Academia.eduAcademia.edu

Managing seafood safety after an oil spill

2002

Page 1. Ruth Yender Office of Response and Restoration National Oceanic and Atmospheric Administration Seattle, Washington Jacqueline Michel and Christine Lord Research Planning, Inc. Columbia, South Carolina Managing Seafood Safety after an Oil Spill ...

Managing฀Seafood฀Safety฀ after฀an฀Oil฀Spill Courtesy฀of฀PhotoDisc Ruth฀Yender Ofice฀of฀Response฀and฀Restoration฀ National฀Oceanic฀and฀Atmospheric฀Administration Seattle,฀Washington฀ � �� � �������� �� �� � ������� ��� �� �� �������� � �� � Jacqueline฀Michel฀and฀Christine฀Lord Research฀Planning,฀Inc. Columbia,฀South฀Carolina � � �� �� �� �� �� ��� � �� � � � �� � National฀Oceanic฀and฀Atmospheric฀Administration฀•฀NOAA’s฀National฀Ocean฀Service฀•฀Ofice฀of฀Response฀and฀Restoration Managing฀Seafood฀Safety฀ after฀an฀Oil฀Spill Ruth฀Yender Ofice฀of฀Response฀and฀Restoration฀ National฀Oceanic฀and฀Atmospheric฀Administration Seattle,฀Washington฀ � �� � �������� �� �� � ������� ��� �� �� �������� � �� � Jacqueline฀Michel฀and฀Christine฀Lord Research฀Planning,฀Inc. Columbia,฀South฀Carolina � � �� �� �� �� �� ��� � �� � � � �� � National฀Oceanic฀and฀Atmospheric฀Administration฀•฀NOAA’s฀National฀Ocean฀Service฀•฀Ofice฀of฀Response฀and฀Restoration November฀2002 3 FOR฀INFORMATION฀OR฀COPIES฀OF฀THIS฀DOCUMENT,฀PLEASE฀CONTACT: ruth.yender@noaa.gov PLEASE฀CITE฀AS: Yender,฀R.,฀J.฀Michel,฀and฀C.฀Lord.฀฀2002.฀฀Managing฀Seafood฀Safety฀after฀an฀Oil฀Spill.฀฀Seattle:฀Hazardous฀Materials฀Response฀Division,฀Ofice฀of฀ Response฀and฀Restoration,฀National฀Oceanic฀and฀Atmospheric฀Administration.฀฀72฀pp. Table฀of฀Contents I.฀ ฀ ฀ Introduction฀and฀Background฀ II.฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ Assessing฀the฀Likelihood฀of฀Seafood฀Exposure฀and฀Contamination฀ III.฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ Monitoring฀Seafood฀for฀Contamination฀ IV.฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ 1 Decision฀Process฀for฀Managing฀Seafood฀Safety฀฀ 2 Seafood฀Safety฀Management฀Authority฀ 4 Oil฀Types฀and฀Properties฀ 6 Oil฀Fate฀and฀Pathways฀of฀Exposure฀ 11 ฀ Early฀weathering฀processes฀that฀change฀oil฀properties฀ 11 ฀ Long-term฀weathering฀processes฀that฀change฀oil฀properties฀ 15 ฀ Weathering฀processes฀that฀change฀the฀location฀of฀the฀oil฀ 15 Seafood฀Contamination฀Terminology฀ 17 Biological฀and฀Ecological฀Factors฀Affecting฀PAH฀Contamination฀of฀Seafood฀ Summary฀of฀Literature฀on฀Uptake฀and฀Elimination฀ 23 Correlation฀between฀Taint฀and฀Body฀Burden฀ 26 Conceptual฀Models฀of฀Exposure,฀Uptake,฀and฀Elimination฀ 26 18 29 Developing฀Seafood฀Sampling฀Plans฀ 29 ฀ Selecting฀sampling฀locations฀ 29 ฀ Selecting฀target฀species฀to฀be฀sampled฀฀ 30 ฀ Sampling฀frequency฀and฀duration฀฀ 30 ฀ Sample฀collection฀and฀handling฀฀ 30 Testing฀Seafood฀for฀Contamination฀and฀Tainting฀ 31 ฀ Sensory฀evaluation฀of฀seafood฀for฀presence฀of฀petroleum฀taint฀฀ ฀ Chemical฀testing฀techniques฀for฀petroleum฀contaminants฀in฀seafood฀฀ Water฀Monitoring฀ 36 Sediment฀Monitoring฀ 37 Seafood฀Risk฀Assessment฀ 6 31 33 38 Overview฀of฀Cancer฀Risk฀Calculations฀for฀PAHs฀in฀Seafood฀ 38 Seafood฀Advisory฀and฀Action฀Levels฀from฀Previous฀U.S.฀Oil฀Spills฀ 40 The฀Equivalency฀Approach฀for฀Risk฀Assessment฀ 41 ฀ BaP฀equivalency฀approach฀for฀PAH฀contamination฀ 41 ฀ Equivalency฀calculations฀ 42 Human฀Consumption฀Rate฀Assumptions฀ 43 ฀ Consumption฀estimates฀for฀consumers฀of฀commercially฀harvested฀seafood฀ 43 ฀ Consumption฀estimates฀for฀consumers฀of฀seafood฀harvested฀recreationally฀or฀for฀subsistence฀use฀ ฀ Consumption฀estimates฀for฀other฀potentially฀at-risk฀groups฀ 46 V.฀ ฀ ฀ ฀ ฀ Risk฀Communication฀ 47 VI.฀ Literature฀Cited฀ 53 VII.฀฀฀฀฀ Glossary฀of฀Terms฀ 60 ฀ Appendix฀ General฀Considerations฀ 47 General฀recommendations฀for฀risk฀communication฀during฀oil฀spills฀฀ Lessons฀Learned฀from฀Previous฀Oil฀Spills฀ 48 Communicating฀Relative฀Risks฀ 51 64 47 44 Figures I-1.฀ Decision฀process฀for฀managing฀seafood฀safety฀after฀an฀oil฀spill฀ 3 II-1.฀฀฀ II-2.฀ Pattern฀of฀PAH฀distribution฀for฀different฀oil฀types.฀ 9 Plots฀of฀predicted฀evaporation฀and฀dispersion฀representative฀of฀four฀oil฀types฀ V-1฀ V-2.฀฀฀ Commercial฀shellish฀harvest฀closure฀notice฀issued฀during฀the฀New฀Carissa฀oil฀spill฀ Shellishing฀closure฀notice฀issued฀during฀the฀New฀Carissa฀oil฀spill฀฀ 51 12 50 Tables I-1.฀ Recent฀oil฀spills฀where฀seafood฀monitoring฀was฀conducted฀ II-1.฀ II-2.฀ II-3.฀ II-4.฀฀฀฀ II-5.฀฀฀ II-6.฀฀฀ II-7.฀ ฀ II-8.฀฀ Components฀in฀oil฀and฀selected฀characteristics฀ 6 Characteristics฀of฀oil฀types฀affecting฀the฀potential฀for฀seafood฀contamination฀ 7 PAHs฀normally฀reported฀in฀chemical฀analyses฀ 10 Example฀of฀solubilities฀of฀different฀oil฀types฀ 13 Habitat฀utilization,฀feeding฀strategies,฀and฀risk฀of฀exposure฀to฀oil฀of฀different฀seafood฀groups฀ Half-lives฀of฀PAHs฀in฀bivalves฀based฀on฀laboratory฀tests฀of฀both฀water฀and฀sediment฀exposures฀ Presence฀and฀duration฀of฀taint฀and฀tissue฀contamination฀with฀petroleum฀ compounds฀reported฀at฀various฀oil฀spills฀ 25 Conceptual฀framework฀for฀seafood฀exposure฀to,฀uptake,฀and฀elimination฀of฀oil฀ 27 III-1.฀฀฀ ฀ National฀recommended฀water฀quality฀criteria฀for฀priority฀toxic฀pollutants฀for฀protection฀against฀ human฀health฀effects฀ 37 IV-1.฀฀ IV-2.฀ IV-3.฀฀ Relative฀PAH฀potency฀estimates฀derived฀from฀various฀sources.฀ Sport฀ishers฀consumption฀data฀ 45 Subsistence฀ishers฀consumption฀data฀ 45 V-1.฀ PAHs฀in฀foods฀ 52 5 42 19 24 I.฀ INTRODUCTION฀AND฀BACKGROUND Seafood฀safety฀is฀a฀concern฀raised฀at฀nearly฀every฀oil฀spill฀incident฀of฀any฀signiicance.฀฀Both฀ actual฀and฀potential฀contamination฀of฀seafood฀can฀substantially฀affect฀commercial฀and฀recreational฀ ishing฀and฀subsistence฀seafood฀use.฀฀Loss฀of฀conidence฀in฀seafood฀safety฀and฀quality฀can฀impact฀ seafood฀markets฀long฀after฀any฀actual฀risk฀to฀seafood฀from฀a฀spill฀has฀subsided,฀resulting฀in฀serious฀economic฀consequences.฀฀Protecting฀consumers฀from฀unpalatable฀and฀unsafe฀seafood฀is฀a฀primary฀objective฀of฀federal฀and฀state฀public฀health฀agencies฀after฀a฀spill฀occurs.฀฀Seafood฀managers฀may฀be฀faced฀ with฀making฀many฀urgent฀decisions฀after฀an฀oil฀spill,฀often฀based฀on฀limited฀data:฀฀ Should฀seafood฀harvest฀in฀the฀spill฀area฀be฀closed฀or฀restricted?฀ If฀closed,฀what฀criteria฀should฀be฀applied฀to฀re-open฀a฀ishery?฀ How฀should฀seafood฀safety฀and฀palatability฀be฀evaluated? How฀can฀health฀risks฀best฀be฀communicated฀to฀the฀public? Public฀health฀oficials฀and฀other฀seafood฀managers฀do฀not฀routinely฀deal฀with฀oil฀spills฀as฀part฀ of฀their฀day-to-day฀responsibilities.฀฀Consequently,฀they฀typically฀have฀little฀experience฀with฀risks฀to฀ seafood฀from฀oil฀spills฀when฀they฀suddenly฀are฀faced฀with฀determining฀appropriate฀seafood฀management฀actions฀in฀response฀to฀a฀spill.฀฀ The฀objective฀of฀this฀guide฀is฀to฀provide฀seafood฀managers฀and฀other฀spill฀responders฀with฀ information฀to฀help฀them฀evaluate฀the฀likelihood฀that฀an฀oil฀spill฀will฀contaminate฀seafood,฀determine฀ whether฀seafood฀actually฀has฀been฀contaminated,฀and฀assess฀and฀communicate฀human฀health฀risk฀ from฀eating฀contaminated฀seafood.฀฀The฀guide฀is฀divided฀into฀the฀following฀sections: I.฀฀Introduction฀and฀Background II.฀฀Assessing฀the฀Likelihood฀of฀Seafood฀Exposure฀and฀Contamination Describes฀the฀factors฀that฀inluence฀exposure,฀uptake,฀and฀elimination฀in฀aquatic฀organisms. III.฀฀Monitoring฀Seafood฀for฀Contamination Provides฀guidance฀on฀chemical฀and฀sensory฀testing฀methods,฀sampling฀strategies,฀and฀monitoring. IV.฀฀Seafood฀Risk฀Assessment Describes฀carcinogenic฀risk฀assessment฀methods,฀assumptions,฀and฀interpretation฀of฀chemical฀results. V:฀฀Risk฀Communication Provides฀guidance฀on฀communicating฀risks฀associated฀with฀contaminated฀seafood฀and฀gives฀examples฀ of฀advisories. A฀glossary฀of฀terms฀used฀in฀this฀guide฀is฀included฀in฀the฀appendix. 1 Decision฀Process฀for฀Managing฀Seafood฀Safety฀ The฀guide฀generally฀follows฀the฀low฀chart฀shown฀in฀Figure฀I-1,฀which฀suggests฀a฀decision฀ process฀for฀managing฀seafood฀safety฀after฀oil฀spills.฀฀Throughout฀this฀process,฀the฀default฀is฀no฀closure฀ or฀other฀restrictions฀on฀seafood฀harvest.฀฀In฀some฀cases฀there฀may฀be฀an฀initial,฀temporary฀de฀facto฀ closure฀if฀the฀U.S.฀Coast฀Guard฀establishes฀a฀safety฀zone฀restricting฀access฀in฀areas฀of฀active฀oil฀recovery.฀฀ Fishermen฀also฀may฀voluntarily฀avoid฀working฀in฀oiled฀areas฀to฀prevent฀oiling฀their฀gear฀and฀catch.฀฀This฀ initial฀period฀after฀a฀spill฀can฀provide฀an฀opportunity฀to฀evaluate฀spill฀conditions฀and฀conduct฀limited฀ testing฀to฀determine฀whether฀a฀precautionary฀closure฀or฀other฀immediate฀restrictions฀on฀seafood฀ harvest฀are฀warranted. As฀indicated฀on฀the฀lowchart,฀the฀irst฀step฀for฀seafood฀managers฀after฀an฀oil฀spill฀has฀occurred฀ is฀to฀collect฀and฀evaluate฀information฀on฀the฀nature฀of฀the฀spill.฀฀The฀spill฀response฀organization฀should฀ be฀able฀to฀provide฀the฀following฀information฀almost฀immediately฀after฀the฀spill฀occurs: •฀ overlight฀maps฀and฀trajectory฀analyses฀showing฀the฀present฀and฀predicted฀spread฀of฀surface฀ slicks; •฀ forecasts฀of฀weather฀and฀sea฀conditions฀that฀may฀affect฀the฀potential฀for฀oil฀to฀mix฀into฀the฀ water฀column; •฀ results฀of฀oil฀weathering฀models; •฀ details฀about฀the฀oil฀type฀and฀expected฀behavior; •฀ predictions฀of฀oil฀fate฀and฀persistence;฀and •฀ in฀some฀cases,฀chemical฀results฀for฀water฀and฀sediment฀samples฀collected฀in฀the฀spill฀area. Fishery฀management฀agencies฀and฀associations฀should฀be฀able฀to฀provide฀information฀on: •฀ species฀being฀harvested฀now฀or฀in฀the฀near฀future; •฀ geographical฀extent฀of฀the฀harvest฀areas; •฀ harvest฀gear฀types฀in฀use;฀and •฀ data฀on฀background฀levels฀of฀PAH฀contamination฀in฀the฀spill฀area฀(from฀NOAA฀Mussel฀Watch฀ and฀other฀monitoring฀programs). Based฀on฀this฀type฀of฀information,฀seafood฀managers฀can฀assess฀whether฀the฀oil฀spill฀is฀likely฀to฀ expose฀and฀contaminate฀seafood.฀฀If฀seafood฀is฀not฀at฀signiicant฀risk,฀then฀no฀harvest฀closures฀or฀other฀ seafood฀restrictions฀are฀needed,฀and฀this฀determination฀is฀communicated฀to฀the฀public.฀฀Because฀spills฀ are฀dynamic,฀conditions฀are฀monitored฀and฀risks฀to฀seafood฀re-evaluated฀until฀the฀threat฀abates. If฀managers฀determine฀that฀seafood฀may฀be฀affected,฀the฀next฀step฀is฀to฀assess฀whether฀seafood฀is฀tainted฀or฀contaminated฀to฀levels฀that฀pose฀a฀risk฀to฀human฀health฀through฀consumption.฀฀ Information฀that฀can฀help฀determine฀the฀impacts฀includes: •฀ overlights฀and฀ground฀surveys฀identifying฀visible฀oil฀in฀seafood฀harvesting฀areas; •฀ chemical฀analysis฀of฀water฀and/or฀sediment฀samples฀from฀the฀harvest฀area; •฀ sensory฀testing฀of฀seafood฀samples฀from฀representative฀species฀and฀areas฀(both฀spill฀and฀reference฀areas); •฀ chemical฀analysis฀of฀tissue฀samples฀from฀representative฀species฀and฀areas฀(both฀spill฀and฀reference฀areas);฀and •฀ data฀on฀background฀levels฀of฀oil-related฀contaminants. 2 Figure฀1.1฀฀Decision฀process฀for฀managing฀seafood฀safety฀after฀an฀oil฀spill ��� ����� ������ ������� ��� �������� ����� ������������ � ��� ����� ����� ��� ��������� � ������� ��������� �� ���� �� �������� ��� ������ �� ����������� �������� �� ��� ������ ������ �� �������� � ������� ��� ��� �� ������� ���� � ������� ������� ������� ���� ����� ��� ��������� ����� � ������� ������� ������� ������ � ������� �������� ������� ��� �������� ����� ������ ���� ���� ����������� �������� ���������� ������� ������� ������ ������ ����� �� � �� ������������ ������ �� ������� � ���� ������������� �� ������ ��� � ���� ����������� ������ ���������� �������� ����������� ���� ������������� ����� � ���� ������������� �� ������ 3 Determining฀whether฀seafood฀has฀been฀contaminated฀can฀take฀substantial฀time.฀฀Developing฀ and฀implementing฀sampling฀plans,฀conducting฀sensory฀and/or฀chemical฀testing,฀and฀evaluating฀results฀ may฀require฀weeks฀or฀longer.฀฀Monitoring฀continues฀and฀the฀risk฀assessment฀process฀is฀repeated฀as฀ necessary. If฀seafood฀is฀tainted฀or฀is฀contaminated฀to฀a฀level฀posing฀a฀potential฀health฀risk,฀the฀next฀step฀ is฀to฀select฀the฀most฀appropriate฀seafood฀management฀action(s).฀฀Examples฀of฀management฀actions฀ include฀seafood฀advisories,฀increased฀inspections฀of฀harvested฀seafood฀or฀ishing฀gear,฀harvest฀closures,฀and฀ishing฀gear฀restrcitions.฀฀If฀a฀ishery฀is฀closed฀or฀otherwise฀restricted,฀seafood฀managers฀must฀ establish฀criteria฀for฀determining฀that฀the฀seafood฀is฀palatable฀and฀safe฀for฀human฀consumption฀and฀ that฀restrictions฀can,฀therefore,฀be฀lifted.฀฀No฀accepted฀international฀or฀federal฀criteria฀have฀been฀established฀for฀oil-related฀contaminants฀in฀seafood.฀฀State฀seafood฀managers฀generally฀have฀developed฀their฀ own฀criteria฀for฀each฀spill,฀resulting฀in฀some฀inconsistencies฀among฀spills.฀฀Varying฀levels฀of฀background฀ contamination฀also฀have฀contributed฀to฀inconsistencies฀in฀criteria฀applied.฀฀ Several฀papers฀summarize฀some฀of฀the฀dificult฀seafood฀management฀issues฀encountered฀after฀ recent฀oil฀spills฀(Mearns฀and฀Yender฀1997;฀Mauseth฀and฀Challenger฀2001;฀Moller฀et฀al.฀1989;฀Moller฀et฀al.฀ 1999;฀Mauseth฀et฀al.฀1997;฀Challenger฀and฀Mauseth฀1998).฀฀Table฀I-1฀also฀summarizes฀information฀on฀a฀ few฀recent฀spills฀at฀which฀seafood฀safety฀was฀an฀issue฀of฀concern.฀฀ Seafood฀Safety฀Management฀Authority Typically,฀authority฀to฀manage฀seafood฀to฀protect฀human฀health฀resides฀with฀state฀health฀ agencies.฀฀Many฀states฀routinely฀chemically฀analyze฀inish฀and฀shellish฀tissues฀for฀contamination฀as฀ part฀of฀their฀water-quality฀monitoring฀programs.฀฀If฀a฀state฀concludes฀that฀eating฀contaminated฀inish฀ or฀shellish฀collected฀from฀state฀waters฀poses฀an฀unacceptable฀human฀health฀risk,฀it฀may฀issue฀local฀ ish฀consumption฀advisories฀or฀harvest฀closures฀for฀speciic฀water฀bodies฀or฀parts฀of฀water฀bodies฀and฀ speciic฀species. The฀Food,฀Drug,฀and฀Cosmetic฀Act฀authorizes฀the฀U.S.฀Food฀and฀Drug฀Administration฀(USFDA)฀ to฀protect฀and฀promote฀public฀health.฀฀The฀USFDA’s฀responsibilities฀include฀keeping฀“adulterated”฀food฀ off฀the฀market.฀฀The฀USFDA฀has฀jurisdiction฀over฀seafood฀that฀crosses฀state฀lines฀in฀interstate฀commerce.฀ The฀Magnuson฀Act,฀16฀U.S.C.฀1801฀et฀seq.,฀authorizes฀NOAA’s฀National฀Marine฀Fisheries฀Service฀ (NMFS)฀to฀regulate฀ishing฀in฀federal฀waters฀(generally฀from฀3-200฀miles฀from฀shore).฀฀The฀act฀is฀targeted฀toward฀ishery฀conservation฀rather฀than฀protection฀of฀public฀health฀or฀economic฀concerns.฀฀Fishery฀management฀plans,฀developed฀under฀the฀authority฀of฀the฀Magnuson฀Act,฀specify฀any฀limitations฀ imposed฀on฀ishing฀for฀federally฀regulated฀species.฀฀Limits฀on฀ishing฀are฀enforced฀by฀means฀of฀regulations฀published฀in฀the฀Federal฀Register,฀in฀compliance฀with฀the฀Administrative฀Procedures฀Act.฀฀In฀the฀ event฀of฀an฀oil฀or฀chemical฀spill,฀publication฀of฀an฀emergency฀rule฀in฀the฀Federal฀Register฀is฀required฀to฀ put฀an฀enforceable,฀oficial฀ishery฀closure฀in฀place฀and฀to฀make฀any฀modiications฀to฀the฀closure฀once฀ it฀is฀put฀into฀effect.฀฀The฀Magnuson฀Act฀was฀recently฀amended฀to฀allow฀emergency฀action฀isheries฀closures฀to฀remain฀in฀effect฀indeinitely.฀฀Previously,฀such฀closures฀were฀limited฀to฀two฀90-day฀periods.฀ 4 Table฀I-1.฀฀Recent฀oil฀spills฀where฀seafood฀monitoring฀was฀conducted Spill฀Name/฀ Location Oil฀Type/฀Volume Spill฀Conditions Species฀Monitored Closures* References M/V฀New฀Carissa Near฀Coos฀Bay,฀OR 4฀Feb฀1999 Two฀bunker฀oils฀and฀ two฀marine฀diesels/ 70,000฀gallons Oil฀released฀in฀the฀ surf฀zone฀(>5m฀ waves)฀over฀several฀ weeks฀ Oyster,฀shrimp,฀crab Bivalves:฀฀21฀days,฀ longer฀adjacent฀to฀ the฀vessel Gilroy฀(2000),฀ Michel฀(2000) Mauseth฀and฀Challenger฀(2001) M/V฀Kure Humboldt฀Bay,฀CA 5฀Nov฀1997 Intermediate฀fuel฀oil฀ (IFO฀180)/ 4,537฀gallons 4฀days฀of฀sheens฀in฀ bay;฀light฀shoreline฀ oiling Mariculture฀oyster,฀rock฀ Mariculture฀oyster,฀ crab crabs:฀฀49฀days Challenger฀and฀ Mauseth฀(1998) T/V฀Julie฀N฀ Portland,฀ME 27฀Sept฀1996 IFO฀380฀and฀No.฀2฀ fuel฀oil/180,000฀gallons฀total Heavy฀shoreline฀ oiling฀in฀Fore฀River฀ &฀Casco฀Bay Lobster,฀scallop,฀clam,฀ mussel Shellfish:฀15฀days Mauseth฀et฀al.฀ (1997) M/T฀Provence Piscataqua฀River,฀NH 2฀July฀1996 Heavy฀fuel฀oil฀No.฀6฀ (API฀6.2)/ ~880฀gallons Released฀in฀Piscataqua฀River,฀most฀of฀ the฀oil฀sank Lobster None Mauseth฀et฀al.฀ (1997) T/V฀Sea฀Empress฀ Milford฀Haven,฀Wales 15฀Feb฀1996 Forties฀light฀crude/ Heavy฀fuel฀oil฀#6/ 21,274,000฀gallons฀ total Severe฀weather;฀ extensive฀use฀of฀ dispersants Cockle,฀mussel,฀crab,฀ lobster,฀whelk, wild฀salmon,฀and฀other฀ finfish Marine฀finfish:฀฀ 82฀days;฀whelk฀&฀ crustaceans:฀183฀ days;฀cockles:฀125฀ days;฀mussel:฀8-19฀ months Law฀et฀al.฀(1997);฀ Coates฀(1998) T/B฀North฀Cape Block฀Island฀Sound,฀RI 19฀Jan฀1996 Home฀heating฀oil฀ No.฀2 828,000฀gallons Gale-force฀winds,฀ release฀in฀surf฀zone,฀ 6-7฀m฀waves,฀naturally฀dispersed Lobster,฀finfish, bivalves฀(coastal฀ ponds) Finfish฀and bivalves:฀฀73฀days;฀฀ lobsters:฀฀75-155฀ days Mauseth฀et฀al.฀ (1997) T/V฀Braer Shetland฀Islands 5฀Jan฀1993 Gullfaks฀light฀crude/ 25,000,000฀gallons Hurricane-force฀ winds;฀release฀in฀ surf฀zone,฀naturally฀ dispersed Haddock,฀dab,฀farmed฀ salmon,฀cod,฀sole,฀ling,฀ lobster,฀scallop,฀edible฀ crab Wild฀finfish:฀฀2฀ months;฀farmed฀ salmon:฀12฀mo;฀ burrowing฀lobster:฀ >6฀yrs Kingston฀(1999) Topping฀et฀al.฀ (1997) Whittle฀et฀al.฀(1997) Over฀700฀km฀of฀ shoreline฀oiled Finfish,฀bivalves฀from฀ subsistence฀harvest฀ areas฀ Herring฀and฀ salmon:฀฀entire฀ season;฀ Advisories฀on฀ bivalves฀in฀4฀subsistence฀harvest฀areas Fall฀and฀Field฀(1996) Field฀et฀al.฀(1999) T/V฀Exxon฀Valdez Prudhoe฀Bay฀crude/ Prince฀William฀Sound,฀ 11,000,000฀gallons AK 24฀Mar฀1989 ฀ *Closure฀does฀not฀necessarily฀indicate฀that฀either฀tissue฀contamination฀or฀taint฀was฀detected฀or฀persisted฀for฀as฀long฀a฀period฀as฀the฀closure฀remained฀in฀ place.฀฀ 5 II.฀ ASSESSING฀THE฀LIKELIHOOD฀OF฀SEAFOOD฀EXPOSURE฀AND฀ CONTAMINATION฀ Each฀oil฀spill฀is฀a฀unique฀combination฀of฀conditions฀and฀events.฀฀Seafood฀is฀only฀at฀risk฀of฀contamination฀from฀a฀spill฀if฀it฀is฀exposed฀to฀the฀oil.฀฀Once฀exposed฀to฀oil,฀an฀organism฀becomes฀contaminated฀only฀to฀the฀extent฀it฀takes฀up฀and฀retains฀petroleum฀compounds.฀฀Factors฀that฀inluence฀the฀ potential฀for฀spilled฀oil฀to฀expose฀and฀contaminate฀seafood฀are฀discussed฀in฀this฀section. Oil฀Types฀and฀Properties Oil฀type฀and฀properties฀strongly฀inluence฀whether฀seafood฀is฀exposed฀and฀contaminated.฀ Crude฀oils฀and฀the฀reined฀products฀derived฀from฀them฀are฀complex฀and฀variable฀mixtures฀of฀hydrocarbons฀of฀different฀molecular฀weights฀and฀structures.฀฀They฀can฀contain฀hundreds฀of฀different฀ compounds.฀฀All฀crude฀oils฀contain฀lighter฀fractions฀similar฀to฀gasoline,฀as฀well฀as฀heavier฀tar฀or฀wax฀ fractions.฀฀Because฀of฀these฀differences฀in฀composition,฀different฀oils฀vary฀considerably฀in฀their฀physical฀ and฀chemical฀properties.฀฀For฀example,฀consistencies฀of฀different฀crude฀oils฀vary,฀ranging฀from฀a฀light฀ volatile฀luid฀to฀a฀viscous฀semi-solid.฀฀Such฀differences฀in฀properties฀inluence฀behavior฀of฀spilled฀oil฀and฀ subsequent฀cleanup฀operations.฀฀ The฀petroleum฀hydrocarbons฀that฀comprise฀oil฀are฀composed฀primarily฀of฀hydrogen฀and฀ carbon,฀but฀also฀can฀contain฀varying฀amounts฀of฀sulfur,฀nitrogen,฀oxygen,฀and฀trace฀metals.฀฀The฀three฀ main฀fractions฀of฀hydrocarbon฀compounds฀in฀oils฀are฀saturates,฀aromatics,฀and฀polar฀compounds.฀฀The฀ properties฀and฀relative฀abundance฀of฀each฀fraction฀in฀different฀types฀of฀oil฀products฀are฀summarized฀in฀ Table฀II-1.฀฀Note฀that฀toxicity฀differs฀among฀different฀hydrocarbons฀and,฀therefore,฀different฀oils. Table฀II-1.฀Components฀in฀oil฀and฀selected฀characteristics฀(modiied฀from฀NRC฀2002). Group Sub-groups฀(alternate฀name) Selected฀Characteristics Typical฀Content฀in฀Oil฀(%) Saturates 1.฀Alkanes฀(aliphatics):฀n-alkanes฀ (paraffins)฀are฀straight-฀chained;฀isoalkanes฀are฀branching 2.฀Cyclo-alkanes฀(cyclo-paraffins฀or฀ naphthenes):฀฀saturated฀ring฀structures 3.฀Waxes:฀฀larger฀saturate฀compounds High฀rate฀of฀microbial฀degradation฀ up฀to฀C22;฀ Low฀water฀solubility;฀ Low฀aquatic฀toxicity Gasoline:฀฀50-60 Diesel:฀฀65-95 Light฀crude:฀฀55-90 Heavy฀crude:฀฀25-80 Heavy฀fuel฀oil:฀฀20-30 Aromatics 1.฀Monoaromatics฀(BTEX):฀฀single฀benzene฀ring 2.฀Polycyclic฀aromatic฀hydrocarbons฀ (PAH):฀฀2-6฀benzene฀rings Slower฀rate฀of฀microbial฀degradation฀than฀saturates;฀ Higher฀water฀solubility;฀ High฀aquatic฀toxicity Gasoline:฀฀25-40 Diesel:฀฀5-25 Light฀crude:฀฀10-35 Heavy฀crude:฀฀15-40 Heavy฀fuel฀oil:฀฀30-50 Polar฀Compounds 1.฀Resins:฀฀smaller฀compounds฀that฀ bond฀with฀S,฀N,฀or฀O 2.฀Asphaltenes:฀฀very฀large฀compounds Very฀slow฀microbial/฀physical฀degradation;฀ Very฀low฀water฀solubility/aquatic฀ toxicity Gasoline:฀฀0 Diesel:฀฀0-2 Light฀crude:฀฀1-15 Heavy฀crude:฀฀5-40 Heavy฀fuel฀oil:฀฀10-30 6 Oils฀have฀been฀grouped฀into฀types฀with฀similar฀properties฀to฀help฀predict฀their฀behavior฀at฀ spills฀(NOAA฀and฀API฀1994).฀฀This฀same฀approach฀can฀be฀used฀to฀characterize฀the฀relative฀risk฀of฀contamination฀of฀seafood฀by฀oil฀type.฀฀Table฀II-2฀summarizes฀the฀properties฀and฀risk฀of฀seafood฀contamination฀for฀the฀ive฀oil฀groups฀commonly฀encountered฀by฀spill฀responders.฀฀These฀generalizations฀can฀be฀ used฀when฀initially฀screening฀an฀incident฀to฀evaluate฀the฀potential฀for฀seafood฀contamination. Table฀II-2.฀฀Characteristics฀of฀oil฀types฀affecting฀the฀potential฀for฀seafood฀contamination฀(modiied฀from฀NOAA฀and฀API฀1994). Gasoline฀Products฀ Diesel-like฀Products฀ and฀Light฀Crude฀Oils฀ Medium-grade฀Crude฀ Heavy฀Crude฀Oils฀and฀ Oils฀and฀Intermediate฀ Residual฀Products Products฀ Non-Floating฀Oils฀ Examples฀–฀Gasoline Examples฀–฀No.฀2฀fuel฀oil,฀ jet฀fuels,฀kerosene,฀West฀ Texas฀crude,฀Alberta฀ crude Examples฀–฀North฀Slope฀ crude,฀South฀Louisiana฀ crude,฀IFO฀180,฀lube฀oils Examples฀–฀San฀Joaquin฀ Valley฀crude,฀Venezuelan฀ crude,฀No.฀6฀fuel฀oil Examples฀–฀Very฀heavy฀ No.฀6฀fuel฀oil,฀residual฀oils,฀ vacuum฀bottoms,฀heavy฀ slurry฀oils Specific฀gravity฀of฀ <0.80; Specific฀gravity฀of฀<0.85;฀ API฀gravity฀of฀35-45* Specific฀gravity฀of฀0.850.95;฀API฀gravity฀of฀17.535* Usually฀floats฀on฀surface,฀ although฀can฀mix฀with฀ sand฀by฀stranding฀on฀ beaches฀or฀in฀the฀surf฀ zone,฀฀and฀be฀deposited฀in฀ the฀nearshore Specific฀gravity฀of฀0.951.00;฀API฀gravity฀of฀1017.5* Usually฀floats฀on฀surface฀ but฀can฀sink฀in฀fresh฀water฀ or฀in฀seawater฀if฀they฀ emulsify฀or฀mix฀with฀sand฀ (in฀the฀surf฀zone฀or฀after฀ stranding฀on฀beaches)฀and฀ deposit฀in฀the฀nearshore฀ Specific฀gravity฀greater฀ than฀1.00;฀API฀gravity฀ <฀10* Will฀sink฀in฀fresh฀water;฀ may฀sink฀in฀seawater฀if฀ they฀emulsify฀or฀mix฀with฀ sand฀(in฀the฀surf฀zone฀ or฀after฀stranding฀on฀ beaches)฀and฀deposit฀in฀ the฀nearshore High฀evaporation฀rates;฀ Refined฀products฀can฀ narrow฀cut฀fraction฀with฀ evaporate฀to฀no฀residue;฀ no฀residues crude฀oils฀do฀leave฀residues Up฀to฀one-third฀will฀ evaporate฀in฀the฀first฀24฀ hours;฀will฀form฀persistent฀ residues Very฀little฀product฀loss฀ by฀evaporation;฀will฀form฀ persistent฀residues Very฀little฀evaporation฀ when฀submerged;฀also฀ very฀slow฀weathering฀ overall฀when฀submerged Low฀viscosity;฀spread฀ rapidly฀to฀a฀thin฀sheen;฀ readily฀dispersed;฀will฀ not฀emulsify Low฀to฀moderate฀viscosity;฀spread฀rapidly฀ into฀thin฀slicks;฀readily฀ dispersed฀by฀natural฀ processes;฀may฀form฀ unstable฀emulsions Moderate฀to฀high฀viscosity;฀dispersed฀by฀natural฀ processes฀only฀very฀early฀ in฀the฀spill;฀readily฀emulsifies Very฀viscous฀to฀semisolid;฀ will฀not฀readily฀disperse฀or฀ mix฀into฀the฀water฀column;฀ can฀form฀stable฀emulsions Very฀viscous฀to฀semisolid;฀will฀not฀readily฀ disperse฀or฀mix฀into฀the฀ water฀column;฀can฀form฀ stable฀emulsions Low฀risk฀of฀seafood฀contamination฀because฀of฀ rapid฀and฀complete฀loss฀ via฀evaporation;฀potential฀contamination฀ for฀spills฀in฀confined฀ areas฀with฀high฀mixing,฀ such฀as฀small฀rivers;฀no฀ reported฀cases฀of฀tainting฀for฀marine฀spills Moderate฀to฀high฀risk฀of฀ seafood฀contamination฀ because฀relatively฀high฀ content฀of฀low฀molecular฀ weight,฀water-soluble฀ aromatic฀hydrocarbons,฀ which฀are฀semi-volatile฀ and฀so฀evaporate฀slowly;฀ dispersed฀droplets฀are฀ also฀bio-available Moderate฀to฀high฀risk฀of฀ seafood฀contamination฀ because฀of฀high฀percentage฀of฀low-molecular฀ weight฀aromatic฀hydrocarbons;฀coating฀of฀gear฀and฀ intertidal฀species฀can฀be฀ significant Low฀risk฀of฀finfish฀contamination฀because฀of฀low฀ water-soluble฀fraction฀and฀ little฀natural฀mixing฀in฀the฀ water;฀moderate฀to฀high฀ risk฀of฀shellfish฀contamination฀where฀shoreline฀oiling฀ is฀heavy;฀can฀coat฀gear฀and฀ intertidal฀species฀ Low฀risk฀of฀finfish฀contamination฀because฀of฀ high฀viscosity;฀where฀ thick฀oil฀accumulates฀ on฀the฀bottom,฀could฀ become฀a฀chronic฀source;฀ moderate฀to฀high฀risk฀of฀ contamination฀of฀benthic฀species฀because฀of฀ coating฀and฀persistence฀ of฀submerged฀oil Floats฀on฀surface฀ Usually฀floats฀on฀surface;฀although฀can฀ contaminate฀suspended฀ sediments฀that฀are฀then฀ deposited฀on฀the฀bottom *API฀Gravity฀is฀used฀by฀the฀petroleum฀industry฀rather฀than฀density.฀฀It฀is฀determined฀by฀the฀following฀equation:฀฀API฀at฀60°F฀=฀141.5/oil฀density฀-131.5.฀ 7 Seafood฀contamination฀can฀result฀from฀exposure฀to฀the฀dissolved฀fraction฀of฀oil,฀dispersed฀oil฀ droplets,฀or฀an฀oil฀coating.฀฀With฀regard฀to฀the฀dissolved฀fraction,฀the฀aromatic฀fraction฀of฀the฀oil฀poses฀ the฀greatest฀exposure฀risk฀because฀aromatics฀are฀relatively฀more฀soluble฀than฀the฀other฀components฀in฀ oil.