Ludomir M. Laudański
Between Certainty and Uncertainty
Intelligent Systems Reference Library, Volume 31
Editors-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl
Prof. Lakhmi C. Jain
University of South Australia
Adelaide
Mawson Lakes Campus
South Australia 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au
Further volumes of this series can be found on our
homepage: springer.com
Vol. 11. Samuli Niiranen and Andre Ribeiro (Eds.)
Information Processing and Biological Systems, 2011
ISBN 978-3-642-19620-1
Vol. 12. Florin Gorunescu
Data Mining, 2011
ISBN 978-3-642-19720-8
Vol. 13. Witold Pedrycz and Shyi-Ming Chen (Eds.)
Granular Computing and Intelligent Systems, 2011
ISBN 978-3-642-19819-9
Vol. 14. George A. Anastassiou and Oktay Duman
Towards Intelligent Modeling: Statistical Approximation
Theory, 2011
ISBN 978-3-642-19825-0
Vol. 15. Antonino Freno and Edmondo Trentin
Hybrid Random Fields, 2011
ISBN 978-3-642-20307-7
Vol. 16. Alexiei Dingli
Knowledge Annotation: Making Implicit Knowledge
Explicit, 2011
ISBN 978-3-642-20322-0
Vol. 17. Crina Grosan and Ajith Abraham
Intelligent Systems, 2011
ISBN 978-3-642-21003-7
Vol. 18. Achim Zielesny
From Curve Fitting to Machine Learning, 2011
ISBN 978-3-642-21279-6
Vol. 19. George A. Anastassiou
Intelligent Systems: Approximation by Artificial Neural
Networks, 2011
ISBN 978-3-642-21430-1
Vol. 22. Przemyslaw Różewski,
Emma Kusztina, Ryszard Tadeusiewicz,
and Oleg Zaikin
Intelligent Open Learning Systems, 2011
ISBN 978-3-642-22666-3
Vol. 23. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Data Mining: Foundations and Intelligent Paradigms, 2011
ISBN 978-3-642-23165-0
Vol. 24. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Data Mining: Foundations and Intelligent Paradigms, 2011
ISBN 978-3-642-23240-4
Vol. 25. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Data Mining: Foundations and Intelligent Paradigms, 2011
ISBN 978-3-642-23150-6
Vol. 26. Tauseef Gulrez and Aboul Ella Hassanien (Eds.)
Advances in Robotics and Virtual Reality, 2011
ISBN 978-3-642-23362-3
Vol. 27. Cristina Urdiales
Collaborative Assistive Robot for Mobility Enhancement
(CARMEN), 2011
ISBN 978-3-642-24901-3
Vol. 28. Tatiana Valentine Guy, Miroslav Kárný and
David H. Wolpert (Eds.)
Decision Making with Imperfect Decision Makers, 2012
ISBN 978-3-642-24646-3
Vol. 29. Roumen Kountchev and Kazumi Nakamatsu (Eds.)
