ManagingSeafoodSafety
afteranOilSpill
CourtesyofPhotoDisc
RuthYender
OficeofResponseandRestoration
NationalOceanicandAtmosphericAdministration
Seattle,Washington
�
��
� ��������
��
��
�
�������
���
��
��
�������� �
��
�
JacquelineMichelandChristineLord
ResearchPlanning,Inc.
Columbia,SouthCarolina
�
�
��
��
��
��
��
���
�
�� � � �
��
�
NationalOceanicandAtmosphericAdministration•NOAA’sNationalOceanService•OficeofResponseandRestoration
ManagingSeafoodSafety
afteranOilSpill
RuthYender
OficeofResponseandRestoration
NationalOceanicandAtmosphericAdministration
Seattle,Washington
�
��
� ��������
��
��
�
�������
���
��
��
�������� �
��
�
JacquelineMichelandChristineLord
ResearchPlanning,Inc.
Columbia,SouthCarolina
�
�
��
��
��
��
��
���
�
�� � � �
��
�
NationalOceanicandAtmosphericAdministration•NOAA’sNationalOceanService•OficeofResponseandRestoration
November2002
3
FORINFORMATIONORCOPIESOFTHISDOCUMENT,PLEASECONTACT:
ruth.yender@noaa.gov
PLEASECITEAS:
Yender,R.,J.Michel,andC.Lord.2002.ManagingSeafoodSafetyafteranOilSpill.Seattle:HazardousMaterialsResponseDivision,Oficeof
ResponseandRestoration,NationalOceanicandAtmosphericAdministration.72pp.
TableofContents
I.
IntroductionandBackground
II.
AssessingtheLikelihoodofSeafoodExposureandContamination
III.
MonitoringSeafoodforContamination
IV.
1
DecisionProcessforManagingSeafoodSafety 2
SeafoodSafetyManagementAuthority
4
OilTypesandProperties
6
OilFateandPathwaysofExposure
11
Earlyweatheringprocessesthatchangeoilproperties
11
Long-termweatheringprocessesthatchangeoilproperties 15
Weatheringprocessesthatchangethelocationoftheoil
15
SeafoodContaminationTerminology 17
BiologicalandEcologicalFactorsAffectingPAHContaminationofSeafood
SummaryofLiteratureonUptakeandElimination
23
CorrelationbetweenTaintandBodyBurden
26
ConceptualModelsofExposure,Uptake,andElimination 26
18
29
DevelopingSeafoodSamplingPlans 29
Selectingsamplinglocations
29
Selectingtargetspeciestobesampled 30
Samplingfrequencyandduration
30
Samplecollectionandhandling
30
TestingSeafoodforContaminationandTainting
31
Sensoryevaluationofseafoodforpresenceofpetroleumtaint
Chemicaltestingtechniquesforpetroleumcontaminantsinseafood
WaterMonitoring 36
SedimentMonitoring
37
SeafoodRiskAssessment
6
31
33
38
OverviewofCancerRiskCalculationsforPAHsinSeafood 38
SeafoodAdvisoryandActionLevelsfromPreviousU.S.OilSpills
40
TheEquivalencyApproachforRiskAssessment 41
BaPequivalencyapproachforPAHcontamination 41
Equivalencycalculations
42
HumanConsumptionRateAssumptions
43
Consumptionestimatesforconsumersofcommerciallyharvestedseafood
43
Consumptionestimatesforconsumersofseafoodharvestedrecreationallyorforsubsistenceuse
Consumptionestimatesforotherpotentiallyat-riskgroups 46
V.
RiskCommunication 47
VI.
LiteratureCited
53
VII.
GlossaryofTerms
60
Appendix
GeneralConsiderations
47
Generalrecommendationsforriskcommunicationduringoilspills
LessonsLearnedfromPreviousOilSpills
48
CommunicatingRelativeRisks
51
64
47
44
Figures
I-1.
Decisionprocessformanagingseafoodsafetyafteranoilspill
3
II-1.
II-2.
PatternofPAHdistributionfordifferentoiltypes.
9
Plotsofpredictedevaporationanddispersionrepresentativeoffouroiltypes
V-1
V-2.
CommercialshellishharvestclosurenoticeissuedduringtheNewCarissaoilspill
ShellishingclosurenoticeissuedduringtheNewCarissaoilspill 51
12
50
Tables
I-1.
Recentoilspillswhereseafoodmonitoringwasconducted
II-1.
II-2.
II-3.
II-4.
II-5.
II-6.
II-7.
II-8.
Componentsinoilandselectedcharacteristics 6
Characteristicsofoiltypesaffectingthepotentialforseafoodcontamination 7
PAHsnormallyreportedinchemicalanalyses 10
Exampleofsolubilitiesofdifferentoiltypes
13
Habitatutilization,feedingstrategies,andriskofexposuretooilofdifferentseafoodgroups
Half-livesofPAHsinbivalvesbasedonlaboratorytestsofbothwaterandsedimentexposures
Presenceanddurationoftaintandtissuecontaminationwithpetroleum
compoundsreportedatvariousoilspills
25
Conceptualframeworkforseafoodexposureto,uptake,andeliminationofoil
27
III-1.
Nationalrecommendedwaterqualitycriteriaforprioritytoxicpollutantsforprotectionagainst
humanhealtheffects
37
IV-1.
IV-2.
IV-3.
RelativePAHpotencyestimatesderivedfromvarioussources.
Sportishersconsumptiondata
45
Subsistenceishersconsumptiondata
45
V-1.
PAHsinfoods
52
5
42
19
24
I.
INTRODUCTIONANDBACKGROUND
Seafoodsafetyisaconcernraisedatnearlyeveryoilspillincidentofanysigniicance.Both
actualandpotentialcontaminationofseafoodcansubstantiallyaffectcommercialandrecreational
ishingandsubsistenceseafooduse.Lossofconidenceinseafoodsafetyandqualitycanimpact
seafoodmarketslongafteranyactualrisktoseafoodfromaspillhassubsided,resultinginseriouseconomicconsequences.Protectingconsumersfromunpalatableandunsafeseafoodisaprimaryobjectiveoffederalandstatepublichealthagenciesafteraspilloccurs.Seafoodmanagersmaybefaced
withmakingmanyurgentdecisionsafteranoilspill,oftenbasedonlimiteddata:
Shouldseafoodharvestinthespillareabeclosedorrestricted?
Ifclosed,whatcriteriashouldbeappliedtore-openaishery?
Howshouldseafoodsafetyandpalatabilitybeevaluated?
Howcanhealthrisksbestbecommunicatedtothepublic?
Publichealthoficialsandotherseafoodmanagersdonotroutinelydealwithoilspillsaspart
oftheirday-to-dayresponsibilities.Consequently,theytypicallyhavelittleexperiencewithrisksto
seafoodfromoilspillswhentheysuddenlyarefacedwithdeterminingappropriateseafoodmanagementactionsinresponsetoaspill.
Theobjectiveofthisguideistoprovideseafoodmanagersandotherspillresponderswith
informationtohelpthemevaluatethelikelihoodthatanoilspillwillcontaminateseafood,determine
whetherseafoodactuallyhasbeencontaminated,andassessandcommunicatehumanhealthrisk
fromeatingcontaminatedseafood.Theguideisdividedintothefollowingsections:
I.IntroductionandBackground
II.AssessingtheLikelihoodofSeafoodExposureandContamination
Describesthefactorsthatinluenceexposure,uptake,andeliminationinaquaticorganisms.
III.MonitoringSeafoodforContamination
Providesguidanceonchemicalandsensorytestingmethods,samplingstrategies,andmonitoring.
