Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
11 pages
1 file
Earth and Planetary Science Letters, 2000
The Rodinia reconstruction of the Neoproterozoic Supercontinent has dominated discussion of the late Precambrian Earth for the past decade and originated from correlation of sedimentary successions between western North America and eastern Australia. Subsequent developments have sited other blocks according to a distribution of V1100 Ma orogenic belts with break-up involving a putative breakout of Laurentia and rapid reassembly of continent crust to produce Gondwana by early Phanerozoic times. The Rodinia reconstruction poses several serious difficulties, including: (a) absence of palaeomagnetic correlation after V730 Ma which requires early fragmentation of continental crust although geological evidence for this event is concentrated more than 150 Ma later near the Cambrian boundary, and (b) the familiar reconstruction of Gondwana is only achieved by exceptional continental motions largely unsupported by evidence for ocean consumption. Since the geological evidence used to derive Rodinia is non-unique, palaeomagnetic data must be used to evaluate its geometrical predictions. Data for the interval V1150^500 Ma are used here to test the Rodinia model and compare it with an alternative model yielding a symmetrical crescent-shaped analogue of Pangaea (Palaeopangaea). Rodinia critically fails the test by requiring Antarctica to occupy the location of a quasi-integral Africa, whilst Australia and South America were much closer to their Gondwana configurations around Africa than implied by Rodinia. Palaeopangaea appears to satisfy palaeomagnetic constraints whilst surmounting geological difficulties posed by Rodinia. The relative motions needed to produce Gondwana are then relatively small, achieved largely by sinistral transpression, and consistent with features of Pan-African orogenesis; continental dispersal did not occur until the Neoproterozoic^Cambrian boundary. Analogies between Palaeopangaea and (Neo)pangaea imply that supercontinents are not chaotic agglomerations of continental crust but form by episodic coupling of upper and lower mantle convection leading to conformity with the geoid. ß
2009
2009.04 The plate tectonic and palaeogeographic history of the late Proterozoic is a tale of two supercontinents: Rodinia and Pannotia. Rodinia formed during the Grenville Event (c. 1100 Ma) and remained intact until its collision with the Congo continent (800-750 Ma). This collision closed the southern part of the Mozambique Seaway, and triggered the break-up of Rodinia. The Panthalassic Ocean opened as the supercontinent of Rodinia split into a northern half (East Gondwana, Cathaysia and Cimmeria) and a southern half (Laurentia, Amazonia-NW Africa, Baltica, and Siberia). Over the next 150 Ma, North Rodinia rotated counter-clockwise over the North Pole, while South Rodinia rotated clockwise across the South Pole. In the latest Precambrian (650-550 Ma), the three Neoproterozoic continents--North Rodinia, South Rodinia and the Congo continents--collided during the Pan-Africa Event forming the second Neoproterozoic supercontinent, Pannotia (Greater Gondwanaland). Pan-African mountain building and the fall in sea level associated with the assembly of Pannotia may have triggered the extreme Ice House conditions that characterize the middle and late Neoproterozoic. Although the palaeogeographic maps presented here do not prohibit a Snowball Earth, the mapped extent of Neoproterozoic ice sheets favour a bipolar Ice House World with a broad expanse of ocean at the equator. Soon after it was assembled (c. 560 Ma), Pannotia broke apart into the four principal Palaeozoic continents: Laurentia (North America), Baltica (northern Europe), Siberia and Gondwana. The amalgamation and subsequent break-up of Pannotia may have triggered the "Cambrian Explosion". The first economically important accumulations of hydrocarbons are from Neoproterozoic sources. The two major source rocks of this age (Nepa of Siberia and Huqf of Oman) occur in association with massive Neoproterozoic evaporite deposits and in the warm equatorial-subtropical belt, within 30 degrees of the equator.