Advances in Reasoning-Based Image Processing Intelligent
Systems, 2012
ISBN 978-3-642-24692-0
Vol. 20. Lech Polkowski
Approximate Reasoning by Parts, 2011
ISBN 978-3-642-22278-8
Vol. 30. Marina V. Sokolova and Antonio
Fernández-Caballero
Decision Making in Complex Systems, 2012
ISBN 978-3-642-25543-4
Vol. 21. Igor Chikalov
Average Time Complexity of Decision Trees, 2011
ISBN 978-3-642-22660-1
Vol. 31. Ludomir M. Laudański
Between Certainty and Uncertainty, 2013
ISBN 978-3-642-25696-7
Ludomir M. Laudański
Between Certainty
and Uncertainty
Statistics and Probability in Five Units
with Notes on Historical Origins and Illustrative
Numerical Examples
123
Author
Ludomir M. Laudański
Rzeszow Technical University
Rzeszow
Poland
ISSN 1868-4394
e-ISSN 1868-4408
ISBN 978-3-642-25696-7
e-ISBN 978-3-642-25697-4
DOI 10.1007/978-3-642-25697-4
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2012930478
c Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Acknowledgements
Bertrand Russell (1872–1970), who left about 40 books for the coming generations,
in a preface to one of them confessed that they were completely ready in his mind
before he sat down to write them. But this is not the case even with a single one of
my books whose number does not came to one third of Russell's books. Most frequently the preparatory procedure of my book resembles a mosaic where the general concept becomes the opening stage of the design process. Here I must mention
the pleasure stemming from a suitable selection of the pieces used to make successive parts of the mosaic. On the other hand, my books have been predominantly the
result and product of my lectures and of the stimulating processes of my students'
reception of them. As Czesław Miłosz once said after giving a lecture: "Again I
was lucky enough to draw a rabbit from the hat". Therefore my first words of
acknowledgement are addressed to my students. On a more personal note – I commence by mentioning my best American colleague and friend, the late Professor
Frederick O. Smetana (1928-2011), whose assistance over several decades was an
important stimulus in all I did – despite thousands of kilometres dividing us – he
lived in Raleigh and I in Rzeszow (even the first letters of our home towns are the
same). I also have profited, which a careful reader might note in the book, from the
assistance of Professor Antoni Smoluk, now emeritus of Wrocław University of
Economics and long-time Head of the Mathematics Department. Next I would like
to thank Professor Stephan M. Stigler of Chicago University, an internationally
recognized figure, the author of histories and stories on statistics and probability.
His help with respect to literature for my book was exceptional: I can confess that
each and every of my calls for help, even during his summer holidays, was answered and appropriate assistance was provided. Lecturing for two weeks at Yasar
University, Ismir, Turkey, I had the pleasure to met Professor Giuseppe Burgio of
La Sapienza, Rome, and our further contacts became fruitfully stimulating for
this book. I have also received friendly support from Professor Anthony W. F.
Edwards, Cambridge. The true Godfather of this book was Dr. Thomas Ditzinger
from Springer Verlag, Heidelberg; I would also like to thank Helger Schaepe from
the same place, whose friendly help I greatly appreciate. I received assistance
from a very distant place, Chennai, India and here I must mention Ms. Suguna
Ramalignan, the leader of the team which patiently and thoroughly took the book
through its final printing stage. Let me also express my gratitude to professor
Daniel Simson who gave his permission to reproduce a drawing by Leon
JeĞmanowicz. My daughter Maria Klara Laudanska did the final proof reading of
the book. To all those persons, named and unnamed, I would like once more to
express my deep appreciation, gratitude and sincere thanks.
Rzeszow
May 2012
Ludomir M. LaudaĔski
Contents
Polish Probabilists .................................................................................................1
Prologue and Logistics – per se ............................................................................3
Dice Players ............................................................................................................5
BOOK ONE THEORY
Chapter 1: Descriptive Statistics ..........................................................................9
1.1
1.2
1.3
A Dialogue ..............................................................................................9
Defining the Subject ..............................................................................11
Descriptive Statistics Dimension One ...................................................13
1.3.1 Mean Value – Definition and Significance ...............................13
1.3.2 Variance, and Variability ..........................................................16
1.3.3 Linear Transformations .............................................................19
1.3.4 Z-Score Statistics ......................................................................25
1.4 Famous and Admired ............................................................................26
Literature References ......................................................................................35
Chapter 2: Grouped Data. Introduction to General Statistics ........................37
2.1 Grouping Due to Attributes ...................................................................38
2.2 Inner Appendix ......................................................................................45
2.3 Grouping of Variables ...........................................................................50
2.4 Direct Method to Derive Averages ........................................................53
2.5 Coded Method .......................................................................................56
2.6 Discussing Two Special Cases ..............................................................58
2.7 Percentiles for the Grouped Data ...........................................................62
References .......................................................................................................64
Chapter 3: Regression vrs. Correlation .............................................................67
3.1 Linear Regression – The Idea ................................................................67
3.2 Regression Lines ...................................................................................69