IV.SeafoodRiskAssessment
Describescarcinogenicriskassessmentmethods,assumptions,andinterpretationofchemicalresults.
V:RiskCommunication
Providesguidanceoncommunicatingrisksassociatedwithcontaminatedseafoodandgivesexamples
ofadvisories.
Aglossaryoftermsusedinthisguideisincludedintheappendix.
1
DecisionProcessforManagingSeafoodSafety
TheguidegenerallyfollowsthelowchartshowninFigureI-1,whichsuggestsadecision
processformanagingseafoodsafetyafteroilspills.Throughoutthisprocess,thedefaultisnoclosure
orotherrestrictionsonseafoodharvest.Insomecasestheremaybeaninitial,temporarydefacto
closureiftheU.S.CoastGuardestablishesasafetyzonerestrictingaccessinareasofactiveoilrecovery.
Fishermenalsomayvoluntarilyavoidworkinginoiledareastopreventoilingtheirgearandcatch.This
initialperiodafteraspillcanprovideanopportunitytoevaluatespillconditionsandconductlimited
testingtodeterminewhetheraprecautionaryclosureorotherimmediaterestrictionsonseafood
harvestarewarranted.
Asindicatedonthelowchart,theirststepforseafoodmanagersafteranoilspillhasoccurred
istocollectandevaluateinformationonthenatureofthespill.Thespillresponseorganizationshould
beabletoprovidethefollowinginformationalmostimmediatelyafterthespilloccurs:
• overlightmapsandtrajectoryanalysesshowingthepresentandpredictedspreadofsurface
slicks;
• forecastsofweatherandseaconditionsthatmayaffectthepotentialforoiltomixintothe
watercolumn;
• resultsofoilweatheringmodels;
• detailsabouttheoiltypeandexpectedbehavior;
• predictionsofoilfateandpersistence;and
• insomecases,chemicalresultsforwaterandsedimentsamplescollectedinthespillarea.
Fisherymanagementagenciesandassociationsshouldbeabletoprovideinformationon:
• speciesbeingharvestednoworinthenearfuture;
• geographicalextentoftheharvestareas;
• harvestgeartypesinuse;and
• dataonbackgroundlevelsofPAHcontaminationinthespillarea(fromNOAAMusselWatch
andothermonitoringprograms).
Basedonthistypeofinformation,seafoodmanagerscanassesswhethertheoilspillislikelyto
exposeandcontaminateseafood.Ifseafoodisnotatsigniicantrisk,thennoharvestclosuresorother
seafoodrestrictionsareneeded,andthisdeterminationiscommunicatedtothepublic.Becausespills
aredynamic,conditionsaremonitoredandriskstoseafoodre-evaluateduntilthethreatabates.
Ifmanagersdeterminethatseafoodmaybeaffected,thenextstepistoassesswhetherseafoodistaintedorcontaminatedtolevelsthatposearisktohumanhealththroughconsumption.
Informationthatcanhelpdeterminetheimpactsincludes:
• overlightsandgroundsurveysidentifyingvisibleoilinseafoodharvestingareas;
• chemicalanalysisofwaterand/orsedimentsamplesfromtheharvestarea;
• sensorytestingofseafoodsamplesfromrepresentativespeciesandareas(bothspillandreferenceareas);
• chemicalanalysisoftissuesamplesfromrepresentativespeciesandareas(bothspillandreferenceareas);and
• dataonbackgroundlevelsofoil-relatedcontaminants.
2
Figure1.1Decisionprocessformanagingseafoodsafetyafteranoilspill
��� ����� ������
������� ��� �������� ����� ������������
� ��� ����� ����� ��� ���������
� ������� ��������� �� ���� �� ��������
��� ������ ��
�����������
��������
��
���
������ ������ �� ��������
� ������� ��� ��� �� ������� ����
� ������� ������� ������� ���� ����� ���
��������� �����
� ������� ������� ������� ������
� ������� �������� ������� ��� �������� �����
������ ���� ���� �����������
��������
����������
������� �������
������
������ �����
��
� �� ������������ ������
�� �������
� ���� �������������
�� ������
���
� ���� ����������� ������ ����������
�������� ����������� ���� ������������� �����
� ���� ������������� �� ������
3
Determiningwhetherseafoodhasbeencontaminatedcantakesubstantialtime.Developing
andimplementingsamplingplans,conductingsensoryand/orchemicaltesting,andevaluatingresults
mayrequireweeksorlonger.Monitoringcontinuesandtheriskassessmentprocessisrepeatedas
necessary.
Ifseafoodistaintedoriscontaminatedtoalevelposingapotentialhealthrisk,thenextstep
istoselectthemostappropriateseafoodmanagementaction(s).Examplesofmanagementactions
includeseafoodadvisories,increasedinspectionsofharvestedseafoodorishinggear,harvestclosures,andishinggearrestrcitions.Ifaisheryisclosedorotherwiserestricted,seafoodmanagersmust
establishcriteriafordeterminingthattheseafoodispalatableandsafeforhumanconsumptionand
thatrestrictionscan,therefore,belifted.Noacceptedinternationalorfederalcriteriahavebeenestablishedforoil-relatedcontaminantsinseafood.Stateseafoodmanagersgenerallyhavedevelopedtheir
owncriteriaforeachspill,resultinginsomeinconsistenciesamongspills.Varyinglevelsofbackground
contaminationalsohavecontributedtoinconsistenciesincriteriaapplied.
Severalpaperssummarizesomeofthedificultseafoodmanagementissuesencounteredafter
recentoilspills(MearnsandYender1997;MausethandChallenger2001;Molleretal.1989;Molleretal.
1999;Mausethetal.1997;ChallengerandMauseth1998).TableI-1alsosummarizesinformationona
fewrecentspillsatwhichseafoodsafetywasanissueofconcern.
SeafoodSafetyManagementAuthority
Typically,authoritytomanageseafoodtoprotecthumanhealthresideswithstatehealth
agencies.Manystatesroutinelychemicallyanalyzeinishandshellishtissuesforcontaminationas
partoftheirwater-qualitymonitoringprograms.Ifastateconcludesthateatingcontaminatedinish
orshellishcollectedfromstatewatersposesanunacceptablehumanhealthrisk,itmayissuelocal
ishconsumptionadvisoriesorharvestclosuresforspeciicwaterbodiesorpartsofwaterbodiesand
speciicspecies.
TheFood,Drug,andCosmeticActauthorizestheU.S.FoodandDrugAdministration(USFDA)
toprotectandpromotepublichealth.TheUSFDA’sresponsibilitiesincludekeeping“adulterated”food
offthemarket.TheUSFDAhasjurisdictionoverseafoodthatcrossesstatelinesininterstatecommerce.
TheMagnusonAct,16U.S.C.1801etseq.,authorizesNOAA’sNationalMarineFisheriesService
(NMFS)toregulateishinginfederalwaters(generallyfrom3-200milesfromshore).Theactistargetedtowardisheryconservationratherthanprotectionofpublichealthoreconomicconcerns.Fisherymanagementplans,developedundertheauthorityoftheMagnusonAct,specifyanylimitations
imposedonishingforfederallyregulatedspecies.LimitsonishingareenforcedbymeansofregulationspublishedintheFederalRegister,incompliancewiththeAdministrativeProceduresAct.Inthe
eventofanoilorchemicalspill,publicationofanemergencyruleintheFederalRegisterisrequiredto
putanenforceable,oficialisheryclosureinplaceandtomakeanymodiicationstotheclosureonce
itisputintoeffect.TheMagnusonActwasrecentlyamendedtoallowemergencyactionisheriesclosurestoremainineffectindeinitely.Previously,suchclosureswerelimitedtotwo90-dayperiods.
