Fluid Phase Equilib. 138 (1997)
131–144.
[49] M.A. Villamañán, H.C. Van Ness, Int. DATA Ser., Sel. Data Mixtures, Ser.A
(1985) 32–37.
[50] M.A. Villamañán, C. Casanova, A.H. Roux, J.-P.E. Grolier, J. Chem. Thermodyn.
14 (1982) 251–258.
[51] X. Esteve, S.K. Chaudhari, A. Coronas, J. Chem. Eng. Data 40 (1995) 1252–
1256.
[52] E.R. López, J. García, A. Coronas, J. Fernández, Fluid Phase Equilib. 133 (1997)
229–238.
[53] R. Garriga, F. Sánchez, P. Pérez, M. Gracia, J. Chem. Thermodyn. 29 (1997)
649–659.
[54] I. Mozo, I. García de la Fuente, J.A. González, J.C. Cobos, J. Chem. Thermodyn.
42 (2010) 17–22.
[55] E. Jiménez, C. Franjo, L. Segade, J.L. Legido, M.I. Paz Andrade, Fluid Phase
Equilib. 133 (1997) 179–185.
[56] M.E.F. de Ruiz-Holgado, J. Fernández, M.I. Paz Andrade, E.L. Arancibia, Can. J.
Chem. 80 (2002) 462–466.
[57] V. Alonso, J.A. González, I. García de la Fuente, J.C. Cobos, Thermochim. Acta.
551 (2013) 70–77.
[58] H.P. Diogo, M.E. Minas de Piedade, J. Moura Ramos, J.A. Simoni, J.A. Martinho
Simoes, J. Chem. Educ. 70 (1993) A227.
[59] T.M. Letcher, U.P. Govender, J. Chem. Eng. Data 40 (1995) 1097–1100.
[60] E. Calvo, P. Brocos, A. Piñeiro, M. Pintos, A. Amigo, R. Bravo, A.H. Roux, G.
Roux.-Desgranges, J. Chem. Eng. Data 44 (1999) 948–954.
[61] J.A. González, I. García de la Fuente, J.C. Cobos, Fluid Phase Equilib. 301 (2011)
145–155.
[62] H. Kalali, F. Kohler, P. Svejda, Fluid Phase Equilib. 20 (1985) 75–80.
[63] J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures, 3th ed.,
Butterworths, London, 1982.
[64] T.M. Letcher, B.C. Bricknell, J. Chem. Eng. Data 41 (1996) 166–169.
[65] V. Brandani, J.M. Prausnitz, Fluid Phase Equilib. 7 (1981) 233–257.
[66] V. Brandani, Fluid Phase Equilib. 12 (1983) 87–104.
[67] A. Liu, F. Kohler, L. Karrer, J. Gaube, P. Spelluci, Pure & Appl. Chem. 61 (1989)
1441–1452.
[68] H. Renon, J.M. Prausnitz, Chem. Eng. Sci. 22 (1967) 299–307.
[69] R.H. Stokes, C. Burfitt, J. Chem. Thermodyn. 5 (1973) 623–631.
[70] S.J. O’Shea, R.H. Stokes, J. Chem. Thermodyn. 18 (1986) 691–696.
[71] H.C. Van Ness, J. Van Winkle, H.H. Richtol, H.B. Hollinger, J. Phys. Chem. 71
(1967) 1483–1494.
[72] T. Treszczanowicz, L. Wang, G.C. Benson, B.C.-Y. Lu, Thermochim. Acta. 189
(1991) 255–259.
[73] M.K. Kumaran, G.C. Benson, J. Chem. Thermodyn. 18 (1986) 27–29.
[74] G.C. Benson, M.K. Kumaran, P.J. D’Arcy, Thermochim. Acta 74 (1984) 187–
191.
[75] F. Kimura, P.J. D’Arcy, M.E. Sugamori, G.C. Benson, Thermochim. Acta 64
(1983) 149–154.
[76] T. Treszczanowicz, G.C. Benson, B.C.-Y. Lu, J. Chem. Eng. Data 33 (1988) 379–
381.
[77] A.J. Treszczanowicz, O. Kiyohara, G.C. Benson, Bull. Acad. Pol. Sci., Ser. Sci.
Chim. XXIX (1981) 103–110.
[78] A.J. Treszczanowicz, G.C. Benson, J. Chem. Thermodyn. 10 (1978) 967–974.
[79] A.J. Treszczanowicz, G.C. Benson, J. Chem. Thermodyn. 9 (1977) 1189–1197.
[80] M. García Sánchez, C. Rey Losada, J. Chem. Eng. Data 36 (1991) 75–77.
[81] M.F. Bolotnikov, Y.A. Neruchev, Y.F. Melikhov, V.N. Verveyko, M.V. Verveyko,
J. Chem. Eng. Data 50 (1995) 1095–1098.
[82] D. Zhang, G.C. Benson, B.C.-Y. Lu, J. Chem. Thermodyn. 18 (1986) 619–622.
[83] S.E.M. Hamam, M.K. Kumaran, G.C. Benson, J. Chem. Thermodyn. 16 (1984)
537–542.
[84] T. Treszczanowicz, G.C. Benson, B.C.-Y. Lu, Thermochim. Acta. 168 (1990) 95–
102.
[85] G.C. Benson, M.K. Kumaran, T. Treszczanowicz, P.J. D’Arcy, C.J. Halpin,
Thermochim, Acta. 95 (1985) 59.