3.3 Arithmetical Appendix without Comments ...........................................75
3.4 Correlation – Descriptive Statistics .......................................................76
3.5 Correlation – Grouped Data ..................................................................80
3.6 The Great Table of Correlation..............................................................80
References .......................................................................................................85
VIII
Contents
Chapter 4: Binomial Distribution ......................................................................87
4.1
Tracing the Origin .................................................................................87
Abuthnot ...........................................................................................88
Pascal ................................................................................................90
Stifel ..................................................................................................93
Bayes .................................................................................................96
4.2 Close Acquaintance ...............................................................................99
4.3 Three Problems of S. Pepys [22], p.400-401 .........................................99
4.4 Weldon’s Dice Data.............................................................................102
4.5 Two Shores – Two Tails ......................................................................103
4.6 Jacob Bernoulli’ Weak Law of Large Numbers ..................................109
4.7 Following Abraham de Moivre ...........................................................110
4.8 Beyond the Binomial Distribution .......................................................113
4.9 Derivation of the Poisson Distribution ................................................116
4.10 Notes on the Multinomial and Negative Binomial Distributions ........121
References .....................................................................................................125
Chapter 5: Normal Distribution Binomial Heritage .......................................129
5.1 Normal Statistics, Preliminaries ..........................................................129
5.2 Four Properties of the Normal Distribution .........................................135
5.3 Making Use of the Statistical Tables of the Normal Distribution........135
5.4 Two Proofs ..........................................................................................137
5.5 The Central Limit Theorem – An Intuitive Approach .........................138
5.6 Distribution of Sample Means .............................................................140
5.7 Properties of the Distribution of Sample Means ..................................141
5.8 To Initiate the Monte Carlo Simulation ...............................................144
5.9 De Moivre–Laplace Limit Theorems ..................................................149
5.10 Remarks on the Binomials Convergence ............................................154
References .....................................................................................................157
Les Gross Poissons .............................................................................................159
BOOK TWO EXERCISES
Unit 1: Descriptive Statistics .............................................................................165
Problem 1.1 (see: [1], Prob. 4.10, p.59).....................................................165
Problem 1.2 (see: [1], Prob. 2.8, p.23).......................................................165
Problem 1.3 (see [1], Prob. 2.20, p.25) ......................................................166
Problem 1.4 ...................................................................................................168
Problem 1.5 (Follows Prob.4.25 [1]) .........................................................170
Problem 1.6 (see [1], Prob.2.29) ................................................................174
Problem 1.7 (see [1], Prob.2.26) ................................................................175
Problem 1.8 (see: [1], Prob.2.23)...............................................................176
Problem 1.9 (see [1], Prob.3.9) ..................................................................177
Short Note .....................................................................................................178
Contents
IX
Problem 1.10 (see: [1], Prob.3.7) ................................................................179
Problem 1.11 (see: [1], Prob.3.21) ..............................................................180
Problem 1.12 (see: [1], Prob.3.13, p.42) .....................................................180
Problem 1.13 (see [1], 3.28, p.45) ...............................................................181
Problem 1.14 (see [6], 2.21) ........................................................................181
Problem 1.15 (see: [1], Prob.3.27) ..............................................................185
References .....................................................................................................187
Unit 2: Grouped Data ........................................................................................189
Problem 2.1 (see [1], p.15) ........................................................................189
Problem 2.2 (see [1], p.16) ........................................................................190
Problem 2.3 (see: [1]), p.16) ......................................................................191
Problem 2.4 (see [2], Prob.5.12) - The Continuous Case ..........................192
Problem 2.5 (see [2], Prob.5.10) – The Discrete Case ...............................194
Problem 2.6 (see: [4], pp.32-33) ................................................................196
Problem 2.7 ...................................................................................................199
Problem 2.8 (see [2], Prob.5.21) ................................................................205
Problem 2.9 (see [2], Review I, Prob.1.13) ...............................................206
Problem 2.10 (see [1], p.96) ........................................................................208
Problem 2.11 (Example of the Final Examination Problem) ......................211