4
TableI-1.Recentoilspillswhereseafoodmonitoringwasconducted
SpillName/
Location
OilType/Volume
SpillConditions
SpeciesMonitored
Closures*
References
M/VNewCarissa
NearCoosBay,OR
4Feb1999
Twobunkeroilsand
twomarinediesels/
70,000gallons
Oilreleasedinthe
surfzone(>5m
waves)overseveral
weeks
Oyster,shrimp,crab
Bivalves:21days,
longeradjacentto
thevessel
Gilroy(2000),
Michel(2000)
MausethandChallenger(2001)
M/VKure
HumboldtBay,CA
5Nov1997
Intermediatefueloil
(IFO180)/
4,537gallons
4daysofsheensin
bay;lightshoreline
oiling
Maricultureoyster,rock Maricultureoyster,
crab
crabs:49days
Challengerand
Mauseth(1998)
T/VJulieN
Portland,ME
27Sept1996
IFO380andNo.2
fueloil/180,000gallonstotal
Heavyshoreline
oilinginForeRiver
&CascoBay
Lobster,scallop,clam,
mussel
Shellfish:15days
Mausethetal.
(1997)
M/TProvence
PiscataquaRiver,NH
2July1996
HeavyfueloilNo.6
(API6.2)/
~880gallons
ReleasedinPiscataquaRiver,mostof
theoilsank
Lobster
None
Mausethetal.
(1997)
T/VSeaEmpress
MilfordHaven,Wales
15Feb1996
Fortieslightcrude/
Heavyfueloil#6/
21,274,000gallons
total
Severeweather;
extensiveuseof
dispersants
Cockle,mussel,crab,
lobster,whelk,
wildsalmon,andother
finfish
Marinefinfish:
82days;whelk&
crustaceans:183
days;cockles:125
days;mussel:8-19
months
Lawetal.(1997);
Coates(1998)
T/BNorthCape
BlockIslandSound,RI
19Jan1996
Homeheatingoil
No.2
828,000gallons
Gale-forcewinds,
releaseinsurfzone,
6-7mwaves,naturallydispersed
Lobster,finfish,
bivalves(coastal
ponds)
Finfishand
bivalves:73days;
lobsters:75-155
days
Mausethetal.
(1997)
T/VBraer
ShetlandIslands
5Jan1993
Gullfakslightcrude/
25,000,000gallons
Hurricane-force
winds;releasein
surfzone,naturally
dispersed
Haddock,dab,farmed
salmon,cod,sole,ling,
lobster,scallop,edible
crab
Wildfinfish:2
months;farmed
salmon:12mo;
burrowinglobster:
>6yrs
Kingston(1999)
Toppingetal.
(1997)
Whittleetal.(1997)
Over700kmof
shorelineoiled
Finfish,bivalvesfrom
subsistenceharvest
areas
Herringand
salmon:entire
season;
Advisorieson
bivalvesin4subsistenceharvestareas
FallandField(1996)
Fieldetal.(1999)
T/VExxonValdez
PrudhoeBaycrude/
PrinceWilliamSound, 11,000,000gallons
AK
24Mar1989
*Closuredoesnotnecessarilyindicatethateithertissuecontaminationortaintwasdetectedorpersistedforaslongaperiodastheclosureremainedin
place.
5
II.
ASSESSINGTHELIKELIHOODOFSEAFOODEXPOSUREAND
CONTAMINATION
Eachoilspillisauniquecombinationofconditionsandevents.Seafoodisonlyatriskofcontaminationfromaspillifitisexposedtotheoil.Onceexposedtooil,anorganismbecomescontaminatedonlytotheextentittakesupandretainspetroleumcompounds.Factorsthatinluencethe
potentialforspilledoiltoexposeandcontaminateseafoodarediscussedinthissection.
OilTypesandProperties
Oiltypeandpropertiesstronglyinluencewhetherseafoodisexposedandcontaminated.
Crudeoilsandthereinedproductsderivedfromthemarecomplexandvariablemixturesofhydrocarbonsofdifferentmolecularweightsandstructures.Theycancontainhundredsofdifferent
compounds.Allcrudeoilscontainlighterfractionssimilartogasoline,aswellasheaviertarorwax
fractions.Becauseofthesedifferencesincomposition,differentoilsvaryconsiderablyintheirphysical
andchemicalproperties.Forexample,consistenciesofdifferentcrudeoilsvary,rangingfromalight
volatileluidtoaviscoussemi-solid.Suchdifferencesinpropertiesinluencebehaviorofspilledoiland
subsequentcleanupoperations.
Thepetroleumhydrocarbonsthatcompriseoilarecomposedprimarilyofhydrogenand
carbon,butalsocancontainvaryingamountsofsulfur,nitrogen,oxygen,andtracemetals.Thethree
mainfractionsofhydrocarboncompoundsinoilsaresaturates,aromatics,andpolarcompounds.The
propertiesandrelativeabundanceofeachfractionindifferenttypesofoilproductsaresummarizedin
TableII-1.Notethattoxicitydiffersamongdifferenthydrocarbonsand,therefore,differentoils.
TableII-1.Componentsinoilandselectedcharacteristics(modiiedfromNRC2002).
Group
Sub-groups(alternatename)
SelectedCharacteristics
TypicalContentinOil(%)
Saturates
1.Alkanes(aliphatics):n-alkanes
(paraffins)arestraight-chained;isoalkanesarebranching
2.Cyclo-alkanes(cyclo-paraffinsor
naphthenes):saturatedringstructures
3.Waxes:largersaturatecompounds
Highrateofmicrobialdegradation
uptoC22;
Lowwatersolubility;
Lowaquatictoxicity
Gasoline:50-60
Diesel:65-95
Lightcrude:55-90
Heavycrude:25-80
Heavyfueloil:20-30
Aromatics
1.Monoaromatics(BTEX):singlebenzenering
2.Polycyclicaromatichydrocarbons
(PAH):2-6benzenerings
Slowerrateofmicrobialdegradationthansaturates;
Higherwatersolubility;
Highaquatictoxicity
Gasoline:25-40
Diesel:5-25
Lightcrude:10-35
Heavycrude:15-40
Heavyfueloil:30-50
PolarCompounds
1.Resins:smallercompoundsthat
bondwithS,N,orO
2.Asphaltenes:verylargecompounds
Veryslowmicrobial/physicaldegradation;
Verylowwatersolubility/aquatic
toxicity
Gasoline:0
Diesel:0-2
Lightcrude:1-15
Heavycrude:5-40
Heavyfueloil:10-30
6
Oilshavebeengroupedintotypeswithsimilarpropertiestohelppredicttheirbehaviorat
spills(NOAAandAPI1994).Thissameapproachcanbeusedtocharacterizetherelativeriskofcontaminationofseafoodbyoiltype.TableII-2summarizesthepropertiesandriskofseafoodcontaminationfortheiveoilgroupscommonlyencounteredbyspillresponders.Thesegeneralizationscanbe
usedwheninitiallyscreeninganincidenttoevaluatethepotentialforseafoodcontamination.
TableII-2.Characteristicsofoiltypesaffectingthepotentialforseafoodcontamination(modiiedfromNOAAandAPI1994).