฀฀Saturates฀are฀a฀major฀component฀of฀oil,฀but฀they฀have฀lower฀solubility฀and฀higher฀volatility฀compared฀to฀aromatics฀of฀the฀same฀molecular฀weight.฀฀Furthermore,฀Heras฀et฀al.฀(1992)฀has฀concluded฀that฀ saturates฀are฀virtually฀odorless฀and฀tasteless,฀and฀do฀not฀contribute฀to฀tainting. Of฀the฀aromatic฀hydrocarbons,฀the฀mono-aromatic฀hydrocarbons,฀such฀as฀benzene,฀toluene,฀ ethyl฀benzene,฀xylene฀(known฀collectively฀as฀BTEX),฀other฀substituted฀benzenes,฀and฀the฀2-฀to฀3-ringed฀ PAHs฀(naphthalene,฀luorene,฀dibenzothiophene,฀anthracene฀and฀their฀substituted฀homologues,฀ referred฀to฀as฀low-molecular฀weight฀PAHs)฀comprise฀over฀99฀percent฀of฀the฀water-soluble฀fraction฀ (McAuliffe฀1987).฀฀The฀distribution฀of฀these฀compounds฀in฀the฀spilled฀oil฀is฀one฀measure฀of฀the฀potential฀for฀contamination฀of฀seafood฀from฀water฀exposure.฀฀Figure฀II-1฀shows฀the฀PAH฀composition฀for฀typical฀crude฀oils฀and฀reined฀products.฀฀Table฀II-3฀lists฀the฀abbreviations฀used฀for฀PAHs,฀groups฀the฀PAHs฀ into฀low-฀and฀high-molecular฀weight฀categories,฀and฀shows฀the฀number฀of฀benzene฀rings.฀฀Most฀crude฀ oils฀are฀composed฀of฀a฀wide฀range฀of฀compounds,฀including฀the฀PAHs฀of฀concern.฀ Note฀that฀compounds฀in฀petroleum-derived฀oils฀have฀a฀general฀pattern฀of฀increasing฀abundance฀with฀higher฀level฀of฀substitution฀of฀a฀benzene฀ring฀(e.g.,฀unsubstituted฀parent฀naphthalene฀ is฀less฀abundant฀than฀C1-naphthalene,฀which฀is฀less฀abundant฀than฀C2-naphthalene).฀฀This฀pattern฀ indicates฀that฀the฀PAHs฀are฀“petrogenic,”฀that฀is,฀they฀are฀from฀petroleum฀oils.฀฀The฀PAH฀pattern฀is฀very฀ different฀for฀hydrocarbons฀produced฀from฀the฀combustion฀of฀fossil฀fuels฀(“pyrogenic”฀hydrocarbons),฀ in฀that฀the฀parent฀PAHs฀are฀by฀far฀the฀dominant฀compounds฀in฀hydrocarbons฀of฀pyrogenic฀origin.฀฀Also,฀ it฀is฀important฀to฀note฀that฀crude฀oils฀contain฀very฀low฀concentrations฀of฀the฀high-molecular฀weight฀ PAHs฀(e.g.,฀4-฀and฀5-ringed฀compounds฀such฀as฀pyrene,฀chrysene,฀and฀benzo[a]pyrene)฀that฀are฀associated฀with฀combustion฀by-products.฀฀These฀differences฀in฀relative฀PAH฀abundance฀are฀key฀components฀ of฀ingerprinting฀analysis.฀ Reined฀products฀have฀characteristic฀ranges฀of฀PAHs฀representative฀of฀the฀distillation฀fraction฀in฀the฀product.฀฀In฀Figure฀II-1,฀note฀that฀the฀PAHs฀in฀the฀No.฀2฀fuel฀oil฀are฀dominated฀by฀the฀2-฀and฀ 3-ringed฀compounds.฀฀Heavy฀fuel฀oils฀are฀sometimes฀cut฀or฀blended฀with฀lighter฀fractions฀to฀meet฀ customer฀speciications,฀as฀is฀the฀case฀with฀the฀intermediate฀fuel฀oil฀(IFO-180)฀in฀Figure฀II-1D,฀and฀so฀ can฀contain฀some฀low-molecular฀weight฀PAHs. For฀exposure฀via฀ingestion฀of฀whole฀oil฀droplets฀or฀contaminated฀sediments,฀the฀high-molecular฀weight฀PAHs฀pose฀greater฀risk฀of฀contamination.฀฀These฀compounds฀have฀low฀water฀solubility฀and฀ are฀more฀lipophilic.฀฀In฀organisms฀with฀relatively฀limited฀capability฀to฀metabolize฀PAHs,฀such฀as฀bivalve฀ mollusks,฀the฀high-molecular฀weight฀compounds฀are฀more฀likely฀to฀accumulate฀in฀tissues฀and฀persist฀ for฀longer฀periods,฀compared฀to฀the฀low-molecular฀weight฀PAHs,฀which฀are฀more฀rapidly฀eliminated฀ (Meador฀et฀al.฀1995).฀฀Finish฀and฀some฀crustaceans,฀however,฀readily฀metabolize฀and฀eliminate฀all฀of฀ these฀compounds฀rapidly.฀฀ 8 ���� ���� ���� ���� ���� ���� ���� ��� ��� ��� ��� � ���� Figure฀II-1.฀฀Pattern฀of฀PAH฀distribution฀for฀different฀oil฀types:฀฀A)฀No.฀2฀fuel฀oil;฀B)฀South฀Louisiana฀crude,฀a฀medium฀crude฀ oil;฀C)฀No.฀6฀fuel฀oil,฀a฀heavy฀oil;฀and฀D)฀an฀intermediate฀fuel฀oil฀that฀is฀a฀mixture.฀฀Note฀that฀high-molecular฀weight฀PAHs฀ such฀as฀benzo[a]pyrene฀(BAP)฀have฀very฀low฀concentrations฀in฀petroleum฀oils. ���� ���� ���� ���� ���� ��� ��� ��� ��� � ��� � ���� ��� �� �� ����� ���� ����� ���� �� ���� ��� � ���� ��� ���� ���� �� ���� ���� ��� � ���� ���� ������� ��� ��� ��� ��� � � �� �� �� �� � �� �� �� � � ���� ���� ���� � �� �� �� �� �� ��� ��� �� � �� �� �� ��� ��� ��� �� �� �� ���� ���� �� 9 Table฀II-3.฀฀PAHs฀normally฀reported฀in฀chemical฀analyses฀for฀petroleum฀compounds฀(after฀Sauer฀and฀Boehm฀1995).฀ PAH Abbreviation No.฀of฀Benzene฀Rings Molecular฀Weight฀ Naphthalene N 2 Low C1Naphthalene N1 2 Low C2Naphthalene N2 2 Low C3Naphthalene N3 2 Low C4Naphthalene N4 2 Low Biphenyl BI 2 Low Fluorene F 2 Low C1Fluorene F1 2 Low C2Fluorene F2 2 Low C3Fluorene F3 2 Low Acenaphthylene AC 3 Low Acenaphthene CE 3 Low Dibenzothiophene D 3 Low C3Dibenzothiophene D3 3 Low Anthracene A 3 Low Phenanthrene P 3 Low C1Phenanthrene/Anthracene P/A1 3 Low C2Phenanthrene/Anthracene P/A2 3 Low C3Phenanthrene/Anthracene P/A3 3 Low Napththobenzothiophene NBT 3 Low C1Napththobenzothiophene NBT1 3 Low C3Napththobenzothiophene NBT3 3 Low Fluoranthene FL 4 High Pyrene PY 4 High 10 PAH Abbreviation No.฀of฀Benzene฀Rings Molecular฀Weight฀ C1Pyrene PY1 4 High C2Pyrene PY2 4 High Benzo[a]Anthracene BA 4 High Chrysene C 4 High C1Chrysene C1 4 High C2Chrysene C2 4 High C3Chrysene C3 4 High C4Chrysene C4 4 High Benzo[b]Fluoranthene BB 5 High Benzo[k]Fluoranthene BK 5 High Benzo[e]Pyrene BEP 5 High Benzo[a]Pyrene BAP 5 High Dibenzo[a,h]anthracene DA 5 High Indeno[1,2,3-cd]Pyrene IP 6 High Benzo[g,h,i]perylene DP 6 High Oil฀Fate฀and฀Pathways฀of฀Exposure Oil฀behavior฀after฀release฀determines฀whether฀seafood฀is฀at฀risk฀of฀exposure.฀฀Oil฀behavior฀is฀a฀ function฀of฀the฀processes฀described฀below. Early฀weathering฀processes฀that฀change฀oil฀properties Evaporation Evaporation฀is฀the฀transfer฀of฀the฀volatile฀fractions฀in฀oil฀from฀the฀liquid฀phase฀to฀the฀vapor฀ phase.฀฀The฀rate฀of฀evaporation฀depends฀on฀the฀composition฀of฀the฀oil,฀surface฀area฀of฀the฀slick,฀wind฀ velocity,฀sea฀state,฀water฀temperature,฀and฀solar฀radiation.฀฀Most฀evaporation฀occurs฀in฀the฀irst฀24฀hours฀ after฀release,฀though฀it฀continues฀at฀a฀much฀lower฀rate฀for฀up฀to฀two฀weeks฀(NOAA฀and฀API฀2001).฀฀ During฀the฀irst฀24-48฀hours฀after฀a฀spill,฀evaporation฀is฀the฀most฀important฀weathering฀process.฀฀The฀ amount฀of฀oil฀that฀evaporates฀depends฀primarily฀on฀the฀oil’s฀composition.฀฀For฀light฀crude฀oils฀and฀ reined฀products,฀evaporation฀can฀account฀for฀up฀to฀75฀percent฀loss฀within฀a฀few฀days.฀฀Figure฀II-2-A฀ shows฀plots฀of฀the฀loss฀by฀evaporation฀over฀time฀for฀representative฀oils฀of฀the฀irst฀four฀oil฀groups฀listed฀ in฀Table฀II-2.฀฀The฀plots฀are฀output฀from฀the฀NOAA฀oil฀fate฀model฀ADIOS฀2฀for฀the฀same฀spill฀scenario฀for฀ all฀oil฀types฀(Lehr฀et฀al.฀2000).฀฀The฀lighter฀the฀oil,฀the฀higher฀will฀be฀the฀loss฀by฀evaporation.฀฀ 11 Figure฀II-2.฀฀฀Plots฀of฀predicted฀evaporation฀and฀dispersion฀for฀oils฀representative฀of฀four฀oil฀types:฀฀gasoline,฀diesel,฀mediumgrade฀crude฀oil฀(North฀Slope฀Crude),฀and฀heavy฀fuel฀oil฀generated฀using฀NOAA’s฀oil฀weathering฀model฀ADIOS฀2฀(Lehr฀et฀al.฀ 2000).฀฀The฀same฀spill฀conditions฀were฀used฀for฀each฀oil:฀spill฀volume฀10,000฀gallons฀instantaneously฀released;฀wind฀speed฀10฀ mph;฀water฀temperature฀60°฀F. A ��� ���������� ��� �������� ������� �� �� ����� ����� �� �� ������ ����� ���� ��� � � �� �� �� �� B �� �� �� �� ��� ��� ��������� ��� ������ ������� �� �� �� ����� ���� ��� �� � � �� �� �� �� C �� �� �� �� ��� �������� ����� ����� ��� ��� ��������� ��� �� ������� ��� ����� ���� ��� �� ����� ����� �� �� �������� ������ � � 12 �� �� �� �� �� ����� �� �� �� ��� ��� Evaporation฀is฀also฀important฀in฀that฀the฀more฀volatile฀fractions฀are฀also฀more฀water-soluble฀ and฀thus฀contribute฀signiicantly฀to฀the฀oil’s฀uptake฀and฀toxicity.฀฀Evaporation฀dominates฀over฀dissolution฀in฀most฀spill฀conditions,฀so฀it฀is฀a฀key฀process฀that฀reduces฀the฀risk฀of฀aquatic฀exposure฀to฀the฀more฀ soluble,฀toxic฀compounds,฀such฀as฀benzene,฀toluene,฀ethylbenzene,฀and฀xylene฀(BTEX)฀and฀low-molecular฀weight฀polycyclic฀aromatic฀hydrocarbons฀(PAHs). Dissolution Dissolution฀is฀the฀transfer฀of฀water-soluble฀components฀in฀oil฀to฀the฀water.฀฀It฀begins฀immediately฀after฀oil฀is฀released฀and฀is฀likely฀to฀continue฀throughout฀the฀weathering฀process.฀฀The฀loss฀of฀oil฀ due฀to฀dissolution,฀however,฀is฀minor฀when฀compared฀to฀the฀other฀weathering฀processes.฀฀It฀is฀not฀an฀ important฀process฀affecting฀the฀fate฀or฀mass฀of฀the฀spilled฀oil,฀since฀only฀a฀small฀amount฀dissolves.฀฀Less฀ than฀0.1฀%฀(very฀heavy฀oil)฀to฀2%฀(gasoline)฀of฀the฀spilled฀oil฀volume฀actually฀dissolves฀into฀the฀water฀ column.฀฀As฀shown฀in฀Table฀II-4,฀light฀reined฀products,฀such฀as฀gasoline,฀are฀more฀soluble฀than฀heavier฀ oils,฀such฀as฀crude฀oil.฀฀ The฀most฀water-soluble฀components฀in฀oil฀are฀the฀low-molecular฀weight฀aromatic฀hydrocarbons:฀฀the฀mono-aromatics฀such฀as฀benzene฀through฀xylene,฀and฀the฀2-฀and฀3-ring฀PAHs,฀such฀as฀ naphthalene฀and฀phenanthrene฀(McAuliffe฀1987).฀฀These฀components฀are฀also฀the฀most฀volatile,฀and฀ they฀rapidly฀evaporate฀from฀solution.฀฀The฀rate฀of฀dissolution฀depends฀on฀the฀oil’s฀chemical฀composition฀and฀the฀surface฀area฀of฀the฀oil฀and฀water.฀฀ Though฀only฀a฀small฀percentage฀of฀the฀spilled฀oil฀volume฀dissolves฀into฀the฀water฀column,฀ the฀components฀that฀do฀dissolve฀are฀often฀the฀most฀toxic฀and฀may฀also฀taint฀seafood฀at฀low฀concentrations.฀฀Concentrations฀of฀450฀micrograms฀per฀liter฀(µg/L,฀equal฀to฀parts฀per฀billion,฀or฀ppb)฀of฀the฀ water-soluble฀fraction฀of฀a฀light฀crude฀oil฀have฀been฀reported฀to฀cause฀taint฀in฀salmon฀after฀six฀hours฀in฀ laboratory฀tests฀(Heras฀et฀al.฀1992).฀฀Davis฀et฀al.฀(1992)฀reported฀the฀tainting฀threshold฀for฀trout฀exposed฀ to฀diesel฀fuel฀to฀be฀0.08฀nanograms฀per฀liter฀(ng/L,฀equal฀to฀parts฀per฀trillion).฀฀Actual฀dissolved฀oil฀concentrations฀at฀spills฀vary฀widely,฀depending฀on฀the฀oil฀type฀and฀environmental฀conditions.฀฀For฀example,฀during฀the฀North฀Cape฀spill฀of฀approximately฀800,000฀gallons฀of฀home฀heating฀oil฀under฀conditions฀ of฀very฀high฀natural฀dispersion,฀concentrations฀of฀dissolved฀PAHs฀in฀water฀samples฀were฀measured฀to฀ be฀3-167฀ppb฀within฀a฀few฀km฀of฀the฀release฀site฀(French฀1998).฀฀These฀dissolved฀PAH฀concentrations฀ are฀considered฀to฀be฀unusually฀high฀for฀oil฀spills.฀฀During฀the฀New฀Carissa฀release฀of฀70,000฀gallons฀ of฀both฀marine฀diesel฀and฀bunker฀oils฀into฀the฀surf฀zone฀off฀Oregon,฀total฀dissolved฀PAHs฀in฀water฀ sampled฀2-5฀km฀from฀the฀release฀site฀were฀reported฀to฀be฀in฀the฀range฀of฀0.5-5฀ppb฀(Payne฀and฀Driskell฀ 1999). Table฀II-4.฀฀Example฀of฀solubilities฀of฀different฀oil฀types฀(Jokuty฀et฀al.฀1999). Oil฀Type Aqueous฀Solubility฀(mg/L฀or฀ppm) Unleaded฀gasoline 260.9 Diesel 60.4 Prudhoe฀Bay฀crude 20.5 Lagomedio 10.0 13 Dispersion Wind฀and฀waves฀can฀break฀oil฀slicks฀into฀small฀droplets฀that฀mix฀or฀disperse฀into฀the฀water฀ column.฀฀Under฀calm฀conditions,฀the฀oil฀droplets฀can฀re-coalesce฀and฀resurface฀as฀slicks฀because฀they฀ are฀lighter฀than฀water.฀฀These฀droplets฀are฀composed฀of฀the฀whole฀oil.฀฀Thin฀slicks฀of฀lighter,฀low-viscosity฀oils฀(such฀as฀diesel)฀readily฀disperse฀naturally.฀฀Heavier,฀more฀viscous฀oils฀or฀oils฀that฀have฀become฀ more฀viscous฀due฀to฀weathering฀are฀more฀resistant฀to฀natural฀dispersion.฀฀Applying฀chemical฀dispersants,฀which฀reduce฀the฀oil’s฀surface฀tension,฀can฀enhance฀natural฀dispersion.฀฀Dispersion฀is฀an฀important฀mechanism฀that฀enhances฀oil฀degradation฀by฀increasing฀the฀exposed฀surface฀area.฀฀Dispersed฀ oil฀droplets฀can฀be฀ingested฀directly฀(such฀as฀by฀plankton฀or฀ilter-feeding฀bivalves)฀or฀secondarily฀by฀ eating฀oil-contaminated฀prey.฀฀Most฀past฀spills฀that฀contaminated฀seafood฀involved฀conditions฀of฀high฀ natural฀dispersion฀(e.g.,฀Braer,฀North฀Cape,฀and฀Amoco฀Cadiz).฀฀ Emulsification Emulsiication฀is฀the฀process฀by฀which฀one฀liquid฀disperses฀into฀another฀in฀the฀form฀of฀small฀ droplets.฀฀This฀process฀is฀most฀important฀at฀oil฀spills฀where฀water฀droplets฀mix฀into฀the฀oil฀and฀form฀ a฀stable฀emulsion฀(called฀a฀“mousse”)฀that฀does฀not฀easily฀break฀up.฀฀Emulsiication฀causes฀several฀ response฀problems:฀฀1)฀a฀mousse฀often฀contains฀50-80฀percent฀water,฀thus฀the฀volume฀of฀oily฀material฀to฀be฀recovered฀is฀increased฀several-fold;฀2)฀emulsiied฀oil฀is฀very฀viscous฀and฀dificult฀to฀remove฀or฀ pump฀(Fingas฀et฀al.฀1994);฀and฀3)฀emulsiied฀oil฀degrades฀more฀slowly฀(NRC฀1985). Comparison฀of฀evaporation฀and฀dispersion฀for฀different฀oil฀types Figure฀II-2฀shows฀the฀predicted฀fate฀of฀the฀irst฀four฀oil฀types฀listed฀in฀Table฀II-2฀using฀the฀NOAA฀ oil-weathering฀model฀ADIOS™2฀under฀the฀same฀spill฀conditions.฀฀Note฀the฀differences฀among฀oil฀types฀ in฀the฀amounts฀lost฀due฀to฀each฀of฀the฀dominant฀weathering฀processes.฀฀Light,฀reined฀products฀such฀ as฀gasoline฀and฀diesel฀evaporate฀and฀disperse฀rapidly,฀generally฀within฀six฀hours฀of฀release.฀฀Evaporation฀can฀be฀a฀dominant฀weathering฀process฀for฀crude฀oils,฀depending฀on฀the฀type฀of฀crude.฀฀North฀ Slope฀crude฀is฀relatively฀persistent,฀particularly฀if฀it฀emulsiies,฀as฀in฀this฀scenario.฀฀Natural฀dispersion฀is฀ an฀important฀process฀for฀low-viscosity฀oils฀that฀are฀readily฀broken฀into฀droplets฀by฀wave฀action.฀฀More฀ viscous฀oils฀do฀not฀normally฀disperse฀naturally.฀฀Heavy฀oils฀are฀resistant฀to฀weathering฀and฀highly฀persistent.฀฀฀ Gasoline:฀฀A฀light,฀reined฀product฀like฀gasoline฀can฀quickly฀dissipate฀when฀spilled฀in฀openocean฀environments.฀฀In฀this฀particular฀scenario,฀strong฀winds฀in฀the฀model฀evaporated฀and฀dispersed฀the฀entire฀product฀in฀the฀irst฀three฀hours฀after฀the฀release.฀฀The฀“Oil฀Remaining”฀graph฀ shows฀none฀of฀the฀gasoline฀remaining฀three฀hours฀after฀the฀spill. Diesel:฀฀฀The฀diesel฀selected฀for฀this฀scenario฀is฀a฀light,฀reined฀product฀and,฀under฀light฀wind฀ conditions,฀the฀oil฀will฀likely฀remain฀on฀the฀surface฀with฀much฀of฀the฀product฀evaporating.฀฀ However,฀strong฀winds฀in฀the฀scenario฀(15฀knots)฀will฀generate฀breaking฀waves฀that฀tear฀the฀ surface฀slick฀into฀small฀droplets.฀฀The฀oil฀droplets฀are฀driven฀into฀the฀water฀column฀and,฀if฀the฀ droplets฀are฀small฀enough,฀natural฀turbulence฀will฀prevent฀the฀oil฀from฀resurfacing.฀฀The฀“Percent฀Oil฀Dispersed”฀graph฀shows฀that฀over฀85%฀of฀the฀diesel฀has฀dispersed฀about฀12฀hours฀after฀ the฀spill.฀฀Because฀very฀little฀of฀the฀oil฀was฀available฀at฀the฀surface,฀a฀much฀smaller฀amount,฀less฀ than฀15%,฀has฀evaporated.฀฀The฀“Percent฀Oil฀Remaining”฀graph฀shows฀that฀no฀product฀remains฀ after฀12฀hours. It฀is฀important฀to฀note฀that฀the฀terminology฀for฀reined฀products฀is฀not฀standardized,฀and฀ heavier฀intermediate฀fuel฀oils฀are฀sometimes฀referred฀to฀as฀“marine฀diesel.”฀฀฀These฀heavier฀ products฀are฀much฀less฀volatile฀than฀normal฀diesel฀or฀Fuel฀Oil฀No.฀2฀and฀form฀a฀more฀persistent฀ slick฀than฀shown฀in฀Figure฀II-2. 14 North฀Slope฀Crude:฀฀North฀Slope฀crude฀oil฀is฀known฀to฀entrain฀water฀droplets฀and฀form฀an฀ emulsion฀if฀there฀is฀suficient฀energy฀in฀the฀environment฀and฀if฀a฀suficient฀amount฀has฀evaporated.฀฀This฀scenario฀uses฀a฀15-knot฀wind฀so฀that฀about฀40%฀of฀the฀oil฀has฀evaporated฀in฀the฀irst฀ 12฀hours.฀฀After฀this฀time,฀the฀oil฀begins฀to฀entrain฀water฀droplets,฀eventually฀forming฀a฀stable฀ emulsion฀containing฀70฀to฀90%฀water.฀฀This฀process฀increases฀the฀viscosity฀of฀the฀product,฀ making฀it฀more฀dificult฀for฀turbulent฀energy฀to฀tear฀the฀oil฀into฀small฀droplets฀and฀disperse฀it.฀฀ Note฀that฀the฀“Percent฀Oil฀Dispersed”฀graph฀shows฀that฀none฀of฀the฀product฀has฀dispersed.฀฀ Because฀the฀North฀Slope฀crude฀has฀emulsiied฀and฀persisted,฀the฀“Percent฀Oil฀Remaining”฀graph฀ shows฀about฀40%฀remaining฀120฀hours฀after฀the฀initial฀release. Heavy฀Fuel฀Oil:฀฀Heavy฀reined฀products,฀such฀as฀heavy฀fuel฀oil,฀have฀been฀reined฀to฀remove฀ the฀lighter฀components฀and,฀as฀a฀result,฀are฀somewhat฀pre-weathered.฀฀Under฀strong฀winds,฀ the฀“Oil฀Evaporated”฀graph฀shows฀less฀than฀10%฀of฀the฀product฀evaporating฀over฀the฀irst฀120฀ hours฀after฀the฀release.฀฀Heavy฀products฀are฀known฀to฀be฀viscous฀and,฀therefore,฀less฀likely฀to฀be฀ torn฀into฀small฀droplets฀and฀dispersed.฀฀The฀“Percent฀Oil฀Dispersed”฀graph฀shows฀that฀less฀than฀ 20%฀of฀the฀heavy฀fuel฀oil฀disperses฀over฀the฀irst฀120฀hours.฀฀Finally,฀the฀“Percent฀Oil฀Remaining”฀ graph฀indicates฀that฀about฀70฀to฀80%฀of฀the฀oil฀remains฀after฀120฀hours,฀suggesting฀that฀heavy฀ fuel฀oil฀is฀persistent. During฀a฀spill,฀oceanographers฀and฀modelers฀will฀generate฀spill-speciic฀data฀on฀the฀spilled฀oil’s฀ weathering,฀behavior,฀trajectory,฀and฀fate.฀฀They฀can฀estimate฀the฀present฀and฀future฀spread฀of฀ surface฀slicks,฀extent฀and฀persistence฀of฀dispersed฀and฀dissolved฀oil฀plumes,฀and฀the฀risk฀of฀oil฀ sedimentation.฀฀This฀information฀can฀help฀seafood฀managers฀assess฀the฀risk฀of฀spilled฀oil฀exposing฀seafood. Long-term฀weathering฀processes฀that฀change฀oil฀properties Biodegradation Biodegradation฀is฀the฀process฀by฀which฀hydrocarbon-degrading฀organisms฀such฀as฀bacteria,฀ fungi,฀and฀yeasts฀break฀down฀petroleum฀hydrocarbons฀ultimately฀into฀carbon฀dioxide฀and฀water.฀฀Oil฀ degradation฀rates฀depend฀on฀the฀oil฀type฀and฀may฀be฀further฀limited฀by฀oxygen,฀nutrients,฀and/or฀the฀ surface฀area฀available฀to฀microorganisms.฀฀Small฀droplets฀of฀dispersed฀oil฀biodegrade฀more฀rapidly฀ than฀tarballs฀or฀surface฀slicks.฀฀Light฀crude฀oils฀and฀light฀reined฀products฀readily฀biodegrade฀within฀ weeks฀to฀months.฀฀Heavier฀oils฀can฀require฀years฀to฀decades฀to฀biodegrade.฀฀Biodegradation฀is฀a฀very฀ important฀removal฀mechanism฀for฀persistent฀oil฀residues฀remaining฀after฀shoreline฀cleanup฀efforts฀ have฀concluded. Photo-oxidation In฀the฀presence฀of฀oxygen,฀natural฀sunlight฀can฀cause฀petroleum฀hydrocarbons฀to฀undergo฀ chemical฀reactions,฀a฀process฀known฀as฀photolysis฀(NRC฀1985).฀฀Although฀the฀toxicity฀of฀photo-oxidation฀products฀is฀a฀concern฀because฀they฀are฀more฀water-soluble฀and฀reactive,฀the฀rates฀of฀photo-oxidation฀of฀liquid฀or฀solid฀fractions฀of฀the฀oil฀are฀too฀slow฀to฀signiicantly฀affect฀the฀mass฀balance฀of฀a฀spill฀ within฀the฀irst฀few฀months฀(Jordan฀and฀Payne฀1980). Sedimentation Sedimentation฀is฀the฀process฀by฀which฀particles฀of฀loating฀oil฀sink฀to฀the฀bottom฀of฀the฀water฀ column฀and฀become฀part฀of฀the฀bottom฀sediments.฀฀Sedimentation฀of฀oil฀can฀occur฀when฀oil฀droplets฀ sorb฀onto฀particulate฀matter,฀such฀as฀sand฀and฀clay.฀฀Sorption฀onto฀suspended฀sediments฀in฀the฀water฀ column฀is฀likely฀only฀under฀very฀high฀wave฀and฀wind฀conditions.฀฀For฀example,฀during฀the฀Braer฀spill,฀ 25,000,000฀gallons฀of฀a฀light฀Gullfaks฀crude฀oil฀were฀released฀from฀the฀grounded฀vessel฀during฀hur- 15 ricane-force฀winds,฀and฀an฀estimated฀35฀percent฀of฀the฀oil฀was฀deposited฀on฀the฀seabed฀in฀an฀area฀of฀ 4,000฀km2฀(Kingston฀1999).฀฀The฀sedimented฀oil฀provided฀a฀long-term฀pathway฀for฀exposure฀to฀benthic฀ organisms.฀฀However,฀this฀degree฀of฀ine-grained,฀subtidal฀sediment฀contamination฀is฀highly฀unusual.฀฀ More฀frequently,฀sedimentation฀occurs฀when฀stranded฀oil฀on฀sandy฀beaches฀adheres฀to฀the฀sediment,฀ then฀is฀eroded฀and฀deposited฀in฀small฀quantities฀in฀the฀nearshore฀environment฀(NRC฀1999).฀฀Sedimentation฀can฀also฀occur฀through฀deposition฀as฀fecal฀pellets฀after฀ingestion฀by฀marine฀organisms.฀฀During฀ the฀Arrow฀spill฀in฀Chedabucto฀Bay,฀Canada,฀zooplankton฀ingested฀naturally฀dispersed฀Bunker฀C฀oil฀and฀ later฀excreted฀it฀in฀their฀fecal฀pellets฀(Conover฀1971). Weathering฀processes฀that฀change฀the฀location฀of฀oil Spreading Oil฀quickly฀spreads฀into฀a฀very฀thin฀layer฀on฀the฀water฀surface.฀฀The฀rate฀of฀spreading฀is฀determined฀by฀the฀surface฀tension฀of฀the฀oil,฀water฀currents,฀and฀wind.฀฀Spreading฀enhances฀the฀rate฀and฀ effect฀of฀other฀weathering฀processes฀by฀increasing฀the฀oil’s฀exposure฀to฀sunlight฀and฀air.฀฀ Advection Oil฀moves฀on฀the฀water’s฀surface฀due฀to฀forces฀generated฀by฀winds฀and฀currents฀in฀a฀process฀ known฀as฀advection.฀฀The฀speed฀and฀direction฀of฀wind฀can฀vary฀rapidly฀over฀time,฀so฀weather฀forecasts฀ must฀be฀closely฀monitored฀to฀correctly฀predict฀oil฀spill฀trajectories. Submersion Most฀oils฀loat฀on฀the฀water฀surface฀because฀they฀are฀less฀dense฀than฀water.฀฀If฀oil฀is฀denser฀than฀ water,฀or฀becomes฀denser฀as฀the฀lighter฀components฀evaporate,฀the฀oil฀may฀submerge.฀฀If฀it฀attaches฀to฀ suspended฀sediments,฀the฀oil฀may฀sink฀to฀the฀bottom฀(NRC฀1999).฀฀Once฀oil฀is฀deposited฀on฀the฀bottom,฀ weathering฀processes฀are฀very฀slow.฀฀Submerged฀oil฀can฀be฀a฀chronic฀source฀of฀contamination฀both฀ from฀slowly฀dissolving฀water-soluble฀fractions฀and฀from฀physical฀coating฀of฀seafood฀and฀ishing฀gear. Shoreline฀Stranding For฀most฀oil฀spills,฀the฀oil฀loats฀on฀the฀water฀surface,฀transported฀by฀wind฀and฀currents฀until฀it฀ strands฀on฀the฀shoreline.฀฀Stranded฀oil฀can฀directly฀coat฀intertidal฀organisms,฀habitats,฀and฀ishing฀and฀ aquaculture฀equipment.฀฀Oil฀stranded฀on฀shorelines฀adjacent฀to฀a฀ishery฀can฀be฀a฀source฀of฀chronic฀ contamination,฀particularly฀where฀shoreline฀cleanup฀is฀not฀effective฀or฀not฀attempted฀due฀to฀concerns฀ of฀causing฀greater฀harm฀to฀the฀oiled฀habitat.฀฀Even฀the฀most฀effective฀shoreline฀cleanups฀rarely฀remove฀ all฀of฀the฀stranded฀oil.฀฀Remaining฀oil฀is฀removed฀or฀degraded฀by฀natural฀processes.฀฀Natural฀removal฀ processes฀usually฀include฀physical฀breakup฀and฀dispersal฀of฀persistent฀oil฀residues฀over฀a฀period฀of฀ months฀to฀years฀(Shigenaka฀1997;฀Hayes฀and฀Michel฀1999).฀฀This฀remobilized฀oil,฀either฀as฀whole฀oil฀ droplets฀or฀attached฀to฀suspended฀sediments,฀can฀become฀available฀to฀ilter฀feeders,฀particularly฀intertidal฀and฀shallow฀subtidal฀beds฀of฀mussels,฀oysters,฀and฀clams฀(Shigenaka฀and฀Henry฀1995).฀ Shoreline฀type฀and฀degree฀of฀exposure฀inluence฀how฀long฀oil฀persists฀as฀a฀secondary฀source฀ of฀seafood฀contamination.฀฀Large฀volumes฀of฀oil฀can฀penetrate฀permeable฀substrates,฀such฀as฀sand฀ beaches,฀gravel฀beaches,฀and฀rocky฀rubble฀shores.฀฀Once฀oil฀has฀penetrated฀into฀the฀substrate,฀weathering฀rates฀are฀slowed฀and฀there฀can฀be฀episodic฀releases฀of฀relatively฀fresh฀oil.฀฀If฀the฀oiled฀shorelines฀ also฀are฀sheltered฀from฀direct฀wave฀energy,฀the฀potential฀for฀long-term฀persistence฀of฀oil฀greatly฀ increases.฀฀Sheltering฀can฀be฀large-scale,฀such฀as฀in฀bays฀and฀estuaries;฀it฀can฀also฀be฀localized,฀such฀as฀ in฀the฀lee฀of฀a฀large฀boulder฀on฀an฀otherwise฀exposed฀shoreline.฀฀For฀example,฀during฀the฀extensive฀ monitoring฀of฀subsistence฀seafood฀following฀the฀Exxon฀Valdez฀oil฀spill,฀an฀oil฀spill฀health฀task฀force฀ determined฀that฀inish฀from฀all฀areas฀were฀safe฀to฀consume,฀but฀that฀intertidal฀shellish฀from฀speciic฀ areas฀should฀not฀be฀eaten฀(Fall฀and฀Field฀1996;฀Field฀et฀al.฀1999).฀฀These฀speciic฀areas฀were฀a฀small฀ 16 number฀of฀sheltered,฀sedimentary฀beaches฀with฀high฀levels฀of฀oil฀contamination฀in฀the฀intertidal฀sediments.฀฀Another฀example฀is฀the฀1996฀Sea฀Empress฀oil฀spill฀in฀Milford฀Haven,฀Wales.฀฀Six฀months฀after฀the฀ Sea฀Empress฀spill,฀the฀only฀seafood฀harvest฀activities฀still฀restricted฀outside฀of฀Milford฀Haven฀were฀the฀ exploitation฀of฀bivalves฀where฀heavy฀shoreline฀oiling฀had฀occurred฀in฀sheltered฀areas฀(Law฀et฀al.฀1997).฀ Seafood฀Contamination฀Terminology Adulteration:฀฀According฀to฀the฀U.S.฀Food฀and฀Drug฀Administration฀(FDA),฀a฀food฀is฀considered฀ adulterated฀if฀it฀bears฀or฀contains฀any฀poisonous฀or฀deleterious฀substance฀that฀may฀render฀it฀injurious฀ to฀health,฀if฀it฀contains฀any฀ilthy,฀putrid,฀or฀decomposed฀substances,฀or฀if฀it฀is฀otherwise฀unit฀for฀food฀ (Federal฀Food,฀Drug,฀and฀Cosmetic฀Act,฀Section฀402). Taint:฀฀Taint฀is฀commonly฀deined฀as฀an฀odor฀or฀lavor฀that฀is฀foreign฀to฀a฀food฀product,฀including฀seafood฀(ISO฀1992).฀฀According฀to฀this฀deinition,฀the฀presence฀of฀a฀taint฀simply฀indicates฀that฀lavor฀ or฀odor฀is฀altered;฀it฀does฀not฀characterize฀the฀nature฀of฀the฀off-lavor฀or฀off-odor,฀quantify฀the฀degree฀ of฀taint,฀or฀imply฀health฀hazard. Body฀Burden:฀฀The฀concentration฀of฀a฀contaminant฀in฀an฀organism,฀reported฀for฀the฀whole฀ animal,฀or฀for฀individual฀tissues฀such฀as฀gonads,฀muscle,฀and฀liver,฀is฀referred฀to฀as฀the฀body฀burden.฀฀It฀ can฀be฀reported฀on฀the฀basis฀of฀either฀wet฀or฀dry฀weight฀of฀the฀organism฀or฀tissue.฀ Uptake:฀฀Uptake฀is฀the฀process฀of฀contaminant฀accumulation฀in฀an฀organism.฀฀Uptake฀of฀oil฀can฀ occur฀via฀the฀following฀mechanisms: •฀ adsorption฀(adhesion)฀of฀oil฀on฀the฀skin •฀ absorption฀of฀dissolved฀components฀from฀the฀water฀through฀the฀skin฀(including฀interstitial฀ water฀exposures฀for฀infauna) •฀ absorption฀of฀dissolved฀components฀through฀the฀gills •฀ adsorption฀of฀dispersed฀oil฀droplets฀to฀the฀lipid฀surfaces฀in฀the฀gills •฀ ingestion฀of฀whole฀oil฀droplets฀directly฀or฀of฀food฀contaminated฀with฀oil,฀followed฀by฀sorption฀ in฀the฀gut Many฀factors฀inluence฀uptake,฀including฀the฀exposure฀concentration฀and฀duration,฀pathway฀ of฀exposure,฀lipid฀content,฀and฀feeding฀and฀metabolic฀rates.฀฀Uptake฀from฀water฀generally฀occurs฀more฀ quickly฀than฀dietary฀uptake฀or฀uptake฀from฀sediments.฀ Bioaccumulation:฀฀The฀net฀accumulation฀of฀a฀substance฀by฀an฀organism฀as฀a฀result฀of฀uptake฀ from฀all฀environmental฀sources฀and฀possible฀routes฀of฀exposure฀(contact,฀respiration,฀ingestion,฀etc.)฀is฀ termed฀bioaccumulation฀(ASTM฀1994).฀฀ Bioconcentration:฀฀The฀net฀accumulation฀of฀a฀substance฀as฀a฀result฀of฀uptake฀directly฀from฀ aqueous฀solution฀(ASTM฀1994). Biomagniication:฀฀The฀increase฀in฀body฀burden฀of฀a฀contaminant฀with฀trophic฀level฀is฀called฀ biomagniication.฀฀PAHs฀generally฀do฀not฀biomagnify฀in฀inish฀and฀shellish฀because฀of฀their฀low฀ dietary฀uptake฀eficiencies,฀on฀the฀order฀of฀1฀to฀30%,฀relecting฀slow฀kinetics฀and฀short฀residence฀time฀ in฀the฀gut฀(Meador฀et฀al.฀1995).