Geoscience Frontiers, 2017
Geological, geochronological and isotopic data are integrated in order to present a revised model for the Neoproterozoic evolution of Western Gondwana. Although the classical geodynamic scenario assumed for the period 800e700 Ma is related to Rodinia break-up and the consequent opening of major oceanic basins, a significantly different tectonic evolution can be inferred for most Western Gondwana cratons. These cratons occupied a marginal position in the southern hemisphere with respect to Rodinia and recorded subduction with back-arc extension, island arc development and limited formation of oceanic crust in internal oceans. This period was thus characterized by increased crustal growth in Western Gondwana, resulting from addition of juvenile continental crust along convergent margins. In contrast, crustal reworking and metacratonization were dominant during the subsequent assembly of Gondwana. The Río de la Plata, Congo-São Francisco, West African and Amazonian cratons collided at ca. 630 e600 Ma along the West Gondwana Orogen. These events overlap in time with the onset of the opening of the Iapetus Ocean at ca. 610e600 Ma, which gave rise to the separation of Baltica, Laurentia and Amazonia and resulted from the final Rodinia break-up. The East African/Antarctic Orogen recorded the subsequent amalgamation of Western and Eastern Gondwana after ca. 580 Ma, contemporaneously with the beginning of subduction in the Terra Australis Orogen along the southern Gondwana margin. However, the Kalahari Craton was lately incorporated during the Late EdiacaraneEarly Cambrian. The proposed Gondwana evolution rules out the existence of Pannotia, as the final Gondwana amalgamation postdates latest connections between Laurentia and Amazonia. Additionally, a combination of introversion and extroversion is proposed for the assembly of Gondwana. The contemporaneous record of final Rodinia break-up and Gondwana assembly has major implications for the supercontinent cycle, as supercontinent amalgamation and break-up do not necessarily represent alternating episodic processes but overlap in time.
Sedimentary Geology, 2013
This review paper presents a set of revised global palaeogeographic maps for the 825-540 Ma interval using the latest palaeomagnetic data, along with lithological information for Neoproterozoic sedimentary basins. These maps form the basis for an examination of the relationships between known glacial deposits, palaeolatitude, positions of continental rifting, relative sea-level changes, and major global tectonic events such as supercontinent assembly, breakup and superplume events. This analysis reveals several fundamental palaeogeographic features that will help inform and constrain models for Earth's climatic and geodynamic evolution during the Neoproterozoic. First, glacial deposits at or near sea level appear to extend from high latitudes into the deep tropics for all three Neoproterozoic ice ages (Sturtian, Marinoan and Gaskiers), although the Gaskiers interval remains very poorly constrained in both palaeomagnetic data and global lithostratigraphic correlations. Second, continental sedimentary environments were dominant in epicratonic basins within Rodinia (>825 Ma to ca. 750 Ma), possibly resulting from both plume/superplume dynamic topography and lower sea-level due to dominantly old oceanic crust. This was also the case at ca. 540 Ma, but at that time the pattern reflects widespread mountain ranges formed during the assembly of Gondwanaland and increasing mean age of global ocean crust. Third, deep-water environments were dominant during the peak stage of Rodinia break-up between ca. 720 Ma and ca. 580 Ma, likely indicating higher sea level due to increased rate of production of newer oceanic crust, plus perhaps the effect of continents drifting away from a weakening superplume. Finally, there is no clear association between continental rifting and the distribution of glacial strata, contradicting models that restrict glacial influence to regions of continental uplift.
Developments in Precambrian Geology, 2009
A new geodynamic model is presented for southwestern Gondwana amalgamation. Rifting of Rodinia was a protracted process, advancing from the boundaries of the supercontinent toward its core, represented by Laurentia. Whereas the Congo-São Francisco Craton was likely far away from Rodinia, it is proposed that the Río de la Plata Craton was part of the supercontinent. We propose the name ‘Arachania’ for the block that comprises the Cuchilla Dionisio-Pelotas, Marmora, Tygerberg and correlative terranes, which likely represents a fragment of the Kalahari Craton that a later stage (650–570lMa) evolved into a magmatic arc. Available evidence points towards stepwise rifting of Rodinia, and the sequential closure of the thus formed oceanic basins from east to west (present coordinates). These basins were the Damara, Adamastor, Brazilides, Pampean and Iapetus oceans. Final amalgamation of Gondwana took place in the Cambrian (ca. 520lMa).