GasolineProducts
Diesel-likeProducts
andLightCrudeOils
Medium-gradeCrude
HeavyCrudeOilsand
OilsandIntermediate
ResidualProducts
Products
Non-FloatingOils
Examples–Gasoline
Examples–No.2fueloil,
jetfuels,kerosene,West
Texascrude,Alberta
crude
Examples–NorthSlope
crude,SouthLouisiana
crude,IFO180,lubeoils
Examples–SanJoaquin
Valleycrude,Venezuelan
crude,No.6fueloil
Examples–Veryheavy
No.6fueloil,residualoils,
vacuumbottoms,heavy
slurryoils
Specificgravityof
<0.80;
Specificgravityof<0.85;
APIgravityof35-45*
Specificgravityof0.850.95;APIgravityof17.535*
Usuallyfloatsonsurface,
althoughcanmixwith
sandbystrandingon
beachesorinthesurf
zone,andbedepositedin
thenearshore
Specificgravityof0.951.00;APIgravityof1017.5*
Usuallyfloatsonsurface
butcansinkinfreshwater
orinseawaterifthey
emulsifyormixwithsand
(inthesurfzoneorafter
strandingonbeaches)and
depositinthenearshore
Specificgravitygreater
than1.00;APIgravity
<10*
Willsinkinfreshwater;
maysinkinseawaterif
theyemulsifyormixwith
sand(inthesurfzone
orafterstrandingon
beaches)anddepositin
thenearshore
Highevaporationrates; Refinedproductscan
narrowcutfractionwith evaporatetonoresidue;
noresidues
crudeoilsdoleaveresidues
Uptoone-thirdwill
evaporateinthefirst24
hours;willformpersistent
residues
Verylittleproductloss
byevaporation;willform
persistentresidues
Verylittleevaporation
whensubmerged;also
veryslowweathering
overallwhensubmerged
Lowviscosity;spread
rapidlytoathinsheen;
readilydispersed;will
notemulsify
Lowtomoderateviscosity;spreadrapidly
intothinslicks;readily
dispersedbynatural
processes;mayform
unstableemulsions
Moderatetohighviscosity;dispersedbynatural
processesonlyveryearly
inthespill;readilyemulsifies
Veryviscoustosemisolid;
willnotreadilydisperseor
mixintothewatercolumn;
canformstableemulsions
Veryviscoustosemisolid;willnotreadily
disperseormixintothe
watercolumn;canform
stableemulsions
Lowriskofseafoodcontaminationbecauseof
rapidandcompleteloss
viaevaporation;potentialcontamination
forspillsinconfined
areaswithhighmixing,
suchassmallrivers;no
reportedcasesoftaintingformarinespills
Moderatetohighriskof
seafoodcontamination
becauserelativelyhigh
contentoflowmolecular
weight,water-soluble
aromatichydrocarbons,
whicharesemi-volatile
andsoevaporateslowly;
disperseddropletsare
alsobio-available
Moderatetohighriskof
seafoodcontamination
becauseofhighpercentageoflow-molecular
weightaromatichydrocarbons;coatingofgearand
intertidalspeciescanbe
significant
Lowriskoffinfishcontaminationbecauseoflow
water-solublefractionand
littlenaturalmixinginthe
water;moderatetohigh
riskofshellfishcontaminationwhereshorelineoiling
isheavy;cancoatgearand
intertidalspecies
Lowriskoffinfishcontaminationbecauseof
highviscosity;where
thickoilaccumulates
onthebottom,could
becomeachronicsource;
moderatetohighriskof
contaminationofbenthicspeciesbecauseof
coatingandpersistence
ofsubmergedoil
Floatsonsurface
Usuallyfloatsonsurface;althoughcan
contaminatesuspended
sedimentsthatarethen
depositedonthebottom
*APIGravityisusedbythepetroleumindustryratherthandensity.Itisdeterminedbythefollowingequation:APIat60°F=141.5/oildensity-131.5.
7
Seafoodcontaminationcanresultfromexposuretothedissolvedfractionofoil,dispersedoil
droplets,oranoilcoating.Withregardtothedissolvedfraction,thearomaticfractionoftheoilposes
thegreatestexposureriskbecausearomaticsarerelativelymoresolublethantheothercomponentsin
oil.Saturatesareamajorcomponentofoil,buttheyhavelowersolubilityandhighervolatilitycomparedtoaromaticsofthesamemolecularweight.Furthermore,Herasetal.(1992)hasconcludedthat
saturatesarevirtuallyodorlessandtasteless,anddonotcontributetotainting.
Ofthearomatichydrocarbons,themono-aromatichydrocarbons,suchasbenzene,toluene,
ethylbenzene,xylene(knowncollectivelyasBTEX),othersubstitutedbenzenes,andthe2-to3-ringed
PAHs(naphthalene,luorene,dibenzothiophene,anthraceneandtheirsubstitutedhomologues,
referredtoaslow-molecularweightPAHs)compriseover99percentofthewater-solublefraction
(McAuliffe1987).Thedistributionofthesecompoundsinthespilledoilisonemeasureofthepotentialforcontaminationofseafoodfromwaterexposure.FigureII-1showsthePAHcompositionfortypicalcrudeoilsandreinedproducts.TableII-3liststheabbreviationsusedforPAHs,groupsthePAHs
intolow-andhigh-molecularweightcategories,andshowsthenumberofbenzenerings.Mostcrude
oilsarecomposedofawiderangeofcompounds,includingthePAHsofconcern.
Notethatcompoundsinpetroleum-derivedoilshaveageneralpatternofincreasingabundancewithhigherlevelofsubstitutionofabenzenering(e.g.,unsubstitutedparentnaphthalene
islessabundantthanC1-naphthalene,whichislessabundantthanC2-naphthalene).Thispattern
indicatesthatthePAHsare“petrogenic,”thatis,theyarefrompetroleumoils.ThePAHpatternisvery
differentforhydrocarbonsproducedfromthecombustionoffossilfuels(“pyrogenic”hydrocarbons),
inthattheparentPAHsarebyfarthedominantcompoundsinhydrocarbonsofpyrogenicorigin.Also,
itisimportanttonotethatcrudeoilscontainverylowconcentrationsofthehigh-molecularweight
PAHs(e.g.,4-and5-ringedcompoundssuchaspyrene,chrysene,andbenzo[a]pyrene)thatareassociatedwithcombustionby-products.ThesedifferencesinrelativePAHabundancearekeycomponents
ofingerprintinganalysis.
ReinedproductshavecharacteristicrangesofPAHsrepresentativeofthedistillationfractionintheproduct.InFigureII-1,notethatthePAHsintheNo.2fueloilaredominatedbythe2-and
3-ringedcompounds.Heavyfueloilsaresometimescutorblendedwithlighterfractionstomeet
customerspeciications,asisthecasewiththeintermediatefueloil(IFO-180)inFigureII-1D,andso
cancontainsomelow-molecularweightPAHs.
Forexposureviaingestionofwholeoildropletsorcontaminatedsediments,thehigh-molecularweightPAHsposegreaterriskofcontamination.Thesecompoundshavelowwatersolubilityand
aremorelipophilic.InorganismswithrelativelylimitedcapabilitytometabolizePAHs,suchasbivalve
mollusks,thehigh-molecularweightcompoundsaremorelikelytoaccumulateintissuesandpersist
forlongerperiods,comparedtothelow-molecularweightPAHs,whicharemorerapidlyeliminated
(Meadoretal.1995).Finishandsomecrustaceans,however,readilymetabolizeandeliminateallof
thesecompoundsrapidly.
8
����
����
����
����
����
����
����
���
���
���
���
�
����
FigureII-1.PatternofPAHdistributionfordifferentoiltypes:A)No.2fueloil;B)SouthLouisianacrude,amediumcrude
oil;C)No.6fueloil,aheavyoil;andD)anintermediatefueloilthatisamixture.Notethathigh-molecularweightPAHs
suchasbenzo[a]pyrene(BAP)haveverylowconcentrationsinpetroleumoils.