฀฀ Elimination:฀฀All฀of฀the฀processes฀that฀can฀decrease฀tissue฀concentrations฀of฀a฀contaminant,฀ including฀metabolism,฀excretion,฀and฀diffusive฀loss฀are฀collectively฀termed฀elimination฀(Meador฀et฀al.฀ 1995).฀฀Metabolism฀is฀an฀active฀physiological฀process฀whereby฀a฀contaminant฀is฀biotransformed฀into฀ metabolites.฀฀For฀PAHs,฀the฀metabolites฀are฀more฀water-soluble,฀which฀facilitates฀excretion,฀another฀ 17 active฀physiological฀process฀that฀eliminates฀contaminants฀(both฀parent฀compounds฀and฀metabolites)฀through฀bile,฀urine,฀or฀feces.฀฀Diffusive฀loss฀refers฀to฀a฀decrease฀in฀tissue฀burden฀caused฀by฀simple฀ diffusion฀out฀of฀the฀organism,฀which฀is฀controlled฀by฀partitioning฀between฀tissue฀and฀water.฀฀Meador฀ et฀al.฀(1995)฀recommend฀that฀depuration฀be฀used฀for฀the฀mechanism฀of฀diffusive฀loss,฀and฀elimination฀ be฀used฀for฀the฀combined฀process฀of฀metabolism,฀excretion,฀and฀diffusive฀loss.฀฀These฀deinitions฀are฀ slightly฀different฀than฀those฀used฀by฀ASTM฀(1994),฀which฀deines฀depuration฀as฀“the฀loss฀of฀a฀substance฀ from฀an฀organism฀as฀a฀result฀of฀any฀active฀or฀passive฀process”฀and฀provides฀no฀deinition฀for฀elimination.฀฀However,฀the฀deinitions฀by฀Meador฀et฀al.฀(1995)฀are฀more฀precise฀and฀will฀be฀followed฀in฀this฀ document.฀฀Elimination฀can฀also฀include฀release฀of฀PAHs฀in฀lipid-rich฀eggs฀or฀gametes฀during฀spawning. Elimination฀processes฀begin฀as฀soon฀as฀uptake฀occurs.฀฀In฀constant฀exposure฀experiments,฀ body฀burdens฀tend฀to฀reach฀a฀“steady฀state”฀in฀which฀luxes฀of฀the฀contaminant฀moving฀bidirectionally฀across฀a฀membrane฀or฀boundary฀between฀compartments฀or฀phases฀have฀reached฀a฀balance,฀not฀ necessarily฀equilibrium฀(Meador฀et฀al.฀1995).฀฀When฀the฀exposure฀decreases,฀elimination฀rates฀depend,฀ in฀part,฀on฀the฀hydrophobic฀properties฀of฀the฀compound฀(Spacie฀and฀Hamelink฀1982).฀฀The฀half-lives฀of฀ individual฀compounds฀vary฀(see฀discussion฀below).฀ Growth฀Dilution:฀฀Growth฀dilution฀occurs฀when฀the฀rate฀of฀tissue฀growth฀exceeds฀the฀rate฀of฀ accumulation,฀such฀that฀it฀appears฀as฀though฀elimination฀is฀occurring฀because฀the฀tissue฀concentration฀ is฀decreasing฀(Salazar฀and฀Salazar฀2001).฀฀This฀process฀may฀be฀important฀when฀monitoring฀bivalves฀ during฀the฀growing฀season. Biological฀and฀Ecological฀Factors฀Affecting฀PAH฀Contamination฀of฀Seafood฀ Petroleum฀contamination฀of฀inish฀and฀shellish฀depends฀upon฀a฀variety฀of฀biological฀and฀ ecological฀factors.฀฀Understanding฀how฀different฀feeding฀strategies,฀habitat฀utilization,฀and฀physiology฀ inluence฀the฀likelihood฀of฀petroleum฀contamination฀of฀particular฀species฀is฀critical฀when฀managing฀ seafood฀after฀spills.฀฀Table฀II-5฀summarizes฀several฀of฀these฀factors฀for฀different฀types฀of฀seafood฀organisms. Metabolic฀Capacity Both฀vertebrates฀and฀invertebrates฀have฀mixed-function฀oxygenase฀(MFO)฀enzyme฀systems฀ that฀enable฀them฀to฀metabolize฀petroleum฀substances฀(Meador฀et฀al.฀1995).฀฀Enzymatic฀activity฀is฀low฀ in฀invertebrates฀compared฀to฀vertebrates,฀and฀therefore฀induction฀of฀metabolism฀occurs฀at฀a฀higher฀ contamination฀level฀in฀invertebrates฀(Marsh฀et฀al.฀1992).฀฀Finish฀are฀able฀to฀rapidly฀and฀eficiently฀ biotransform฀or฀metabolize฀PAHs฀and฀excrete฀the฀resulting฀metabolites฀into฀bile฀(Varanasi฀et฀al.฀1989).฀฀ These฀metabolites฀do฀not฀pose฀a฀health฀risk฀to฀human฀consumers฀of฀the฀inish.฀฀Marine฀invertebrates,฀ including฀most฀shellish,฀metabolize฀petroleum฀compounds฀slowly฀and฀ineficiently;฀consequently,฀ they฀tend฀to฀accumulate฀high฀concentrations฀and฀wide฀ranges฀of฀PAHs฀(Law฀and฀Hellou฀1999). Metabolic฀capacity฀of฀organisms฀is฀important฀from฀a฀seafood฀safety฀standpoint฀because฀some฀ PAHs฀have฀carcinogenic฀potential฀for฀human฀consumers,฀due฀to฀the฀highly฀chemically฀reactive฀oxidation฀products฀that฀form฀during฀the฀irst฀stage฀of฀metabolism฀in฀vertebrates฀(ATSDR฀1995;฀Hellou฀1996).฀฀ Human฀consumers฀often฀eat฀invertebrates฀in฀their฀entirety,฀and,฀therefore,฀may฀ingest฀all฀of฀the฀hydrocarbons฀that฀have฀accumulated฀in฀the฀organism฀and฀may฀be฀present฀in฀the฀organism’s฀gut.฀฀Because฀ inish,฀like฀other฀vertebrates,฀rapidly฀and฀eficiently฀metabolize฀petroleum฀hydrocarbons,฀they฀generally฀pose฀little฀or฀no฀health฀risk฀to฀human฀consumers.฀Exceptions฀to฀this฀may฀occur฀for฀consumers฀for฀ whom฀the฀edible฀portion฀of฀inish฀includes฀tissues฀such฀as฀liver฀and฀gall฀bladder,฀which฀tend฀to฀accumulate฀higher฀levels฀of฀PAHs฀than฀muscle฀tissue. 18 Table฀II-5.฀฀Habitat฀utilization,฀feeding฀strategies,฀and฀risk฀of฀exposure฀to฀oil฀of฀different฀seafood฀groups฀(adapted฀from฀RPI฀ 1987,฀1989). Seafood฀Groups Examples Metabolic฀Capacity Habitat฀Utilization Feeding฀ Strategies Risk฀of฀Exposure Finfish฀ anadromous฀fish sturgeon,฀herring,฀ salmon high฀capacity nearshore฀and฀shallow฀ water฀during฀spawning predatory moderate฀to฀high฀in฀ nearshore/shallow฀ water฀during฀spawning marine฀pelagic฀and฀ bottomfish mackerel,฀jacks,฀ cod,฀flounder high฀capacity highly฀mobile,฀most฀species฀prefer฀depths฀of฀>฀ 10฀m predatory low reef฀fish sea฀basses,฀snappers,฀porgies high฀capacity relatively฀deep฀waters฀(10฀ predatory -฀200฀m) low฀to฀moderate;฀ higher฀risk฀in฀shallow฀ water estuarine฀fish bluefish,฀mullet,฀ anchovies high฀capacity spawning฀in฀intertidal฀or฀ predatory subtidal฀habitats;฀offshore฀ winter฀migrations moderate฀to฀high฀in฀ nearshore/shallow฀ water฀during฀spawning American฀lobster,฀ pink฀shrimp,฀blue฀ crab reduced฀capacity may฀migrate฀seasonally;฀ range฀of฀depths฀between฀ estuarine฀and฀deep฀ waters predatory,฀ omnivorous,฀ scavengers benthic฀burrowing,฀ estuarine/shallow฀ water฀species฀at฀higher฀ risk฀than฀deep฀water฀ species Crustaceans lobster,฀crabs,฀ shrimp Mollusks oysters,฀mussels American฀oyster,฀ very฀limited฀capacity Pacific฀oyster,฀blue฀ mussel shallow฀subtidal฀and฀ intertidal฀regions,฀estuaries;฀฀attached฀to฀substrates filter-feeders high clams,฀scallops hard฀clam,฀softshell฀clam,฀bay฀ scallop,฀sea฀scallop very฀limited฀capacity intertidal฀and฀shallow฀ subtidal฀areas;฀benthic฀or฀ buried฀in฀the฀sediment;฀ some฀mobility filter/deposit฀ feeders high gastropods abalone,฀conch,฀ snails,฀whelk,฀ limpet,฀top฀shell very฀limited฀capacity intertidal฀and฀shallow฀ grazers฀and฀ to฀deep฀subtidal฀areas;฀ predatory epibenthic;฀some฀mobility moderate฀to฀high 19 Feeding฀Strategies฀and฀PAH฀Exposure The฀feeding฀strategies฀of฀different฀marine฀organisms฀affect฀their฀likelihood฀of฀exposure฀to฀ PAHs: •฀ Finish฀and฀crustaceans฀are฀predatory฀or฀omnivorous.฀฀They฀are฀exposed฀to฀oil฀by฀ingesting฀contaminated฀food฀items฀or฀sediments,฀and฀by฀absorbing฀water-soluble฀petroleum฀compounds฀ through฀the฀gills.฀฀ •฀ Filter฀feeding฀bivalves฀may฀ingest฀dispersed฀oil฀droplets฀and฀absorb฀water-฀and฀lipid-soluble฀ petroleum฀compounds฀as฀they฀ilter฀plankton฀and฀detritus฀suspended฀in฀the฀water฀column.฀฀ •฀ Deposit-feeding฀bivalves฀may฀be฀exposed฀to฀oil฀through฀contaminated฀sediments฀as฀they฀feed฀ on฀benthic฀detritus,฀and฀as฀they฀absorb฀water-soluble฀compounds฀from฀the฀interstitial฀water฀in฀ sediments. Uptake฀from฀the฀water฀tends฀to฀be฀more฀rapid฀than฀uptake฀through฀the฀diet฀for฀both฀vertebrates฀and฀invertebrates.฀฀Studies฀of฀dietary฀uptake฀of฀PAHs฀in฀inish฀indicate฀low฀uptake฀eficiencies,฀ on฀the฀order฀of฀1฀to฀30%,฀relecting฀slow฀kinetics฀and฀short฀residence฀time฀in฀the฀gut฀(Meador฀et฀al.฀ 1995).฀฀Recent฀studies฀have฀shown฀that฀the฀rate฀of฀uptake฀by฀sediment฀contact฀and฀ingestion฀varies,฀ yet฀it฀tends฀to฀be฀lower฀than฀from฀the฀water฀(Meador฀et฀al.฀1995).฀฀How฀PAHs฀partition฀among฀water,฀ sediment,฀and฀prey฀items฀in฀different฀aquatic฀environments฀may฀impact฀the฀bioavailability฀of฀the฀contaminant.฀฀In฀general,฀both฀ilter-feeding฀and฀deposit-feeding฀bivalves฀are฀considered฀to฀be฀at฀a฀higher฀ risk฀of฀exposure฀than฀predatory฀or฀omnivorous฀inish฀and฀crustaceans฀due฀to฀the฀persistence฀of฀oil฀in฀ contaminated฀sediments. Habitat฀Utilization฀and฀Behavior A฀species’฀habitat฀utilization฀and฀behavior฀affect฀the฀likelihood฀it฀will฀be฀exposed฀to฀oil฀during฀a฀ spill฀(Table฀II-5).฀ Finish •฀ Most฀pelagic฀and฀benthic฀inish฀that฀occur฀in฀relatively฀deep฀waters฀have฀a฀low฀exposure฀risk฀ to฀spilled฀oil฀because฀they฀are฀highly฀mobile฀and฀often฀are฀able฀to฀avoid฀oiled฀areas฀(Moller฀et฀ al.฀1989;฀Law฀et฀al.฀1997;฀Law฀and฀Hellou฀1999).฀฀Also,฀oil฀concentrations฀in฀the฀water฀column฀ are฀usually฀low฀and฀decline฀very฀rapidly,฀minimizing฀exposure.฀฀Exceptions฀may฀occur฀if฀a฀large฀ amount฀of฀fresh,฀light฀oil฀is฀mixed฀into฀the฀water฀column฀(as฀occurred฀at฀the฀North฀Cape฀and฀ Braer฀oil฀spills)฀or฀if฀bottom฀sediments฀become฀contaminated. •฀ Finish฀that฀spawn฀or฀occur฀in฀nearshore,฀shallow฀water฀areas฀in฀intertidal฀and฀subtidal฀zones฀ (e.g.,฀salt,฀brackish,฀or฀freshwater฀marshes,฀creeks,฀or฀rivers)฀and฀in฀shallow฀reef฀zones฀have฀a฀ greater฀risk฀of฀exposure฀than฀offshore฀inish,฀due฀to฀shoreline฀oiling.฀฀ •฀ Penned฀inish฀have฀a฀greater฀risk฀of฀exposure฀than฀wild฀inish฀because฀they฀cannot฀avoid฀oil฀in฀ the฀water฀column.฀฀Most฀cases฀of฀inish฀contamination฀at฀oil฀spills฀have฀involved฀penned฀inish฀ at฀spills฀where฀a฀signiicant฀quantity฀of฀oil฀was฀mixed฀into฀the฀water฀column. Crustaceans •฀ Crustaceans฀(lobsters,฀crabs,฀shrimp)฀have฀a฀moderate฀risk฀of฀exposure฀because฀they฀have฀some฀ mobility,฀but฀utilize฀benthic฀habitats฀in฀shallow฀nearshore฀and฀estuarine฀areas.฀ •฀ Some฀species฀of฀lobsters฀and฀shrimp฀migrate฀seasonally฀between฀estuaries฀and฀offshore฀areas,฀ and฀are฀at฀a฀higher฀risk฀of฀exposure฀when฀they฀are฀in฀nearshore,฀shallow฀waters. 20 •฀ When฀subtidal฀sediments฀are฀signiicantly฀contaminated,฀species฀that฀burrow฀into฀soft฀sediments฀are฀at฀higher฀risk฀of฀exposure.฀฀For฀example,฀during฀the฀Braer฀spill,฀the฀burrowing฀Norway฀ lobster฀remained฀contaminated฀for฀over฀ive฀years,฀whereas฀epibenthic฀lobsters฀eliminated฀ petroleum฀contaminants฀to฀background฀levels฀of฀PAHs฀in฀one฀month฀(Kingston฀1999).฀฀ Mollusks •฀ Most฀mollusks,฀especially฀bivalves,฀are฀at฀high฀risk฀of฀contamination฀because฀they฀are฀sessile฀ and฀unable฀to฀avoid฀exposure.฀฀They฀generally฀occur฀in฀substrates฀in฀shallow฀subtidal฀and฀intertidal฀areas฀where฀exposures฀are฀likely฀to฀be฀most฀persistent฀if฀sediment฀is฀contaminated.฀฀Filter฀ feeding฀mollusks฀can฀ingest฀dispersed฀oil฀and฀oil฀attached฀to฀suspended฀sediments.฀฀Deposit฀ feeders฀can฀ingest฀oil-contaminated฀sediments.฀฀The฀longest฀seafood฀closure฀periods฀associated฀with฀oil฀spills฀have฀been฀for฀bivalves฀in฀areas฀where฀adjacent฀sediments฀remained฀heavily฀ contaminated฀(Law฀et฀al.฀1997). •฀ Some฀bivalve฀species฀use฀defense฀mechanisms฀during฀oil฀spills,฀including฀closing฀their฀shells฀or฀ shutting฀down฀their฀pumping฀systems,฀thereby฀eliminating฀the฀uptake฀route฀for฀the฀contaminants฀(RPI฀1989).฀฀Some฀species฀can฀remain฀closed฀for฀several฀weeks฀without฀adverse฀effects,฀ whereas฀others฀start฀to฀degrade฀a฀few฀days฀after฀closure. Temperature It฀is฀generally฀accepted฀that฀uptake฀and฀elimination฀rates฀both฀tend฀to฀increase฀with฀increasing฀temperature,฀though฀there฀is฀some฀contradiction฀among฀reported฀study฀results฀for฀PAHs฀(Fucik฀and฀ Neff฀1977;฀Landrum฀1982;฀Jovanovich฀and฀Marion฀1987;฀Meador฀et฀al.฀1995).฀ The฀rate฀of฀reaction฀in฀chemical฀and฀biological฀processes฀generally฀increases฀2-฀to฀4-fold฀for฀ a฀10°C฀increase฀in฀temperature฀(Kennedy฀et฀al.฀1989;฀French฀2000).฀฀Uptake,฀metabolic,฀and฀elimination฀rates฀typically฀increase฀with฀temperature,฀but฀at฀different฀rates,฀making฀it฀dificult฀to฀predict฀ body฀burdens฀under฀the฀constantly฀changing฀oil฀concentrations฀that฀occur฀at฀spills.฀฀However,฀at฀high฀ temperatures฀and฀increased฀respiration฀and฀iltration฀rates,฀it฀is฀expected฀that฀uptake฀will฀occur฀quickly,฀ to฀relatively฀high฀concentration,฀followed฀by฀rapid฀declines฀(Meador฀et฀al.฀1995).฀฀At฀low฀temperatures,฀ body฀burdens฀are฀likely฀to฀be฀lower,฀but฀elimination฀rates฀will฀also฀be฀slower.฀฀At฀very฀low฀temperatures,฀ some฀species฀stop฀feeding฀and฀thus฀are฀at฀lower฀risk฀of฀exposure.฀฀For฀example,฀elevated฀levels฀of฀PAHs฀ from฀the฀North฀Cape฀oil฀spill฀were฀detected฀in฀soft฀shell฀clams,฀oysters,฀and฀mussels,฀but฀not฀in฀quahogs฀ because฀they฀stop฀feeding฀at฀6°C฀and฀the฀water฀temperature฀during฀the฀spill฀was฀4°C฀(NOAA฀et฀al.฀ 1999). Physiology Lipid,฀carbohydrate,฀and฀protein฀levels฀are฀known฀to฀vary฀seasonally฀in฀certain฀aquatic฀invertebrate฀species,฀often฀associated฀with฀reproductive฀changes฀(Jovanovich฀and฀Marion฀1987).฀฀Some฀of฀ these฀changes฀in฀biochemical฀composition฀may฀affect฀uptake฀and฀elimination฀rates฀seasonally.฀฀Seasonal฀variation฀may฀also฀result฀from฀differences฀in฀feeding฀rates,฀microbial฀activity,฀and฀various฀environmental฀factors฀(Meador฀et฀al.฀1995). Organisms฀with฀higher฀overall฀lipid฀content฀generally฀exhibit฀higher฀levels฀of฀uptake฀or฀retention฀of฀petroleum฀compounds฀(NRC฀1983).฀฀For฀example,฀Heras฀et฀al.฀(1992)฀found฀that฀salmon฀(muscle฀ lipid฀content฀of฀4.0%฀wet฀weight)฀accumulated฀higher฀hydrocarbon฀concentrations฀than฀cod฀(muscle฀ lipid฀content฀of฀0.75%฀wet฀weight).฀฀Jovanovich฀and฀Marion฀(1987)฀have฀reported฀that฀uptake฀rates฀of฀ PAHs฀in฀clams฀peaked฀when฀gametogenesis฀was฀near฀completion฀and฀decreased฀during฀spawning,฀ while฀elimination฀rates฀peaked฀during฀spawning.฀฀Bender฀et฀al.฀(1986)฀found฀that฀oysters฀and฀clams฀ 21 sampled฀at฀the฀high฀point฀of฀lipid฀and฀glycogen฀reserves฀during฀their฀spawning฀cycles฀(the฀fall)฀had฀ PAH฀tissue฀levels฀that฀were฀2฀to฀3฀times฀higher฀than฀they฀were฀when฀sampled฀during฀the฀spring.฀฀High฀ elimination฀rates฀during฀the฀loss฀of฀lipid-rich฀eggs฀are฀consistent฀with฀indings฀that฀inish฀and฀shellish฀ tend฀to฀accumulate฀PAHs฀in฀tissues฀with฀high฀lipid฀content฀because฀PAHs฀are฀strongly฀hydrophobic฀ (Meador฀et฀al.฀1995).฀฀ Potential฀variations฀in฀PAH฀uptake฀and฀elimination฀rates฀in฀seafood฀species฀due฀to฀seasonal฀ and฀physiological฀variation฀should฀be฀taken฀into฀account฀during฀spill฀response.฀฀These฀differences฀ should฀be฀considered฀when฀designing฀seafood฀sampling฀plans฀and฀when฀comparing฀analytical฀results฀ from฀samples฀from฀different฀species,฀collected฀at฀different฀times฀of฀year,฀or฀collected฀during฀different฀ stages฀in฀the฀life฀cycle฀of฀the฀organisms. Chronic฀Exposure฀Stress Bioaccumulation฀levels฀and฀elimination฀rates฀of฀hydrocarbons฀for฀inish฀and฀shellish฀may฀ depend฀on฀the฀type฀and฀duration฀of฀exposure฀to฀petroleum฀products,฀and฀the฀extent฀to฀which฀the฀ organisms฀have฀been฀chronically฀exposed฀to฀other฀contaminants.฀฀Chronic฀exposure฀appears฀to฀reduce฀ elimination฀capacity.฀฀In฀fact,฀there฀may฀be฀two฀phases฀of฀elimination:฀฀an฀initial฀rapid฀phase฀followed฀ by฀a฀second฀slower฀phase฀for฀PAHs฀that฀are฀sequestered฀in฀stable฀compartments฀of฀the฀organism,฀such฀ as฀storage฀lipids฀(Meador฀et฀al.฀1995).฀฀Some฀chronic฀hydrocarbon฀pollution฀studies฀have฀indicated฀ no฀signiicant฀reductions฀in฀PAH฀levels฀in฀tissues฀over฀2-4฀months฀for฀clams฀and฀mussels,฀even฀when฀ the฀animals฀were฀moved฀to฀cleaner฀habitats฀(DiSalvo฀et฀al.฀1975;฀Boehm฀and฀Quinn฀1977).฀฀The฀ratio฀ of฀liver/muscle฀concentrations฀in฀inish฀sometimes฀can฀be฀used฀as฀an฀indicator฀of฀the฀level฀of฀chronic฀ PAH฀contamination฀at฀a฀site.฀฀Liver฀levels฀represent฀shorter-term฀exposure฀to฀oil,฀while฀muscle฀levels฀ represent฀longer-term฀bioaccumulation.฀฀Therefore,฀lower฀liver/muscle฀ratios฀may฀indicate฀decreased฀ eficiency฀in฀an฀organism’s฀ability฀to฀biotransform฀absorbed฀or฀ingested฀oil฀into฀compounds฀that฀are฀ easily฀excreted฀(Hellou฀1996).฀ Other฀subsistence฀and฀recreational฀seafood฀organisms Some฀organisms฀that฀are฀collected฀and฀consumed฀for฀subsistence฀and฀recreation฀were฀not฀ discussed฀in฀this฀section.฀฀Examples฀are฀octopus,฀squid,฀seals,฀whales,฀seaweed,฀and฀algae.฀฀There฀isn’t฀ enough฀information฀on฀these฀organisms฀to฀thoroughly฀discuss฀the฀level฀of฀risk฀they฀may฀pose฀to฀consumers฀following฀an฀oil฀spill.฀฀It฀should฀be฀noted,฀however,฀that฀if฀these฀organisms฀occur฀in฀a฀spill฀area฀ and฀are฀exposed,฀restrictions฀on฀harvest฀or฀consumption฀advisories฀might฀be฀warranted,฀depending฀on฀ contamination฀and฀consumption฀levels.฀฀฀ Summary฀ •฀ Wild฀inish฀are฀unlikely฀to฀become฀contaminated฀or฀tainted฀because฀they฀typically฀are฀either฀ not฀exposed฀or฀are฀exposed฀only฀briely฀to฀the฀spilled฀oil฀and฀because฀they฀rapidly฀eliminate฀ petroleum฀compounds฀taken฀up.฀฀Exceptions฀may฀occur฀if฀a฀large฀amount฀of฀fresh,฀light฀oil฀is฀ mixed฀into฀the฀water฀column฀or฀if฀bottom฀sediments฀become฀contaminated.฀฀If฀nearshore฀sediments฀are฀contaminated,฀species฀that฀spawn฀in฀nearshore฀and฀shallow฀waters฀are฀more฀likely฀to฀ be฀exposed฀to฀spilled฀oil฀than฀pelagic฀and฀benthic฀species.฀฀ •฀ Penned฀inish฀are฀more฀susceptible฀to฀tainting฀and฀contamination฀because฀they฀are฀not฀ able฀to฀escape฀exposure.฀฀They฀are฀especially฀at฀risk฀if฀large฀amounts฀of฀oil฀mix฀into฀the฀water฀ column.฀฀ 22 •฀ Shellish฀are฀more฀likely฀than฀inish฀to฀become฀contaminated฀from฀spilled฀oil฀because฀they฀are฀ more฀vulnerable฀to฀exposure฀and฀less฀eficient฀at฀metabolizing฀petroleum฀compounds฀once฀ exposed.฀฀Shellish฀are฀generally฀less฀mobile฀and฀have฀more฀contact฀with฀sediments,฀which฀can฀ become฀contaminated฀and฀serve฀as฀a฀long-term฀source฀of฀exposure.฀฀ •฀ Among฀crustaceans,฀species฀that฀burrow฀are฀at฀the฀highest฀risk฀of฀exposure฀at฀spills฀where฀ bottom฀sediments฀are฀contaminated,฀followed฀by฀species฀that฀utilize฀nearshore฀and฀estuarine฀ benthic฀habitats. •฀ Bivalves฀are฀at฀high฀risk฀of฀contamination฀because฀they฀are฀sessile,฀ilter-฀and฀deposit-฀feed,฀ and฀occur฀in฀substrates฀in฀shallow฀subtidal฀and฀intertidal฀areas฀that฀are฀more฀likely฀to฀become฀ contaminated.฀ •฀ It฀is฀generally฀accepted฀that฀uptake฀and฀elimination฀rates฀both฀increase฀with฀temperature,฀ though฀study฀results฀are฀somewhat฀contradictory. •฀ PAHs฀tend฀to฀accumulate฀to฀higher฀concentrations฀in฀lipid-rich฀tissues฀and฀organisms.฀฀Seasonal฀differences฀in฀tissue฀lipid฀content฀associated฀with฀spawning฀may฀inluence฀uptake฀and฀ elimination฀rates฀of฀PAHs฀in฀some฀marine฀species. •฀ Chronic฀exposure฀to฀hydrocarbons฀in฀water฀and฀sediments฀may฀reduce฀elimination฀capacity.฀ Summary฀of฀Literature฀on฀Uptake฀and฀Elimination฀ Most฀of฀the฀literature฀on฀oil฀and฀PAH฀uptake฀and฀elimination฀by฀marine฀organisms฀is฀based฀on฀ laboratory฀studies฀using฀the฀water-soluble฀fraction฀or฀dispersed฀oil฀in฀aqueous฀exposures,฀or฀contaminated฀sediments.฀฀The฀organisms฀are฀typically฀exposed฀to฀a฀constant฀concentration฀for฀a฀period฀of฀ time฀(often฀24฀hours฀for฀aqueous฀exposures;฀28฀days฀for฀sediment฀exposures)฀and฀then฀placed฀in฀clean฀ water฀and฀monitored฀for฀tissue฀concentrations฀over฀time.฀฀The฀rate฀of฀elimination฀is฀often฀reported฀in฀ terms฀of฀half-life,฀that฀is,฀the฀time฀it฀takes฀for฀the฀concentration฀of฀a฀compound฀to฀decrease฀by฀half.฀ Laboratory฀aqueous฀exposure฀concentrations฀are฀often฀an฀order฀of฀magnitude฀or฀two฀higher฀ than฀expected฀at฀oil฀spills.฀฀At฀actual฀oil฀spills,฀organisms฀are฀more฀likely฀to฀experience฀spiked฀exposures฀ in฀the฀water:฀฀concentrations฀that฀are฀initially฀high฀(for฀a฀few฀hours฀or฀less)฀and฀then฀rapidly฀decline฀as฀ the฀oil฀disperses฀in฀three฀dimensions฀and฀degrades.฀฀Although฀laboratory฀exposure฀conditions฀often฀ differ฀from฀those฀at฀actual฀spills,฀laboratory฀tests฀can฀be฀useful฀indicators฀of฀the฀relative฀rates฀of฀uptake฀ and฀elimination฀among฀different฀oil฀compounds฀and฀concentrations,฀species,฀routes฀of฀exposure,฀and฀ environmental฀conditions. Laboratory฀study฀results฀indicate฀that฀PAH฀uptake฀from฀water฀is฀rapid,฀especially฀for฀inish฀and฀ crustaceans,฀which฀may฀be฀related,฀in฀part,฀to฀high฀ventilatory฀rates฀(Meador฀et฀al.฀1995).฀฀For฀example,฀ laboratory฀experiments฀have฀reported฀tainting฀after฀eight฀hours฀of฀exposure฀of฀salmon฀to฀0.4฀ppm฀ of฀the฀water-soluble฀fraction฀of฀a฀crude฀oil฀(Ackman฀and฀Heras฀1992)฀and฀after฀4฀hours฀of฀exposure฀ of฀Arctic฀char฀to฀50฀ppm฀of฀a฀crude฀oil฀(Lockhart฀and฀Danell฀1992).฀฀Dietary฀uptake฀from฀sediments฀is฀ slower.฀฀Studies฀indicate฀that฀PAH฀uptake฀rates฀decrease฀with฀increasing฀molecular฀weight฀(Meador฀et฀ al.฀1995). Elimination฀rates฀vary฀widely,฀by฀organism฀type,฀species,฀size,฀uptake฀pathway,฀oil฀type,฀temperature,฀and฀season.฀฀However,฀some฀generalizations฀can฀be฀derived฀from฀the฀literature.฀฀First,฀the฀ half-lives฀of฀PAHs฀in฀organisms฀increase฀with฀molecular฀weight฀(Meador฀et฀al.฀1995).฀฀Table฀II-6฀shows฀ this฀trend฀for฀PAHs฀in฀bivalves,฀which฀have฀limited฀ability฀to฀metabolize฀PAHs฀(the฀PAHs฀are฀listed฀in฀ order฀of฀increasing฀molecular฀weight).฀฀It฀is฀important฀to฀note฀that฀the฀more฀persistent฀PAHs฀(with฀ more฀than฀three฀benzene฀rings)฀are฀present฀in฀petroleum฀at฀very฀low฀levels.฀฀Elimination฀rates฀for฀ 23 inish,฀which฀metabolize฀PAHs฀more฀readily,฀would฀be฀faster฀than฀the฀rates฀shown฀in฀Table฀II-6.฀฀Second,฀ passive฀release฀and฀metabolism฀of฀PAHs฀are฀slower฀in฀chronically฀exposed฀animals,฀as฀discussed฀earlier฀ (Meador฀et฀al.฀1995).฀ Table฀II-6.฀฀Half-lives฀of฀PAHs฀in฀bivalves฀based฀on฀laboratory฀tests฀of฀both฀water฀and฀sediment฀exposures฀(modiied฀after฀ Meador฀et฀al.฀1995). Half-life,฀in฀days฀ mean฀(range) Compound No.฀of฀Tests Naphthalene 3 Phenanthrene 6 3.3฀(1.7-6.1) Fluoranthene 6 9.9฀(2.0-29.8) Benzo(a)pyrene 6 ฀12.3฀(4.8-16) 1.6฀(0.9-2) Field฀data฀on฀the฀duration฀of฀taint฀and฀body฀burdens฀is฀limited฀to฀a฀few,฀well-studied฀spills.฀฀ Table฀II-7฀summarizes฀the฀available฀data฀by฀spill฀and฀organism฀type.฀฀These฀case฀studies฀show฀that฀wild฀ inish฀are฀seldom฀tainted,฀and฀the฀duration฀of฀taint฀is฀short฀(less฀than฀one฀month).฀฀Caged฀salmon,฀ however,฀are฀more฀vulnerable฀to฀exposure,฀and฀taint฀may฀persist฀longer.฀฀At฀the฀Braer฀spill,฀in฀which฀a฀ very฀large฀amount฀of฀a฀light฀crude฀oil฀was฀released฀over฀12฀days฀and฀elevated฀oil฀concentrations฀in฀ water฀persisted฀in฀the฀vicinity฀of฀salmon฀farms฀for฀up฀to฀50฀days,฀the฀salmon฀closest฀to฀the฀spill฀reportedly฀remained฀tainted฀for฀nearly฀200฀days฀after฀the฀spill฀(Whittle฀et฀al.฀1997). Tainting฀of฀crustaceans฀has฀been฀reported฀for฀spills฀at฀which฀a฀light฀oil฀was฀naturally฀dispersed฀ into฀the฀water฀column฀immediately฀after฀release.฀฀Some฀of฀the฀dispersed฀oil฀can฀mix฀with฀suspended฀ sediments฀and฀accumulate฀on฀the฀sealoor฀surface,฀where฀lobsters,฀for฀example,฀can฀come฀into฀contact฀ with฀the฀oil.฀฀It฀appears฀that฀epibenthic฀crustaceans฀readily฀uptake฀oil฀from฀sediments฀and฀are฀tainted฀ at฀low฀PAH฀levels.฀฀Petroleum฀hydrocarbons฀tend฀to฀persist฀longer฀in฀crustaceans฀than฀inish,฀perhaps฀ partly฀because฀they฀are฀exposed฀by฀both฀water฀and฀sediment฀pathways.฀฀The฀sediment-associated฀ oil฀has฀more฀of฀the฀higher-molecular฀weight฀PAHs฀that฀are฀more฀persistent฀and฀are฀eliminated฀more฀ slowly฀(Meador฀et฀al.฀1995). Bivalves,฀particularly฀ilter฀feeders,฀are฀more฀likely฀to฀have฀elevated฀levels฀of฀PAHs฀when฀the฀oil฀ strands฀on฀intertidal฀beds฀or฀mixes฀into฀the฀water฀column฀over฀subtidal฀beds.฀฀Heavily฀oiled฀sediments฀ can฀provide฀a฀source฀of฀chronic฀exposure,฀as฀at฀the฀Sea฀Empress฀spill฀where฀intertidal฀mussels฀remained฀ contaminated฀in฀one฀heavily฀oiled฀bay฀for฀19฀months฀after฀the฀spill฀(Law฀et฀al.฀1999).฀฀Once฀exposure฀ ceases,฀elimination฀can฀be฀completed฀as฀rapidly฀as฀less฀than฀one฀month.฀฀Because฀bivalves฀accumulate฀ oil฀compounds฀and฀eliminate฀them฀very฀slowly,฀they฀sometimes฀can฀be฀used฀as฀to฀indicate฀the฀extent฀ and฀degree฀of฀oil฀exposure฀after฀an฀oil฀spill. 24 Table฀II-7.฀฀Presence฀and฀duration฀of฀taint฀and฀tissue฀contamination฀with฀petroleum฀compounds฀reported฀at฀various฀oil฀ spills.฀฀Refer฀to฀Table฀I-1฀for฀the฀details฀on฀spill฀location,฀date,฀oil฀type฀and฀volume,฀environmental฀conditions,฀and฀references. Spill฀Name Tissue฀PAH฀Concentration฀(µg/kg฀or฀ppb฀ wet฀weight)฀and฀Persistence Taint฀Persistence Finfish T/V฀Sea฀Empress฀ Wild฀salmon:฀฀12-186฀Declined฀“rapidly” Wild฀salmon:฀฀No฀taint T/V฀Braer Cod:฀฀1.3-74฀ Haddock:฀฀8-262฀ Plaice:฀฀15-184฀ Whiting:฀฀9-2,650฀ Lemon฀sole:฀฀6-1,240฀ Dab:฀฀25-2,160฀ All฀but฀dab฀reached฀background฀in฀1฀month;฀dab฀in฀2฀ months Cod:฀฀No฀taint Haddock:฀฀1฀month Plaice:฀฀Suspect฀taint฀2฀months Whiting:฀฀No฀data Lemon฀sole:฀฀No฀taint Dab:฀฀1฀month Caged฀salmon:฀฀7฀months Caged฀salmon:฀฀up฀to฀14,000;฀rapid฀loss฀to฀1,000฀in฀25฀ days,฀reached฀background฀in฀5฀months T/B฀North฀Cape Finfish:฀฀5-1,100;฀0฀months฀because฀no฀increase฀over฀ background฀was฀observed All฀finfish:฀฀No฀taint฀in฀416฀samples M/V฀Kure Rock฀crab:฀฀5-350;฀0.5฀months Crab:฀฀No฀taint M/V฀New฀Carissa Dungeness฀crab:฀<฀15 No฀sensory฀testing฀conducted T/V฀Braer Lobster:฀฀112-1,060;฀1฀month฀ Velvet฀crab:฀฀94-308;฀2฀months฀ Edible฀crab฀white฀meat:฀฀19-281;฀ brown฀meat:฀฀104-1,390;฀ 12฀months฀for฀crabs Lobster:฀฀1฀month Edible฀crab:฀฀No฀taint T/B฀North฀Cape Lobster:฀฀฀0-33,150;฀2.5-5฀months Lobster:฀฀2.5-5฀months M/V฀Kure Oyster:฀฀264-4,467;฀0.5฀months Oyster:฀฀No฀taint M/V฀New฀Carissa Oyster:฀฀70-1,200;฀3฀weeks Oyster:฀฀No฀taint T/V฀Sea฀Empress Whelk:฀฀50-3,800;฀4฀months฀ Mussel:฀฀up฀to฀19,500;฀2.5-5฀months Cockle:฀similar฀to฀mussels Whelk:฀฀No฀taint Mussel:฀฀No฀data T/V฀Braer Whelk:฀฀45-1,130;฀12฀months Scallop:฀฀223-3,580;฀17฀months Whelk:฀฀No฀data Scallop:฀฀Suspect฀taint฀2฀months T/B฀North฀Cape Steamer฀clam:฀฀8,500-18,400;฀3฀months Oyster:฀฀1,400-13,500;฀3฀months Mussel:฀฀4,200-24,300;฀3฀months Steamer฀clam:฀฀No฀taint Oyster:฀฀No฀taint Mussel:฀฀No฀taint Crustaceans Bivalves Refinery฀Spill,฀El฀Salvador Oysters:฀฀30,000;฀฀<1฀month Oysters:฀฀No฀data T/V฀Exxon฀Valdez Bivalves฀from฀four฀small฀areas฀were฀above฀100;฀1฀year All฀other฀areas฀<฀100 Bivalves:฀฀No฀data 25 Correlation฀between฀Taint฀and฀Body฀Burden The฀speciic฀compounds฀responsible฀for฀petroleum฀taint฀in฀seafood฀have฀not฀been฀unequivocally฀determined.