[86] J. Peleteiro, C.A. Tovar, R. Escudero, S. Carballo, J.L. Legido, L. Romaní, . J.
Solution Chem. 22 (1993) 1005–1017.
[87] M.K. Kumaran, F. Kimura, C.J. Halpin, G.C. Benson, J. Chem. Thermodyn. 16
(1984) 687–691.
[88] A. Serna, I. García de la Fuente, J.A. González, J.C. Cobos, C. Casanova, Fluid
Phase Equilib. 110 (1995) 361–367.
[89] F. Kimura, A.J. Treszczanowicz, C.J. Halpin, G.C. Benson, J. Chem. Thermodyn.
15 (1983) 503–510.
[90] A.J. Treszczanowicz, C.J. Halpin, G.C. Benson, J. Chem. Eng. Data 27 (1982)
321–324.
[91] J. Canosa, A. Rodríguez, J. Tojo, Fluid Phase Equilib. 156 (1999) 57–71.
[92] I. Mozo, I. García de la Fuente, J.A. González, J.C. Cobos, J. Chem. Eng. Data 53
(2008) 857–862.
[93] L. Andreoli Ball, L.M. Trejo, M. Costas, D. Patterson, Fluid Phase Equilib. 147
(1998) 163–180.
[94] A. Pal, A. Kumar, J. Chem. Sci 116 (2004) 39–47.
[95] K.P. Singh, H. Agarwal, V.K. Shukla, I. Vibhu, M. Gupta, J.P. Shuka, J. Solution
Chem. 39 (2010) 1749–1762.
[96] S.M. Pereira, M.A. Rivas, T.P. Iglesias, J. Chem. Eng. Data 47 (2002) 1343–1366.
[97] X. Esteve, D. Boer, K.R. Patil, S.K. Chaudhari, A. Coronas, J. Chem. Eng. Data 39
(1994) 767–769.
[98] D. Missopolinou, C. Panayiotou, Fluid Phase Equilib. 110 (1995) 73–88.
[99] Z. Shan, A.F.A. Asfour, J. Chem. Eng. Data 44 (1999) 118–123.
[100] C.-H. Tu, C.-Y. Liu, W.-F. Wang, Y.-T. Chou, J. Chem. Eng. Data 45 (2000) 450–
456.
[101] A.S. Al-Jimaz, J.A. Al-Kandary, A.-H.M. Abdul-Latif, Fluid Phase Equilibria 218
(2004) 247–260.
[102] B. González, N. Calvar, E. Gómez, Á. Domínguez, J. Chem. Thermodynamics 39
(2007) 1578–1588.
[103] P.S. Nikam, M.C. Jadhav, M. Hasan, J. Chem. Eng. Data 40 (1995) 931–934.
[104] G. Roux, G. Perron, J.E. Desnoyers, Can J. Chem. 56 (1978) 2808–2814.
[105] A.S. Al-Jimaz, J.A. Al-Kandary, A.-H.M. Abdul-Latif, J. Chem. Eng. Data 52
(2007) 206–214.
[106] A. Rodriguez, J. Canosa, J. Tojo, J. Chem. Eng. Data 46 (2001) 1506–1515.
[107] A. Pal, A. Kumar, H. Kumar, Int. J. Thermophys. 27 (2006) 777–793.
[108] S.C. Bhatia, R. Rani, J. Sangwan, R. Bhatia, Int. J. Thermophys. 32 (2011) 1163–
1174.
[109] U. Domanska, M. Krolikowska, J. Chem. Eng. Data 55 (2010) 2994–3004.
[110] A. Valtz, C. Coquelet, G. Boukais-Belaribi, A. Dahmani, F. Belaribi, J. Chem. Eng.
Data 56 (2011) 1629–1657.
[111] T. Romero, N. Riesco, S. Villa, I. García de la Fuente, J.A. González, J.C. Cobos,
Fluid Phase Equilib. 202 (2002) 13–27.
[112] L. Andreoli-Ball, D. Patterson, M. Costas, M. Caceres-Alonso, J. Chem. Soc.,
Faraday Trans. 1 1988 84(11) 3991-4012.
[113] M. Díaz Peña, G. Tardajos, J. Chem. Thermodyn. 11 (1979) 441–445.
[114] J. Peleteiro, C.A. Tovar, E. Carballo, J.L. Legido, L. Romaní, Can. J. Chem. 72
(1994) 454–462.
[115] M. Pintos, R. Bravo, M.I. Paz Andrade, V. Pérez Villar, J. Chem. Thermodyn. 14
(1982) 951–955.
[116] A. Pal, S. Sharma, Fluid Phase Equilib. 145 (1998) 151–158.
[117] A. Pal, A. Kumar, Int. J. Thermophys. 24 (2003) 1073–1087.
[118] H.V. Kehiaian, K. Sosnkowska-Kehiaian, R. Hryniewicz, J. Chim. Phys., PhysChim. Biol. 68 (1971) 922–934.
[119] A. Conesa, S. Shen, A. Coronas, Int. J. Thermophys. 19 (1998) 1343–1358.
[120] E. Hanke, U. Schultz, U. Kaatze, Chem. Phys. Chem. 8 (2007) 835–860.
[121] M.-J. Lee, Ch.-K. Lo, H. Liu, J. Chem. Eng. Data 43 (1998) 1076–1081.
JCT 12-573