Tectonophysics, 2003
Palaeomagnetic data are used to study the configurations of continents during the Proterozoic. Applying stringent reliability criteria, the positions of the continents at 12 times in the 2.45- to 1.00-Ga period have been constructed. The continents lie predominantly in low to intermediate latitudes. The sedimentological indicators of palaeoclimate are generally consistent with the palaeomagnetic latitudes, with the exception of the Early Proterozoic, when low latitude glaciations took place on several continents.The Proterozoic continental configurations are generally in agreement with current geological models of the evolution of the continents. The data suggest that three large continental landmasses existed during the Proterozoic. The oldest one is the Neoarchaean Kenorland, which comprised at least Laurentia, Baltica, Australia and the Kalahari craton. The protracted breakup of Kenorland during the 2.45- to 2.10-Ga interval is manifested by mafic dykes and sedimentary rift-basins on many continents. The second ‘supercontinental’ landmass is Hudsonland (also known as Columbia). On the basis of purely palaeomagnetic data, this supercontinent consisted of Laurentia, Baltica, Ukraine, Amazonia and Australia and perhaps also Siberia, North China and Kalahari. Hudsonland existed from 1.83 to ca. 1.50–1.25 Ga. The youngest assembly is the Neoproterozoic supercontinent of Rodinia, which was formed by continent–continent collisions during ∼1.10–1.00 Ga and which involved most of the continents. A new model for its assembly and configuration is presented, which suggests that multiple Grenvillian age collisions took place during 1.10–1.00 Ga. The configurations of Kenorland, Hudsonland and Rodinia depart from each other and also from the Pangaea assembly. The tectonic styles of their amalgamation are also different reflecting probable changes in sizes and thicknesses of the cratonic blocks as well as changes in the thermal conditions of the mantle through time.
Earth-Science Reviews, 1996
During the Neoproterozoic and Palaeozoic the two continents of Baltica and Laurentia witnessed the break-up of one supercontinent, Rodinia, and the formation of another, but less long-lived, Pangea. Baltica and Laurentia played central roles in a tectonic menage a trois that included major erogenic events, a redistribution of palaeogeography and a brief involvement of both with Gondwana. Many of these plate re-organisations took place over a short time interval and invite a re-evaluation of earlier geodynamic models which limited the speeds at which large continental plates could move to an arbitrarily low value. Baltica and Laurentia probably shared a common drift history for the time interval 750-600 Ma as they rotated clockwise and drifted southward from an equatorial position during the opening of the Proto-Pacific between Laurentia and East Gondwana (initial break-up of Rodinia). On their combined approach toward the south pole, Baltica and Laurentia were glaciated during the Varanger glaciations. Although the two continents drifted toward the south pole during the Late Proterozoic, they began to separate at around 600 Ma (rift to drift) to form the Iapetus Ocean through asymmetric rifting and relative rotations of up to 180". Initiation of rifting on the Baltic margin is marked by the 650 Ma Egersund tholeiitic dykes (SW Norway) which contain abundant lower crustal zenoliths, and the tholeiitic magma was probably derived from a mantle plume. In latest Precambrian time, the final redistribution of Rodinia is characterised by high plate velocities. In particular, Laurentia began a rapid, up to 20 cm/yr, ascent to equatorial latitudes and essentially stayed in low latitudes throughout most of the Palaeozoic. The high velocities suggest either that Laurentia was pushed off a lower mantle heat anomaly originating from supercontinental mantle insulation or that Laurentia was pulled toward a subduction-generated cold spot in the proto-Pacific. Baltica, except for a short and rapid excursion to lower latitudes in the Late Vendian, remained mostly in intermediate to high southerly latitudes and closer to the Gondwana margin until Early Ordovician times. In Early Ordovician times, Arenig-Llanvim platform trilobites show a broad distinction between the continents of Laurentia/Siberia/North China Block (Bathyurid), Baltica (Ptychopygine/ Megalaspid) and the areas of NW Gondwana/Avalonia/Armorica (Calymenacean-Dalmanitacean). During the Ordovician, Baltica rotated and moved northward, approaching close enough to Laurentia by the late Caradoc for trilobite and brachiopod spat to cross the intervening
Geological Society, …, 2000
Food Chemistry, 2012
CEJA - Reflexiones brasileñas sobre la reforma procesal penal en Uruguay (2019), 2019
The Journal of International Social Research , 2020
Atmospheric Chemistry and Physics, 2011
Comparative Studies in Society and History, 2016
Theory of Computing Systems, 2010
European J. of International Management, 2008
Communications of The ACM, 1976
東京工芸大学工学部紀要. 人文・社会編, 2008
Journal of Controlled Release, 2017
Sanglap Journal of Critical Inquiry, 2023
Medicine & Science in Sports & Exercise, 2008
Advances in Mathematics, 2014
PEB Exchange, Programme on Educational Building, 2008
Journal of Applied Polymer Science, 2005
Oncology in Clinical Practice, 2024