฀฀Consequently,฀results฀of฀chemical฀analysis฀cannot฀yet฀be฀used฀to฀predict฀presence฀ or฀absence฀of฀taint.฀฀Nevertheless,฀results฀from฀recent฀spills฀where฀both฀chemical฀and฀sensory฀testing฀ have฀been฀conducted฀indicate฀a฀high฀degree฀correlation฀between฀presence฀of฀taint฀and฀presence฀of฀ measured฀petroleum฀contaminants,฀or฀conversely,฀absence฀of฀both.฀฀The฀relationship,฀as฀well฀as฀tainting฀ threshold,฀may฀vary฀somewhat฀depending฀on฀species,฀oil฀type,฀exposure฀pathway,฀and฀other฀unknown฀ factors.฀฀Within฀a฀series฀of฀experiments฀using฀the฀same฀oil฀type฀and฀species,฀sensory฀panels฀can฀correctly฀rank฀the฀degree฀of฀taint฀with฀both฀tissue฀concentrations฀and฀exposure฀water฀concentrations.฀฀ Some฀reported฀minimum฀concentrations฀of฀measured฀oil฀compounds฀in฀tissues฀that฀were฀determined฀ by฀sensory฀testing฀to฀be฀tainted฀include฀0.6฀ppm฀for฀cod฀(Ernst฀et฀al.฀1989b),฀5฀ppm฀for฀salmon฀(Heras฀ et฀al.฀1993),฀9฀ppm฀for฀plaice฀(Howgate฀et฀al.฀1977),฀and฀100฀ppm฀in฀scallops฀(Motohiro฀and฀Iseya฀1976).฀฀ Sometimes฀it฀is฀possible฀to฀develop฀correlations฀for฀speciic฀spills฀once฀a฀large฀enough฀data฀set฀is฀ generated.฀฀For฀example,฀during฀the฀Braer฀spill,฀taint฀in฀caged฀salmon฀was฀readily฀perceived฀if฀the฀PAH฀ concentration฀in฀the฀lesh฀was฀1,000฀ppb฀or฀greater฀(Whittle฀et฀al.฀1997). Laboratory฀studies฀have฀reported฀tainting฀thresholds฀in฀salmon,฀rainbow฀trout,฀scallops,฀and฀ mussels฀(Ernst฀et฀al.฀1989a;฀Ackman฀and฀Heras฀1992;฀Davis฀et฀al.฀1995;฀Heras฀et฀al.฀1992,฀1993;฀Jacques฀ Whitford฀Environment฀1992).฀฀The฀data฀are฀dificult฀to฀interpret฀because฀tissue฀levels฀are฀seldom฀measured,฀or฀they฀are฀reported฀as฀“ppm฀oil”฀rather฀than฀speciic฀compounds,฀such฀as฀PAHs.฀฀More฀often,฀the฀ studies฀correlate฀taint฀with฀the฀amount฀of฀oil฀in฀the฀exposure฀water,฀again฀usually฀reported฀as฀“ppm฀oil.”฀฀ These฀studies฀might฀provide฀some฀basis฀for฀predicting฀the฀potential฀for฀tainting฀for฀the฀combination฀of฀ species฀and฀oil฀tested.฀฀However,฀it฀is฀not฀yet฀possible฀to฀make฀general฀predictions.฀฀ Conceptual฀Models฀of฀Exposure,฀Uptake,฀and฀Elimination Because฀conditions฀change฀rapidly฀at฀oil฀spills,฀it฀is฀helpful฀to฀have฀conceptual฀models฀of฀the฀ exposure฀pathways฀for฀a฀range฀of฀spill฀conditions.฀฀These฀conceptual฀models฀may฀help฀seafood฀managers฀in฀evaluating฀the฀risk฀of฀signiicant฀contamination฀of฀seafood฀and฀making฀decisions฀based฀on฀ limited฀on-scene฀data.฀฀Table฀II-8฀summarizes฀ive฀conceptual฀models฀for฀exposure,฀uptake,฀and฀elimination฀at฀oil฀spills,฀applied฀to฀seafood.฀฀These฀models฀are฀based฀on฀actual฀spill฀data฀and฀supported฀by฀ laboratory฀research,฀as฀cited฀in฀the฀previous฀sections.฀฀Please฀refer฀to฀these฀sections฀to฀ind฀the฀citations฀ supporting฀each฀of฀the฀conceptual฀models.฀฀It฀is฀important฀to฀note฀that฀during฀some฀spills฀more฀than฀ one฀of฀the฀models฀will฀apply.฀฀Each฀of฀these฀models฀is฀briely฀discussed. 26 Table฀II-8.฀฀Conceptual฀framework฀for฀seafood฀exposure฀to,฀uptake,฀and฀elimination฀of฀oil฀at฀spills. Exposure฀Pathway Exposure฀Conditions Seafood฀at฀Risk Tissue฀Contaminants Elimination฀Rates -Finfish฀in฀the฀area฀ affected฀by฀the฀dissolved฀ plume -Epibiota฀and฀filter฀feeding฀infauna฀where฀the฀ dissolved฀plume฀contacts฀ the฀bottom -The฀more฀water-soluble฀ compounds฀will฀dominate,฀i.e.,฀the฀2-฀and฀3ringed฀PAHs -Most฀rapid฀because฀the฀ compounds฀are฀more฀ water-soluble฀and฀are฀ quickly฀lost฀by฀diffusion฀ and/or฀metabolism -All฀biota฀in฀the฀water฀ column -Epibiota฀and฀filter฀feeding฀infauna฀where฀the฀ dissolved/฀dispersed฀ plume฀contacts฀the฀ bottom -Intertidal฀biota฀(e.g.฀ oyster/mussel฀beds) -Same฀as฀the฀whole฀oil฀ because฀particulate฀oil฀ will฀dominate฀over฀dissolved -Over฀time฀heavier฀fractions฀will฀predominate฀ as฀the฀more฀soluble฀fractions฀are฀depleted฀from฀ the฀slick -฀The฀range฀of฀PAHs฀in฀the฀ whole฀oil฀is฀present฀in฀ tissues;฀฀ -Elimination฀slower฀for฀ 4-5฀ringed฀PAHs฀than฀for฀ 2-3฀ringed฀PAHs Resuspension฀of฀contam- -Resuspension฀of฀heavily฀ -Nearshore฀filter฀feeders฀ inated฀sediments฀into฀the฀ oiled฀sediments฀from฀the฀ (epibiota฀and฀infauna) shoreline฀or฀nearshore฀ water฀column sediments -Exposure฀time฀is฀likely฀to฀ be฀episodic฀and฀related฀ to฀storms -Will฀follow฀weathering฀ pattern฀in฀the฀stranded฀ oil -Over฀time,฀the฀less฀soluble,฀less฀degradable฀compounds฀will฀dominate฀ -Relatively฀slower฀rates฀ because฀of฀the฀wide฀ range฀of฀PAHs฀in฀the฀oiled฀ sediments;฀chronic฀exposures฀may฀result฀in฀longer฀ persistence฀even฀after฀ exposure฀ends฀ Dissolved฀oil฀fraction฀only฀ -Relatively฀calm,฀so฀slick฀ via฀the฀water฀column does฀not฀disperse -Separation฀of฀dissolved฀ plume฀from฀surface฀slick -Viscous฀oils฀that฀do฀not฀ readily฀disperse ฀-Exposure฀time฀is฀short Dissolved฀and฀particulate oil฀fractions฀via฀the฀ water฀column฀and฀water฀ surface -Turbulence฀that฀mixes฀ the฀oil฀as฀droplets฀into฀ the฀water฀column -Light฀oils฀that฀are฀readily฀ dispersed -Exposure฀time฀is฀short Contaminated฀intertidal฀ and฀subtidal฀sediments -Oiled฀intertidal฀or฀subtidal฀sediments -Chronic฀exposure -฀Infauna฀and฀some฀ epibiota฀that฀are฀closely฀ associated฀with฀bottom฀ sediments,฀especially฀ deposit฀feeders -Same฀as฀above฀ -Same฀as฀above Ingestion฀of฀contaminated฀food -Usually฀occurs฀where฀ sediments฀are฀contaminated -Exposure฀often฀chronic -Predators,฀scavengers,฀ and฀omnivorous฀feeders -Highly฀variable฀and฀ poorly฀understood -Highly฀variable฀and฀ poorly฀understood 1.฀ Exposure฀to฀the฀dissolved฀oil฀fraction฀only฀฀ This฀exposure฀model฀assumes฀little฀or฀no฀dispersion฀of฀the฀whole฀oil฀into฀the฀water฀column,฀or฀ that฀the฀dispersed฀oil฀re-coalesced฀into฀surface฀slicks,฀leaving฀behind฀a฀dissolved฀oil฀plume.฀฀Alternately,฀ winds฀may฀transport฀the฀surface฀slick฀in฀one฀direction,฀whereas฀tidal฀currents฀can฀carry฀the฀dissolved฀ plume฀in฀another฀direction.฀฀Under฀most฀conditions,฀exposure฀time฀to฀the฀water-soluble฀fraction฀of฀oil฀ is฀short฀(in฀the฀range฀of฀hours฀to฀days)฀due฀to฀rapid฀dilution,฀evaporation,฀etc.฀฀Exposure฀concentrations฀ are฀usually฀low฀(ppb฀range).฀฀Uptake฀by฀inish฀and฀shellish฀will฀be฀rapid฀and฀dominated฀by฀the฀most฀ water-soluble฀compounds.฀฀However,฀elimination฀will฀also฀be฀rapid.฀฀Confounding฀factors฀can฀include฀ longer฀exposure฀due฀to฀multiple฀or฀chronic฀releases,฀very฀slow฀dilution฀or฀lushing฀rates,฀and฀very฀cold฀ temperatures฀that฀reduce฀metabolic฀activity฀of฀animals.฀฀Though฀many฀laboratory฀studies฀have฀shown฀ rapid฀uptake฀of฀the฀water-soluble฀fraction,฀there฀are฀few฀examples฀of฀seafood฀harvest฀closures฀attributed฀to฀this฀pathway฀during฀oil฀spills,฀probably฀because฀the฀exposure฀concentrations฀are฀too฀low฀or฀ rapidly฀diluted฀and฀do฀not฀result฀in฀persistent฀contamination. 27 2.฀ Exposure฀to฀dissolved฀and฀particulate฀oil฀฀ This฀exposure฀model฀includes฀dispersed฀oil฀droplets฀that฀mix฀into฀the฀water฀column.฀฀This฀ behavior฀could฀occur฀with฀light฀(low-viscosity)฀oils,฀turbulent฀conditions,฀or฀chemically฀dispersed฀ oil.฀฀The฀total฀(both฀dissolved฀and฀dispersed)฀oil฀concentrations฀in฀the฀water฀column฀can฀be฀relatively฀ higher฀(total฀oil฀concentrations฀up฀to฀low฀ppm)฀than฀with฀model฀1.฀฀Exposure฀time฀to฀such฀high฀concentrations,฀however,฀is฀usually฀very฀short฀(in฀the฀range฀of฀hours฀to฀days),฀as฀oil฀concentrations฀rapidly฀ decline฀with฀mixing฀in฀three฀dimensions.฀฀Tissue฀residues฀may฀include฀the฀full฀suite฀of฀PAHs฀in฀the฀ whole฀oil,฀not฀just฀the฀water-soluble฀fraction.฀฀Thus,฀elimination฀rates฀are฀expected฀to฀be฀relatively฀ slower,฀with฀the฀higher฀molecular฀weight฀PAHs฀having฀relatively฀longer฀half-lives.฀฀An฀example฀of฀this฀ type฀of฀exposure฀is฀the฀North฀Cape฀oil฀spill. 3.฀ Exposure฀to฀contaminated฀sediments฀re-suspended฀into฀the฀water฀column ฀Often,฀complete฀cleanup฀of฀oiled฀intertidal฀or฀subtidal฀sediments฀is฀not฀feasible฀and฀oil฀is฀left฀ to฀weather฀and฀degrade฀naturally.฀฀The฀oiled฀sediments฀(or฀in฀some฀cases,฀free฀oil฀droplets)฀can฀be฀ re-suspended฀during฀storm฀events,฀exposing฀nearby฀biota.฀฀Filter-feeders฀are฀at฀the฀greatest฀risk฀of฀ exposure.฀฀Decline฀in฀tissue฀concentrations฀of฀contaminants฀from฀this฀pathway฀of฀exposure฀is฀likely฀to฀ be฀delayed฀because฀of฀repeated฀exposures,฀presence฀of฀persistent,฀high-molecular-weight฀PAHs,฀and฀ possibly฀slower฀overall฀elimination฀rates฀for฀organisms฀that฀are฀repeatedly฀exposed.฀฀This฀pathway฀of฀ exposure฀has฀been฀documented฀for฀crude฀and฀heavy฀reined฀oils฀stranded฀on฀more฀sheltered฀shorelines฀(e.g.,฀Exxon฀Valdez฀oil฀spill,฀Sea฀Empress฀oil฀spill). 4.฀ Exposure฀to฀contaminated฀sediments.฀฀ Oiled฀intertidal฀and฀subtidal฀sediments฀can฀provide฀pathways฀of฀oil฀exposure฀via฀sediment฀ ingestion฀to฀invertebrate฀deposit฀feeders,฀such฀as฀bivalves,฀and฀sediment฀grazers,฀such฀as฀shrimp฀and฀ gastropods.฀฀Also,฀infauna฀can฀be฀exposed฀to฀dissolved฀oil฀in฀the฀sediment฀porewater,฀potentially฀contaminating฀tissues฀with฀the฀more฀soluble,฀lighter-molecular฀weight฀compounds.฀฀Decline฀in฀tissue฀concentrations฀will฀be฀delayed฀for฀organisms฀that฀are฀chronically฀exposed,฀and฀may฀be฀slow฀for฀the฀same฀ reasons฀described฀in฀model฀3฀above.฀฀Intertidal฀sediments฀are฀more฀likely฀than฀subtidal฀sediments฀to฀ be฀contaminated.฀฀Subtidal฀sediments฀are฀seldom฀contaminated,฀and฀if฀they฀are฀contaminated฀they฀are฀ generally฀at฀lower฀concentrations฀than฀intertidal฀sediments.฀฀Sorbed฀oil฀might฀be฀more฀likely฀to฀dissolve,฀compared฀to฀pyrogenic฀PAHs฀derived฀from฀combustion฀of฀fossil฀fuels฀that฀are฀tightly฀bound฀to฀ the฀sediments.฀฀This฀pathway฀of฀exposure฀has฀been฀documented฀at฀very฀few฀spills฀(most฀notably,฀the฀ Braer฀oil฀spill).฀฀It฀is฀primarily฀associated฀with฀chronic฀pollution.฀฀ 5.฀ Ingestion฀of฀contaminated฀food.฀฀ This฀exposure฀model฀assumes฀that฀organisms฀uptake฀oil฀by฀eating฀contaminated฀food,฀not฀ sediments฀ingested฀while฀feeding.฀฀Examples฀are฀oil฀droplet฀ingestion฀by฀copepods฀that฀are฀then฀eaten฀ by฀inish,฀or฀crabs฀feeding฀on฀oiled฀bivalves.฀฀Dietary฀uptake฀of฀PAHs฀is฀not฀very฀eficient,฀and฀decreases฀ with฀increasing฀molecular฀weight. 28 III.฀ MONITORING฀SEAFOOD฀FOR฀CONTAMINATION Section฀II฀described฀information฀that฀can฀help฀determine฀the฀likelihood฀that฀spilled฀oil฀will฀ expose฀and฀contaminate฀seafood.฀฀If฀it฀is฀decided฀that฀seafood฀is฀at฀signiicant฀risk,฀the฀next฀step฀is฀ monitoring฀to฀determine฀whether฀seafood฀actually฀is฀contaminated,฀and฀to฀characterize฀the฀extent฀and฀ degree฀of฀contamination.฀฀This฀section฀provides฀general฀guidelines฀for฀developing฀seafood฀sampling฀ plans฀and฀conducting฀sensory฀and฀chemical฀testing฀of฀seafood฀samples฀for฀petroleum฀contamination.฀฀ Developing฀Seafood฀Sampling฀Plans The฀irst฀step฀in฀developing฀a฀sampling฀plan฀is฀deining฀the฀questions฀to฀be฀answered.฀฀Sampling฀should฀not฀begin฀before฀study฀objectives฀have฀been฀clearly฀established.฀฀Because฀every฀oil฀spill฀ is฀a฀unique฀combination฀of฀conditions฀and฀the฀objectives฀of฀seafood฀sampling฀may฀vary฀from฀spill฀to฀ spill,฀there฀is฀no฀standard฀sampling฀plan฀that฀can฀be฀applied฀to฀all฀seafood฀contamination฀monitoring฀ studies.฀฀Generally,฀though,฀any฀sampling฀plan฀to฀monitor฀for฀potential฀seafood฀contamination฀from฀an฀ oil฀spill฀should฀specify฀the฀study฀area,฀sampling฀locations,฀target฀species,฀number฀of฀samples฀to฀be฀collected,฀timing฀of฀initial฀and฀repeat฀sampling,฀sample฀collection฀methods฀and฀handling฀procedures,฀and฀ analyses฀to฀be฀conducted.฀฀The฀statistical฀design฀must฀ensure฀suficient฀statistical฀power฀to฀provide฀the฀ information฀needed฀at฀the฀desired฀level฀of฀conidence฀to฀support฀seafood฀management฀decisions.฀ We฀suggest฀some฀general฀guidelines฀for฀designing฀a฀seafood-sampling฀plan฀below.฀฀For฀more฀ detailed฀guidelines,฀see฀Guidance฀for฀Assessing฀Chemical฀Contaminant฀Data฀for฀Use฀in฀Fish฀Advisories฀ Volume฀1:฀฀Fish฀Sampling฀and฀Analysis฀by฀the฀U.S.฀Environmental฀Protection฀Agency฀(2000a).฀฀For฀more฀ detailed฀sampling฀guidelines฀for฀sensory฀testing,฀see฀Guidance฀on฀Sensory฀Testing฀and฀Monitoring฀of฀ Seafood฀for฀Presence฀of฀Petroleum฀Taint฀Following฀an฀Oil฀Spill฀(Reilly฀and฀York฀2001).฀฀For฀general฀sampling฀guidance฀related฀to฀oil฀spills,฀see฀Mearns฀(1995). Selecting฀sampling฀locations In฀selecting฀sampling฀locations,฀all฀likely฀pathways฀of฀oil฀exposure฀should฀be฀identiied฀(e.g.,฀ surface฀slicks,฀dispersed฀or฀dissolved฀oil฀in฀the฀water฀column,฀submerged฀oil฀associated฀with฀bottom฀ sediments),฀as฀discussed฀in฀Section฀II,฀so฀that฀risks฀to฀speciic฀isheries฀can฀be฀evaluated.฀฀Inclusion฀of฀ commercial,฀recreational,฀and฀subsistence฀harvest฀areas฀should฀be฀considered.฀฀ Collection฀of฀pre-exposure฀samples฀from฀the฀spill฀area฀or฀samples฀from฀appropriate฀unexposed฀ reference฀areas฀is฀extremely฀important฀because฀they฀can฀provide฀information฀on฀background฀levels฀of฀ contamination฀in฀the฀spill฀area.฀฀Petroleum฀hydrocarbons฀are฀ubiquitous฀in฀environmental฀samples,฀so฀ we฀cannot฀assume฀that฀all฀petroleum฀hydrocarbons฀measured฀in฀a฀sample฀or฀all฀increases฀over฀time฀ are฀a฀result฀of฀an฀oil฀spill.฀฀Furthermore,฀monitoring฀often฀continues฀until฀the฀level฀of฀contamination฀ returns฀to฀“background.”฀฀Reference฀samples฀are฀key฀to฀determining฀the฀range฀of฀background฀concentrations฀and฀the฀baseline฀against฀which฀changes฀over฀time฀will฀be฀evaluated. The฀best฀reference฀samples฀are฀pre-spill฀samples฀taken฀in฀areas฀not฀yet฀oiled฀but฀in฀the฀potential฀path฀of฀the฀oil฀(“before”฀can฀be฀compared฀with฀“after”฀exposure).฀฀If฀pre-spill฀sampling฀is฀not฀possible,฀unexposed฀reference฀sites฀comparable฀to฀exposed฀sites฀can฀be฀selected฀for฀sampling.฀฀However,฀ site฀histories฀and฀differences฀in฀the฀characteristics฀of฀the฀sites฀should฀be฀carefully฀evaluated฀to฀determine฀whether฀there฀are฀signiicant฀differences฀between฀the฀exposed฀and฀reference฀areas.฀฀Often,฀areas฀ that฀escape฀oiling฀do฀so฀because฀they฀differ฀fundamentally฀from฀exposed฀areas฀(for฀example,฀bays฀that฀ face฀different฀directions),฀and฀so฀would฀not฀be฀expected฀to฀exhibit฀the฀same฀“background”฀conditions.฀฀ 29 Any฀differences฀between฀reference฀and฀exposed฀sites฀must฀be฀considered฀when฀analyzing฀and฀interpreting฀results.฀฀ National฀monitoring฀programs฀such฀as฀NOAA’s฀National฀Mussel฀Watch฀Program฀can฀provide฀ valuable฀pre-spill฀data฀for฀determining฀historical฀ranges฀of฀background฀concentrations฀of฀PAHs฀in฀ shellish฀at฀several฀locations฀around฀the฀country฀(Mearns฀et฀al.฀1998,฀1999).฀฀When฀available฀for฀an฀area,฀ PAH฀data฀from฀the฀NOAA฀Status฀and฀Trends฀Program฀(including฀the฀National฀Mussel฀Watch฀Program)฀ or฀other฀monitoring฀programs฀may฀help฀determine฀normal฀background฀levels฀and฀seasonal฀patterns฀in฀ contaminant฀levels. Selecting฀target฀species฀to฀be฀sampled Evaluating฀risk฀to฀human฀health฀from฀seafood฀consumption฀usually฀is฀a฀primary฀purpose฀of฀ seafood฀sampling,฀so฀including฀species฀harvested฀commercially,฀recreationally,฀and฀for฀subsistence฀use฀ may฀be฀important.฀฀Species฀that฀are฀present฀throughout฀the฀area฀of฀concern฀may฀be฀most฀appropriate฀ for฀sampling฀if฀results฀are฀to฀be฀compared฀spatially฀or฀if฀the฀results฀are฀to฀be฀used฀to฀make฀statistical฀ inferences฀to฀the฀entire฀area. Hydrocarbon฀uptake฀and฀elimination฀rates฀vary฀widely฀among฀species,฀as฀described฀in฀Section฀II.฀฀Finish,฀for฀example,฀quickly฀metabolize฀and฀eliminate฀PAHs.฀฀Bivalves฀generally฀tend฀to฀bioaccumulate฀most฀contaminants฀and฀often฀serve฀as฀good฀indicators฀of฀the฀potential฀extent,฀degree,฀and฀ persistence฀of฀contamination.฀฀On฀the฀other฀hand,฀some฀shellish฀species฀stop฀feeding฀or฀passing฀water฀ over฀their฀gills฀at฀extreme฀temperatures฀and,฀consequently,฀may฀exhibit฀low฀uptake฀rates฀under฀certain฀ conditions.฀฀Consider฀such฀differences฀when฀selecting฀species฀for฀monitoring฀and฀comparing฀results฀ among฀species. Sampling฀frequency฀and฀duration฀ Monitoring฀generally฀should฀continue฀until฀contaminant฀levels฀reach฀background฀levels฀or฀ pre-determined฀acceptable฀levels.฀฀Periodic฀sampling฀before฀those฀levels฀are฀reached฀can฀reveal฀trends฀ in฀contaminant฀levels.฀฀Appropriate฀monitoring฀frequency฀and฀duration฀will฀depend฀on฀spill฀conditions,฀such฀as฀oil฀type฀and฀volume฀spilled,฀lushing฀rates฀of฀affected฀water฀bodies,฀and฀the฀degree฀of฀ exposure฀to฀wave฀action฀of฀contaminated฀shorelines.฀฀Appropriate฀monitoring฀frequency฀and฀duration฀ will฀also฀depend฀on฀the฀species฀exposed฀and฀exposure฀duration.฀฀Finish฀generally฀eliminate฀hydrocarbons฀within฀days฀or฀weeks,฀whereas฀bivalves฀may฀require฀several฀weeks฀or฀months.฀฀Elevated฀levels฀of฀ petroleum฀compounds฀in฀bivalves฀have฀been฀detected฀for฀years฀at฀some฀sites฀where฀high฀levels฀of฀oil฀ persist฀in฀adjacent฀sediments.฀฀Time฀of฀year฀should฀also฀be฀considered฀in฀some฀climates฀because฀elimination฀rates฀may฀be฀slower฀in฀cold฀temperatures.฀฀Other฀factors฀to฀consider฀with฀regard฀to฀monitoring฀ frequency฀are฀the฀turnaround฀time฀for฀sample฀analysis฀and฀time฀required฀for฀the฀evaluation฀team฀to฀ meet,฀interpret฀the฀results,฀and฀decide฀on฀the฀need฀for฀further฀sampling.฀฀Sampling฀plans฀may฀need฀to฀ be฀adjusted฀over฀time฀as฀conditions฀change฀and฀as฀monitoring฀results฀provide฀new฀information฀on฀the฀ fate฀of฀the฀oil฀and฀on฀which฀pathways฀of฀exposure฀are฀signiicant.฀ Sample฀collection฀and฀handling The฀seafood-sampling฀plan฀should฀specify฀all฀details฀about฀sample฀collection.฀฀This฀includes฀ the฀areas฀to฀be฀sampled,฀number฀of฀samples฀to฀be฀collected฀from฀an฀area฀(to฀meet฀statistical฀objectives),฀number฀of฀organisms฀or฀quantity฀of฀tissue฀to฀be฀composited฀(to฀meet฀analytical฀requirements),฀ size฀of฀organisms฀to฀be฀collected,฀tidal฀elevations฀for฀collection฀(in฀the฀case฀of฀intertidal฀invertebrates),฀ method฀of฀marking฀or฀recording฀exact฀sampling฀locations,฀and฀ield฀notes฀to฀be฀recorded.฀ 30 The฀sampling฀plan฀should฀also฀specify฀how฀seafood฀samples฀should฀be฀handled.฀฀This฀includes฀ any฀ield฀preparation,฀packaging฀and฀temperature฀requirements฀(for฀example,฀wrapping฀in฀foil,฀keeping฀in฀a฀cooler฀at฀4°C฀or฀below,฀and฀freezing฀within฀a฀speciied฀period฀of฀time),฀labeling,฀and฀any฀chainof-custody฀requirements฀during฀transport฀to฀the฀analytical฀laboratory.฀฀(An฀example฀chain-of-custody฀ form฀is฀included฀in฀the฀appendix).฀฀Only฀live฀animals฀should฀be฀collected฀for฀seafood฀analysis.฀฀The฀ edible฀portion,฀which฀may฀vary฀culturally,฀is฀usually฀the฀portion฀of฀interest.฀฀Seafood฀samples฀collected฀ for฀sensory฀testing฀generally฀should฀be฀handled฀as฀they฀would฀be฀during฀commercial,฀recreational,฀or฀ subsistence฀harvest฀and฀transport. Procedures฀should฀be฀followed฀to฀prevent฀cross-contamination฀in฀the฀ield฀(such฀as฀preventing฀ exposure฀of฀samples฀or฀sampling฀equipment฀to฀exhaust฀fumes฀and฀engine฀cooling฀systems฀on฀vessels)฀ and฀to฀maintain฀the฀integrity฀of฀the฀samples.฀฀Likewise,฀good฀laboratory฀practices฀should฀be฀employed฀ to฀prevent฀contamination฀of฀samples฀during฀preparation฀and฀analysis.฀฀ Testing฀Seafood฀for฀Contamination฀and฀Tainting Generally,฀two฀different฀types฀of฀evaluations฀can฀be฀conducted฀after฀oil฀spills฀to฀determine฀ whether฀seafood฀is฀contaminated.฀฀Sensory฀testing฀determines฀whether฀seafood฀is฀tainted,฀i.e.,฀if฀it฀ has฀an฀off-odor฀or฀off-lavor.฀฀Chemical฀analysis฀determines฀whether฀tissues฀are฀contaminated฀with฀ targeted฀compounds.฀฀Detailed฀methods฀of฀chemical฀analysis฀can฀indicate฀the฀presence฀as฀well฀as฀ the฀quantity฀of฀speciic฀contaminants฀in฀tissues.฀฀These฀results฀can฀be฀used฀to฀evaluate฀risk฀to฀human฀ health฀through฀consumption฀of฀contaminated฀seafood฀(as฀described฀in฀Section฀5).฀฀Summaries฀of฀these฀ types฀of฀seafood฀testing฀are฀described฀below.฀฀ Sensory฀evaluation฀of฀seafood฀for฀presence฀of฀petroleum฀taint When฀an฀oil฀spill฀occurs,฀local฀seafood฀resources฀may฀be฀exposed฀to฀petroleum฀compounds฀ that฀affect฀their฀sensory฀qualities;฀that฀is,฀smell,฀taste,฀and฀appearance.฀฀Even฀when฀seafood฀from฀a฀spill฀ area฀is฀considered฀acceptable฀with฀regard฀to฀food-safety,฀lavor฀and฀odor฀may฀still฀be฀affected,฀negatively฀impacting฀the฀seafood’s฀palatability,฀marketability,฀and฀economic฀value.฀฀Furthermore,฀tainted฀ seafood฀is฀considered฀by฀the฀U.S.฀Food฀and฀Drug฀Administration฀to฀be฀adulterated฀and,฀therefore,฀is฀ restricted฀from฀trade฀in฀interstate฀commerce.฀฀ Overview฀of฀sensory฀testing฀of฀seafood฀ Tainted฀seafood฀is฀deined฀as฀containing฀abnormal฀odor฀or฀lavor฀not฀typical฀of฀the฀seafood฀ itself฀(ISO฀1992).฀฀Under฀this฀deinition,฀the฀odor฀or฀lavor฀is฀introduced฀into฀the฀seafood฀from฀external฀ sources฀and฀excludes฀any฀natural฀by-products฀from฀deterioration฀due฀to฀aging฀during฀storage,฀decomposition฀of฀fats,฀proteins,฀or฀other฀components,฀or฀due฀to฀microbial฀contamination฀normally฀found฀ in฀seafood.฀฀Taint฀is฀detected฀through฀sensory฀evaluation,฀which฀has฀been฀deined฀as฀“the฀scientiic฀ discipline฀used฀to฀evoke,฀measure,฀analyze฀and฀interpret฀those฀reactions฀to฀characteristics฀of฀foods฀ and฀materials฀as฀perceived฀through฀the฀senses฀of฀sight,฀smell,฀taste,฀touch฀and฀hearing”฀(Food฀Technology฀Sensory฀Evaluation฀Division฀1981).฀฀Humans฀have฀relied฀for฀centuries฀on฀the฀complex฀sensations฀ that฀result฀from฀the฀interaction฀of฀our฀senses฀to฀evaluate฀quality฀of฀food,฀water,฀and฀other฀materials.฀฀In฀ more฀recent฀times,฀sensory฀testing฀has฀developed฀into฀a฀formalized,฀structured,฀and฀codiied฀methodology฀for฀characterizing฀and฀evaluating฀food,฀beverages,฀cosmetics,฀perfumes,฀and฀other฀commercial฀ products.฀฀Sensory฀evaluation฀techniques฀are฀routinely฀used฀commercially฀in฀quality฀control,฀product฀ development,฀and฀research.฀฀Sensory฀testing฀can฀be฀either฀subjective฀or฀objective.฀฀Subjective฀testing฀measures฀feelings฀and฀biases฀toward฀a฀product฀rather฀than฀the฀product’s฀attributes.฀฀For฀objective฀ 31 testing,฀highly฀trained฀assessors฀use฀the฀senses฀to฀measure฀product฀attributes.฀฀Testing฀of฀seafood฀for฀ petroleum฀taint฀should฀be฀completely฀objective฀and฀should฀be฀conducted฀by฀highly฀trained฀analysts.฀฀ Objective฀sensory฀testing฀serves฀as฀a฀practical,฀reliable,฀and฀sensitive฀method฀for฀assessing฀ seafood฀quality.฀฀Only฀human฀testers฀can฀measure฀most฀sensory฀characteristics฀of฀food฀practically,฀completely,฀and฀meaningfully.฀฀Though฀advances฀continue฀to฀be฀made฀in฀developing฀instrument-based฀ analysis,฀human฀senses฀remain฀unmatched฀in฀their฀sensitivity฀for฀detecting฀and฀evaluating฀organoleptic฀characteristics฀of฀food.฀฀The฀U.S.฀Food฀and฀Drug฀Administration฀and฀NOAA’s฀National฀Marine฀ Fisheries฀Service฀routinely฀employ฀sensory฀evaluation฀in฀inspecting฀seafood฀quality.฀฀Seafood฀inspectors฀are฀essentially฀sensory฀analysts,฀or฀assessors,฀who฀work฀as฀expert฀evaluators฀in฀the฀application฀of฀ product฀standards.฀฀A฀major฀objective฀of฀seafood฀sensory฀inspection฀is฀to฀evaluate฀quality฀with฀regard฀ to฀decomposition฀of฀isheries฀products.฀฀Sensory฀analysis฀can฀also฀provide฀information฀on฀presence฀of฀ taint฀from฀external฀sources,฀such฀as฀spilled฀oil฀and฀chemicals.฀฀ Sensory฀panels Objective฀sensory฀evaluation฀of฀seafood฀is฀usually฀conducted฀using฀a฀panel฀of฀trained฀and฀ experienced฀analysts.฀฀Sensory฀analysts฀must฀be฀screened฀for฀sensitivity฀and฀then฀trained฀in฀applying฀ established฀sensory฀science฀methodology.฀฀Participation฀in฀calibration฀or฀“harmonization”฀workshops฀ ensures฀uniform฀application฀of฀sensory฀evaluation฀criteria฀for฀particular฀types฀of฀contaminants,฀including฀standard฀terminology฀and฀consensus฀on฀levels฀of฀intensity฀of฀sensory฀characteristics.฀฀Descriptive฀ analyses฀and฀references฀are฀used฀to฀yield฀results฀that฀are฀consistently฀accurate฀and฀precise.฀ There฀are฀different฀types฀of฀sensory฀analysts,฀which฀function฀differently฀and฀have฀speciic฀selection,฀training,฀and฀validation฀requirements.฀฀Trained฀assessors฀are฀sensory฀analysts฀selected฀and฀trained฀ to฀perform฀a฀speciic฀task.฀฀Expert฀assessors฀are฀the฀most฀highly฀trained฀and฀experienced฀category฀of฀ sensory฀analyst.฀฀Expert฀assessors฀generally฀evaluate฀product฀full-time,฀function฀independently,฀and฀ often฀are฀used฀in฀quality฀control฀and฀product฀development.฀฀Examples฀of฀products฀evaluated฀by฀expert฀ sensory฀assessors฀include฀wine,฀tea,฀coffee,฀and฀seafood.฀฀Through฀extensive฀standardized฀training฀ and฀experience฀with฀sensory฀methodology,฀these฀expert฀assessors฀have฀become฀extremely฀objective฀ and฀evaluate฀quality฀with฀a฀high฀degree฀of฀accuracy฀and฀precision.฀฀Seafood฀inspectors฀fall฀into฀the฀ category฀of฀expert฀assessors,฀and฀can฀make฀consistent฀and฀repeatable฀sensory฀assessments฀of฀quality฀ characteristics฀of฀seafood฀as฀they฀relate฀to฀grade฀level฀or฀decisions฀to฀accept฀or฀reject฀product.฀฀฀ The฀number฀of฀panelists฀needed฀depends฀on฀the฀level฀of฀expertise฀and฀experience฀of฀the฀ analysts฀used.฀฀For฀panels฀of฀expert฀assessors,฀such฀as฀NMFS฀and฀FDA฀seafood฀inspectors,฀usually฀only฀ three฀to฀ive฀analysts฀are฀needed.฀฀If฀less฀experienced฀analysts฀are฀used,฀a฀larger฀number฀of฀panelists฀is฀ recommended.฀฀Whenever฀possible,฀use฀of฀expert฀seafood฀assessors,฀such฀as฀seafood฀inspectors,฀is฀recommended฀for฀evaluation฀of฀seafood฀for฀presence฀of฀petroleum฀taint.฀฀Extensive฀product฀knowledge฀ and฀experience฀enable฀seafood฀inspectors฀to฀very฀accurately฀distinguish฀variations฀related฀to฀product฀ processing,฀storage,฀deterioration,฀etc.฀from฀taint฀due฀to฀external฀sources.