����
����
����
����
����
���
���
���
���
�
��� �
���� ���
��
�� ����� ����
�����
����
��
����
��� � ����
���
����
����
��
����
����
���
�
����
����
�������
���
���
���
���
�
�
��
��
��
��
�
��
��
��
�
�
����
����
����
�
��
��
��
��
��
���
���
��
�
��
��
��
���
���
���
��
��
��
����
����
��
9
TableII-3.PAHsnormallyreportedinchemicalanalysesforpetroleumcompounds(afterSauerandBoehm1995).
PAH
Abbreviation
No.ofBenzeneRings
MolecularWeight
Naphthalene
N
2
Low
C1Naphthalene
N1
2
Low
C2Naphthalene
N2
2
Low
C3Naphthalene
N3
2
Low
C4Naphthalene
N4
2
Low
Biphenyl
BI
2
Low
Fluorene
F
2
Low
C1Fluorene
F1
2
Low
C2Fluorene
F2
2
Low
C3Fluorene
F3
2
Low
Acenaphthylene
AC
3
Low
Acenaphthene
CE
3
Low
Dibenzothiophene
D
3
Low
C3Dibenzothiophene
D3
3
Low
Anthracene
A
3
Low
Phenanthrene
P
3
Low
C1Phenanthrene/Anthracene
P/A1
3
Low
C2Phenanthrene/Anthracene
P/A2
3
Low
C3Phenanthrene/Anthracene
P/A3
3
Low
Napththobenzothiophene
NBT
3
Low
C1Napththobenzothiophene
NBT1
3
Low
C3Napththobenzothiophene
NBT3
3
Low
Fluoranthene
FL
4
High
Pyrene
PY
4
High
10
PAH
Abbreviation
No.ofBenzeneRings
MolecularWeight
C1Pyrene
PY1
4
High
C2Pyrene
PY2
4
High
Benzo[a]Anthracene
BA
4
High
Chrysene
C
4
High
C1Chrysene
C1
4
High
C2Chrysene
C2
4
High
C3Chrysene
C3
4
High
C4Chrysene
C4
4
High
Benzo[b]Fluoranthene
BB
5
High
Benzo[k]Fluoranthene
BK
5
High
Benzo[e]Pyrene
BEP
5
High
Benzo[a]Pyrene
BAP
5
High
Dibenzo[a,h]anthracene
DA
5
High
Indeno[1,2,3-cd]Pyrene
IP
6
High
Benzo[g,h,i]perylene
DP
6
High
OilFateandPathwaysofExposure
Oilbehaviorafterreleasedetermineswhetherseafoodisatriskofexposure.Oilbehaviorisa
functionoftheprocessesdescribedbelow.
Earlyweatheringprocessesthatchangeoilproperties
Evaporation
Evaporationisthetransferofthevolatilefractionsinoilfromtheliquidphasetothevapor
phase.Therateofevaporationdependsonthecompositionoftheoil,surfaceareaoftheslick,wind
velocity,seastate,watertemperature,andsolarradiation.Mostevaporationoccursintheirst24hours
afterrelease,thoughitcontinuesatamuchlowerrateforuptotwoweeks(NOAAandAPI2001).
Duringtheirst24-48hoursafteraspill,evaporationisthemostimportantweatheringprocess.The
amountofoilthatevaporatesdependsprimarilyontheoil’scomposition.Forlightcrudeoilsand
reinedproducts,evaporationcanaccountforupto75percentlosswithinafewdays.FigureII-2-A
showsplotsofthelossbyevaporationovertimeforrepresentativeoilsoftheirstfouroilgroupslisted
inTableII-2.TheplotsareoutputfromtheNOAAoilfatemodelADIOS2forthesamespillscenariofor
alloiltypes(Lehretal.2000).Thelightertheoil,thehigherwillbethelossbyevaporation.
11
FigureII-2.Plotsofpredictedevaporationanddispersionforoilsrepresentativeoffouroiltypes:gasoline,diesel,mediumgradecrudeoil(NorthSlopeCrude),andheavyfueloilgeneratedusingNOAA’soilweatheringmodelADIOS2(Lehretal.
2000).Thesamespillconditionswereusedforeachoil:spillvolume10,000gallonsinstantaneouslyreleased;windspeed10
mph;watertemperature60°F.
A
��� ����������
���
��������
�������
��
��
����� �����
��
��
������
����� ���� ���
�
�
��
��
��
��
B
��
��
��
��
���
��� ���������
���
������
�������
��
��
��
����� ���� ���
��
�
�
��
��
��
��
C
��
��
��
��
���
��������
����� �����
���
��� ���������
���
��
�������
���
����� ���� ���
��
����� �����
��
��
��������
������
�
�
12
��
��
��
��
��
�����
��
��
��
���
���
Evaporationisalsoimportantinthatthemorevolatilefractionsarealsomorewater-soluble
andthuscontributesigniicantlytotheoil’suptakeandtoxicity.Evaporationdominatesoverdissolutioninmostspillconditions,soitisakeyprocessthatreducestheriskofaquaticexposuretothemore
soluble,toxiccompounds,suchasbenzene,toluene,ethylbenzene,andxylene(BTEX)andlow-molecularweightpolycyclicaromatichydrocarbons(PAHs).
Dissolution
Dissolutionisthetransferofwater-solublecomponentsinoiltothewater.Itbeginsimmediatelyafteroilisreleasedandislikelytocontinuethroughouttheweatheringprocess.Thelossofoil
duetodissolution,however,isminorwhencomparedtotheotherweatheringprocesses.Itisnotan
importantprocessaffectingthefateormassofthespilledoil,sinceonlyasmallamountdissolves.Less
than0.1%(veryheavyoil)to2%(gasoline)ofthespilledoilvolumeactuallydissolvesintothewater
column.AsshowninTableII-4,lightreinedproducts,suchasgasoline,aremoresolublethanheavier
oils,suchascrudeoil.
Themostwater-solublecomponentsinoilarethelow-molecularweightaromatichydrocarbons:themono-aromaticssuchasbenzenethroughxylene,andthe2-and3-ringPAHs,suchas
naphthaleneandphenanthrene(McAuliffe1987).Thesecomponentsarealsothemostvolatile,and
theyrapidlyevaporatefromsolution.Therateofdissolutiondependsontheoil’schemicalcompositionandthesurfaceareaoftheoilandwater.
Thoughonlyasmallpercentageofthespilledoilvolumedissolvesintothewatercolumn,
thecomponentsthatdodissolveareoftenthemosttoxicandmayalsotaintseafoodatlowconcentrations.Concentrationsof450microgramsperliter(µg/L,equaltopartsperbillion,orppb)ofthe
water-solublefractionofalightcrudeoilhavebeenreportedtocausetaintinsalmonaftersixhoursin
laboratorytests(Herasetal.1992).Davisetal.(1992)reportedthetaintingthresholdfortroutexposed
todieselfueltobe0.08nanogramsperliter(ng/L,equaltopartspertrillion).Actualdissolvedoilconcentrationsatspillsvarywidely,dependingontheoiltypeandenvironmentalconditions.Forexample,duringtheNorthCapespillofapproximately800,000gallonsofhomeheatingoilunderconditions
ofveryhighnaturaldispersion,concentrationsofdissolvedPAHsinwatersamplesweremeasuredto
be3-167ppbwithinafewkmofthereleasesite(French1998).ThesedissolvedPAHconcentrations
areconsideredtobeunusuallyhighforoilspills.DuringtheNewCarissareleaseof70,000gallons
ofbothmarinedieselandbunkeroilsintothesurfzoneoffOregon,totaldissolvedPAHsinwater
sampled2-5kmfromthereleasesitewerereportedtobeintherangeof0.5-5ppb(PayneandDriskell
1999).