Problem 2.12 (see [1], p.104) ......................................................................213
Problem 2.13 (Another Example of the Final Examination Problem) ........213
References .....................................................................................................215
Unit 3: Regression vs. Correlation ...................................................................217
Problem 3.1 (see [3]) .................................................................................217
Problem 3.2 ...................................................................................................221
Problem 3.3 [6] ..........................................................................................223
Problem 3.4 ...................................................................................................226
Problem 3.5 ...................................................................................................226
Problem 3.6 ...................................................................................................226
Problem 3.7 ...................................................................................................227
Problem 3.8 ...................................................................................................228
Problem 3.9 ...................................................................................................231
Problem 3.10 .................................................................................................235
Problem.3.11 (see [4], Problem.16.11) .......................................................237
Problem 3.12 .................................................................................................238
Problem Extra One ........................................................................................241
References .....................................................................................................242
Unit 4: Binomial Distribution ...........................................................................245
Problem 4.1 (see [12], Problem 3.1, p.256, p.453) ....................................245
Problem 4.2 (see [12], Problem 2.12, p.251) .............................................248
Problem 4.3 ...................................................................................................249
Problem 4.4 ...................................................................................................252
X
Contents
Problem 4.5 ...................................................................................................252
Problem 4.6 ...................................................................................................253
Problem 4.7 (see: [13], p.125) ...................................................................256
Problem 4.8 ...................................................................................................259
Problem 4.9 ...................................................................................................261
Problem 4.10 (see [2], Problem 9.15, p.178) ..............................................262
Problem 4.11 (see [13], p.128) ....................................................................263
Problem 4.12 (see [5], p.165, p.63) .............................................................264
Problem 4.13 (Source: Internet) ..................................................................265
Problem 4.14 .................................................................................................266
Problem 4.15 (see [14]) ...............................................................................268
Problem 4.16 (see [19]) ...............................................................................270
Problem 4.17 .................................................................................................272
References .....................................................................................................273
Unit 5: Normal Distribution. Binomial Heritage ............................................275
Problem.5.1 (see [5], Problem 7.16, p.129) ...............................................276
Problem 5.2 (see [5], Problem 7.20) ..........................................................276
Problem 5.3 (see 7.22 in [5], Modified) ....................................................279
Problem 5.4 ([1], 7.28 – No Answer) ........................................................280
Problem 5.5 ([1], 7.27 – Answers Enclosed) .............................................281
Problem 5.6 ([1], 7.29, with a Single Answer; Modified) .........................282
Problem 5.7 (Following Problem 4.5) .......................................................283
Problem 5.8 (Following Problem 4.7) .......................................................285
Problem 5.9 (Following Problem 4.8) .......................................................285
Problem 5.10 (Following Problem 4.10)...................................................286
Problem 5.11 (see [5], Problem 7.25) .........................................................286
Problem 5.12 (Weinberg [1] 10.5 p. 196) ...................................................288
Problem 5.13 Weinberg [1], 10.7, p.196) .................................................289
Problem 5.14 (Weinberg [1], 10.9, s.196) ...................................................291
Problem 5.15 (Weinberg [1], 10.13, p.197) ................................................293
Problem 5.16 (Weinberg [1], 10.15, p.197) ................................................295
Problem 5.17 (Weinberg [1] 10.23, p.198) .................................................297
Problem 5.18 (Weinberg [1], 8.8, p.157, No Answers)...............................298
Problem 5.19 (Weinberg [1], 8.10, p.157 – No Answers)...........................300
Problem 5.20 ..............................................................................................301
References .....................................................................................................302
Error Function ...................................................................................................303
References ..........................................................................................................305
Index ...................................................................................................................311