฀฀Some฀seafood฀inspectors฀for฀ NMFS฀and฀FDA฀have฀had฀specialized฀training฀for฀detecting฀petroleum฀taint฀in฀seafood฀and฀experience฀ evaluating฀seafood฀samples฀at฀oil฀spills.฀฀If฀called฀upon,฀these฀specialized฀inspectors฀are฀available฀to฀ conduct฀sensory฀evaluation฀of฀seafood฀during฀spill฀events.฀฀ ฀Sensory฀evaluation฀procedures Applied฀as฀a฀science,฀sensory฀evaluation฀should฀be฀conducted฀under฀speciic,฀highly฀controlled฀ conditions฀in฀order฀to฀prevent฀extraneous฀inluences฀in฀the฀testing฀environment฀from฀affecting฀panelists’฀sensory฀responses.฀฀Accordingly,฀sensory฀testing฀is฀best฀conducted฀in฀facilities฀speciically฀designed฀ for฀sensory฀testing.฀฀The฀NMFS฀Seafood฀Inspection฀Branch฀maintains฀several฀such฀laboratories฀around฀ the฀country.฀฀Seafood฀samples฀collected฀during฀a฀spill฀event฀can฀be฀shipped฀to฀these฀laboratories฀for฀ sensory฀evaluation.฀฀In฀most฀cases,฀NMFS฀and฀FDA฀recommend฀that฀samples฀be฀shipped฀and฀evaluated฀ in฀the฀same฀manner฀as฀they฀normally฀are฀shipped฀and฀sold฀(i.e.,฀fresh,฀live,฀frozen).฀฀When฀this฀is฀not฀pos- 32 sible,฀as฀may฀be฀the฀case฀for฀oil฀spills฀in฀very฀remote฀areas,฀sensory฀analysts฀can฀conduct฀evaluations฀at฀ the฀scene฀of฀an฀incident. All฀sensory฀testing฀should฀be฀conducted฀under฀the฀supervision฀of฀a฀sensory฀professional,฀ who฀designs฀and฀implements฀the฀sensory฀testing฀procedure.฀฀A฀trained฀“facilitator”฀should฀coordinate฀ sensory฀analysis฀.฀฀The฀facilitator฀conducts฀the฀testing,฀including฀receiving,฀preparing,฀and฀presenting฀ samples฀to฀the฀expert฀sensory฀panel,฀and฀collecting฀the฀resulting฀data฀in฀a฀scientiic฀and฀unbiased฀ manner.฀฀All฀of฀these฀steps฀should฀be฀conducted฀according฀to฀standardized฀procedures฀under฀highly฀ controlled฀conditions.฀฀Suspect฀samples฀are฀presented฀to฀assessors฀in฀blind฀tests,฀along฀with฀control฀ or฀reference฀samples.฀฀Samples฀are฀irst฀smelled฀raw,฀then฀smelled฀cooked,฀and฀inally฀tasted฀by฀each฀ panelist฀independently฀to฀determine฀whether฀petroleum฀taint฀is฀present.฀฀A฀sensory฀professional฀statistically฀analyzes฀panelist’s฀responses฀to฀determine฀whether฀samples฀pass฀or฀fail฀with฀regard฀to฀presence฀ of฀petroleum฀taint.฀฀These฀results,฀in฀turn,฀help฀seafood฀managers฀determine฀whether฀restrictions฀are฀ needed฀on฀seafood฀harvest฀or฀marketing฀from฀the฀spill฀area฀due฀to฀tainting.฀ In฀that฀we฀are฀not฀certain฀which฀compounds฀in฀petroleum฀are฀responsible฀for฀taint฀perceived฀ by฀humans,฀chemical฀analysis฀cannot฀yet฀substitute฀for฀sensory฀testing฀in฀determining฀whether฀a฀taint฀ is฀present.฀฀It฀has฀been฀suggested฀that฀the฀principal฀components฀of฀crude฀and฀reined฀oils฀responsible฀ for฀tainting฀include฀the฀phenols,฀dibenzothiophenes,฀naphthenic฀acids,฀mercaptans,฀tetradecanes,฀and฀ methylated฀naphthalenes฀(GESAMP฀1977).฀฀The฀human฀olfactory฀system฀generally฀is฀very฀sensitive฀to฀ phenolic฀and฀sulfur฀compounds,฀even฀though฀they฀are฀minor฀components฀of฀oil. In฀2001,฀NOAA฀published฀a฀technical฀guidance฀document฀on฀appropriate฀sensory฀methodology฀to฀objectively฀assess฀seafood฀for฀the฀presence฀of฀petroleum฀taint.฀฀Written฀by฀sensory฀scientists฀ with฀NOAA’s฀National฀Marine฀Fisheries฀Service฀Seafood฀Inspection฀Program฀and฀Canada’s฀Food฀Inspection฀Agency,฀in฀cooperation฀with฀the฀U.S.฀Food฀and฀Drug฀Administration,฀Guidance฀on฀Testing฀and฀ Monitoring฀of฀Seafood฀for฀Presence฀of฀Petroleum฀Taint฀Following฀an฀Oil฀Spill฀comprehensively฀describes฀ recommended฀standard฀procedures,฀including฀collection,฀preservation,฀and฀transport฀of฀seafood฀ samples,฀for฀sensory฀evaluation.฀฀The฀guidance฀is฀intended฀to฀assist฀in฀conducting฀scientiically฀sound฀ and฀legally฀defensible฀sensory฀tests฀on฀seafood฀during฀oil฀spill฀response,฀with฀adequate฀and฀appropriate฀quality฀control.฀ Chemical฀testing฀techniques฀for฀petroleum฀contaminants฀in฀seafood Chemical฀testing฀of฀seafood฀often฀is฀conducted฀after฀an฀oil฀spill฀to฀determine฀whether฀seafood฀ tissues฀are฀contaminated฀with฀petroleum฀compounds.฀฀Both฀detailed฀and฀screening฀methods฀of฀analysis฀can฀be฀employed.฀฀Below,฀we฀summarize฀methods฀typically฀used฀after฀past฀oil฀spills,฀including฀some฀ of฀their฀advantages฀and฀disadvantages.฀฀ Detailed฀methods฀of฀chemical฀analysis:฀gas฀chromatography/mass฀spectrometry Detailed฀chemical฀analysis฀of฀seafood฀after฀oil฀spills฀typically฀is฀conducted฀using฀gas฀chromatography฀and฀mass฀spectrometry฀(GC/MS),฀which฀measures฀individual฀PAHs฀at฀very฀low฀detection฀ levels฀and฀provides฀a฀PAH฀pattern฀(or฀ingerprint)฀to฀compare฀to฀that฀of฀the฀source฀oil.฀฀Prior฀to฀analysis,฀ hydrocarbons฀are฀extracted฀from฀seafood฀tissue฀samples฀and฀the฀extract฀is฀split฀into฀three฀fractions:฀฀ 1)฀the฀saturated฀hydrocarbons฀fraction฀(f1),฀containing฀the฀n-alkanes,฀isoprenoids,฀steranes฀and฀triterpanes;฀฀2)฀the฀aromatic฀hydrocarbon฀fraction฀(f2),฀containing฀the฀PAHs฀and฀sulfur฀heterocyclics;฀and฀฀3)฀ the฀polar฀hydrocarbon฀fraction฀(f3),฀containing฀the฀nitrogen฀heterocyclic฀compounds.฀฀Recovery฀standards฀appropriate฀to฀each฀fraction฀are฀added฀(Lauenstein฀and฀Cantillo฀1993). The฀PAHs฀in฀the฀f2฀fraction฀generally฀are฀of฀greatest฀concern฀with฀regard฀to฀risk฀to฀human฀ health.฀฀The฀gas฀chromatograph฀separates฀targeted฀PAH฀compounds฀yielding฀a฀retention฀time฀that,฀ in฀combination฀with฀the฀mass฀spectra฀from฀the฀mass฀spectrometer,฀enable฀detailed฀identiication฀of฀ individual฀compounds฀by฀their฀ion฀masses.฀฀The฀method฀often฀used฀is฀usually฀referred฀to฀as฀“Modi- 33 ied”฀EPA฀Method฀8270,฀which฀is฀EPA฀Method฀8270฀for฀semi-volatile฀compounds฀modiied฀to฀include฀ quantiication฀of฀the฀alkyl-substituted฀PAH฀homologues,฀in฀addition฀to฀the฀standard฀PAH฀“priority฀ pollutants.”฀฀Table฀II-3฀lists฀the฀PAHs฀and฀their฀alkyl฀homologues฀usually฀included฀in฀this฀analysis.฀฀In฀oil,฀ alkylated฀homologues฀of฀PAHs฀are฀more฀predominant฀than฀parent฀PAH฀compounds,฀often฀by฀an฀order฀ of฀magnitude.฀฀This฀is฀in฀contrast฀to฀pyrogenic฀(combustion)฀and฀other฀potential฀PAH฀sources.฀฀The฀ detailed฀chemical฀ingerprint฀provided฀by฀GC/MS฀analysis฀enables฀differentiation฀among฀sources฀of฀ PAHs฀found฀in฀the฀sample.฀฀Contamination฀from฀a฀speciic฀spill฀can฀be฀distinguished฀from฀background฀ sources฀of฀contamination,฀such฀as฀PAHs฀derived฀from฀combustion฀sources.฀฀GC/MS฀can฀also฀measure฀ analytes฀other฀than฀PAHs฀to฀help฀with฀ingerprint฀analysis฀of฀oil฀or฀to฀track฀oil฀weathering.฀฀The฀GC/MS฀ can฀be฀run฀in฀the฀selected฀ion฀monitoring฀(SIM)฀mode,฀rather฀than฀the฀full-scan฀mode,฀to฀increase฀the฀ minimum฀detection฀levels฀(MDL)฀of฀the฀individual฀parent฀and฀selected฀homologue฀PAHs฀by฀a฀factor฀of฀ 10฀to฀40.฀฀Minimum฀detection฀levels฀for฀individual฀PAHs฀are฀very฀low,฀in฀the฀range฀of฀parts฀per฀billion฀ (ng/g)฀in฀tissue.฀฀The฀quantitative฀results฀for฀speciic,฀targeted฀PAHs฀can฀be฀used฀to฀assess฀whether฀ levels฀detected฀pose฀a฀risk฀to฀human฀health฀through฀seafood฀consumption.฀ Normal฀turnaround฀time฀for฀analysis฀of฀tissue฀samples฀for฀PAHs฀is฀approximately฀two฀weeks.฀฀ Fast฀turnaround฀time฀is฀approximately฀three฀days฀for฀a฀batch฀of฀samples.฀฀Costs฀for฀GC/MS-SIM฀analysis฀ of฀tissues฀are฀relatively฀high,฀starting฀from฀about฀$750฀per฀sample,฀plus฀premiums฀of฀50-100%฀for฀fast฀ turnaround.฀฀The฀sample-processing฀rate฀depends฀on฀the฀throughput฀capabilities฀of฀the฀laboratory฀and฀ the฀degree฀of฀quality฀control฀(QC)฀of฀the฀data฀before฀the฀results฀are฀released,฀ranging฀from฀approximately฀20฀to฀a฀maximum฀of฀100฀samples฀per฀week. Data฀Reporting฀and฀Interpretation฀฀ The฀importance฀of฀data฀reporting฀and฀interpretation฀should฀not฀be฀underestimated฀in฀planning฀seafood฀safety฀monitoring฀programs฀after฀oil฀spills.฀฀Some฀simple฀steps฀can฀be฀taken฀to฀help฀avoid฀ confusion฀and฀prevent฀incorrect฀conclusions.฀฀For฀example,฀the฀analytical฀laboratory฀should฀include฀at฀ least฀the฀following฀information฀for฀all฀analytical฀data฀reported:฀ Sample฀“Header”฀Information ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ 34 •฀ •฀ •฀ ฀ •฀ •฀ •฀ •฀ •฀ •฀ •฀ •฀ •฀ •฀ ฀ Sample฀Name฀or฀Field฀ID:฀฀the฀sample฀name฀or฀number฀assigned฀by฀the฀sampler Sample฀Type:฀฀e.g.,฀sample,฀ield฀blank,฀trip฀blank,฀procedural฀blank,฀QC Batch฀No.:฀฀analytical฀batch฀number฀(so฀samples฀run฀as฀a฀batch฀can฀be฀identiied,฀particularly฀if฀฀ problems฀are฀found฀with฀a฀batch฀run) Matrix:฀฀e.g.,฀water,฀sediment,฀tissue,฀oil Percent฀Moisture:฀฀for฀tissue฀and฀sediment฀samples Sample฀Size:฀฀weight฀or฀volume฀of฀sample฀used฀for฀analysis Collection฀Date:฀฀date฀the฀sample฀was฀collected Extraction฀Date:฀฀date฀the฀sample฀was฀extracted Analysis฀Date:฀฀date฀the฀sample฀was฀analyzed Analysis฀Method:฀฀EPA฀Method฀or฀other฀description Surrogate฀Corrected?:฀฀Are฀the฀reported฀concentrations฀corrected฀for฀surrogate฀recovery? Method฀Detection฀Limit:฀฀the฀minimum฀detection฀level Units:฀฀units฀in฀which฀the฀concentration฀is฀reported,฀including฀whether฀concentrations฀are฀wet฀฀ ฀ weight฀or฀dry฀weight฀(for฀tissue) Analyte฀Data ฀ ฀ ฀ ฀ ฀ ฀ ฀ •฀ •฀ •฀ ฀ ฀ •฀ ฀ •฀ ฀ Individual฀and฀Total฀PAH฀concentrations Surrogate฀Recovery฀(%):฀฀for฀every฀sample Key฀to฀Data฀Qualiiers:฀฀The฀lab฀should฀include฀a฀key฀to฀any฀qualiiers฀used฀to฀lag฀reported฀values฀฀ that฀have฀some฀kind฀of฀data฀accuracy฀issue.฀฀For฀example,฀two฀standard฀qualiiers฀used฀under฀the฀฀ USEPA฀Contract฀Laboratory฀Program฀guidelines฀(USEPA฀1994)฀are: U฀=฀the฀analyte฀was฀analyzed฀for,฀but฀was฀not฀detected฀above฀the฀reported฀sample฀quantita-฀ ฀ tion฀limit J฀=฀the฀analyte฀was฀positively฀identiied;฀the฀associated฀numerical฀value฀is฀the฀approximate฀฀ ฀ concentration฀of฀the฀analyte฀in฀the฀sample Analysis฀of฀the฀source฀oil,฀if฀available,฀is฀needed฀to฀enable฀ingerprint฀comparisons.฀฀Only฀expert฀ petroleum฀hydrocarbon฀chemists฀should฀interpret฀ingerprints฀because฀the฀complex฀processes฀of฀oil฀ weathering฀and฀uptake฀result฀in฀variable฀PAH฀patterns฀in฀organisms฀(Sauer฀and฀Boehm฀1995).฀฀Also,฀ patterns฀can฀be฀dificult฀to฀interpret฀in฀samples฀collected฀from฀areas฀with฀high฀background฀levels฀of฀ contamination. Caution฀is฀advised฀when฀comparing฀analytical฀results฀for฀samples฀of฀different฀types,฀or฀samples฀ collected฀from฀different฀areas฀or฀at฀different฀times.฀฀Before฀drawing฀conclusions,฀consider฀any฀differences฀in฀the฀analyses฀conducted฀or฀the฀way฀the฀data฀are฀reported.฀฀Examples฀of฀differences฀to฀watch฀ for฀include: •฀ the฀units฀in฀which฀results฀are฀reported,฀and฀whether฀reported฀concentrations฀are฀dry฀or฀wet฀ weight; •฀ whether฀the฀lists฀of฀analytes฀and฀minimum฀detection฀limits฀for฀individual฀PAHs฀are฀the฀same; •฀ whether฀reported฀concentrations฀have฀been฀corrected฀for฀surrogate฀recovery;฀and •฀ whether฀reported฀concentrations฀have฀been฀lipid-normalized.฀฀As฀described฀in฀Section฀II,฀PAH฀ uptake฀and฀retention฀tend฀to฀increase฀with฀the฀increasing฀lipid฀content฀of฀tissues.฀฀Consequently,฀differences฀in฀lipid฀content฀may฀need฀to฀be฀considered฀when฀comparing฀and฀interpreting฀analytical฀results฀over฀time฀or฀among฀different฀organisms. Rapid฀screening฀methods฀of฀analysis฀ Rapid,฀low-cost฀analytical฀methods,฀generally฀known฀as฀screening฀methods,฀can฀be฀employed฀ to฀identify฀contaminated฀samples฀and฀prioritize฀them฀for฀detailed฀analysis.฀฀Detailed฀methods฀of฀analysis฀for฀PAHs฀in฀tissue฀are฀time-consuming฀and฀expensive.฀฀The฀large฀number฀of฀samples฀often฀collected฀ after฀an฀oil฀spill฀can฀quickly฀overwhelm฀laboratory฀capacity฀and฀strain฀resources.฀฀Screening฀methods฀ of฀analysis฀can฀rapidly฀process฀large฀numbers฀of฀samples฀to฀yield฀semi-quantitative฀estimates฀of฀contaminant฀concentrations฀and฀allow฀ranking฀of฀samples฀by฀degree฀of฀contamination.฀฀Used฀in฀a฀tiered฀ approach,฀screening฀methods฀can฀identify฀the฀most฀contaminated฀samples,฀prioritizing฀or฀reducing฀ the฀number฀of฀samples฀that฀need฀to฀be฀processed฀by฀detailed฀analytical฀techniques,฀such฀as฀GC/MS. For฀example,฀in฀response฀to฀the฀need฀to฀analyze฀large฀numbers฀of฀subsistence฀seafood฀samples฀ collected฀after฀the฀Exxon฀Valdez฀oil฀spill฀in฀Prince฀William฀Sound,฀Alaska,฀NOAA’s฀Northwest฀Fisheries฀ Science฀Center฀used฀reverse-phase,฀high฀performance฀liquid฀chromatography฀(HPLC)฀with฀luorescence฀detection฀to฀screen฀for฀metabolites฀of฀aromatic฀compounds฀in฀inish฀bile฀(Krahn฀et฀al.฀1982,฀ 1984,฀1986,฀1992,฀1993a,฀1993b,฀1993d).฀฀Finish฀rapidly฀metabolize฀aromatic฀compounds฀and฀concentrate฀the฀resulting฀metabolites฀in฀bile฀for฀excretion,฀often฀at฀concentrations฀that฀are฀orders฀of฀magnitude฀greater฀than฀those฀in฀edible฀tissue.฀฀Using฀this฀rapid,฀low-cost฀method,฀hundreds฀of฀inish฀tissue฀ samples฀were฀screened฀for฀indication฀of฀exposure฀to฀petroleum฀contaminants,฀enabling฀GC/MS฀analy- 35 ses฀to฀be฀focused฀on฀selected฀samples฀to฀conirm฀presence฀and฀quantities฀of฀individual฀contaminants.฀฀ Hufnagle฀et฀al.฀(1999)฀has฀developed฀an฀HPLC/UV฀luorescence฀screening฀method฀for฀rapidly฀measuring฀aromatic฀compounds฀in฀invertebrate฀tissues.฀฀This฀screening฀method฀was฀used฀successfully฀on฀lobster฀samples฀collected฀after฀the฀North฀Cape฀oil฀spill฀off฀the฀coast฀of฀Rhode฀Island฀in฀1996.฀฀For฀details฀on฀ a฀rapid฀screening฀method฀for฀parent฀aromatic฀compounds฀in฀sediments฀see฀Krahn฀et฀al.฀(1991,฀1993c). Screening฀analyses,฀such฀as฀the฀HPLC/luorescence฀method฀described฀above,฀generally฀can฀be฀ completed฀in฀rapid฀turnaround฀time฀(within฀24฀hours)฀and฀can฀be฀conducted฀on฀a฀research฀vessel฀or฀ onshore฀lab.฀฀Rapid฀availability฀of฀results฀enables฀sampling฀modiications฀based฀on฀indications฀of฀exposure.฀฀This฀can฀be฀very฀helpful฀during฀the฀critical฀early฀phases฀of฀an฀oil฀spill฀response,฀when฀decisions฀ regarding฀closing฀or฀otherwise฀restricting฀seafood฀harvest฀may฀be฀made.฀฀ The฀utility฀of฀HPLC/luorescence฀and฀other฀screening฀methods,฀however,฀is฀more฀limited฀than฀ detailed฀methods฀of฀analysis.฀฀For฀example,฀though฀it฀may฀be฀possible฀to฀recognize฀chromatographic฀ patterns฀associated฀with฀characteristic฀classes฀of฀petroleum฀products,฀HPLC/luorescence฀screening฀ does฀not฀produce฀a฀detailed฀“ingerprint”฀similar฀to฀the฀results฀acquired฀from฀GC/MS.฀฀Consequently,฀ HPLC/luorescence฀usually฀will฀not฀enable฀differentiation฀between฀background฀contamination฀sources฀ and฀the฀spilled฀oil,฀especially฀in฀very฀polluted฀areas.฀฀Since฀HPLC/luorescence฀screening฀does฀not฀ quantify฀individual฀aromatic฀compounds,฀the฀results฀cannot฀be฀used฀to฀assess฀risk฀to฀human฀health฀ from฀consumption฀of฀contaminated฀seafood.฀฀Furthermore,฀measurement฀of฀luorescent฀aromatic฀compounds฀in฀bile฀is฀not฀a฀standard฀analysis,฀limiting฀temporal฀and฀spatial฀comparisons฀using฀historical฀ data฀sets.฀฀Lastly,฀HPLC/luorescence฀screening฀for฀luorescent฀aromatic฀compounds฀in฀bile฀is฀a฀specialized฀technique,฀and฀laboratory฀availability฀and฀expertise฀needed฀to฀conduct฀the฀analyses฀reliably฀may฀ be฀limited.฀ Water฀Monitoring฀ Water฀samples฀often฀are฀collected฀and฀analyzed฀as฀part฀of฀the฀initial฀spill฀response฀and฀assessment.฀฀Seafood฀safety฀managers฀can฀use฀these฀results฀to฀help฀estimate฀the฀extent฀and฀duration฀of฀seafood฀exposure฀to฀oil฀in฀the฀water฀column.฀฀Monitoring฀of฀water฀concentrations฀may฀also฀be฀important฀ if฀water-quality฀criteria฀are฀applied฀as฀a฀condition฀for฀re-opening฀a฀closed฀ishery฀or฀removing฀other฀ harvest฀restrictions.฀฀ Oil฀concentrations฀in฀the฀water฀column฀generally฀peak฀early฀after฀an฀oil฀spill฀and,฀in฀most฀cases,฀ rapidly฀decline฀to฀background฀levels฀within฀days฀to฀a฀week,฀as฀was฀the฀case฀for฀example฀at฀the฀New฀ Carissa฀oil฀spill฀(Payne฀and฀Driskell฀1999).฀฀Accordingly,฀if฀water฀sampling฀is฀to฀be฀conducted,฀initial฀ sampling฀should฀commence฀very฀soon฀after฀an฀oil฀spill฀occurs.฀฀Oil฀may฀persist฀longer฀than฀usual฀in฀ the฀water฀column฀if฀there฀are฀multiple฀or฀ongoing฀oil฀releases,฀if฀the฀released฀volume฀is฀extraordinarily฀ large,฀or฀if฀large฀volumes฀of฀oil฀are฀physically฀dispersed.฀฀After฀the฀Braer฀oil฀spill,฀for฀example,฀elevated฀oil฀ concentrations฀were฀detected฀in฀the฀water฀column฀as฀long฀as฀50฀days฀after฀release฀(Davies฀et฀al.฀1997).฀฀ Dissolved฀and฀dispersed฀oil฀plumes฀in฀the฀water฀column฀are฀driven฀by฀currents฀and฀so฀may฀have฀a฀very฀ different฀spatial฀distribution฀than฀surface฀slicks,฀which฀are฀driven฀primarily฀by฀wind. Under฀the฀authority฀of฀the฀Clean฀Water฀Act฀(63฀FR฀68354-68364),฀EPA฀has฀issued฀national฀recommended฀water-quality฀criteria฀for฀priority฀toxic฀pollutants฀to฀be฀used฀by฀states฀and฀tribes฀in฀adopting฀water฀quality฀standards.฀฀EPA฀has฀issued฀water-quality฀criteria฀for฀protection฀against฀human฀health฀ effects฀for฀three฀mono-aromatic฀hydrocarbons฀and฀eight฀PAHs฀(listed฀in฀Table฀III-1).฀฀These฀particular฀ compounds,฀however,฀are฀present฀in฀crude฀oils฀and฀reined฀products฀at฀very฀low฀levels฀and฀constitute฀ a฀tiny฀percentage฀of฀the฀PAHs฀normally฀detected฀in฀water฀samples฀after฀an฀oil฀spill.฀฀None฀of฀the฀water฀ quality฀criteria฀to฀protect฀aquatic฀communities฀(both฀freshwater฀and฀saltwater)฀issued฀by฀EPA฀are฀for฀ PAHs.฀฀EPA฀has฀issued฀recommended฀water฀quality฀criteria฀for฀organoleptic฀effects฀for฀23฀chemicals,฀ though฀not฀for฀any฀of฀the฀compounds฀present฀in฀petroleum฀products.฀฀Some฀states฀have฀established฀ state฀water฀quality฀standards฀for฀PAHs฀in฀their฀coastal฀waters.฀ 36 Table฀III-1.฀฀National฀recommended฀water฀quality฀criteria฀for฀priority฀toxic฀pollutants฀for฀protection฀against฀human฀health฀ effects฀(63฀FR฀68354). PAH฀Priority฀Pollutant Human฀health฀criteria฀for฀consumption฀of฀Water฀+฀Organism฀(µg/L) Human฀health฀criteria฀for฀consumption฀of฀Organism฀Only฀(µg/L) Benzo(a)anthracene 0.0044 0.049 Benzo(a)pyrene 0.0044 0.049 Benzo(b)fluoranthene 0.0044 0.049 Benzo(k)fluoranthene 0.0044 0.049 Dibenzo(a)anthracene 0.0044 0.049 300 370 1,300 14,000 Fluoranthene Fluorene Sediment฀Monitoring Sediment฀monitoring฀can฀be฀included฀as฀part฀of฀a฀post-spill฀monitoring฀program฀to฀determine฀ whether฀sediments฀may฀be฀a฀potential฀chronic฀source฀of฀oil฀exposure฀to฀adjacent฀seafood฀collection฀ sites,฀particularly฀at฀intertidal฀sites฀where฀bivalves฀are฀harvested.฀฀Sediment฀sampling฀also฀may฀facilitate฀ ingerprint฀analysis฀of฀PAHs฀in฀tissues฀by฀providing฀the฀PAH฀pattern฀in฀contaminated฀sediments,฀which฀ may฀be฀different฀than฀the฀PAH฀pattern฀in฀the฀fresh฀source฀oil.฀฀It฀is฀important฀to฀recognize,฀however,฀ that฀sediments฀often฀contain฀high฀levels฀of฀background฀PAH฀contamination,฀particularly฀in฀urban฀areas฀ and฀harbors.฀฀PAHs฀and฀other฀contaminants฀detected฀may฀not฀be฀related฀to฀a฀particular฀oil฀spill.฀฀Also,฀ characterization฀of฀sediment฀contamination฀can฀be฀dificult฀because฀of฀the฀inherent฀heterogeneity฀of฀ intertidal฀sediments฀over฀space,฀depth,฀and฀time. There฀are฀no฀national฀sediment฀quality฀criteria฀for฀PAHs฀in฀marine฀or฀freshwater฀sediments.฀฀ Some฀states฀have฀established฀sediment฀quality฀standards฀and฀cleanup฀screening฀levels฀to฀prevent฀ adverse฀biological฀effects.฀฀How฀these฀standards฀would฀relate฀to฀seafood฀adulteration฀or฀safety฀issues฀is฀ unclear.฀ 37 IV.฀ SEAFOOD฀RISK฀ASSESSMENT฀ Several฀different฀endpoints฀can฀be฀considered฀when฀assessing฀risks฀posed฀to฀human฀health฀ from฀consuming฀contaminated฀seafood.฀฀These฀include฀both฀carcinogenic฀and฀non-carcinogenic฀ effects฀to฀the฀general฀population,฀as฀well฀as฀to฀particularly฀susceptible฀segments฀of฀the฀population฀ such฀as฀children,฀pregnant฀women,฀and฀subsistence฀seafood฀consumers.฀฀Human฀epidemiological฀ studies,฀when฀available,฀and฀laboratory฀studies฀involving฀animals฀are฀used฀to฀assess฀the฀likely฀effects฀of฀ contaminants฀at฀various฀exposure฀levels.฀฀ As฀discussed฀in฀Section฀II,฀petroleum฀oils฀are฀composed฀of฀complex฀and฀variable฀mixtures฀of฀ hundreds฀of฀different฀hydrocarbon฀compounds.฀฀Of฀these,฀polycyclic฀aromatic฀hydrocarbons฀(PAHs)฀ are฀typically฀of฀greatest฀concern฀with฀regard฀to฀health฀effects฀because฀of฀their฀relative฀persistence฀and฀ carcinogenicity.฀฀Evidence฀from฀occupational฀studies฀of฀workers฀exposed฀to฀mixtures฀of฀PAHs฀indicates฀ that฀many฀of฀these฀compounds฀may฀be฀carcinogenic฀to฀humans.฀฀Individual฀PAHs฀that฀are฀considered฀ to฀be฀probable฀human฀carcinogens฀include฀benz[a]anthracene,฀benzo[a]pyrene,฀benzo[b]luoranthene,฀ benzo[k]luoranthene,฀chrysene,฀dibenz[a,h]anthracene,฀and฀indeno[1,2,3-cd]pyrene฀(IRIS฀1994).฀฀Most฀ of฀the฀data฀gathered฀from฀laboratory฀studies฀provides฀information฀on฀carcinogenic฀effects฀of฀lifetime฀ exposure฀to฀PAHs.฀฀Information฀on฀non-carcinogenic฀effects฀is฀limited.฀฀Consequently,฀cancer฀generally฀ is฀the฀primary฀endpoint฀considered฀when฀assessing฀potential฀risks฀to฀human฀health฀from฀consumption฀ of฀seafood฀from฀an฀oil฀spill฀area.฀฀ Overview฀of฀Cancer฀Risk฀Calculations฀for฀PAHs฀in฀Seafood Most฀seafood฀risk฀assessments฀conducted฀after฀oil฀spills฀in฀the฀U.S.฀have฀followed฀an฀approach฀ used฀by฀the฀U.S.฀Food฀and฀Drug฀Administration฀(USFDA)฀in฀1990฀after฀the฀Exxon฀Valdez฀oil฀spill฀in฀Prince฀ William฀Sound,฀Alaska.฀฀At฀the฀request฀of฀the฀Alaska฀Oil฀Spill฀Health฀Task฀Force,฀a฀group฀established฀after฀ the฀spill฀to฀conduct฀a฀survey฀and฀assess฀the฀impact฀of฀the฀spill฀on฀subsistence฀food฀supplies,฀USFDA฀ conducted฀a฀risk฀assessment฀and฀provided฀an฀advisory฀opinion฀on฀the฀safety฀of฀aromatic฀hydrocarbon฀residues฀in฀subsistence฀seafood฀in฀the฀spill฀area฀(Bolger฀et฀al.฀1996;฀Bolger฀and฀Carrington฀1999).฀฀ This฀approach฀uses฀a฀set฀of฀calculations฀to฀determine฀inish฀or฀shellish฀PAH฀tissue฀concentrations,฀ expressed฀in฀benzo[a]pyrene฀(BaP)฀equivalents฀(µg/kg),฀above฀which฀an฀acceptable฀risk฀level฀for฀cancer฀ is฀exceeded.฀฀The฀values฀for฀several฀variables฀in฀these฀calculations฀can฀be฀adjusted฀on฀a฀case-by-case฀ basis,฀depending฀on฀local฀seafood฀consumption฀levels฀of฀the฀exposed฀population,฀average฀body฀ weight฀of฀the฀exposed฀population,฀estimates฀of฀exposure฀time฀for฀a฀particular฀spill,฀and฀the฀cancer฀ risk฀level฀deemed฀acceptable.฀฀This฀approach฀to฀calculating฀seafood฀advisory฀or฀action฀levels฀has฀since฀ been฀used฀after฀several฀other฀oil฀spills,฀including฀the฀North฀Cape฀spill฀in฀Rhode฀Island,฀the฀Julie฀N฀spill฀in฀ Maine,฀the฀Kure฀spill฀in฀California,฀and฀the฀New฀Carissa฀spill฀in฀Oregon. The฀basic฀equation฀and฀input฀parameters฀are฀described฀below: ฀ �������� �� ������ ����� ������� ��� ����������� � ������������ ������������ Acceptable฀Risk฀Level฀(RL):฀฀The฀acceptable฀risk฀level฀is฀the฀maximum฀level฀of฀individual฀lifetime฀carcinogenic฀risk฀that฀is฀considered฀“acceptable”฀by฀risk฀managers.฀฀The฀typical฀RL฀used฀in฀cancer฀ risk฀calculations฀is฀1฀x฀10-6.฀฀In฀the฀case฀of฀PAHs,฀this฀implies฀that฀exposure฀to฀PAHs฀in฀seafood฀below฀a฀ speciied฀tissue฀concentration฀level฀at฀a฀deined฀consumption฀rate฀over฀the฀deined฀exposure฀period฀ would฀yield฀a฀lifetime฀cancer฀risk฀of฀no฀greater฀than฀1฀in฀1,000,000.฀฀Some฀states฀consider฀higher฀risk฀ levels,฀such฀as฀1฀x฀10-5฀(a฀lifetime฀cancer฀risk฀of฀no฀greater฀than฀1฀in฀100,000)฀to฀be฀acceptable.฀฀ 38 A฀risk฀level฀of฀1฀x฀10-6฀was฀used฀in฀the฀risk฀calculations฀done฀by฀USFDA฀for฀the฀Exxon฀Valdez฀oil฀ spill,฀as฀well฀as฀those฀done฀by฀the฀State฀of฀Rhode฀Island฀for฀the฀North฀Cape฀oil฀spill,฀the฀State฀of฀California฀for฀the฀Kure฀oil฀spill,฀and฀the฀State฀of฀Oregon฀for฀the฀New฀Carissa฀oil฀spill.฀฀A฀risk฀level฀of฀1฀x฀10-5฀was฀ used฀in฀the฀risk฀assessment฀conducted฀by฀the฀State฀of฀Maine฀for฀the฀Julie฀N฀oil฀spill฀and฀the฀State฀of฀ Alaska฀for฀the฀Kuroshima฀oil฀spill.฀฀฀ Body฀Weight฀(BW):฀฀The฀value฀for฀body฀weight฀used฀in฀risk฀calculations฀is฀intended฀to฀represent฀the฀body฀weight฀of฀an฀individual฀consumer฀(kg).฀฀An฀average฀body฀weight฀of฀60-70฀kg฀(132-154฀ lb)฀is฀often฀used฀for฀adults฀in฀the฀general฀U.S.฀population.฀฀If฀a฀particular฀group฀of฀at-risk฀consumers฀is฀ considered฀in฀a฀risk฀calculation,฀alternative฀body฀weights฀may฀be฀used.฀฀For฀instance,฀children฀or฀subsistence฀harvesters฀may฀have฀lower฀average฀body฀weights฀than฀60-70฀kg.฀฀Because฀allowable฀consumption฀limits฀at฀a฀certain฀seafood฀tissue฀concentration฀are฀linearly฀related฀to฀body฀weight,฀risk฀assessors฀ should฀consider฀the฀actual฀body฀weights฀of฀the฀targeted฀population. Averaging฀Time฀(AT):฀฀A฀typical฀averaging฀time฀value฀used฀in฀cancer฀risk฀calculations฀is฀70฀ years.฀฀This฀value฀represents฀the฀average฀length฀of฀a฀human฀lifetime,฀which฀is฀the฀time฀period฀of฀interest฀ for฀examining฀cancer฀as฀an฀endpoint.฀฀ BaP฀Cancer฀Slope฀Factor฀(SF):฀฀The฀cancer฀slope฀factor,฀or฀cancer฀potency฀(q1*),฀is฀derived฀from฀ dose-response฀data฀obtained฀from฀human฀epidemiological฀and฀animal฀toxicity฀studies฀(USEPA฀2000b).฀฀ High฀doses฀of฀the฀contaminant฀of฀interest฀are฀often฀used฀in฀dose-response฀studies,฀and฀extrapolation฀ of฀the฀data฀to฀lower฀doses฀that฀may฀be฀encountered฀by฀the฀general฀population฀is฀often฀necessary.฀฀ Cancer฀potency฀is฀estimated฀as฀the฀95-percent฀upper฀conidence฀limit฀of฀the฀slope฀of฀the฀doseresponse฀curve฀in฀the฀low-dose฀region.฀฀This฀method฀provides฀a฀conservative฀estimate฀of฀the฀potential฀ cancer฀risk฀of฀a฀contaminant.฀฀The฀actual฀risk฀may฀be฀signiicantly฀lower.฀฀The฀USEPA฀(2000b)฀has฀used฀ a฀cancer฀potency฀factor฀of฀7.3฀per฀mg/kg/day฀to฀calculate฀monthly฀consumption฀limits฀for฀the฀general฀ population฀over฀a฀range฀of฀PAH฀tissue฀concentrations฀in฀inish.฀฀This฀same฀potency฀value฀was฀used฀in฀ cancer฀risk฀calculations฀for฀the฀New฀Carissa฀and฀Julie฀N฀oil฀spills.฀฀A฀cancer฀potency฀factor฀of฀9.5฀mg/kg/ day,฀established฀by฀the฀State฀of฀California฀EPA,฀was฀used฀to฀calculate฀carcinogenic฀risk฀associated฀with฀ consuming฀contaminated฀shellish฀following฀the฀Kure฀spill฀in฀California.