TableII-4.Exampleofsolubilitiesofdifferentoiltypes(Jokutyetal.1999).
OilType
AqueousSolubility(mg/Lorppm)
Unleadedgasoline
260.9
Diesel
60.4
PrudhoeBaycrude
20.5
Lagomedio
10.0
13
Dispersion
Windandwavescanbreakoilslicksintosmalldropletsthatmixordisperseintothewater
column.Undercalmconditions,theoildropletscanre-coalesceandresurfaceasslicksbecausethey
arelighterthanwater.Thesedropletsarecomposedofthewholeoil.Thinslicksoflighter,low-viscosityoils(suchasdiesel)readilydispersenaturally.Heavier,moreviscousoilsoroilsthathavebecome
moreviscousduetoweatheringaremoreresistanttonaturaldispersion.Applyingchemicaldispersants,whichreducetheoil’ssurfacetension,canenhancenaturaldispersion.Dispersionisanimportantmechanismthatenhancesoildegradationbyincreasingtheexposedsurfacearea.Dispersed
oildropletscanbeingesteddirectly(suchasbyplanktonorilter-feedingbivalves)orsecondarilyby
eatingoil-contaminatedprey.Mostpastspillsthatcontaminatedseafoodinvolvedconditionsofhigh
naturaldispersion(e.g.,Braer,NorthCape,andAmocoCadiz).
Emulsification
Emulsiicationistheprocessbywhichoneliquiddispersesintoanotherintheformofsmall
droplets.Thisprocessismostimportantatoilspillswherewaterdropletsmixintotheoilandform
astableemulsion(calleda“mousse”)thatdoesnoteasilybreakup.Emulsiicationcausesseveral
responseproblems:1)amousseoftencontains50-80percentwater,thusthevolumeofoilymaterialtoberecoveredisincreasedseveral-fold;2)emulsiiedoilisveryviscousanddificulttoremoveor
pump(Fingasetal.1994);and3)emulsiiedoildegradesmoreslowly(NRC1985).
Comparisonofevaporationanddispersionfordifferentoiltypes
FigureII-2showsthepredictedfateoftheirstfouroiltypeslistedinTableII-2usingtheNOAA
oil-weatheringmodelADIOS™2underthesamespillconditions.Notethedifferencesamongoiltypes
intheamountslostduetoeachofthedominantweatheringprocesses.Light,reinedproductssuch
asgasolineanddieselevaporateanddisperserapidly,generallywithinsixhoursofrelease.Evaporationcanbeadominantweatheringprocessforcrudeoils,dependingonthetypeofcrude.North
Slopecrudeisrelativelypersistent,particularlyifitemulsiies,asinthisscenario.Naturaldispersionis
animportantprocessforlow-viscosityoilsthatarereadilybrokenintodropletsbywaveaction.More
viscousoilsdonotnormallydispersenaturally.Heavyoilsareresistanttoweatheringandhighlypersistent.
Gasoline:Alight,reinedproductlikegasolinecanquicklydissipatewhenspilledinopenoceanenvironments.Inthisparticularscenario,strongwindsinthemodelevaporatedanddispersedtheentireproductintheirstthreehoursaftertherelease.The“OilRemaining”graph
showsnoneofthegasolineremainingthreehoursafterthespill.
Diesel:Thedieselselectedforthisscenarioisalight,reinedproductand,underlightwind
conditions,theoilwilllikelyremainonthesurfacewithmuchoftheproductevaporating.
However,strongwindsinthescenario(15knots)willgeneratebreakingwavesthattearthe
surfaceslickintosmalldroplets.Theoildropletsaredrivenintothewatercolumnand,ifthe
dropletsaresmallenough,naturalturbulencewillpreventtheoilfromresurfacing.The“PercentOilDispersed”graphshowsthatover85%ofthedieselhasdispersedabout12hoursafter
thespill.Becauseverylittleoftheoilwasavailableatthesurface,amuchsmalleramount,less
than15%,hasevaporated.The“PercentOilRemaining”graphshowsthatnoproductremains
after12hours.
Itisimportanttonotethattheterminologyforreinedproductsisnotstandardized,and
heavierintermediatefueloilsaresometimesreferredtoas“marinediesel.”Theseheavier
productsaremuchlessvolatilethannormaldieselorFuelOilNo.2andformamorepersistent
slickthanshowninFigureII-2.
14
NorthSlopeCrude:NorthSlopecrudeoilisknowntoentrainwaterdropletsandforman
emulsionifthereissuficientenergyintheenvironmentandifasuficientamounthasevaporated.Thisscenariousesa15-knotwindsothatabout40%oftheoilhasevaporatedintheirst
12hours.Afterthistime,theoilbeginstoentrainwaterdroplets,eventuallyformingastable
emulsioncontaining70to90%water.Thisprocessincreasestheviscosityoftheproduct,
makingitmoredificultforturbulentenergytoteartheoilintosmalldropletsanddisperseit.
Notethatthe“PercentOilDispersed”graphshowsthatnoneoftheproducthasdispersed.
BecausetheNorthSlopecrudehasemulsiiedandpersisted,the“PercentOilRemaining”graph
showsabout40%remaining120hoursaftertheinitialrelease.
HeavyFuelOil:Heavyreinedproducts,suchasheavyfueloil,havebeenreinedtoremove
thelightercomponentsand,asaresult,aresomewhatpre-weathered.Understrongwinds,
the“OilEvaporated”graphshowslessthan10%oftheproductevaporatingovertheirst120
hoursaftertherelease.Heavyproductsareknowntobeviscousand,therefore,lesslikelytobe
tornintosmalldropletsanddispersed.The“PercentOilDispersed”graphshowsthatlessthan
20%oftheheavyfueloildispersesovertheirst120hours.Finally,the“PercentOilRemaining”
graphindicatesthatabout70to80%oftheoilremainsafter120hours,suggestingthatheavy
fueloilispersistent.
Duringaspill,oceanographersandmodelerswillgeneratespill-speciicdataonthespilledoil’s
weathering,behavior,trajectory,andfate.Theycanestimatethepresentandfuturespreadof
surfaceslicks,extentandpersistenceofdispersedanddissolvedoilplumes,andtheriskofoil
sedimentation.Thisinformationcanhelpseafoodmanagersassesstheriskofspilledoilexposingseafood.
Long-termweatheringprocessesthatchangeoilproperties
Biodegradation
Biodegradationistheprocessbywhichhydrocarbon-degradingorganismssuchasbacteria,
fungi,andyeastsbreakdownpetroleumhydrocarbonsultimatelyintocarbondioxideandwater.Oil
degradationratesdependontheoiltypeandmaybefurtherlimitedbyoxygen,nutrients,and/orthe
surfaceareaavailabletomicroorganisms.Smalldropletsofdispersedoilbiodegrademorerapidly
thantarballsorsurfaceslicks.Lightcrudeoilsandlightreinedproductsreadilybiodegradewithin
weekstomonths.Heavieroilscanrequireyearstodecadestobiodegrade.Biodegradationisavery
importantremovalmechanismforpersistentoilresiduesremainingaftershorelinecleanupefforts
haveconcluded.