฀ Exposure฀Duration฀(ED):฀฀The฀exposure฀duration฀is฀the฀time฀period฀over฀which฀an฀individual฀ is฀exposed฀to฀a฀contaminant.฀฀When฀calculating฀risks฀associated฀with฀seafood฀consumption฀following฀ an฀oil฀spill,฀the฀exposure฀duration฀is฀equivalent฀to฀the฀time฀interval฀over฀which฀an฀individual฀consumes฀ contaminated฀seafood฀harvested฀from฀the฀spill฀zone.฀฀Exposure฀duration฀varies฀depending฀on฀spill฀ conditions.฀฀The฀default฀assumption฀for฀risk฀assessments฀generally฀is฀70฀years,฀the฀average฀time฀for฀a฀ lifetime฀exposure.฀฀Unlike฀some฀other฀contaminants,฀however,฀PAH฀concentrations฀in฀contaminated฀ inish฀and฀shellish฀decrease฀over฀time฀and฀exposure฀levels฀will฀decline,฀eventually฀dropping฀to฀background฀concentrations.฀฀Consequently,฀exposure฀periods฀much฀shorter฀than฀a฀70-year฀lifetime฀exposure฀assumption฀are฀more฀realistic฀and฀appropriate฀for฀PAHs,฀particularly฀for฀oil฀spills฀because฀they฀are฀ typically฀very฀short-term,฀pulsed฀contamination฀events.฀฀ An฀exposure฀duration฀of฀two฀years฀was฀assumed฀for฀the฀risk฀calculations฀for฀the฀New฀Carissa฀ and฀Kure฀oil฀spills.฀฀An฀exposure฀duration฀of฀ive฀years฀was฀used฀for฀the฀North฀Cape฀oil฀spill฀calculations฀ (Mauseth฀et฀al.฀1997).฀฀More฀conservative฀exposure฀assumptions฀have฀been฀made฀at฀other฀spills.฀฀Both฀ ten-฀and฀30-year฀exposure฀durations฀were฀used฀in฀risk฀calculations฀for฀the฀Julie฀N฀oil฀spill.฀฀Consumption฀ risks฀for฀the฀Exxon฀Valdez฀spill฀were฀calculated฀for฀both฀ten฀and฀70-year฀(lifetime)฀exposure฀durations.฀฀ Seafood฀Consumption฀Rate฀(CR):฀฀Typically,฀consumption฀rates฀are฀calculated฀for฀average฀and฀ upper-end฀consumers฀and฀correspond฀to฀the฀quantity฀of฀seafood฀(units฀expressed฀as฀grams)฀that฀an฀ individual฀may฀consume฀per฀day.฀฀The฀values฀used฀for฀serving฀sizes฀and฀frequency฀of฀seafood฀meals฀ are฀often฀adjusted,฀due฀to฀the฀signiicant฀variability฀in฀seafood฀consumption฀among฀individuals฀and฀ particular฀groups. 39 Data฀from฀national฀surveys,฀such฀as฀the฀Continuing฀Survey฀of฀Food฀Intake฀by฀Individuals฀(CSFII)฀ conducted฀by฀USDA,฀can฀be฀used฀to฀help฀estimate฀national฀seafood฀consumption฀rates.฀฀The฀consumption฀rate฀typically฀used฀for฀the฀average฀U.S.฀seafood฀consumer฀is฀7.5฀grams/person/day.฀฀This฀value฀ is฀derived฀from฀the฀assumption฀that฀an฀average฀seafood฀consumer฀eats฀one฀8-ounce฀(227฀grams)฀ seafood฀meal฀(such฀as฀a฀ish฀illet)฀once฀a฀month฀(per฀70฀kg฀consumer฀body฀weight฀for฀adults)฀(USEPA฀ 2000b). The฀carcinogenic฀risk฀assessment฀conducted฀after฀the฀Exxon฀Valdez฀oil฀spill฀used฀seafood฀ consumption฀rates฀calculated฀from฀subsistence฀harvest฀survey฀data฀(Bolger฀et฀al.฀1996;฀Bolger฀and฀ Carrington฀1999).฀฀Residents฀of฀Alaska฀Native฀communities฀rely฀on฀local฀inish฀and฀shellish฀resources฀ for฀signiicant฀portions฀of฀their฀diets.฀฀The฀Alaska฀Department฀of฀Fish฀and฀Game฀Division฀of฀Subsistence฀ Consumption฀had฀conducted฀household฀harvest฀studies฀before฀the฀spill฀(Fall฀1999;฀Scott฀et฀al.฀1992).฀฀ Subsistence฀consumption฀rates฀were฀estimated฀to฀be฀89฀grams/person/day฀for฀salmon,฀52฀grams/ person/day฀for฀other฀inish,฀21฀grams/person/day฀for฀crustaceans,฀and฀2฀grams/person/day฀for฀bivalve฀ mollusks.฀฀Note฀that฀these฀consumption฀levels฀are฀much฀higher฀than฀those฀derived฀for฀the฀general฀U.S.฀ population฀from฀national฀survey฀data,฀described฀above.฀฀ The฀New฀Carissa฀and฀Kure฀risk฀assessments฀used฀shellish฀consumption฀rates฀for฀the฀average฀commercial฀product฀consumer฀of฀7.5฀g/day฀(Challenger฀and฀Mauseth฀1998;฀Gilroy฀2000).฀฀An฀ upper-end฀consumption฀rate฀of฀32.5฀g/day฀(one฀meal/week)฀for฀the฀New฀Carissa฀risk฀assessment฀was฀ based฀on฀a฀reasonable฀estimate฀for฀local฀recreational฀harvesters/consumers฀(Gilroy฀2000).฀฀Upper-end฀ consumption฀rates฀of฀50g/day฀and฀30g/day฀were฀used฀for฀the฀Kure฀and฀North฀Cape฀risk฀assessments,฀ respectively฀(Mauseth฀et฀al.฀1997).฀฀For฀the฀Julie฀N฀oil฀spill,฀average฀consumption฀rates฀of฀lobster฀were฀ assumed฀to฀be฀13.6฀g/day. Seafood฀Advisory฀and฀Action฀Levels฀from฀Previous฀U.S.฀Oil฀Spills The฀action฀or฀advisory฀levels฀resulting฀from฀cancer฀risk฀calculations฀differ฀among฀spills,฀ depending฀on฀the฀assumptions฀made฀and฀input฀values฀selected.฀฀At฀the฀New฀Carissa฀oil฀spill,฀the฀ Oregon฀Health฀Division฀calculated฀action฀levels฀for฀average฀and฀upper-end฀shellish฀consumers฀of฀45฀ ppb฀BaP฀equivalents฀(BaPE)฀and฀10฀ppb฀BaPE,฀respectively฀(Gilroy฀2000).฀฀Action฀levels฀derived฀by฀the฀ California฀Department฀of฀Health฀Services฀for฀average฀and฀upper-end฀shellish฀consumers฀following฀ the฀Kure฀spill฀were฀34฀ppb฀BaPE฀and฀5฀ppb฀BaPE,฀respectively.฀฀At฀the฀North฀Cape฀oil฀spill,฀the฀Rhode฀ Island฀Department฀of฀Health฀essentially฀applied฀a฀BaPE฀criterion฀of฀20฀ppb฀for฀the฀maximally฀exposed฀ lobster฀consumer฀over฀the฀ive-year฀exposure฀duration.฀฀Action฀levels฀calculated฀by฀the฀Maine฀Bureau฀ of฀Health฀for฀lobster฀consumption฀after฀the฀Julie฀N฀oil฀spill฀for฀ten฀and฀30-฀year฀exposure฀durations฀ were฀50฀ppb฀and฀16฀ppb฀BaPE,฀respectively.฀฀Advisory฀levels฀for฀subsistence฀consumers฀after฀the฀Exxon฀ Valdez฀oil฀spill,฀assuming฀a฀ten-year฀exposure฀period,฀were฀three฀ppb฀BaPE฀for฀salmon,฀ive฀ppb฀BaPE฀for฀ inish,฀11฀ppb฀BaPE฀for฀crustaceans,฀and฀120฀ppb฀BaPE฀for฀bivalve฀mollusks.฀฀Advisory฀levels฀based฀on฀a฀ lifetime฀exposure฀assumption฀were฀approximately฀an฀order฀of฀magnitude฀lower.฀฀None฀of฀the฀inish฀or฀ shellish฀samples฀collected฀from฀harvesting฀areas฀near฀Prince฀William฀Sound฀exceeded฀these฀advisory฀ levels.฀฀Interestingly,฀the฀upper-bound฀lifetime฀cancer฀risk฀for฀Alaskan฀subsistence฀seafood฀consumers฀ eating฀the฀most฀contaminated฀bivalve฀mollusks฀from฀the฀spill฀area฀was฀calculated฀to฀be฀two฀orders฀of฀ magnitude฀lower฀than฀the฀lifetime฀risk฀calculated฀for฀consumers฀of฀locally฀smoked฀salmon฀(Bolger฀et฀al.฀ 1996). At฀several฀of฀these฀spills,฀the฀calculated฀action฀levels฀were฀used฀as฀recommended฀levels฀for฀ reopening฀harvest฀of฀closed฀seafood฀isheries.฀฀For฀example,฀at฀the฀New฀Carissa฀oil฀spill,฀shellish฀were฀ considered฀safe฀if฀all฀samples฀contained฀less฀than฀10฀ppb฀BaP฀equivalents.฀฀If฀any฀shellish฀tissue฀levels฀ were฀above฀45฀ppb฀BaP฀equivalents,฀shellish฀in฀those฀areas฀would฀be฀considered฀unsafe,฀and฀further฀ 40 monitoring฀considered฀necessary.฀฀If฀samples฀contained฀more฀than฀10฀ppb฀but฀less฀than฀45฀ppb฀BaP฀ equivalents,฀the฀need฀for฀further฀monitoring฀would฀be฀assessed฀on฀a฀case-by-case฀basis.฀฀A฀similar฀ tiered฀approach฀was฀used฀at฀the฀Kure฀oil฀spill.฀฀If฀all฀samples฀contained฀less฀than฀5฀ppb฀BaP฀equivalents,฀ shellish฀beds฀could฀be฀reopened.฀฀If฀any฀samples฀contained฀between฀5฀and฀34฀ppb฀BaP฀equivalents,฀ the฀need฀for฀further฀action฀before฀reopening฀would฀be฀assessed.฀฀If฀any฀samples฀contained฀more฀than฀ 34฀ppb฀BaP฀equivalents,฀additional฀sampling฀and฀environmental฀monitoring฀prior฀to฀reopening฀would฀ be฀considered. The฀Equivalency฀Approach฀for฀Risk฀Assessment The฀equivalency฀approach฀used฀in฀relative฀cancer฀risk฀assessment฀is฀a฀method฀used฀for฀assessing฀the฀risk฀of฀exposure฀to฀a฀mixture฀of฀several฀different฀compounds฀that฀are฀related฀in฀terms฀of฀chemical฀and฀biological฀activity.฀฀Rather฀than฀calculating฀individual฀risks฀for฀each฀compound,฀one฀component฀ of฀known฀potency฀is฀used฀as฀a฀standard.฀฀Concentrations฀of฀each฀of฀the฀other฀compounds฀are฀adjusted฀ based฀on฀their฀estimated฀potency฀relative฀to฀the฀standard,฀to฀calculate฀an฀equivalent฀concentration฀for฀ the฀standard.฀฀Summing฀the฀equivalent฀concentrations฀yields฀a฀single฀number฀from฀which฀the฀cancer฀ risk฀can฀be฀estimated฀(ICF-Clements฀1988;฀Bolger฀and฀Carrington฀1999). This฀toxicity฀equivalency฀approach฀has฀been฀widely฀used฀for฀mixtures฀of฀dioxins฀and฀furans,฀ for฀example.฀฀The฀relative฀potencies฀of฀individual฀dioxin฀and฀furan฀compounds฀are฀expressed฀in฀terms฀ of฀2,3,7,8-tetra-chlorodibenzo-p-dioxin฀(2,3,7,8-TCDD)฀equivalents.฀฀2,3,7,8-TCDD฀was฀chosen฀as฀the฀ standard฀by฀which฀the฀potency฀of฀individual฀dioxin฀and฀furan฀compounds฀are฀estimated฀because฀most฀ laboratory฀studies฀on฀the฀effects฀of฀dioxins฀have฀been฀conducted฀using฀2,3,7,8-TCDD.฀฀Data฀are฀more฀ limited฀on฀the฀effects฀of฀other฀congeners.฀฀The฀same฀approach฀can฀be฀used฀with฀petroleum฀compounds,฀which฀also฀occur฀in฀complex฀mixtures.฀ BaP฀equivalency฀approach฀for฀PAH฀contamination Bolger฀and฀Carrington฀(1999)฀provide฀a฀good฀summary฀of฀the฀rationale฀for฀using฀an฀equivalency฀approach฀to฀risk฀assessment฀for฀PAHs.฀฀Toxicological฀data฀available฀for฀BaP฀are฀much฀better฀than฀ data฀available฀for฀any฀of฀the฀other฀PAHs.฀฀Though฀there฀is฀not฀adequate฀data฀to฀assess฀risks฀for฀individual฀PAHs,฀there฀is฀suficient฀study฀data฀for฀several฀compounds฀to฀enable฀approximation฀of฀cancer฀ potencies฀relative฀to฀BaP.฀฀The฀equivalency฀approach฀thereby฀relies฀most฀heavily฀on฀data฀considered฀ to฀be฀the฀most฀sound฀and฀least฀likely฀to฀need฀revision.฀฀Though฀the฀cancer฀risk฀calculated฀by฀this฀ method฀is฀an฀estimate,฀it฀is฀more฀reasonable฀than฀estimates฀obtained฀either฀by฀ignoring฀all฀but฀a฀few฀ well-studied฀compounds฀or฀by฀assuming฀all฀congeners฀have฀equivalent฀potencies.฀฀On฀the฀other฀hand,฀ compounds฀for฀which฀there฀isn’t฀enough฀toxicity฀data฀to฀calculate฀a฀cancer฀potency฀relative฀to฀BaP฀are฀ omitted฀from฀the฀total,฀even฀though฀some฀of฀these฀compounds฀may฀contribute฀to฀carcinogenicity.฀฀As฀ can฀be฀seen฀from฀the฀lists฀in฀Table฀IV-1,฀few฀of฀the฀PAH฀compounds฀typically฀measured฀(see฀Table฀II-3)฀ are฀included฀in฀the฀BaP฀equivalency฀total.฀฀Furthermore,฀the฀PAHs฀for฀which฀cancer฀potencies฀relative฀to฀ BaP฀have฀been฀calculated฀occur฀predominately฀in฀pyrogenic฀rather฀than฀petrogenic฀sources.฀฀ The฀potencies฀relative฀to฀BaP฀of฀other฀PAHs฀are฀based฀primarily฀on฀animal฀bioassay฀studies.฀฀ Estimates฀of฀the฀potencies฀can฀differ฀depending฀on฀the฀studies฀selected฀to฀derive฀them.฀฀For฀instance,฀ ICF-Clements฀(1988)฀incorporated฀data฀into฀their฀potency฀model฀only฀if฀BaP฀was฀tested฀in฀the฀same฀ bioassay฀system฀as฀the฀other฀PAHs,฀in฀the฀same฀laboratory,฀and฀at฀the฀same฀time.฀฀Different฀mathematical฀models฀also฀may฀yield฀different฀potencies.฀฀Examples฀of฀potencies฀for฀PAHs฀relative฀to฀BaP฀used฀or฀ suggested฀by฀various฀agencies฀and฀researchers฀are฀listed฀in฀Table฀IV-1.฀฀Most฀of฀these฀estimates฀are฀ similar,฀though฀some฀differ฀by฀as฀much฀as฀an฀order฀of฀magnitude.฀฀ 41 Table฀IV-1.฀Relative฀PAH฀potency฀estimates฀derived฀from฀various฀sources. ฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀Relative฀PAH฀Potency Compound ICF/EPAa USEPAb FDAc Nisbet฀&฀ Lagoye CA฀EPAd Benzo[a]pyrene ฀ 1.0 ฀ 1.0 ฀ 1.00 ฀ 1.00 ฀ 1 Dibenzo[a,h]anthracene ฀ 1.11 ฀ 1.0 ฀ 1.05 ฀ 0.36 ฀ 5 ฀ 0.1 ฀ 0.10 Indeno[1,2,3-c,d]pyrene ฀ 0.232 Pyrene ฀ 0.081 Benzo[b]fluoranthene ฀ 0.140 ฀ Benzo[k]fluoranthene ฀ 0.066 ฀ Benzo[g,h,i]perylene ฀ 0.022 Fluoranthene ฀ ฀ 0.25 ฀ 0.13* 0.1 ฀ 0.11 ฀ 0.01 ฀ 0.07 ฀ ฀ 0.1 ฀ 0.001 0.10 ฀ 0.1 0.10 ฀ 0.1 ฀ 0.03฀ ฀ 0.01 ฀ 0.02* ฀ 0.001 Benz[a]anthracene ฀ 0.145 ฀ 0.1 ฀ 0.014 ฀ 0.10 ฀ 0.1 Chrysene ฀ 0.0044 ฀ 0.001 ฀ 0.013 ฀ 0.01 ฀ 0.01 Anthanthrene ฀ 0.320** Benzo[j]fluoranthene ฀ 0.061 Benzo[e]pyrene ฀ 0.004 Cyclopentadieno[c,d]-pyrene ฀ 0.023 ฀ Anthracene ฀ 0.01 Acenaphthene ฀ 0.001 Acenaphthylene ฀ 0.001 Fluorene ฀ 0.001 2-Methylnaphthalene ฀ 0.001 Naphthalene ฀ 0.001 Phenanthrene ฀ 0.001 a฀ ฀ b฀ c฀ ICF-Clements฀Associates฀(1988). **฀ Identiied฀in฀Nisbet฀and฀LaGoy฀(1992)฀as฀anthracene. U.S.฀Environmental฀Protection฀Agency฀(1993). U.S.฀Food฀and฀Drug฀Administration,฀Contaminants฀Standards฀Monitoring฀and฀Programs฀Branch,฀ Center฀for฀Food฀Safety฀and฀Applied฀Nutrition฀(Bolger฀et฀al.฀1996) ฀ *฀ Division฀of฀Mathematics,฀Center฀for฀Food฀Safety฀and฀Applied฀Nutrition. d฀ California฀Environmental฀Protection฀Agency฀(1997). e฀ Nisbet฀and฀LaGoy฀(1992). Equivalency฀calculations To฀estimate฀the฀total฀amount฀of฀PAHs฀in฀a฀sample,฀it฀is฀irst฀necessary฀to฀calculate฀the฀weighted฀ potency฀for฀each฀compound฀by฀multiplying฀the฀relative฀potency฀(see฀Table฀IV-1)฀of฀the฀compound฀by฀ the฀concentration฀(wet฀weight)฀of฀that฀compound฀in฀the฀tissue฀sample.฀฀The฀products฀of฀these฀calculations฀can฀then฀be฀summed฀and฀added฀to฀the฀total฀amount฀of฀BaP฀in฀the฀sample฀(the฀product฀of฀the฀ tissue฀concentration฀of฀BaP฀multiplied฀by฀a฀potency฀of฀1.0)฀to฀estimate฀the฀total฀concentration฀of฀BaP฀ equivalents.฀ 42 The฀equation฀is฀shown฀below: � ���� � �� �� � � ��� The฀variables฀are฀deined฀as฀follows: TPAH฀=฀total฀PAH฀exposure n฀=฀the฀total฀number฀of฀indicator฀PAHs฀exclusive฀of฀BaP yj฀=฀exposure฀to฀the฀jth฀indicator฀PAH Rj฀=฀relative฀potency฀of฀the฀jth฀indicator฀PAH฀compared฀to฀BaP x฀=฀exposure฀to฀BaP The฀assumption฀that฀exposure฀to฀several฀carcinogenic฀PAHs฀in฀a฀mixture฀will฀have฀the฀same฀ carcinogenic฀effect฀as฀exposure฀to฀each฀compound฀separately฀at฀the฀same฀dose฀(“dose฀additivity฀ assumption”)฀is฀reasonable฀because฀most฀PAHs฀appear฀to฀metabolize฀to฀similar฀reactive฀derivatives฀ that฀produce฀similar฀histological฀effects฀(ICF-Clements฀1988).฀ Human฀Consumption฀Rate฀Assumptions฀ Ideally,฀risk฀assessments฀should฀be฀based฀on฀actual฀seafood฀consumption฀levels฀for฀the฀ exposed฀population฀rather฀than฀default฀values,฀such฀as฀national฀averages฀for฀consumption฀rates.฀฀ Unfortunately,฀data฀on฀seafood฀consumption฀levels฀may฀not฀be฀readily฀available฀for฀all฀consumer฀ groups.฀฀Because฀seafood฀advisories฀or฀harvest฀restrictions฀often฀are฀based฀on฀cancer฀risk฀calculations,฀ it฀is฀important฀to฀understand฀how฀consumption฀rate฀assumptions฀affect฀cancer฀risk฀calculations฀and,฀ therefore,฀may฀affect฀seafood฀management฀decisions฀after฀a฀spill. Groups฀of฀consumers฀that฀may฀be฀impacted฀by฀contaminated฀seafood฀include: •฀ Consumers฀of฀commercially฀harvested฀seafood;฀ •฀ Consumers฀of฀recreationally฀harvested฀seafood;฀and •฀ Subsistence฀ishers฀and฀harvesters฀and฀their฀families฀and฀communities. Consumption฀estimates฀for฀consumers฀of฀commercially฀harvested฀seafood฀ Consumers฀of฀commercially฀sold฀products฀often฀are฀not฀members฀of฀the฀local฀population฀in฀ the฀spill฀region฀where฀the฀seafood฀is฀harvested,฀therefore฀national฀seafood฀consumption฀data฀may฀be฀ appropriate฀for฀deriving฀consumption฀estimates฀to฀use฀in฀cancer฀risk฀calculations฀for฀these฀consumers.฀฀ As฀summarized฀by฀USEPA฀(2000b),฀various฀surveys฀have฀reported฀mean฀seafood฀consumption฀rates฀ for฀the฀general฀U.S.฀population฀ranging฀from฀6.5฀-฀20.1฀g/day,฀and฀95th฀percentile฀consumption฀rates฀ ranging฀from฀41.7฀–฀102฀g/day.฀฀Rates฀were฀based฀on฀consumption฀of฀commercial฀and฀recreational฀ freshwater,฀saltwater,฀and฀estuarine฀seafood.฀฀Before฀using฀rates฀within฀these฀ranges฀for฀any฀actual฀risk฀ assessment฀calculations,฀it฀is฀important฀to฀refer฀to฀the฀original฀data฀sources.฀฀Closures฀of฀commercial฀ isheries฀and฀aquaculture฀have฀occurred฀following฀several฀recent฀oil฀spills,฀including฀the฀Exxon฀Valdez,฀ Kure,฀North฀Cape,฀Julie฀N,฀and฀New฀Carissa.฀ 43 Consumption฀estimates฀for฀consumers฀of฀seafood฀harvested฀recreationally฀or฀for฀ subsistence฀use฀฀ Consumers฀of฀seafood฀harvested฀recreationally฀or฀for฀subsistence฀use฀are฀generally฀of฀greater฀ concern฀than฀the฀general฀population฀when฀estimating฀risk฀because฀they฀tend฀to฀have฀higher฀seafood฀ consumption฀rates฀and฀rely฀more฀heavily฀on฀local฀seafood฀resources฀for฀sources฀of฀protein.฀฀Consequently,฀these฀seafood฀consumers฀may฀be฀at฀greater฀risk฀of฀health฀effects฀than฀the฀general฀population.฀฀ National฀average฀consumption฀rates฀may฀underestimate฀their฀exposure.฀฀On฀the฀other฀hand,฀overestimates฀of฀their฀consumption฀rates฀may฀result฀in฀unnecessarily฀conservative฀advisories฀or฀harvest฀restrictions,฀limiting฀use฀of฀an฀important฀food฀source,฀with฀concomitant฀detrimental฀health,฀economic฀and฀ cultural฀consequences.฀ For฀these฀reasons,฀we฀do฀not฀recommend฀using฀national฀survey฀data฀to฀develop฀local฀risk฀ assessments฀if฀more฀accurate฀local฀seafood฀consumption฀information฀is฀available฀or฀can฀be฀collected฀ and฀analyzed฀in฀a฀reasonable฀time฀frame.฀฀Data฀sources฀that฀can฀provide฀useful฀information฀on฀community฀consumption฀habits฀include:฀ Creel฀surveys:฀฀Creel฀surveys฀are฀conducted฀by฀state฀ish฀and฀wildlife฀management฀agencies,฀ and฀consist฀of฀on-site฀interviews฀of฀ishers.฀฀Information฀is฀collected฀on฀species,฀sizes,฀and฀quantities฀of฀ ish฀caught฀and฀taken฀home. Fishing฀license฀surveys:฀฀Although฀demographic฀information฀on฀the฀licenses฀is฀limited,฀a฀ record฀of฀names,฀addresses,฀license฀purchase฀locations,฀and฀duration฀of฀ishing฀seasons฀may฀be฀available,฀enabling฀consumption฀surveys฀to฀be฀conducted฀through฀the฀mail.฀ Subsistence฀surveys:฀฀Some฀state฀agencies฀conduct฀periodic฀subsistence฀surveys,฀such฀as฀ the฀baseline฀research฀conducted฀by฀the฀Division฀of฀Subsistence฀of฀the฀Alaska฀Department฀of฀Fish฀and฀ Game฀on฀subsistence฀ish฀and฀wildlife฀use฀by฀Alaska฀Native฀communities. Anecdotal฀information:฀฀Useful฀anecdotal฀information฀on฀consumption฀habits฀of฀non-ishers,฀ especially฀people฀from฀minority฀and฀low-income฀populations฀who฀may฀be฀sold฀or฀given฀ish฀privately,฀ can฀be฀gathered฀by฀speaking฀with฀local฀community฀groups฀in฀an฀informal฀setting. Behavioral฀risk฀surveillance฀surveys฀(BRSS):฀฀These฀are฀random฀telephone฀surveys฀funded฀by฀ the฀Agency฀for฀Toxic฀Substances฀and฀Disease฀Registry฀(ATSDR).฀฀Some฀states฀have฀added฀questions฀on฀ isher฀demographics฀and฀consumption. If฀it฀is฀not฀possible฀to฀use฀local,฀community-speciic฀information฀on฀seafood฀consumption฀by฀ recreational฀or฀subsistence฀ishers,฀it฀may฀be฀feasible฀to฀use฀survey฀data฀generated฀from฀a฀previously฀ studied฀representative฀population฀that฀may฀have฀similar฀consumption฀patterns฀to฀the฀group฀of฀interest.฀฀Summaries฀of฀seafood฀consumption฀data฀obtained฀from฀sport฀and฀subsistence฀isher฀surveys฀are฀ shown฀in฀Tables฀IV-2฀and฀IV-3,฀from฀USEPA฀(2000b). 44 Table฀IV-2.฀฀Sport฀ishersa฀consumption฀data฀(from฀USEPA฀2000b). Seafood฀Consumption฀Rates฀(grams/day) Fisher฀Group Alabama Mean Median 80th฀Percentile 90th฀Percentile 95th฀Percentile Fish฀Type 50.7 F+S,฀F+C 45.8 Louisiana฀ (coastal) 65 F+S,฀R+C New฀York 28.1 F+S,฀F+C New฀York฀ (Hudson฀River) 40.9 F+S,R Michigan 14.5 Michigan 18.3 Michigan 44.7 Wisconsin฀(10฀ counties) 12.3 37.3 F,฀R Wisconsin฀(10฀ counties) 26.1 63.4 F,฀R+C Ontario 22.5 30 62 80 50 F+S,R F+S,฀F+C F,฀R F,฀R Los฀Angeles฀ Harbor 37 225 S,฀R Washington฀State฀ (Commencement฀ Bay) 23 54 S,฀R Washington฀State฀ (Columbia฀River) 7.7 Maine฀(inland฀ waters) 6.4 F+S,฀R+C 2.0 13 26฀ F,฀R F฀=฀freshwater,฀S฀=฀saltwater,฀R฀=฀recreationally฀caught,฀C฀=฀commercially฀caught. a฀ Sport฀ishers฀may฀include฀individuals฀who฀eat฀sport-caught฀ish฀as฀a฀large฀portion฀of฀their฀diets. Table฀IV-3.฀฀Subsistence฀ishersa฀consumption฀data฀(from฀USEPA฀2000b). Seafood฀Consumption฀Rates฀(grams/day) Fisher฀Group Mean Great฀Lakes฀Tribes 351 Columbia฀River฀Tribes 58.7 High-end฀Caucasian฀consumers฀on฀Lake฀Michigan 48 27c Native฀Alaskan฀adults 109 b 95th฀Percentile Max Fish฀Type 1,426 F 170 F 144 132 F F+S F฀=฀ish,฀S฀=฀shellish. a฀ Subsistence฀ishers฀include฀individuals฀who฀eat฀sport-caught฀ish฀at฀high฀rates฀but฀do฀not฀subsist฀on฀ish฀as฀a฀large฀part฀of฀their฀diets. b฀ Data฀from฀1982฀survey฀of฀ish฀eaters.฀ c฀ Data฀from฀1989฀survey฀of฀ish฀eaters.฀ 45 Consumption฀estimates฀for฀other฀potentially฀at-risk฀groups฀ ฀Other฀factors฀that฀should฀be฀considered฀when฀estimating฀risk฀are฀age,฀reproductive฀status,฀ general฀health,฀and฀additional฀occupational฀or฀life฀style฀exposure฀potential.฀฀For฀instance,฀though฀ young฀children฀may฀eat฀smaller฀portions฀than฀adults,฀they฀may฀consume฀signiicantly฀more฀seafood฀ per฀unit฀body฀weight.฀฀Therefore,฀a฀typical฀risk฀estimate฀for฀a฀60-70฀kg฀adult฀consuming฀an฀8-ounce฀ portion฀of฀seafood฀over฀a฀speciied฀time฀period฀may฀underestimate฀a฀child’s฀potential฀exposure฀level.฀฀ When฀children฀are฀considered฀in฀risk฀assessment฀calculations,฀the฀USEPA฀uses฀an฀average฀body฀weight฀ of฀14.5฀kg฀for฀children฀under฀6฀years฀old.฀฀Risks฀to฀developing฀children฀over฀a฀large฀range฀of฀body฀ weights,฀however,฀may฀not฀be฀estimated฀accurately฀using฀this฀value฀(USEPA฀2000b).฀ Fetuses฀may฀be฀susceptible฀to฀maternal฀PAH฀exposure฀because฀their฀enzymatic฀systems฀are฀ too฀immature฀to฀eliminate฀toxic฀metabolites฀that฀readily฀pass฀through฀the฀embryonic฀and฀fetal฀bloodbrain฀barrier.฀฀Therefore,฀it฀is฀important฀to฀inform฀women฀of฀reproductive฀age฀if฀action฀levels฀and฀consumption฀limits฀for฀PAHs฀are฀generated฀for฀a฀carcinogenic฀endpoint.฀฀The฀elderly,฀people฀with฀certain฀ diseases,฀and฀people฀who฀may฀be฀exposed฀to฀PAHs฀through฀smoking฀or฀at฀high฀levels฀occupationally฀ also฀may฀be฀more฀susceptible฀to฀the฀effects฀of฀PAH฀exposure฀from฀seafood฀consumption฀than฀the฀general฀population.฀฀Consequently,฀it฀may฀be฀advisable฀for฀people฀in฀these฀groups฀to฀limit฀their฀consumption฀of฀contaminated฀seafood฀to฀levels฀below฀those฀considered฀safe฀for฀the฀general฀population. Considering฀that฀many฀local฀seafood฀consumers฀may฀fall฀into฀these฀potentially฀higher-risk฀ groups,฀risk฀estimates฀based฀on฀average฀body฀weights,฀meal฀sizes,฀and฀consumption฀estimates฀for฀the฀ general฀population฀may฀not฀accurately฀relect฀actual฀risk฀levels฀of฀the฀exposed฀population.฀฀฀Therefore,฀ it฀is฀important฀to฀communicate฀to฀the฀public฀the฀assumptions฀(i.e.,฀body฀weights,฀meal฀sizes,฀meal฀frequencies)฀used฀to฀generate฀risk฀estimates฀and฀action฀or฀advisory฀levels.฀ For฀further฀information฀on฀calculating฀risk-based฀consumption฀limits฀for฀inish฀and฀shellish,฀ see฀the฀third฀edition฀of฀the฀USEPA฀Guidance฀for฀Assessing฀Chemical฀Contaminant฀Data฀for฀Use฀in฀Fish฀ Advisories฀Volume฀2:฀฀Risk฀Assessment฀and฀Fish฀Consumption฀Limits฀(2000b). 46 V.฀ RISK฀COMMUNICATION General฀Considerations Risk฀communication฀is฀deined฀as฀“an฀interactive฀process฀of฀exchange฀of฀information฀and฀opinions฀concerning฀risk฀and฀risk-related฀factors฀among฀risk฀assessors,฀risk฀managers,฀consumers,฀and฀other฀ interested฀parties”฀(FAO/WHO฀1998).฀฀The฀deinition฀of฀risk฀is฀essential฀to฀the฀discussion.฀฀Risk฀has฀been฀ deined฀as฀“a฀combination฀of฀the฀probability,฀or฀frequency,฀of฀occurrence฀to฀a฀deined฀hazard฀and฀the฀ magnitude฀of฀the฀consequences฀of฀the฀occurrence”฀(Warner฀1992฀cited฀in฀Jones฀and฀Hood฀1996).฀฀Both฀ technical฀and฀social฀factors฀should฀be฀considered฀when฀communicating฀information฀on฀the฀health฀and฀ safety฀of฀seafood฀following฀an฀oil฀spill,฀particularly฀when฀dealing฀with฀different฀groups.฀฀The฀risks฀and฀ consequences฀have฀different฀meanings฀for฀the฀subsistence฀user,฀sport฀isher,฀average฀consumer,฀commercial฀isher,฀elected฀oficial,฀regulator,฀and฀responsible฀party฀representative.฀฀Regulators฀and฀scientists฀ measure฀risk฀quantitatively฀and฀accept฀the฀uncertainty฀inherent฀in฀the฀risk-assessment฀process.฀฀The฀ public฀perceives฀risk฀more฀qualitatively฀and฀subjectively,฀and฀is฀inluenced฀by฀prior฀experience฀with฀ similar฀risks฀and฀information฀made฀available฀to฀them.฀฀The฀public฀wants฀to฀know฀whether฀the฀seafood฀ is฀safe฀to฀eat;฀yet฀the฀answers฀given฀are฀typically฀posed฀in฀terms฀of฀“acceptable฀risk”฀or฀“not฀a฀signiicant฀ risk.”฀฀Risk฀communicators฀should฀be฀aware฀of฀and฀try฀to฀overcome:฀฀1)฀gaps฀in฀knowledge,฀2)฀obstacles฀ inherent฀in฀the฀uncertainties฀of฀scientiic฀risk฀assessment,฀and฀3)฀barriers฀to฀effective฀risk฀communication฀(Nighswander฀and฀Peacock฀1999). General฀recommendations฀for฀risk฀communication฀during฀oil฀spills฀include: General฀recommendations฀for฀risk฀communication฀during฀oil฀spills฀include: •฀ Be฀proactive.฀฀Acknowledge฀and฀discuss฀the฀potential฀impacts฀to฀seafood฀safety฀from฀an฀oil฀ spill฀as฀soon฀as฀possible.฀฀Establish฀a฀group฀responsible฀for฀assessing฀the฀risks฀to฀seafood฀early฀ and฀review฀the฀risks฀as฀necessary฀as฀the฀spill฀evolves฀and฀new฀information฀is฀made฀available.฀ •฀ Keep฀the฀public฀informed.฀฀Tell฀the฀public฀what฀you฀are฀doing฀to฀determine฀whether฀seafood฀ safety฀is฀at฀risk.฀฀Release฀information฀quickly.฀฀Publish฀maps฀showing฀where฀and฀what฀type฀ of฀seafood฀samples฀are฀being฀collected,฀and฀how฀they฀are฀being฀tested.฀฀Identify฀a฀Point฀of฀ Contact฀for฀further฀information,฀and฀make฀sure฀that฀the฀public฀can฀reach฀the฀Point฀of฀Contact฀ without฀delay.฀฀Make฀sure฀that฀the฀Point฀of฀Contact฀has฀the฀most฀current฀information฀and฀is฀ prepared฀to฀answer฀questions,฀or฀knows฀how฀to฀get฀answers฀quickly.฀฀Response฀to฀all฀requests฀ for฀information฀is฀important.฀฀Consider฀a฀web-based฀strategy฀for฀distributing฀seafood฀safety฀ information,฀where฀individuals฀can฀check฀to฀see฀whether฀seafood฀in฀their฀area฀has฀been฀tested฀ and฀to฀obtain฀test฀results. •฀ Meet฀directly฀with฀affected฀groups฀to฀discuss฀the฀issues฀and฀process.฀฀Direct฀meetings฀with฀ groups฀such฀as฀commercial฀ishing฀associations,฀recreational฀users,฀subsistence฀users,฀seafood฀ vendors,฀etc.฀providing฀opportunities฀to฀ask฀questions฀can฀be฀very฀effective.฀฀However,฀meetings฀can฀fail฀if฀the฀risk฀communicators฀are฀not฀prepared฀or฀knowledgeable,฀or฀appear฀to฀be฀ withholding฀information.฀฀Specialized฀bulletins฀or฀communication฀methods฀may฀be฀necessary฀ for฀special฀groups,฀such฀as฀Native฀American฀subsistence฀users฀and฀non-English-speaking฀users.฀ •฀ Use฀unambiguous฀terms฀whenever฀possible.฀฀Health฀risks฀are฀commonly฀described฀in฀terms฀of฀ probabilities฀of฀cancer฀based฀on฀assumed฀consumption฀rates฀and฀periods.฀฀It฀is฀assumed฀that฀ carcinogens฀do฀not฀have฀safe฀thresholds฀for฀exposures;฀that฀is,฀any฀exposure฀to฀a฀carcinogen฀ 47 may฀pose฀some฀cancer฀risk฀(USEPA฀2000b).฀฀However,฀it฀is฀both฀useful฀and฀appropriate฀to฀deine฀ “safe”฀and฀“unsafe”฀levels฀of฀PAHs฀in฀seafood฀based฀on฀risk฀rates฀that฀are฀commonly฀considered฀ to฀be฀acceptable.฀฀For฀example,฀water-quality฀criteria฀for฀carcinogenic฀contaminants฀in฀water฀ usually฀use฀risk฀rates฀in฀the฀range฀of฀10-5฀to฀10-6.฀฀The฀general฀public฀understands฀the฀concepts฀ of฀acceptable฀risks,฀although฀there฀may฀be฀components฀of฀society฀where฀these฀risks฀conlict฀ with฀local฀cultures,฀such฀as฀the฀Alaska฀Native฀subsistence฀users฀during฀the฀Exxon฀Valdez฀oil฀spill฀ (Field฀et฀al.฀1999).฀฀As฀long฀as฀the฀risk฀communicators฀clearly฀deine฀what฀is฀meant฀by฀“safe”฀and฀ “unsafe,”฀these฀terms฀are฀appropriate.฀ Lessons฀Learned฀from฀Previous฀Oil฀Spills The฀Exxon฀Valdez฀and฀New฀Carissa฀oil฀spills฀provide฀examples฀of฀the฀range฀of฀issues฀faced฀in฀ dealing฀with฀seafood฀safety฀at฀oil฀spills฀and฀the฀lessons฀learned฀in฀terms฀of฀risk฀communication.฀฀Each฀is฀ summarized฀briely฀below. The฀Exxon฀Valdez฀oil฀spill฀impacted฀subsistence฀seafood฀users฀over฀a฀distance฀of฀nearly฀800฀ kilometers,฀affecting฀1,750฀kilometers฀of฀shoreline฀and฀the฀harvest฀areas฀of฀15฀predominantly฀Alaska฀ Native฀villages฀(Field฀et฀al.฀1999).฀฀It฀was฀perceived฀that฀seafood฀safety฀for฀subsistence฀users฀was฀ addressed฀relatively฀late฀in฀the฀spill฀response,฀and฀the฀active฀role฀of฀the฀responsible฀party฀in฀the฀seafood฀safety฀studies฀was฀a฀constant฀source฀of฀suspicion฀on฀the฀part฀of฀the฀village฀residents.฀฀Furthermore,฀there฀were฀conlicts฀in฀terms฀of฀the฀technical฀guidance฀for฀seafood฀safety฀(“use฀your฀own฀sensory฀ tests฀and฀avoid฀collecting฀seafood฀in฀areas฀that฀showed฀evidence฀of฀oil”)฀and฀the฀subsistence฀users’฀ expectations฀that฀chemical฀testing฀would฀provide฀deinitive฀answers฀to฀the฀questions฀about฀whether฀ it฀was฀safe฀to฀eat฀the฀seafood.฀฀An฀Oil฀Spill฀Health฀Task฀Force,฀formed฀after฀the฀spill฀to฀deal฀with฀subsistence฀seafood฀issues,฀had฀to฀deal฀with฀the฀complex฀cultural฀issues฀of฀Native฀Alaskan฀subsistence฀ users฀without฀any฀guidance฀or฀health฀criteria.฀฀In฀fact,฀much฀of฀the฀guidance฀in฀use฀today฀with฀regard฀ to฀seafood฀risk฀from฀petroleum฀contamination฀is฀based฀on฀the฀approach฀developed฀by฀the฀task฀force฀ for฀this฀spill.฀฀Fall฀et฀al.฀(1999)฀provided฀a฀ten-year฀perspective฀on฀the฀lessons฀learned฀for฀this฀spill฀with฀a฀ signiicant฀impact฀to฀Native฀subsistence฀users: •฀ The฀active฀role฀of฀the฀responsible฀party฀was฀met฀with฀considerable฀skepticism฀and฀resulted฀in฀ perceived฀conlict฀of฀interests฀that฀affected฀all฀phases฀of฀data฀collection,฀interpretation,฀and฀ recommendations. •฀ There฀were฀signiicant฀cultural฀conlicts฀in฀deining฀seafood฀safety฀and฀edibility.฀฀A฀spill฀that฀ impacted฀so฀many฀animals฀and฀habitats฀was฀perceived฀to฀also฀have฀signiicant฀impacts฀to฀ human฀health,฀regardless฀of฀the฀information฀provided฀on฀actual฀health฀risks฀to฀consumers฀in฀ the฀impact฀area. •฀ There฀was฀a฀perceived฀“double฀standard”฀for฀subsistence฀users,฀compared฀with฀commercial฀ isheries.฀฀Some฀commercial฀isheries฀were฀closed฀within฀the฀irst฀year฀after฀the฀spill,฀applying฀a฀ “zero-tolerance฀policy”฀in฀order฀to฀protect฀the฀market฀for฀Alaskan฀salmon,฀which฀was฀not฀based฀ on฀concerns฀about฀consumer฀safety.฀฀In฀contrast,฀subsistence฀users฀were฀told฀to฀avoid฀oiled฀ areas฀and฀not฀eat฀food฀that฀smelled฀or฀tasted฀like฀oil. •฀ There฀was฀a฀need฀for฀direct฀communication฀with฀village฀residents,฀especially฀during฀the฀irst฀ year฀when฀concerns฀were฀greatest.฀฀Individual฀community฀members฀will฀not฀necessarily฀receive฀ health-safety฀information฀distributed฀to฀community฀representatives.฀฀Formal฀mechanisms฀are฀ needed฀for฀soliciting฀feedback฀and฀evaluating฀how฀well฀the฀risk฀communication฀efforts฀are฀ being฀received.฀ 48 In฀contrast฀to฀the฀Exxon฀Valdez฀oil฀spill,฀the฀New฀Carissa฀oil฀spill฀outside฀Coos฀Bay,฀Oregon฀ occurred฀in฀a฀region฀of฀commercial฀and฀recreational฀isheries฀where฀health฀advisories฀are฀routine.฀฀The฀ Oregon฀Department฀of฀Agriculture฀(ODA)฀regulates฀commercial฀shellish฀harvest฀under฀a฀strict฀water฀ quality฀standard฀set฀by฀the฀U.S.฀Food฀and฀Drug฀Administration,฀which฀assumes฀there฀may฀be฀raw฀consumption฀of฀the฀product.฀฀Commercial฀isheries฀are฀routinely฀closed฀depending฀on฀the฀amount฀of฀rainfall฀within฀speciic฀watersheds,฀based฀on฀established฀correlations฀between฀rainfall฀and฀coliform฀counts.฀฀ “Rainfall”฀closures฀are฀a฀common฀occurrence,฀and฀there฀are฀established฀communication฀mechanisms฀ for฀notiication฀of฀rainfall฀closures฀and฀openings.฀฀With฀regard฀to฀recreational฀isheries,฀clamming฀and฀ mussel฀harvesting฀are฀often฀closed฀due฀to฀domoic฀acid฀or฀amnesic฀shellish฀poisoning.฀฀Figures฀V-1฀ and฀V-2฀show฀oficial฀notiications฀for฀closure฀and฀opening฀of฀shellish฀harvests฀during฀the฀New฀Carissa฀ oil฀spill.฀฀Commercial฀and฀recreational฀users฀are฀accustomed฀to฀notiications฀of฀closures฀and฀openings฀ based฀on฀accepted฀criteria฀for฀seafood฀safety.฀฀The฀closure฀of฀both฀commercial฀and฀recreational฀shellish฀harvests฀during฀the฀New฀Carissa฀oil฀spill฀was฀met฀with฀limited฀resistance฀and฀confusion฀because฀of฀ this฀established฀relationship฀between฀the฀regulator฀and฀user฀communities.฀ 49 Figure฀V-1.฀฀Commercial฀shellish฀harvest฀closure฀notice฀issued฀during฀the฀New฀Carissa฀oil฀spill. To:฀ Interested฀Parties From:฀ Oregon฀Department฀of฀Agriculture,฀Shellish฀Program฀ Date:฀ February฀17,฀1999฀(corrected฀update) Subject:฀ Status฀of฀Commercial฀Shellish฀“Rainfall’฀Closure฀ Commercial฀shellish฀harvest฀is฀regulated฀by฀the฀Department฀of฀Agriculture฀(ODA)฀under฀a฀strict฀water฀ quality฀standard฀set฀by฀the฀U.S.฀Food฀and฀Drug฀Administration฀(FDA),฀which฀assumes฀there฀may฀be฀raw฀ consumption฀of฀the฀product.฀ODA฀does฀not฀close฀recreational฀shellish฀areas฀without฀the฀cooperation฀of฀ Oregon฀Department฀of฀Fish฀and฀Wildlife฀(ODF&W).฀When฀sewage฀or฀biotoxin฀contamination฀is฀evident,฀ this฀agency฀will฀confer฀with฀ODF&W,฀DEQ฀and฀local฀county฀health฀departments฀to฀determine฀whether฀ recreational฀shellish฀harvesters฀are฀at฀risk฀and฀if฀they฀should฀be฀notiied฀that฀shellish฀harvest฀is฀closed.฀฀ Call฀(503)฀986-4720. Nehalem฀Bay฀remains฀closed.฀฀Nehalem฀R฀did฀not฀fall฀below฀7’฀since฀it฀peaked฀on฀2/8.฀Nehalem฀closes฀if฀ rainfall฀at฀Tillamook฀over฀1”฀in฀24฀hrs฀(new฀plan฀using฀river฀stage฀in฀works). Tillamook฀Bay,฀Main฀Bay฀closed฀today,฀February฀17,฀1999.฀฀The฀Wilson฀rose฀above฀7’฀about฀1฀am฀today.฀ The฀Main฀Bay฀is฀closed฀when฀Wilson฀R.฀exceeds฀7.0’. Cape฀Meares฀Area฀of฀Tillamook฀Bay฀remains฀closed.฀฀Cape฀Meares฀is฀closed฀for฀7฀days฀if฀24฀hrs฀rainfall฀ exceeds฀1”or฀when฀Wilson฀R.฀exceeds฀7.0’. Netarts฀Bay฀is฀open.฀฀This฀bay฀is฀closed฀for฀shellish฀toxin฀events฀or฀looding฀catastrophes. Yaquina฀Bay,฀Main฀River,฀is฀open.฀฀This฀area฀closes฀for฀5฀days฀when฀Toledo฀rainfall฀exceeds฀1.5”/24฀hrs฀or฀ if฀3฀days฀accumulative฀rain฀exceeds฀3”. Winchester฀Bay฀and฀the฀Umpqua฀River฀to฀Big฀Bend,฀remains฀closed฀for฀rainfall;฀and฀harvest฀ restrictions฀are฀ongoing฀due฀to฀potential฀for฀contamination฀from฀the฀New฀Carissa฀oil฀spill.฀฀This฀ area฀closes฀for฀7฀days฀when฀the฀river฀exceeds฀7.5’฀or฀>฀1.5”/24฀hrs.฀ Umpqua฀R.฀Triangle,฀So฀Jetty,฀closed฀today฀February฀17,฀1999฀for฀rainfall/river฀ht;฀and฀harvest฀ restrictions฀are฀ongoing฀due฀to฀potential฀for฀contamination฀from฀the฀New฀Carissa฀oil฀spill.฀฀The฀ Umpqua฀went฀over฀12’฀at฀around฀4pm฀today.฀This฀area฀closes฀for฀5฀days฀if฀Umpqua฀R.฀@฀Elkton฀exceeds฀ 12’฀or฀rainfall฀>฀2.0”/24฀hrs. Lower฀Coos฀Bay฀is฀closed;฀harvest฀restrictions฀are฀ongoing฀due฀to฀potential฀for฀contamination฀ from฀the฀New฀Carissa฀oil฀spill.฀฀(down฀bay฀from฀No.฀Bend฀airport)฀is฀not฀closed฀for฀rainfall฀events.฀ Upper฀Coos฀Bay,฀opened฀February฀12,฀1999฀from฀rainfall฀closure;฀but฀harvest฀restrictions฀are฀ ongoing฀due฀to฀potential฀for฀contamination฀from฀the฀New฀Carissa฀oil฀spill.฀฀Upper฀Coos฀is฀closed฀5฀ days฀if฀24฀hr฀rainfall฀exceeds฀1.5”฀or฀3฀day฀accumulative฀rainfall฀exceeds฀3” South฀&฀Joe฀Ney฀Sloughs฀opened,฀February฀12,฀1999฀from฀rainfall฀closure;฀but฀harvest฀restrictions฀ are฀ongoing฀due฀to฀potential฀for฀contamination฀from฀the฀New฀Carissa฀oil฀spill.฀฀So฀Slough฀is฀closed฀5฀ days฀if฀24฀hr฀rainfall฀exceeds฀1.5”฀or฀3฀day฀accumulative฀rainfall฀exceeds฀3”฀฀In฀addition฀to฀rainfall฀criteria,฀ Upper฀So.฀Slough฀(area฀above฀Younker฀Pt)฀closes฀when฀tidal฀exchange฀exceeds฀7.5’.฀During฀tidal฀closures฀ growers฀may฀tend฀but฀not฀move฀shellstock. 50 Figure฀V-2.฀฀Shellish฀harvest฀closure฀notice฀issued฀during฀the฀New฀Carissa฀oil฀spill. Lower฀Coos฀Bay฀and฀the฀Charleston฀Boat฀Basin฀Area฀Added฀to฀Clamming฀and฀Mussel฀Closure฀Due฀ to฀Oil฀Leaks฀From฀the฀New฀Carissa Oyster฀Harvesting฀on฀Hold February฀12,฀1999.฀฀The฀Oregon฀Department฀of฀Agriculture฀is฀adding฀Lower฀Coos฀Bay฀and฀the฀Charleston฀Boat฀Basin฀to฀the฀areas฀closed฀to฀shellish฀harvesting฀as฀result฀of฀the฀oil฀spilling฀from฀the฀New฀Carissa.฀฀ Surveys฀of฀the฀area฀made฀today฀indicate฀that฀oil฀sheen฀and฀oil฀globules฀are฀visible฀in฀these฀areas.฀฀The฀ upper฀boundary฀for฀the฀Lower฀Coos฀Bay฀closure฀is฀the฀railroad฀bridge฀above฀North฀Bend;฀the฀upper฀ boundary฀for฀the฀boat฀basin฀area฀closure฀is฀the฀Charleston฀Bridge. ฀Mussel฀and฀clam฀harvesting฀was฀prohibited฀on฀the฀beaches฀in฀Coos฀and฀Douglas฀counties฀yesterday฀ due฀to฀possible฀contamination฀from฀the฀New฀Carissa฀oil฀spill.฀฀The฀extent฀of฀contamination฀on฀the฀ beaches฀and฀bays฀is฀being฀surveyed฀today.฀฀These฀areas฀remain฀closed฀at฀this฀time.฀฀The฀public฀should฀ take฀heed฀of฀any฀signs฀on฀Coos฀and฀Douglas฀County฀beaches฀and฀bays฀that฀alert฀them฀to฀shellish฀closures. The฀Department฀has฀required฀oyster฀growers฀to฀limit฀harvesting฀to฀areas฀that฀have฀been฀surveyed฀and฀ conirmed฀to฀be฀unaffected฀by฀the฀spread฀of฀oil.฀฀This฀is฀an฀ongoing฀process฀due฀to฀the฀changing฀tides฀ and฀the฀survey฀reporting฀process.฀฀฀At฀this฀time฀no฀oil฀has฀been฀seen฀in฀the฀oyster฀growing฀areas.฀฀Commercial฀oyster฀harvest฀will฀be฀prohibited฀from฀any฀areas฀contaminated฀by฀oil.฀฀There฀are฀inspectors฀on฀ the฀scene฀to฀inspect฀shellish฀and฀assure฀commercial฀shellish฀safety. The฀Department฀is฀in฀contact฀with฀natural฀resource฀advisors฀at฀the฀incident฀command฀and฀will฀keep฀the฀ public฀and฀the฀commercial฀industry฀advised฀of฀shellish฀safety฀information. For฀more฀information฀call฀the฀Department฀of฀Agriculture’s฀shellish฀information฀line฀at฀(503)฀986-4728฀or฀ Ron฀McKay฀at฀(503)฀986-4720. Communicating฀Relative฀Risks Risk฀communicators฀commonly฀compare฀the฀relative฀risk฀of฀a฀speciic฀activity฀to฀known฀risks฀ of฀other฀activities.฀฀For฀example,฀the฀public฀is฀accustomed฀to฀hearing฀the฀risks฀of฀death฀by฀automobile฀ accident฀or฀airplane฀crash.฀฀These฀are฀considered฀voluntary฀risks฀taken฀by฀people฀who฀decide฀to฀drive฀ or฀ly฀after฀considering฀the฀risks฀and฀beneits฀associated฀with฀these฀activities,฀whether฀or฀not฀their฀perceptions฀are฀realistic.฀฀The฀public฀generally฀will฀accept฀risks฀from฀voluntary฀activities฀that฀are฀roughly฀ 1,000฀times฀greater฀than฀involuntary฀risks฀that฀provide฀the฀same฀level฀of฀beneits฀(Starr฀1996).฀ Because฀the฀potential฀human-health฀risks฀from฀eating฀seafood฀contaminated฀by฀an฀oil฀spill฀are฀ associated฀with฀PAHs,฀it฀is฀tempting฀to฀compare฀the฀PAH฀levels฀in฀seafood฀samples฀with฀those฀found฀ in฀other฀food฀sources.฀฀PAHs฀are฀ubiquitous฀contaminants,฀measurable฀in฀many฀foods.฀฀Table฀V-1฀summarizes฀the฀levels฀of฀PAHs฀in฀some฀commonly฀consumed฀foods.฀฀Based฀on฀information฀from฀previous฀ spills,฀PAH฀levels฀in฀seafood฀from฀oil-spill-contaminated฀waters฀generally฀are฀considerably฀lower฀than฀ PAH฀levels฀found฀in฀smoked฀foods.฀฀During฀the฀Exxon฀Valdez฀oil฀spill,฀however,฀village฀community฀residents฀became฀upset฀when฀it฀was฀pointed฀out฀that฀samples฀of฀smoked฀ish฀from฀the฀villages฀contained฀ carcinogenic฀hydrocarbon฀levels฀hundreds฀of฀times฀higher฀than฀any฀shellish฀samples฀collected฀from฀ oiled฀beaches,฀and฀nearly฀10,000฀times฀higher฀than฀wild฀salmon฀(Nighswander฀and฀Peacock฀1999).฀฀The฀ residents฀considered฀eating฀smoked฀salmon฀to฀be฀an฀acceptable,฀voluntary฀risk,฀and฀eating฀oil-contaminated฀seafood฀to฀be฀an฀involuntary,฀unacceptable฀risk.฀฀Guidelines฀for฀risk฀communication฀include฀ being฀sensitive฀to฀the฀distinction฀between฀voluntary฀and฀involuntary฀risk,฀and฀avoiding฀risk฀comparisons฀that฀equate฀the฀two฀(Chess฀et฀al.฀1994).฀฀Risk฀comparisons฀should฀be฀made฀carefully. 51 Table฀V-1.฀PAHs฀in฀foods฀(Bolger฀and฀Carrington฀1999). ฀ Source PAH฀(ppb฀or฀µg/kg) B[a]P฀(ppb฀or฀µg/kg) Corn฀oil 2-10 0.4-1.0 Smoked฀meat฀and฀fish 10-20 0.3-60 Bakers฀yeast 10-350 2-40 Kale 60-500 13-48 52 VI.฀฀Literature฀Cited฀ Ackman,฀R.G.฀and฀H.฀Heras.฀1992.฀Tainting฀by฀short-term฀exposure฀of฀Atlantic฀salmon฀to฀water฀soluble฀ petroleum฀hydrocarbons.฀In฀Proceedings฀of฀the฀15th฀Arctic฀and฀Marine฀Oil฀Spill฀Program฀Technical฀Seminar.฀Environment฀Canada,฀Ottawa.฀2:757-762. Agency฀for฀Toxic฀Substances฀and฀Disease฀Registry฀(ATSDR).฀1995.฀Toxicological฀Proile฀for฀Polycyclic฀ Aromatic฀Hydrocarbons฀(PAHs).฀฀Atlanta:฀U.S.฀Department฀of฀Health฀and฀Human฀Services,฀Public฀Health฀ Service,฀Agency฀for฀Toxic฀Substances฀and฀Disease฀Registry. American฀Society฀for฀Testing฀and฀Materials฀(ASTM).฀1994.฀Compilation฀of฀ASTM฀Standard฀Deinitions,฀ Eighth฀Edition.฀Philadelphia:฀ASTM. Bender,฀M.E.,฀P.O.฀DeFur,฀and฀R.J.฀Huggett.฀1986.฀Polynuclear฀aromatic฀hydrocarbon฀monitoring฀in฀estuaries฀utilizing:฀oysters,฀brackish฀water฀clams฀and฀sediments.฀In฀Oceans฀’86฀Conference฀Record,฀Monitoring฀ Strategies฀Symposium,฀Vol.฀3.฀Piscataway,฀New฀Jersey฀and฀Washington,฀D.C.:฀Institute฀of฀Electrical฀and฀ Electronics฀Engineers฀and฀Marine฀Technology฀Society.฀pp.฀791-796. Boehm,฀P.D.฀and฀J.G.฀Quinn.฀1977.฀The฀persistence฀of฀chronically฀accumulated฀hydrocarbons฀in฀the฀hard฀ shell฀clam฀Mercenaria฀mercenaria.฀Marine฀Biology฀44:฀227-233.฀ Bolger,฀M.฀and฀C.฀Carrington.฀1999.฀Hazard฀and฀risk฀assessment฀of฀crude฀oil฀in฀subsistence฀seafood฀samples฀from฀Prince฀William฀Sound:฀lessons฀learned฀from฀the฀Exxon฀Valdez.฀In฀L.฀Jay฀Field฀et฀al.฀(eds.).฀Evaluating฀and฀Communicating฀Subsistence฀Seafood฀Safety฀in฀a฀Cross-Cultural฀Context:฀Lessons฀Learned฀from฀ the฀Exxon฀Valdez฀Oil฀Spill.฀Pensacola:฀Society฀of฀Environmental฀Toxicology฀and฀Chemistry.฀pp.฀195-204. Bolger,฀M.,฀S.H.฀Henry,฀and฀C.D.฀Carrington.฀1996.฀Hazard฀and฀risk฀assessment฀of฀crude฀oil฀contaminants฀ in฀subsistence฀seafood฀samples฀from฀Prince฀William฀Sound.฀American฀Fisheries฀Symposium฀18:837-843. California฀Environmental฀Protection฀Agency.฀1997.฀Public฀health฀goals฀for฀benzo[a]pyrene฀in฀drinking฀ water.฀Sacramento:฀Pesticide฀and฀Environmental฀Toxicology฀Section,฀Ofice฀of฀Environmental฀Health฀ Hazard฀Assessment. Challenger,฀G.E.฀and฀G.S.฀Mauseth.฀1998.฀Closing฀and฀opening฀isheries฀following฀oil฀spills;฀a฀case฀study฀ in฀Humboldt฀Bay,฀California.฀In฀Proceedings฀of฀the฀21st฀Arctic฀and฀Marine฀Oilspill฀Program฀Technical฀Seminar,฀Edmonton,฀Alberta,฀Canada,฀June฀10-12,฀1998,฀1:167-179.฀฀ Chess,฀C.,฀B.J.฀Hance,฀and฀P.M.฀Sandman.฀1994.฀Improving฀dialogue฀with฀communities:฀a฀short฀guide฀for฀ government฀risk฀communication.฀New฀Brunswick,฀New฀Jersey:฀New฀Jersey฀Department฀of฀Environmental฀Protection,฀Division฀of฀Science฀and฀Research฀and฀Environmental฀Communication฀Research฀Program;฀ New฀Jersey฀Agricultural฀Experiment฀Station;฀and฀Cook฀College,฀Rutgers฀University.฀ Coates,฀P.J.฀1998.฀The฀Sea฀Empress฀oil฀spill฀and฀its฀effect฀on฀the฀ishermen฀and฀isheries฀of฀South฀West฀ Wales.฀In฀R.฀Edwards฀and฀H.฀Sime฀(eds.).฀The฀Sea฀Empress฀Oil฀Spill.฀London:฀The฀Chartered฀Institution฀of฀ Water฀and฀Environmental฀Management.฀pp.฀137-151. Conover,฀R.J.฀1971.฀Some฀relations฀between฀zooplankton฀and฀bunker฀C฀oil฀in฀Chedabucto฀Bay฀following฀ the฀wreck฀of฀the฀tanker฀Arrow.฀Journal฀of฀the฀Fisheries฀Research฀Board฀of฀Canada฀28:1327-1330. Davies,฀J.M.,฀A.D.฀McIntosh,฀R.฀Stagg,฀G.฀Topping,฀and฀J.฀Rees.฀1997.฀The฀fate฀of฀the฀Braer฀oil฀in฀the฀marine฀ and฀terrestrial฀environments.฀In฀J.M.฀Davies฀and฀G.฀Topping฀(eds.).฀The฀Impact฀of฀an฀Oil฀Spill฀in฀Turbulent฀ Waters:฀The฀Braer.฀Edinburgh:฀The฀Stationery฀Ofice฀LTD.฀pp.฀26-41. Davis,฀H.K.,฀E.N.฀Geelhoed,฀A.W.฀MacCrae,฀and฀P.฀Howgate.฀1992.฀Sensory฀analysis฀of฀trout฀tainted฀by฀ diesel฀fuel฀in฀ambient฀water.฀Water฀Science฀Technology฀25:11-18. 53 Davis,฀H.K.,฀N.฀Shepherd,฀and฀C.F.฀Moffat.฀1995.฀Uptake฀and฀depuration฀of฀oil฀taint฀from฀ish.฀In฀Proceedings฀of฀the฀Second฀International฀Research฀and฀Development฀Conference,฀International฀Maritime฀Organization,฀London,฀pp.฀353-361. DiSalvo,฀L.H.,฀H.E.฀Guard,฀and฀L.฀Hunter.฀1975.฀Tissue฀hydrocarbon฀burden฀of฀mussels฀as฀potential฀monitor฀of฀environmental฀hydrocarbon฀insult.฀Environ฀Science฀&฀Technology฀9:247-251. Ernst,฀R.,฀J.฀Carter,฀and฀N.฀Ratnayake.฀1989a.฀Tainting฀and฀toxicity฀in฀sea฀scallops฀(Placopecten฀magellancius)฀exposed฀to฀the฀water-soluble฀fraction฀of฀Scotian฀Shelf฀natural฀gas฀condensate.฀Dartmouth,฀Nova฀ Scotia:฀Marine฀Environment฀Protection฀Branch,฀Environment฀Canada. Ernst,฀R.J.,฀W.M.N.฀Ratnayake,฀T.E.฀Farquharson,฀R.G.฀Ackman,฀W.G.฀Tidmarsh,฀and฀J.A.฀Carter.฀1989b.฀Tainting฀of฀Atlantic฀cod฀(Gadus฀morhua)฀by฀petroleum฀hydrocarbons.฀In฀F.R.฀Engelhardt฀et฀al.฀(eds.)฀Drilling฀ Wastes.฀New฀York:฀Elsevier฀Applied฀Science.฀pp.฀827-839. Fall,฀James฀A.฀1999.฀Changes฀in฀subsistence฀uses฀of฀ish฀and฀wildlife฀resources฀following฀the฀Exxon฀ Valdez฀oil฀spill.฀In:฀L.฀Jay฀Field฀et฀al.฀(eds).฀Evaluating฀and฀Communicating฀Subsistence฀Seafood฀Safety฀in฀a฀ Cross-Cultural฀Context:฀Lessons฀Learned฀from฀the฀Exxon฀Valdez฀Oil฀Spill.฀Pensacola:฀Society฀of฀Environmental฀Toxicology฀and฀Chemistry.฀pp.฀51-104. Fall,฀J.A.฀and฀L.J.฀Field.฀1996.฀Subsistence฀uses฀of฀ish฀and฀wildlife฀before฀and฀after฀the฀Exxon฀Valdez฀oil฀ spill.฀American฀Fisheries฀Society฀Symposium฀18:819-836. Fall,฀J.A.,฀L.J.฀Field,฀T.S.฀Nighswander,฀J.E.฀Stein,฀and฀M.฀Bolger.฀1999.฀Overview฀of฀lessons฀learned฀from฀ the฀Exxon฀Valdez฀oil฀spill:฀a฀10-year฀retrospective.฀In฀L.J.฀Field฀et฀al.฀(eds.).฀Evaluating฀and฀Communicating฀ Subsistence฀Seafood฀Safety฀in฀a฀Cross-Cultural฀Context:฀฀Lessons฀Learned฀from฀the฀Exxon฀Valdez฀Oil฀Spill.฀ Pensacola:฀Society฀for฀Environmental฀Toxicology฀and฀Chemistry.฀pp.฀237-269. Field,฀L.J.,฀J.A.฀Fall,฀T.S.฀Nighswander,฀N.฀Peacock,฀and฀U.฀Varanasi฀(eds.).฀1999.฀Evaluating฀and฀Communicating฀Subsistence฀Seafood฀Safety฀in฀a฀Cross-Cultural฀Context:฀฀Lessons฀Learned฀from฀the฀Exxon฀Valdez฀Oil฀Spill.฀ Pensacola:฀Society฀for฀Environmental฀Toxicology฀and฀Chemistry,฀338฀pp. Fingas,฀M.,฀B.฀Fieldhouse,฀and฀J.฀Mullin.฀1994.฀Studies฀of฀water-in-oil฀emulsions฀and฀techniques฀to฀measure฀emulsion฀treating฀agents.฀In฀Proceeding฀of฀the฀17th฀Arctic฀and฀Marine฀Oilspill฀Program฀Technical฀ Seminar,฀Vancouver,฀British฀Columbia,฀June,฀8-10,฀1998,฀1:213-244.฀฀ Food฀and฀Agriculture฀Organization/World฀Health฀Organization฀(FAO/WHO).฀1998.฀Joint฀FAP/WHO฀ expert฀consultation฀on฀the฀application฀of฀risk฀communication฀to฀food฀standards฀and฀safety฀matters,฀ February฀2-6,฀1998,฀Italian฀Ministry฀of฀Health,฀Rome. Food฀Technology฀Sensory฀Evaluation฀Division.฀1981.฀Sensory฀evaluation฀guide฀for฀testing฀food฀and฀ beverage฀products.฀฀Food฀Technology฀35(11):50-59.฀ French,฀D.P.฀1998.฀Modeling฀the฀impacts฀of฀the฀North฀Cape฀oil฀spill.฀In฀Proceedings฀of฀the฀21st฀Arctic฀ Marine฀Oil฀Spill฀Program฀Technical฀Seminar,฀Environment฀Canada,฀Ottawa,฀1:฀387-430. French,฀D.P.฀2000.฀Estimation฀of฀oil฀toxicity฀using฀an฀additive฀toxicity฀model.฀In฀Proceedings฀of฀the฀23rd฀ Arctic฀Marine฀Oil฀Spill฀Program฀Technical฀Seminar,฀Environment฀Canada,฀Ottawa,฀1:฀561-600. Fucik,฀K.W.฀and฀J.M.฀Neff.฀1977.฀Effects฀of฀temperature฀and฀salinity฀on฀naphthalenes฀uptake฀in฀the฀ temperate฀clam฀Rangia฀cuneata฀and฀the฀boreal฀clam฀Protothaca฀staminea.฀In฀W.D.฀Wolfe฀(ed.)฀Fate฀and฀ Effects฀of฀Petroleum฀Hydrocarbons฀in฀Marine฀Organisms฀and฀Ecosystems.฀New฀York:฀Pergamon฀Press.฀pp.฀ 305-312.฀ GESAMP฀(IMO/FAO/UNESCO/WMO/IAEA/UN/UNEP฀Joint฀Group฀of฀Experts฀on฀the฀Scientiic฀Aspects฀ of฀Marine฀Pollution).฀1977.฀Impact฀of฀oil฀on฀the฀marine฀environment.฀Reports฀and฀Studies฀No.฀6.฀Rome:฀ Food฀and฀Agriculture฀Organization฀of฀the฀United฀Nations.฀250฀pp. 54 Gilroy,฀D.J.฀2000.฀Derivation฀of฀shellish฀harvest฀reopening฀criteria฀following฀the฀New฀Carissa฀oil฀spill฀in฀ Coos฀Bay,฀Oregon.฀Journal฀of฀Toxicology฀and฀Environmental฀Health,฀Part฀A,฀60:317-329. Hayes,฀M.O.฀and฀J.฀Michel.฀1999.฀Factors฀determining฀the฀long-term฀persistence฀of฀Exxon฀Valdez฀oil฀in฀ gravel฀beaches.฀Marine฀Pollution฀Bulletin฀38:92-101. Hellou฀J.฀1996.฀Polycyclic฀aromatic฀hydrocarbons฀in฀marine฀mammals,฀inish,฀and฀mollusks.฀In฀G.H.฀ Heinz฀and฀A.W.฀Redmon-Norwood฀(eds.).฀Environmental฀Contaminants฀in฀Wildlife:฀Interpreting฀Tissue฀ Concentrations.฀Boca฀Raton,฀Florida:฀Lewis฀Publishers.฀pp.฀229-250. Heras,฀H.,฀R.G.฀Ackman,฀and฀E.J.฀MacPherson.฀1992.฀Tainting฀of฀Atlantic฀salmon฀(Salmo฀salar)฀by฀petroleum฀hydrocarbons฀during฀a฀short-term฀exposure.฀Marine฀Pollution฀Bulletin฀24:310-315. Heras,฀H.,฀S.฀Zhou,฀and฀R.G.฀Ackman.฀1993.฀Uptake฀and฀depuration฀of฀petroleum฀hydrocarbons฀by฀ Atlantic฀salmon:฀effect฀of฀different฀lipid฀levels.฀In฀Proceedings฀of฀the฀16th฀Arctic฀Marine฀Oil฀Spill฀Program฀ Technical฀Seminar฀1:343-351. Howgate,฀P.,฀P.R.฀Mackie,฀K.J.฀Whittel,฀J.฀Farmer,฀A.D.฀McIntyre,฀and฀A.฀Eleftheriou.฀1977.฀Petroleum฀tainting฀ in฀ish.฀Rapports฀et฀proces-verbaux฀des฀reunions.฀In฀Conseil฀permanent฀international฀pour฀l’exploration฀ de฀la฀Mer฀171:143-146. Hufnagle,฀L.C.฀Jr.,฀S.E.฀Camarata,฀D.฀Ernest,฀C.A.฀Krone,฀S.-L.฀Chan,฀and฀M.M.฀Krahn.฀1999.฀Development฀and฀ application฀of฀a฀high-performance฀liquid฀chromatography฀screening฀method฀for฀aromatic฀compounds฀ in฀invertebrate฀tissues.฀Archives฀of฀Environmental฀Contamination฀and฀Toxicology฀37:220-226. ICF-Clements฀Associates.฀1988.฀Comparative฀potency฀approach฀for฀estimating฀the฀cancer฀risk฀associated฀with฀exposure฀to฀mixtures฀of฀polycyclic฀aromatic฀hydrocarbons.฀Interim฀inal฀report฀EPA฀68/02/ 4403.฀฀Fairfax,฀Virginia:฀U.S.฀Environmental฀Protection฀Agency. Integrated฀Risk฀Information฀System฀(IRIS).฀1994.฀EPA’s฀carcinogenicity฀risk฀assessment฀veriication฀ endeavor฀work฀group.฀Cincinnati:฀U.S.฀Environmental฀Protection฀Agency,฀Environmental฀Criteria฀and฀ Assessment฀Ofice. International฀Standards฀Organization฀(ISO).฀1992.฀Sensory฀Analysis฀–฀Methodology฀–฀Vocabulary.฀฀ Report฀ISO฀5942.฀Geneva:฀ISO.฀฀฀฀ Jacques฀Whitford฀Environment฀Limited.฀1992.฀Characteristics฀of฀tainting฀in฀farmed฀Atlantic฀salmon฀and฀ cultured฀blue฀mussels,฀exposed฀to฀water฀soluble฀fractions฀of฀Brent฀crude฀oil฀and฀Scotian฀Shelf฀condensate.฀Dartmouth,฀Nova฀Scotia:฀Marine฀Environment฀Protection฀Branch,฀Environment฀Canada.฀30฀pp. Javitz,฀H.฀1980.฀Seafood฀consumption฀data฀analysis.฀Final฀Report.฀EPA฀68/01/3887.฀Washington,฀D.C.:฀ Ofice฀of฀Water฀Regulations฀and฀Standards.฀U.S.฀Environmental฀Protection฀Agency. Jokuty,฀P,฀S.฀Whiticar,฀Z.฀Wang,฀M.฀Fingas,฀B.฀Fieldhouse,฀P.฀Lambert,฀and฀J.฀Mullin.฀1999.฀Properties฀of฀crude฀ oils฀and฀oil฀products.฀฀EE-165.฀฀Ottawa,฀Ontario:฀฀Environment฀Canada.฀฀ Jones,฀D.฀and฀C.฀Hood.฀1996.฀Introduction.฀In:฀C.฀Hood฀and฀D.K.C฀Jones฀(eds.).฀Accident฀and฀Design:฀Contemporary฀Debates฀in฀Risk฀Management.฀London:฀UCL฀Press. Jordan,฀R.E.฀and฀J.R.฀Payne.฀1980.฀Fate฀and฀Weathering฀of฀Petroleum฀Spills฀in฀the฀Marine฀Environment.฀Ann฀ Arbor:฀Ann฀Arbor฀Science.฀174฀pp. Jovanovich,฀M.C.฀and฀K.R.฀Marion.฀1987.฀Seasonal฀variation฀in฀uptake฀and฀depuration฀of฀anthracene฀by฀ the฀brackish฀water฀clam฀Rangia฀cuneata.฀Marine฀Biology฀95:395-403.฀ Kennedy,฀C.J.,฀K.A.Gill,฀and฀P.J.฀Walsh.฀1989.฀Thermal฀modulation฀of฀benzo[a]pyrene฀uptake฀in฀the฀gull฀ toadish,฀Opsanus฀beta.฀Environmental฀Toxicology฀and฀Chemistry฀8:863-869. 55 Kingston,฀P.฀1999.฀Recovery฀of฀the฀marine฀environment฀following฀the฀Braer฀spill,฀Shetland.฀In฀Proceedings฀1999฀Oil฀Spill฀Conference,฀Seattle,฀Washington,฀March฀8-11,฀1999,฀pp.฀103-109. Krahn,฀M.M.,฀D.G.฀Burrows,฀G.M.฀Ylitalo,฀D.W.฀Brown,฀C.A.฀Wigren,฀T.K.฀Collier,฀S-L.฀Chan,฀and฀U.฀Varanasi.฀ 1992.฀Mass฀spectrometric฀analysis฀for฀aromatic฀compounds฀in฀bile฀of฀ish฀sampled฀after฀the฀Exxon฀ Valdez฀oil฀spill.฀Environmental฀Science฀&฀Technology฀26(1):฀116-126. Krahn,฀M.M.,฀T.K.฀Collier,฀and฀D.C.฀Malins.฀1982.฀Aromatic฀hydrocarbon฀metabolites฀in฀ish:฀automated฀ extraction฀and฀high-performance฀liquid฀chromatographic฀separation฀into฀conjugate฀and฀non-conjugate฀fractions.฀Journal฀of฀Chromatography฀236:441-452. Krahn,฀M.M.,฀L.K.฀Moore,฀and฀W.D.฀MacLeod,฀Jr.฀1986.฀Standard฀Analytical฀Procedures฀of฀the฀NOAA฀ National฀Analytical฀Facility,฀1986:฀Metabolites฀of฀aromatic฀compounds฀in฀ish฀bile.฀NOAA฀Technical฀ Memorandum฀NMFS฀F/NWC-102.฀Seattle:฀National฀Marine฀Fisheries฀Service,฀National฀Oceanic฀and฀ Atmospheric฀Administration. Krahn,฀M.M.,฀M.S.฀Myers,฀D.G.฀Burrows,฀and฀D.C.฀Malins.฀1984.฀Determination฀of฀metabolites฀of฀xenobiotics฀in฀the฀bile฀of฀ish฀from฀polluted฀waterways.฀Xenobiotica฀14(8):633-646. Krahn,฀M.M,฀G.M.฀Ylitalo,฀J.฀Buzitis,฀J.L.฀Bolton,฀C.A.฀Wigren,฀S-L.฀Chan,฀and฀U.฀Varanashi.฀1993a.฀Analyses฀for฀ petroleum-related฀contaminants฀in฀marine฀ish฀and฀sediments฀following฀the฀Gulf฀oil฀spill.฀Marine฀Pollution฀Bulletin฀27:285-292. Krahn,฀M.M.,฀G.M.฀Ylitalo,฀J.฀Buzitis,฀S.-L.-Chan,฀and฀U.฀Varanasi.฀1993b.฀Rapid฀high-performance฀liquid฀ chromatographic฀methods฀that฀screen฀for฀aromatic฀compounds฀in฀environmental฀samples.฀Journal฀of฀ Chromatography฀642:15-32. Krahn,฀M.M.,฀G.