Photo-oxidation
Inthepresenceofoxygen,naturalsunlightcancausepetroleumhydrocarbonstoundergo
chemicalreactions,aprocessknownasphotolysis(NRC1985).Althoughthetoxicityofphoto-oxidationproductsisaconcernbecausetheyaremorewater-solubleandreactive,theratesofphoto-oxidationofliquidorsolidfractionsoftheoilaretooslowtosigniicantlyaffectthemassbalanceofaspill
withintheirstfewmonths(JordanandPayne1980).
Sedimentation
Sedimentationistheprocessbywhichparticlesofloatingoilsinktothebottomofthewater
columnandbecomepartofthebottomsediments.Sedimentationofoilcanoccurwhenoildroplets
sorbontoparticulatematter,suchassandandclay.Sorptionontosuspendedsedimentsinthewater
columnislikelyonlyunderveryhighwaveandwindconditions.Forexample,duringtheBraerspill,
25,000,000gallonsofalightGullfakscrudeoilwerereleasedfromthegroundedvesselduringhur-
15
ricane-forcewinds,andanestimated35percentoftheoilwasdepositedontheseabedinanareaof
4,000km2(Kingston1999).Thesedimentedoilprovidedalong-termpathwayforexposuretobenthic
organisms.However,thisdegreeofine-grained,subtidalsedimentcontaminationishighlyunusual.
Morefrequently,sedimentationoccurswhenstrandedoilonsandybeachesadherestothesediment,
theniserodedanddepositedinsmallquantitiesinthenearshoreenvironment(NRC1999).Sedimentationcanalsooccurthroughdepositionasfecalpelletsafteringestionbymarineorganisms.During
theArrowspillinChedabuctoBay,Canada,zooplanktoningestednaturallydispersedBunkerCoiland
laterexcreteditintheirfecalpellets(Conover1971).
Weatheringprocessesthatchangethelocationofoil
Spreading
Oilquicklyspreadsintoaverythinlayeronthewatersurface.Therateofspreadingisdeterminedbythesurfacetensionoftheoil,watercurrents,andwind.Spreadingenhancestherateand
effectofotherweatheringprocessesbyincreasingtheoil’sexposuretosunlightandair.
Advection
Oilmovesonthewater’ssurfaceduetoforcesgeneratedbywindsandcurrentsinaprocess
knownasadvection.Thespeedanddirectionofwindcanvaryrapidlyovertime,soweatherforecasts
mustbecloselymonitoredtocorrectlypredictoilspilltrajectories.
Submersion
Mostoilsloatonthewatersurfacebecausetheyarelessdensethanwater.Ifoilisdenserthan
water,orbecomesdenserasthelightercomponentsevaporate,theoilmaysubmerge.Ifitattachesto
suspendedsediments,theoilmaysinktothebottom(NRC1999).Onceoilisdepositedonthebottom,
weatheringprocessesareveryslow.Submergedoilcanbeachronicsourceofcontaminationboth
fromslowlydissolvingwater-solublefractionsandfromphysicalcoatingofseafoodandishinggear.
ShorelineStranding
Formostoilspills,theoilloatsonthewatersurface,transportedbywindandcurrentsuntilit
strandsontheshoreline.Strandedoilcandirectlycoatintertidalorganisms,habitats,andishingand
aquacultureequipment.Oilstrandedonshorelinesadjacenttoaisherycanbeasourceofchronic
contamination,particularlywhereshorelinecleanupisnoteffectiveornotattemptedduetoconcerns
ofcausinggreaterharmtotheoiledhabitat.Eventhemosteffectiveshorelinecleanupsrarelyremove
allofthestrandedoil.Remainingoilisremovedordegradedbynaturalprocesses.Naturalremoval
processesusuallyincludephysicalbreakupanddispersalofpersistentoilresiduesoveraperiodof
monthstoyears(Shigenaka1997;HayesandMichel1999).Thisremobilizedoil,eitheraswholeoil
dropletsorattachedtosuspendedsediments,canbecomeavailabletoilterfeeders,particularlyintertidalandshallowsubtidalbedsofmussels,oysters,andclams(ShigenakaandHenry1995).
Shorelinetypeanddegreeofexposureinluencehowlongoilpersistsasasecondarysource
ofseafoodcontamination.Largevolumesofoilcanpenetratepermeablesubstrates,suchassand
beaches,gravelbeaches,androckyrubbleshores.Onceoilhaspenetratedintothesubstrate,weatheringratesareslowedandtherecanbeepisodicreleasesofrelativelyfreshoil.Iftheoiledshorelines
alsoareshelteredfromdirectwaveenergy,thepotentialforlong-termpersistenceofoilgreatly
increases.Shelteringcanbelarge-scale,suchasinbaysandestuaries;itcanalsobelocalized,suchas
intheleeofalargeboulderonanotherwiseexposedshoreline.Forexample,duringtheextensive
monitoringofsubsistenceseafoodfollowingtheExxonValdezoilspill,anoilspillhealthtaskforce
determinedthatinishfromallareasweresafetoconsume,butthatintertidalshellishfromspeciic
areasshouldnotbeeaten(FallandField1996;Fieldetal.1999).Thesespeciicareaswereasmall
16
numberofsheltered,sedimentarybeacheswithhighlevelsofoilcontaminationintheintertidalsediments.Anotherexampleisthe1996SeaEmpressoilspillinMilfordHaven,Wales.Sixmonthsafterthe
SeaEmpressspill,theonlyseafoodharvestactivitiesstillrestrictedoutsideofMilfordHavenwerethe
exploitationofbivalveswhereheavyshorelineoilinghadoccurredinshelteredareas(Lawetal.1997).
SeafoodContaminationTerminology
Adulteration:AccordingtotheU.S.FoodandDrugAdministration(FDA),afoodisconsidered
adulteratedifitbearsorcontainsanypoisonousordeleterioussubstancethatmayrenderitinjurious
tohealth,ifitcontainsanyilthy,putrid,ordecomposedsubstances,orifitisotherwiseunitforfood
(FederalFood,Drug,andCosmeticAct,Section402).
Taint:Taintiscommonlydeinedasanodororlavorthatisforeigntoafoodproduct,includingseafood(ISO1992).Accordingtothisdeinition,thepresenceofataintsimplyindicatesthatlavor
orodorisaltered;itdoesnotcharacterizethenatureoftheoff-lavororoff-odor,quantifythedegree
oftaint,orimplyhealthhazard.
BodyBurden:Theconcentrationofacontaminantinanorganism,reportedforthewhole
animal,orforindividualtissuessuchasgonads,muscle,andliver,isreferredtoasthebodyburden.It
canbereportedonthebasisofeitherwetordryweightoftheorganismortissue.
Uptake:Uptakeistheprocessofcontaminantaccumulationinanorganism.Uptakeofoilcan
occurviathefollowingmechanisms:
• adsorption(adhesion)ofoilontheskin
• absorptionofdissolvedcomponentsfromthewaterthroughtheskin(includinginterstitial
waterexposuresforinfauna)
• absorptionofdissolvedcomponentsthroughthegills
• adsorptionofdispersedoildropletstothelipidsurfacesinthegills
• ingestionofwholeoildropletsdirectlyoroffoodcontaminatedwithoil,followedbysorption
inthegut
Manyfactorsinluenceuptake,includingtheexposureconcentrationandduration,pathway
ofexposure,lipidcontent,andfeedingandmetabolicrates.Uptakefromwatergenerallyoccursmore
quicklythandietaryuptakeoruptakefromsediments.
Bioaccumulation:Thenetaccumulationofasubstancebyanorganismasaresultofuptake
fromallenvironmentalsourcesandpossibleroutesofexposure(contact,respiration,ingestion,etc.)is
termedbioaccumulation(ASTM1994).