฀M.฀Ylitalo,฀J.฀Buzitis,฀S.-L.฀Chan,฀U.฀Varanasi,฀T.L.฀Wade,฀T.J.฀Jackson,฀J.M.฀Brooks,฀D.A.฀Wolfe,฀ and฀C-A.฀Manen.฀1993c.฀Comparison฀of฀high-performance฀liquid฀chromatography/luorescence฀screening฀and฀gas฀chromatography/mass฀spectrometry฀analysis฀for฀aromatic฀compounds฀in฀sediments฀ sampled฀after฀the฀Exxon฀Valdez฀oil฀spill.฀Environmental฀Science฀&฀Technology฀27(4):699-708. Krahn,฀M.M.,฀G.M.฀Ylitalo,฀J.฀Buzitis,฀C.A.฀Krone,฀J.E.฀Stein,฀S.-L.-Chan,฀and฀U.฀Varanasi.฀1993d.฀Screening฀ methods฀for฀assessing฀damage฀to฀natural฀resources฀following฀the฀Exxon฀Valdez฀oil฀spill.฀In฀Proceedings฀ of฀the฀1993฀Oil฀Spill฀Conference,฀Tampa,฀Florida,฀฀March฀29-April฀1,฀1993.฀pp.฀872-873. Krahn,฀M.M.,฀G.M.฀Ylitalo,฀J.฀Joss,฀and฀S.-L.-Chan.฀1991.฀Rapid,฀semi-quantitative฀screening฀of฀sediments฀ for฀aromatic฀compounds฀using฀sonic฀extraction฀and฀HPLC/luorescence฀analysis.฀Marine฀Environmental฀ Research฀31:175-196. Landrum,฀P.F.฀1982.฀Uptake,฀depuration,฀and฀biotransformation฀of฀anthracene฀by฀the฀scud฀Pontoporeia฀ hoyi.฀Chemosphere฀11:1049-1057.฀ Lauenstein,฀G.G.฀and฀A.Y.฀Cantillo฀(eds.).฀1993.฀Sampling฀and฀analytical฀methods฀of฀the฀National฀Status฀ and฀Trends฀Program,฀National฀Benthic฀Surveillance฀and฀Mussel฀Watch฀Projects฀1984-1992,฀Vol.฀IV,฀Comprehensive฀descriptions฀of฀trace฀organic฀analytical฀methods.฀NOAA฀Technical฀Memorandum฀NOAA฀ ORCA฀71.฀Silver฀Spring,฀Maryland:฀Ofice฀of฀Ocean฀Resources฀Conservation฀and฀Assessment,฀NOAA.฀181฀ pp. Law,฀R.J.฀and฀J.฀Hellou.฀1999.฀Contamination฀of฀ish฀and฀shellish฀following฀oil฀spill฀incidents.฀Environmental฀Geoscience฀6:90-98. Law,฀R.J.,฀C.A.฀Kelly,฀K.L.฀Graham,฀R.J.฀Woodhead,฀P.E.J.฀Dyrynda,฀and฀E.A.฀Dyrynda.฀1997.฀Hydrocarbons฀ and฀PAHs฀in฀ish฀and฀shellish฀from฀southwest฀Wales฀following฀the฀Sea฀Empress฀oil฀spill฀in฀1996.฀In฀Proceedings฀1997฀International฀Oil฀Spill฀Conference,฀Fort฀Lauderdale,฀Florida,฀April฀7-10,฀1997,฀pp.฀205-211. 56 Lehr,฀W,฀D.฀Wesley,฀D.฀Simecek-Beatty,฀R.฀Jones,฀G.฀Kachook฀and฀J.฀Lankford.฀฀2000.฀฀Algorithm฀and฀Interface฀Modiications฀of฀the฀NOAA฀Oil฀Spill฀Behavior฀Model.฀฀In฀Proceedings฀of฀the฀23rd฀Arctic฀and฀Marine฀Oil฀ Spill฀Technical฀Seminar,฀Vancouver,฀British฀Columbia,฀June,฀14-16,฀2000,฀2:525-540. Lockhart,฀W.L.฀and฀R.W.฀Danell.฀1992.฀Field฀and฀experimental฀tainting฀of฀arctic฀freshwater฀ish฀by฀crude฀ and฀reined฀petroleum฀products.฀In฀Proceedings฀of฀the฀15th฀Arctic฀and฀Marine฀Oil฀Spill฀Program฀Technical฀ Seminar,฀Edmonton,฀Alberta,฀pp.฀763-771. Mackenzie,฀K.M.฀and฀D.M.฀Angevine.฀1981.฀Infertility฀in฀mice฀exposed฀in฀utero฀to฀benzo[a]pyrene.฀Biology฀of฀Reproduction฀24:183-191. Marsh,฀J.W.,฀J.K.฀Chipman,฀and฀D.R.฀Livingstone.฀1992.฀Activation฀of฀xenobiotics฀to฀reactive฀and฀mutagenic฀products฀by฀the฀marine฀invertebrates฀Mytilus฀edulis,฀Carcinus฀maenus,฀and฀Asterias฀rubens.฀Aquatic฀ Toxicology฀22:115-128. Mauseth,฀G.S.฀and฀G.E.฀Challenger.฀2001.฀฀Trends฀in฀Rescinding฀Seafood฀Harvest฀Closures฀Following฀Oil฀ Spills.฀In฀Proceeding฀of฀the฀2001฀International฀Oil฀Spill฀Conference,฀Tampa,฀Florida,฀March฀26-29,฀2001,฀pp.฀ 679-684. Mauseth,฀G..S.,฀C.A.฀Martin,฀and฀K.฀Whittle.฀1997.฀Closing฀and฀reopening฀isheries฀following฀oil฀spills;฀ three฀different฀cases฀with฀similar฀problems.฀฀In฀Proceedings฀of฀the฀21st฀Arctic฀and฀Marine฀Oil฀Spill฀Program฀ Technical฀Seminar,฀Vancouver,฀British฀Columbia,฀Canada,฀June฀11-13,฀1997,฀2:1283-1303. McAuliffe,฀C.D.฀1987.฀Organism฀exposure฀to฀volatile/soluble฀hydrocarbons฀from฀crude฀oil฀spills-a฀ield฀ and฀laboratory฀comparison.฀In฀Proceedings฀1987฀Oil฀Spill฀Conference,฀Baltimore,฀Maryland,฀April฀6-9,฀1987,฀ pp.฀275-288.฀ Meador,฀J.P.,฀R.฀Stein,฀and฀U.฀Varanasi.฀1995.฀Bioaccumulation฀of฀polycyclic฀aromatic฀hydrocarbons฀by฀ marine฀organisms.฀Reviews฀of฀Environmental฀Contamination฀and฀Toxicology฀143:79-165. Mearns,฀A.J.฀1995.฀Elements฀to฀be฀considered฀in฀assessing฀the฀effectiveness฀and฀effects฀of฀shoreline฀ countermeasures.฀Spill฀Science฀&฀Technology฀Bulletin฀2:5-10. Mearns,฀A.J.,฀G.฀Lauenstein,฀and฀T.฀O’Connor.฀1998.฀The฀U.S.฀Mussel฀Watch:฀Nationwide฀geographic฀and฀ longterm฀trends฀of฀PAHs฀in฀coastal฀mussels฀and฀oysters.฀In฀Proceedings฀of฀the฀21st฀Arctic฀and฀Marine฀Oil฀ Spill฀Technical฀Seminar฀1:465-472. Mearns,฀A.J.,฀T.P.฀O’Connor,฀and฀G.G.฀Lauenstein.฀1999.฀Relevance฀of฀the฀national฀mussel฀watch฀program฀ to฀seafood฀isheries฀management฀issues฀during฀oil฀spill฀response.฀In฀Proceedings฀1999฀International฀Oil฀ Spill฀Conference,฀Seattle,฀Washington,฀March฀8-11,฀1999,฀pp.฀701-708. Mearns,฀A.J.฀and฀R.฀Yender.฀1997.฀Workshop฀on฀managing฀seafood฀problems฀during฀the฀response฀phase฀ of฀an฀oil฀spill.฀In฀Proceedings฀of฀the฀20th฀Arctic฀and฀Marine฀Oil฀Spill฀Technical฀Seminar฀1:203-217. Michel,฀J.฀2000.฀Interim฀Preassessment฀Report,฀M/V฀New฀Carissa฀Oil฀Spill,฀Coos฀Bay฀and฀Waldport,฀ Oregon.฀Silver฀Spring,฀Maryland:฀Damage฀Assessment฀Center,฀National฀Oceanic฀and฀Atmospheric฀ Administration.฀84฀pp.฀and฀appendices. Moller,฀T.H.,฀B.฀Dicks,฀and฀C.N.฀Goodman.฀1989.฀Fisheries฀and฀mariculture฀affected฀by฀oil฀spills.฀In฀Proceedings฀1989฀Oil฀Spill฀Conference,฀San฀Antonio,฀Texas,฀February฀13-16,฀1989,฀pp.฀389-394.฀ Moller,฀T.฀H.,฀B.฀Dicks,฀K.J.฀Whittle,฀and฀M.฀Girin.฀1999.฀฀Fishing฀and฀harvesting฀bans฀in฀oil฀spill฀response.฀In฀ Proceedings฀1999฀International฀Oil฀Spill฀Conference,฀Seattle,฀Washington,฀March฀8-11,฀1999.฀pp.฀693-699. Motohiro,฀T.฀and฀Z.฀Iseya.฀1976.฀Effects฀of฀water฀polluted฀by฀oil฀on฀aquatic฀organisms.฀II.฀n-parafins,฀ aromatic฀hydrocarbons฀and฀crude฀oil฀concentration฀on฀taint฀in฀scallop฀(Pecten฀yessoensis).฀Bulletin฀of฀the฀ Hokkaido฀University฀Faculty฀of฀Fisheries฀26:367-371. 57 National฀Oceanic฀and฀Atmospheric฀Administration฀(NOAA)฀and฀American฀Petroleum฀Institute฀(API).฀ 1994.฀Inland฀oil฀spills:฀Options฀for฀minimizing฀environmental฀impacts฀of฀freshwater฀spill฀response.฀ American฀Petroleum฀Institute฀Publ.฀No.฀4558.฀Seattle฀and฀Washington,฀D.C.:฀NOAA฀and฀API.฀130฀pp. National฀Oceanic฀and฀Atmospheric฀Administration฀(NOAA)฀and฀American฀Petroleum฀Institute฀(API).฀ 2001.฀Environmental฀considerations฀for฀marine฀oil฀spill฀response.฀American฀Petroleum฀Institute฀Publication฀No.฀4706.฀Seattle฀and฀Washington,฀D.C.:฀NOAA฀and฀API.฀ National฀Oceanic฀and฀Atmospheric฀Administration฀(NOAA),฀Rhode฀Island฀Department฀of฀Environmental฀Management,฀U.S.฀Department฀of฀the฀Interior.฀1999.฀Restoration฀plan฀and฀environmental฀assessment฀for฀the฀January฀19,฀1996฀North฀Cape฀oil฀spill.฀Silver฀Spring,฀Maryland:฀Damage฀Assessment฀Center,฀ Ofice฀of฀Response฀and฀Restoration. National฀Research฀Council฀(NRC).฀1983.฀Polycyclic฀aromatic฀hydrocarbons฀in฀the฀aquatic฀environment:฀ Formation,฀sources,฀fate฀and฀effects฀on฀aquatic฀biota.฀NRCC฀18981.฀Washington,฀D.C:฀National฀Academy฀ Press.฀pp.฀106-107. National฀Research฀Council฀(NRC).฀1985.฀Oil฀in฀the฀Sea:฀Inputs,฀Fates,฀and฀Effects.฀Washington,฀D.C.:฀National฀ Academy฀Press.฀601฀pp. National฀Research฀Council฀(NRC).฀1999.฀Spills฀of฀Nonloating฀Oils:฀Risk฀and฀Response.฀Washington,฀D.C.:฀ National฀Academy฀Press.฀75฀pp. National฀Research฀Council฀(NRC).฀2002.฀Oil฀in฀the฀Sea฀III:฀Inputs.฀Washington,฀D.C.:฀National฀Academy฀ Press.฀260฀pp.฀+฀appendices. Nighswander,฀T.฀and฀N.฀Peacock.฀1999.฀The฀communication฀of฀health฀risk฀from฀subsistence฀seafood฀in฀ a฀cross-cultural฀setting:฀฀Lessons฀learned฀from฀the฀Exxon฀Valdez.฀In฀L.J.฀Field฀et฀al.฀(eds).฀Evaluating฀and฀ Communicating฀Subsistence฀Seafood฀Safety฀in฀a฀Cross-Cultural฀Context:฀฀Lessons฀Learned฀from฀the฀Exxon฀ Valdez฀Oil฀Spill.฀Pensacola:฀Society฀for฀Environmental฀Toxicology฀and฀Chemistry.฀pp.฀205-236. Nisbet,฀I.C.T.฀and฀P.K.฀LaGoy.฀1992.฀฀Toxic฀Equivalency฀Factors฀(TEFs)฀for฀polycyclic฀aromatic฀hydrocarbons฀(PAHs).฀฀Regulatory฀Toxicology฀and฀Pharmacology฀16:290-300. Payne,฀J.R.฀and฀W.B.฀Driskell.฀1999.฀Analysis฀of฀water฀samples฀collected฀in฀support฀of฀the฀M/V฀New฀Carissa฀ oil฀spill฀natural฀resource฀damage฀assessment.฀Silver฀Spring,฀Maryland:฀Damage฀Assessment฀Center,฀ National฀Oceanic฀and฀Atmospheric฀Administration.฀69฀pp. Reilly,฀T.฀I.฀and฀R.K.฀York.฀2001.฀Guidance฀on฀sensory฀testing฀and฀monitoring฀of฀seafood฀for฀presence฀of฀ petroleum฀taint฀following฀an฀oil฀spill.฀NOAA฀Technical฀Memorandum฀NOS฀OR&R฀9.฀Seattle:฀Ofice฀of฀ Response฀and฀Restoration,฀National฀Oceanic฀and฀Atmospheric฀Administration.฀109฀pp. RPI฀International,฀Inc.฀1987.฀Natural฀resource฀response฀guide:฀Marine฀ish.฀Seattle:฀Ocean฀Assessments฀ Division,฀National฀Oceanic฀and฀Atmospheric฀Administration.฀95฀pp. RPI฀International,฀Inc.฀1989.฀Natural฀resource฀response฀guide:฀Marine฀shellish.฀฀Seattle:฀Ocean฀Assessments฀Division,฀National฀Oceanic฀and฀Atmospheric฀Administration.฀95฀pp. Salazar,฀M.H.฀and฀S.฀M.฀Salazar.฀2001.฀Standard฀guide฀for฀conducting฀in-situ฀ield฀bioassays฀with฀marine,฀ estuarine฀and฀freshwater฀bivalves.฀In฀2001฀Annual฀Book฀of฀ASTM฀Standards.฀Philadelphia:฀American฀Society฀for฀Testing฀and฀Materials. Sauer,฀T.C.,฀and฀P.D.฀Boehm.฀1995.฀Hydrocarbon฀chemistry฀analytical฀methods฀for฀oil฀spill฀assessments.฀ MSRC฀Technical฀Report฀Series฀95-032.฀Washington,฀D.C.:฀Marine฀Spill฀Response฀Corporation฀114฀pp. Scott,฀C.L.,฀A.W.฀Paige,฀G.฀Jennings,฀and฀L.฀Brown.฀1992.฀Community฀proile฀database฀catalog.฀Technical฀ Paper฀104.฀Juneau:฀Alaska฀Department฀of฀Fish฀and฀Game,฀Division฀of฀Subsistence. 58 Shigenaka,฀G.฀and฀C.B.฀Henry,฀Jr.฀1995.฀Use฀of฀mussels฀and฀semipermeable฀membrane฀devices฀to฀assess฀ bioavailability฀of฀residual฀polynuclear฀aromatic฀hydrocarbons฀three฀years฀after฀the฀Exxon฀Valdez฀oil฀spill.฀ In฀G.฀Wells฀et฀al.฀(eds.).฀Exxon฀Valdez฀Oil฀Spill:฀Fate฀and฀Effects฀in฀Alaskan฀Waters.฀ASTM฀STP฀1219.฀Philadelphia:฀American฀Society฀for฀Testing฀and฀Materials.฀pp.฀239-260. Shigenaka,฀G.฀(ed.).฀1997.฀Integrating฀physical฀and฀biological฀studies฀of฀recovery฀from฀the฀Exxon฀Valdez฀ oil฀spill.฀NOAA฀Technical฀Memorandum฀NOS฀ORCA฀114.฀Seattle:฀Ofice฀of฀Ocean฀Resources฀Conservation฀and฀Assessment,฀National฀Oceanic฀and฀Atmospheric฀Administration.฀206฀pp. Spacie,฀A.฀and฀J.L.฀Hamelink.฀1982.฀Alternative฀models฀for฀describing฀the฀bioconcentration฀of฀organics฀ in฀ish.฀Environmental฀Toxicology฀and฀Chemistry฀1:309-320. Starr,฀C.฀1996.฀Social฀beneit฀versus฀technological฀risk.฀Science฀165:1232-1238. Topping,฀G.,฀J.M.฀Davies,฀P.R.฀Mackie,฀and฀C.F.฀Moffat.฀1997.฀The฀impact฀of฀the฀Braer฀spill฀on฀commercial฀ ish฀and฀shellish.฀In฀J.M.฀Davies฀and฀G.฀Topping฀(eds.).฀The฀Impact฀of฀an฀Oil฀Spill฀in฀Turbulent฀Waters:฀฀The฀ Braer.฀Edinburgh:฀The฀Stationery฀Ofice฀LTD.฀pp.฀121-143. U.S.฀Environmental฀Protection฀Agency฀(USEPA).฀1993.฀Provisional฀guidance฀for฀quantitative฀risk฀assessment฀of฀polycyclic฀aromatic฀hydrocarbons.฀EPA/600/R-93/089.฀Final฀Draft.฀Cincinnati:฀Environmental฀ Criteria฀and฀Assessment฀Ofice,฀U.S.฀Environmental฀Protection฀Agency,฀20฀pp. U.S.฀Environmental฀Protection฀Agency฀(USEPA).฀1994.฀USEPA฀contract฀laboratory฀program฀national฀ functional฀guidelines฀for฀organic฀data฀review.฀Publication฀9240.1-05.฀Washington,฀D.C.:฀Ofice฀of฀Emergency฀and฀Remedial฀Response,฀U.S.฀Environmental฀Protection฀Agency. U.S.฀Environmental฀Protection฀Agency฀(USEPA).฀2000a.฀Guidance฀for฀assessing฀chemical฀contaminant฀ data฀for฀use฀in฀ish฀advisories,฀Volume฀1:฀฀Fish฀sampling฀and฀analysis,฀Third฀Edition.฀EPA฀823/B/00/007.฀ Washington,฀D.C.:฀Ofice฀of฀Science฀and฀Technology,฀U.S.฀Environmental฀Protection฀Agency. U.S.฀Environmental฀Protection฀Agency฀(USEPA).฀2000b.฀Guidance฀for฀assessing฀chemical฀contaminant฀ data฀for฀use฀in฀ish฀advisories,฀Volume฀2:฀฀Risk฀assessment฀and฀ish฀consumption฀limits,฀Third฀Edition.฀ EPA฀823/B/00/008.฀Washington,฀D.C.:฀Ofice฀of฀Science฀and฀Technology,฀U.S.฀Environmental฀Protection฀ Agency. Varanasi,฀U.,฀J.E.฀Stein,฀M.฀Nishimoto.฀1989.฀Biotransformation฀and฀disposition฀of฀polycyclic฀aromatic฀ hydrocarbons฀(PAH)฀in฀ish.฀฀In:฀U.฀Varanasi฀(ed.).฀Metabolism฀of฀Polycyclic฀Aromatic฀Hydrocarbons฀in฀the฀ Aquatic฀Environment.฀฀Boca฀Raton,฀Florida:฀CRC฀Press.฀pp.฀94-149. Whittle,฀K.J.,฀D.A.฀Anderson,฀P.R.฀Mackie,฀C.F.฀Moffat,฀N.J.฀Shephard,฀and฀A.H.฀McVicar.฀1997.฀The฀impact฀of฀ the฀Braer฀oil฀on฀caged฀salmon.฀In฀J.M.฀Davies฀and฀G.฀Topping฀(eds.).฀The฀Impact฀of฀an฀Oil฀Spill฀in฀Turbulent฀ Waters:฀฀The฀Braer.฀Edinburgh:฀The฀Stationery฀Ofice฀LTD.฀pp.฀144-160. 59 VII.฀Glossary฀of฀Terms API฀gravity:฀฀An฀arbitrary฀scale฀expressing฀the฀gravity฀or฀density฀of฀liquid฀petroleum฀products.฀฀The฀ petroleum฀industry฀uses฀API฀gravity฀rather฀than฀density฀because฀the฀API฀scale฀provides฀greater฀distinction฀between฀different฀kinds฀of฀oils฀than฀does฀speciic฀gravity.฀฀The฀measuring฀scale฀is฀calibrated฀in฀ terms฀of฀degrees฀API.฀฀API฀gravity฀is฀determined฀by฀the฀equation฀API฀at฀60°F฀=฀141.5/oil฀density฀-131.5.฀ API฀gravity฀is฀based฀on฀the฀density฀of฀pure฀water฀with฀an฀arbitrary฀API฀gravity฀value฀of฀10.฀฀The฀higher฀ the฀API฀gravity,฀the฀lighter฀the฀product.฀฀Light฀crude฀oils฀generally฀exceed฀38฀degrees฀API฀and฀heavy฀ crude฀oils฀are฀commonly฀labeled฀as฀all฀crude฀oils฀with฀an฀API฀gravity฀of฀22฀degrees฀or฀below.฀฀Intermediate฀crude฀oils฀fall฀in฀the฀range฀of฀22฀degrees฀to฀38฀degrees฀API฀gravity.฀฀Most฀oils฀have฀densities฀that฀ are฀less฀than฀water฀and฀will฀generally฀loat฀on฀the฀water฀surface.฀฀Oils฀with฀a฀speciic฀gravity฀greater฀ than฀1.0฀(API฀gravity฀of฀less฀than฀10)฀will฀sink฀in฀fresh฀water฀(which฀has฀a฀speciic฀gravity฀of฀1.0฀and฀an฀ API฀gravity฀of฀10).฀฀Non-loating฀oils฀in฀seawater฀have฀a฀speciic฀gravity฀greater฀than฀1.02฀or฀an฀API฀gravity฀less฀than฀7. Adulteration:฀฀A฀food฀is฀deemed฀to฀be฀adulterated฀if฀it฀bears฀or฀contains฀any฀poisonous฀or฀deleterious฀substance฀that฀may฀render฀it฀injurious฀to฀health,฀or฀if฀it฀contains฀any฀ilthy,฀putrid,฀or฀decomposed฀ substances,฀or฀if฀it฀is฀otherwise฀unit฀for฀food.฀ Advection:฀฀The฀transport฀of฀oil฀by฀water฀currents. Aerial฀observation:฀฀Trained฀experts฀ly฀in฀helicopters฀or฀airplanes฀to฀make฀systematic฀observations฀ on฀the฀position฀of฀oil฀slicks฀and฀stranded฀oil,฀oceanographic฀features฀that฀might฀inluence฀oil฀behavior฀ (such฀as฀eddies,฀rip฀currents,฀river฀outlow฀plumes,฀current฀speeds),฀distribution฀of฀wildlife฀(birds,฀turtles,฀ marine฀mammals),฀or฀the฀effectiveness฀of฀response฀operations฀(dispersant฀applications,฀skimming). Aliphatics:฀฀Hydrocarbon฀compounds฀composed฀of฀straight฀or฀branched฀chains฀of฀hydrogen฀and฀ carbon.฀฀They฀have฀low฀water฀solubility฀and฀low฀aquatic฀toxicity.฀฀The฀low฀molecular฀weight฀compounds฀ have฀high฀rates฀of฀microbial฀degradation. Aromatics:฀฀Hydrocarbon฀compounds฀that฀contain฀one฀or฀more฀benzene฀rings.฀฀Mono-aromatics฀ include฀benzene,฀toluene,฀ethylbenzene,฀and฀xylenes.฀฀Polycyclic฀aromatic฀hydrocarbons฀(PAH)฀(also฀ sometimes฀referred฀to฀as฀polynuclear฀aromatic฀hydrocarbons)฀contain฀two฀or฀more฀benzene฀rings.฀฀ Most฀of฀the฀toxicity฀of฀oil฀to฀water-column฀organisms฀results฀from฀the฀low฀molecular฀weight฀aromatic฀ compounds. Asphaltenes:฀฀Large,฀heavy฀compounds฀in฀oil฀that฀weather฀extremely฀slowly.฀฀Not฀present฀in฀light,฀ reined฀products฀such฀as฀gasoline฀and฀diesel.฀฀Can฀be฀the฀dominant฀group฀of฀compounds฀in฀heavy฀ reined฀oils. Barrel:฀฀A฀volume฀measure฀of฀oil฀=฀42฀U.S.฀gallons. Benthos/Benthic:฀฀Animals฀associated฀with฀the฀bottom฀of฀a฀body฀of฀water.฀฀If฀the฀animals฀are฀on฀the฀ surface,฀they฀are฀called฀epifauna;฀if฀they฀live฀in฀the฀sediment,฀they฀are฀called฀infauna. Bioaccumulation:฀฀The฀net฀accumulation฀of฀a฀substance฀by฀an฀organism฀as฀a฀result฀of฀uptake฀from฀all฀ environmental฀sources฀and฀all฀possible฀routes฀of฀exposure,฀including฀contact,฀respiration,฀and฀ingestion.฀ Bioconcentration:฀฀The฀net฀accumulation฀of฀a฀substance฀as฀a฀result฀of฀uptake฀directly฀from฀aqueous฀ solution. 60 Biodegradation:฀฀The฀breakdown฀of฀substances฀such฀as฀oil฀by฀microbes฀(bacteria,฀fungi,฀yeast)฀as฀they฀ use฀it฀as฀a฀food฀source.฀฀Intermediate฀products฀are฀formed฀during฀the฀process,฀but฀the฀inal฀products฀ are฀carbon฀dioxide฀and฀water.฀฀This฀process฀is฀limited฀to฀a฀great฀extent฀by฀temperature,฀nutrient฀and฀ oxygen฀availability,฀and฀the฀amount฀of฀oil฀present. Biomagniication:฀฀The฀increase฀in฀body฀burden฀of฀a฀contaminant฀with฀trophic฀level.฀ Density฀of฀oil฀(speciic฀and฀API฀gravity):฀฀Mass฀of฀a฀given฀volume฀of฀oil฀(in฀grams/cm3)฀used฀to฀deine฀ “light”฀and฀“heavy”฀oils.฀฀Also฀measured฀in฀speciic฀gravity฀(the฀oil’s฀relative฀density฀compared฀with฀that฀ of฀water฀at฀15°C).฀฀The฀higher฀the฀speciic฀gravity,฀the฀heavier฀the฀product.฀฀API฀gravity฀is฀based฀on฀the฀ density฀of฀pure฀water฀with฀an฀arbitrary฀API฀gravity฀value฀of฀10.฀฀The฀higher฀the฀API฀gravity,฀the฀lighter฀ the฀product.฀฀Most฀oils฀have฀densities฀that฀are฀less฀than฀water฀and฀generally฀will฀loat฀on฀water.฀฀Nonloating฀oils฀in฀seawater฀have฀a฀speciic฀gravity฀greater฀than฀1.02฀or฀an฀API฀gravity฀less฀than฀7.฀ Dispersants:฀฀Specially฀designed฀products฀composed฀of฀detergent-like฀solvents฀and฀agents฀applied฀ directly฀from฀planes,฀helicopters,฀or฀vessels฀to฀help฀break฀oil฀slicks฀into฀small฀droplets฀that฀disperse฀into฀ the฀water฀column฀and฀spread฀in฀three฀dimensions฀through฀natural฀water฀movement. Dispersion:฀฀The฀process฀of฀breaking฀oil฀into฀very฀small฀particles฀or฀droplets฀(ranging฀in฀size฀from฀less฀ than฀0.5฀microns฀to฀several฀mm)฀that฀mix฀into฀the฀water฀column.฀฀The฀smaller฀droplets฀will฀not฀reloat฀ to฀the฀surface,฀but฀rather฀will฀move฀with฀the฀currents;฀larger฀droplets฀may฀reloat฀under฀calm฀conditions฀and฀reform฀slicks฀or฀sheens.฀ Dissolution:฀฀Loss฀of฀water-soluble฀components฀of฀oil฀into฀water.฀฀Compounds฀in฀oil฀are฀only฀very฀ slightly฀soluble฀(maximum฀water-soluble฀fraction฀for฀crude฀oils฀in฀salt฀water฀is฀usually฀10฀to฀30฀ppm).฀ Distillation฀Fractions:฀฀The฀fraction฀(generally฀measured฀by฀volume)฀of฀oil฀that฀is฀boiled฀off฀at฀a฀given฀ temperature.฀฀Used฀in฀models฀to฀predict฀the฀amount฀of฀oil฀loss฀via฀evaporation. Elimination:฀฀All฀of฀the฀processes฀that฀can฀decrease฀tissue฀concentrations฀of฀a฀contaminant,฀including฀ metabolism,฀excretion,฀and฀diffusive฀loss. Emulsiication฀(mousse฀formation):฀฀The฀process฀whereby฀small฀water฀droplets฀are฀incorporated฀ into฀the฀oil,฀changing฀many฀of฀the฀oil’s฀properties.฀฀Often฀has฀the฀consistency฀of฀chocolate฀mousse.฀฀ Water฀content฀can฀be฀as฀high฀as฀80%,฀increasing฀the฀volume฀of฀oily฀material฀for฀recovery฀and฀disposal.฀฀ Greatly฀affects฀the฀eficiency฀of฀skimmers฀and฀pumps. Evaporation:฀฀Transfer฀of฀the฀volatile฀fractions฀in฀oil฀from฀the฀liquid฀phase฀to฀the฀vapor฀phase.฀฀It฀is฀the฀ single฀most฀important฀weathering฀process฀for฀the฀irst฀several฀days฀of฀an฀oil฀spill. Fingerprinting:฀฀Chemical฀analyses฀and฀interpretations฀used฀to฀compare฀an฀oil฀(usually฀the฀spilled฀oil)฀ with฀other฀oils฀to฀determine฀whether฀they฀are฀from฀the฀same฀source.฀฀It฀is฀a฀critical฀process฀when฀the฀ spill฀source฀is฀unknown.฀฀It฀is฀also฀important฀to฀determine฀the฀source฀of฀oil฀in฀environmental฀samples,฀ such฀as฀seafood,฀compared฀to฀background฀contamination. Growth฀Dilution:฀฀The฀process฀whereby฀the฀rate฀of฀accumulation฀is฀exceeded฀by฀the฀rate฀of฀tissue฀ growth฀so฀that฀when฀the฀concentration฀is฀expressed฀on฀mass฀of฀chemical฀per฀mass฀of฀tissue฀over฀time,฀ it฀appears฀as฀though฀elimination฀is฀occurring฀because฀the฀tissue฀concentration฀is฀decreasing.฀ Half-life:฀฀The฀time฀it฀takes฀for฀the฀concentration฀of฀a฀compound฀to฀decrease฀by฀half. HAZMAT:฀฀NOAA฀Hazardous฀Material฀Response฀Division.฀฀Coordinates฀scientiic฀support฀to฀the฀U.S.฀ Coast฀Guard฀for฀oil฀and฀chemical฀spills.฀฀Has฀information฀for฀oil฀spill฀response฀at฀Web฀sites:฀฀ http://response.restoration.noaa.gov฀and฀http://www.IncidentNews.gov High-molecular฀weight฀PAHs:฀฀PAHs฀with฀4-6฀benzene฀rings. 61 Hydrophobic:฀฀“Water-fearing,”฀a฀substance฀that฀is฀attracted฀to฀oil,฀lipids,฀and฀fats฀and฀repelled฀by฀ water. Lipophilic:฀฀“Lipid-loving,”฀a฀substance฀that฀is฀attracted฀to฀oil,฀lipids,฀and฀fats. Low-molecular฀weight฀PAHs:฀฀PAHs฀with฀2-3฀benzene฀rings. Metabolism:฀฀Enzymatic฀process฀that฀converts฀insoluble฀petroleum฀hydrocarbons฀into฀more฀soluble฀ breakdown฀products฀(metabolites)฀that฀can฀be฀more฀readily฀excreted฀by฀animals฀that฀have฀a฀kidney฀or฀ kidney-like฀organ. Microbes:฀฀At฀oil฀spills,฀the฀focus฀is฀on฀bacteria,฀fungi,฀and฀yeast฀that฀are฀able฀to฀degrade฀petroleum฀ hydrocarbons. Pelagic:฀฀Marine฀animals฀that฀live฀free฀from฀direct฀dependence฀on฀the฀sea฀bottom฀or฀shore.฀฀Free-swimming฀forms฀are฀nektonic;฀loating฀forms฀are฀planktonic. Petrogenic:฀฀Hydrocarbons฀derived฀from฀petroleum฀oils,฀in฀contrast฀to฀pyrogenic฀hydrocarbons,฀ derived฀from฀the฀combustion฀of฀fossil฀fuels. Photo-oxidation:฀฀The฀process฀by฀which฀the฀components฀in฀oil฀are฀chemically฀transformed฀through฀a฀ photochemical฀reaction,฀in฀the฀presence฀of฀oxygen. Polar฀compounds:฀฀Very฀heavy,฀persistent฀compounds฀in฀oil,฀including฀asphaltenes฀(very฀large฀compounds)฀and฀resins฀(smaller฀compounds฀that฀bond฀with฀sulfur,฀nitrogen,฀or฀oxygen).฀฀Slowest฀to฀biodegrade. Pour฀point:฀฀The฀temperature฀to฀which฀a฀substance฀must฀be฀heated฀to฀make฀it฀low.฀฀Oils฀with฀a฀high฀ pour฀point฀can฀congeal฀into฀semi-solid฀masses฀when฀spilled. Pyrogenic:฀฀Hydrocarbons฀derived฀from฀the฀combustion฀of฀fossil฀fuels. Salinity:฀฀A฀measure฀of฀how฀much฀salt฀is฀dissolved฀in฀water.฀฀Full฀strength฀seawater฀is฀about฀35฀parts฀ per฀thousand฀(ppt).฀฀Freshwater฀is฀0฀ppt.฀฀The฀water฀in฀estuaries฀is฀a฀mixture฀of฀these฀two. Saturates:฀฀Group฀of฀petroleum฀hydrocarbons฀consisting฀primarily฀of฀alkanes,฀but฀also฀cyclo-alkanes฀ and฀waxes฀(large฀saturates). Scientiic฀Support฀Coordinator฀(SSC):฀฀Provides฀liaison฀with฀the฀scientiic฀research฀and฀response฀community฀to฀the฀U.S.฀Coast฀Guard฀for฀oil฀and฀chemical฀spills.฀฀ Sedimentation:฀฀When฀particles฀suspended฀in฀the฀water฀column฀settle฀to฀the฀bottom.฀฀Can฀include฀settling฀of฀silt฀and฀clay฀in฀calm฀water฀and฀oil฀and฀sand฀mixtures฀in฀the฀surf฀zone฀and฀in฀rivers. Sheen:฀฀A฀very฀thin฀layer฀of฀oil฀on฀water.฀฀Color฀indicates฀the฀thickness฀and฀volume฀per฀area:฀ ฀ Silver฀sheen฀ 0.00007฀mm฀ 75฀gallons/square฀nautical฀mile ฀ First฀color฀trace฀ 0.0001฀mm฀ 150฀gallons/square฀nautical฀mile ฀ Rainbow฀colors฀ 0.0003฀mm฀ 300฀gallons/square฀nautical฀mile ฀ Dull฀colors฀ 0.001฀mm฀ 1,000฀gallons/square฀nautical฀mile ฀ Dark฀colors฀ 0.003฀mm฀฀ 3,000฀gallons/square฀nautical฀mile Solubility:฀฀How฀much฀of฀an฀oil฀will฀enter฀the฀water฀column฀on฀a฀molecular฀basis.฀฀Solubility฀of฀oil฀in฀ water฀is฀generally฀<100฀parts฀per฀million฀(ppm);฀thus฀it฀not฀a฀signiicant฀loss฀mechanism฀for฀oil. Taint:฀฀An฀off-lavor฀or฀off-odor฀in฀seafood฀that฀is฀not฀typical฀of฀the฀lavor฀or฀odor฀of฀the฀seafood฀itself. Tonnes฀(metric):฀฀a฀weight฀measure฀for฀oil,฀approximately฀=฀300฀gallons. 62 Toxicity฀(acute฀and฀chronic):฀฀An฀adverse฀affect฀on฀a฀living฀organism฀caused฀by฀exposure฀to฀a฀contaminant,฀such฀as฀oil.฀฀Acute฀toxicity฀occurs฀over฀a฀very฀short฀exposure฀period฀(hours฀to฀days)฀and฀usually฀ results฀in฀death.฀฀Chronic฀toxicity฀occurs฀from฀long-term฀exposure฀(weeks฀or฀more)฀and฀causes฀impacts฀ to฀reproduction,฀growth,฀and฀behavior. Trajectory:฀฀A฀prediction฀of฀where฀the฀oil฀will฀be฀transported฀by฀wind฀and฀currents฀over฀time.฀ Uptake:฀฀Acquisition฀of฀a฀substance฀from฀the฀environment฀by฀an฀organism฀as฀a฀result฀of฀any฀active฀ or฀passive฀process.฀฀Uptake฀is฀controlled฀externally฀by฀the฀partitioning฀behavior฀of฀the฀contaminant฀ (between฀sediment,฀water,฀and฀food)฀and฀internally฀by฀the฀organism’s฀behavior฀and฀physiology. Viscosity:฀฀Resistance฀to฀low฀in฀a฀liquid.฀฀Determines฀whether฀dispersants฀will฀be฀effective฀on฀an฀oil฀ slick.฀฀Viscosity฀increases฀as฀it฀gets฀colder฀and฀as฀the฀oil฀weathers.฀฀Low฀viscosity฀is฀like฀water,฀medium฀ viscosity฀is฀like฀molasses,฀and฀high฀viscosity฀is฀like฀tar. Weathering:฀฀Changes฀in฀the฀physical฀and฀chemical฀properties฀of฀oil฀due฀to฀natural฀processes฀that฀ begin฀when฀the฀discharge฀occurs฀and฀continue฀until฀the฀oil฀is฀removed.฀฀Major฀weathering฀processes฀ include฀evaporation,฀emulsiication,฀dissolution,฀photo-oxidation,฀and฀biodegradation. 63 Appendix 64 �������� � �� � � � �� �� �� �� NOAA/NMFS NATIONAL SENSORY SECTION CHAIN OF CUSTODY FORM � �������� �� �� � ������� ��� �� �� � �� �� ��� � �� � � � �� � 7600 Sand Point Way NE, Seattle, WA For more information contact Michael DiLiberti 978-281-9123 or FAX 978-281-9125 Project___________________ Sample I.D. # Date Collected Location Sampler________________________ Sample Type (Tissue, oil, water. Include Comments species name and tissue type) Collected by Received by:(signature) Condition: Date/Time Relinquished by: (signature) Received by:(signature) Condition: Date/Time Relinquished by: (signature) Received by:(signature) Condition: Date/Time Relinquished by: (signature) Received by:(signature) Condition: Date/Time Relinquished by: (signature) Received by:(signature) Condition: Date/Time Relinquished by: (signature) Received by:(signature) Condition: Date/Time * If shipped, include carrier name and copy of shipping invoice 65 Donald฀L.฀Evans Secretary,฀U.S.฀Department฀of฀Commerce Vice฀Admiral฀Conrad฀C.฀Lautenbacher,฀Jr.,฀USN฀(Ret.) Under฀Secretary฀for฀Oceans฀and฀Atmosphere฀and฀NOAA฀Administrator Jamison฀S.฀Hawkins Acting฀Assistant฀Administrator฀for฀ Ocean฀Services฀and฀Coastal฀Zone฀Management, NOAA฀Ocean฀Service November฀2002 U.S.฀Department฀of฀Commerce฀•฀National฀Oceanic฀and฀Atmospheric฀Administration฀•฀NOAA’s฀National฀Ocean฀Service 66