Bioconcentration:Thenetaccumulationofasubstanceasaresultofuptakedirectlyfrom
aqueoussolution(ASTM1994).
Biomagniication:Theincreaseinbodyburdenofacontaminantwithtrophicleveliscalled
biomagniication.PAHsgenerallydonotbiomagnifyininishandshellishbecauseoftheirlow
dietaryuptakeeficiencies,ontheorderof1to30%,relectingslowkineticsandshortresidencetime
inthegut(Meadoretal.1995).
Elimination:Alloftheprocessesthatcandecreasetissueconcentrationsofacontaminant,
includingmetabolism,excretion,anddiffusivelossarecollectivelytermedelimination(Meadoretal.
1995).Metabolismisanactivephysiologicalprocesswherebyacontaminantisbiotransformedinto
metabolites.ForPAHs,themetabolitesaremorewater-soluble,whichfacilitatesexcretion,another
17
activephysiologicalprocessthateliminatescontaminants(bothparentcompoundsandmetabolites)throughbile,urine,orfeces.Diffusivelossreferstoadecreaseintissueburdencausedbysimple
diffusionoutoftheorganism,whichiscontrolledbypartitioningbetweentissueandwater.Meador
etal.(1995)recommendthatdepurationbeusedforthemechanismofdiffusiveloss,andelimination
beusedforthecombinedprocessofmetabolism,excretion,anddiffusiveloss.Thesedeinitionsare
slightlydifferentthanthoseusedbyASTM(1994),whichdeinesdepurationas“thelossofasubstance
fromanorganismasaresultofanyactiveorpassiveprocess”andprovidesnodeinitionforelimination.However,thedeinitionsbyMeadoretal.(1995)aremorepreciseandwillbefollowedinthis
document.EliminationcanalsoincludereleaseofPAHsinlipid-richeggsorgametesduringspawning.
Eliminationprocessesbeginassoonasuptakeoccurs.Inconstantexposureexperiments,
bodyburdenstendtoreacha“steadystate”inwhichluxesofthecontaminantmovingbidirectionallyacrossamembraneorboundarybetweencompartmentsorphaseshavereachedabalance,not
necessarilyequilibrium(Meadoretal.1995).Whentheexposuredecreases,eliminationratesdepend,
inpart,onthehydrophobicpropertiesofthecompound(SpacieandHamelink1982).Thehalf-livesof
individualcompoundsvary(seediscussionbelow).
GrowthDilution:Growthdilutionoccurswhentherateoftissuegrowthexceedstherateof
accumulation,suchthatitappearsasthougheliminationisoccurringbecausethetissueconcentration
isdecreasing(SalazarandSalazar2001).Thisprocessmaybeimportantwhenmonitoringbivalves
duringthegrowingseason.
BiologicalandEcologicalFactorsAffectingPAHContaminationofSeafood
Petroleumcontaminationofinishandshellishdependsuponavarietyofbiologicaland
ecologicalfactors.Understandinghowdifferentfeedingstrategies,habitatutilization,andphysiology
inluencethelikelihoodofpetroleumcontaminationofparticularspeciesiscriticalwhenmanaging
seafoodafterspills.TableII-5summarizesseveralofthesefactorsfordifferenttypesofseafoodorganisms.
MetabolicCapacity
Bothvertebratesandinvertebrateshavemixed-functionoxygenase(MFO)enzymesystems
thatenablethemtometabolizepetroleumsubstances(Meadoretal.1995).Enzymaticactivityislow
ininvertebratescomparedtovertebrates,andthereforeinductionofmetabolismoccursatahigher
contaminationlevelininvertebrates(Marshetal.1992).Finishareabletorapidlyandeficiently
biotransformormetabolizePAHsandexcretetheresultingmetabolitesintobile(Varanasietal.1989).
Thesemetabolitesdonotposeahealthrisktohumanconsumersoftheinish.Marineinvertebrates,
includingmostshellish,metabolizepetroleumcompoundsslowlyandineficiently;consequently,
theytendtoaccumulatehighconcentrationsandwiderangesofPAHs(LawandHellou1999).
Metaboliccapacityoforganismsisimportantfromaseafoodsafetystandpointbecausesome
PAHshavecarcinogenicpotentialforhumanconsumers,duetothehighlychemicallyreactiveoxidationproductsthatformduringtheirststageofmetabolisminvertebrates(ATSDR1995;Hellou1996).
Humanconsumersofteneatinvertebratesintheirentirety,and,therefore,mayingestallofthehydrocarbonsthathaveaccumulatedintheorganismandmaybepresentintheorganism’sgut.Because
inish,likeothervertebrates,rapidlyandeficientlymetabolizepetroleumhydrocarbons,theygenerallyposelittleornohealthrisktohumanconsumers.Exceptionstothismayoccurforconsumersfor
whomtheedibleportionofinishincludestissuessuchasliverandgallbladder,whichtendtoaccumulatehigherlevelsofPAHsthanmuscletissue.
18
TableII-5.Habitatutilization,feedingstrategies,andriskofexposuretooilofdifferentseafoodgroups(adaptedfromRPI
1987,1989).
SeafoodGroups
Examples
MetabolicCapacity
HabitatUtilization
Feeding
Strategies
RiskofExposure
Finfish
anadromousfish
sturgeon,herring,
salmon
highcapacity
nearshoreandshallow
waterduringspawning
predatory
moderatetohighin
nearshore/shallow
waterduringspawning
marinepelagicand
bottomfish
mackerel,jacks,
cod,flounder
highcapacity
highlymobile,mostspeciespreferdepthsof>
10m
predatory
low
reeffish
seabasses,snappers,porgies
highcapacity
relativelydeepwaters(10 predatory
-200m)
lowtomoderate;
higherriskinshallow
water
estuarinefish
bluefish,mullet,
anchovies
highcapacity
spawninginintertidalor predatory
subtidalhabitats;offshore
wintermigrations
moderatetohighin
nearshore/shallow
waterduringspawning
Americanlobster,
pinkshrimp,blue
crab
reducedcapacity
maymigrateseasonally;
rangeofdepthsbetween
estuarineanddeep
waters
predatory,
omnivorous,
scavengers
benthicburrowing,
estuarine/shallow
waterspeciesathigher
riskthandeepwater
species
Crustaceans
lobster,crabs,
shrimp
Mollusks
oysters,mussels
Americanoyster,
verylimitedcapacity
Pacificoyster,blue
mussel
shallowsubtidaland
intertidalregions,estuaries;attachedtosubstrates
filter-feeders
high
clams,scallops
hardclam,softshellclam,bay
scallop,seascallop
verylimitedcapacity
intertidalandshallow
subtidalareas;benthicor
buriedinthesediment;
somemobility
filter/deposit
feeders
high
gastropods
abalone,conch,
snails,whelk,
limpet,topshell
verylimitedcapacity
intertidalandshallow
grazersand
todeepsubtidalareas;
predatory
epibenthic;somemobility
moderatetohigh
19
FeedingStrategiesandPAHExposure
Thefeedingstrategiesofdifferentmarineorganismsaffecttheirlikelihoodofexposureto
PAHs:
• Finishandcrustaceansarepredatoryoromnivorous.Theyareexposedtooilbyingestingcontaminatedfooditemsorsediments,andbyabsorbingwater-solublepetroleumcompounds
throughthegills.
• Filterfeedingbivalvesmayingestdispersedoildropletsandabsorbwater-andlipid-soluble
petroleumcompoundsastheyilterplanktonanddetritussuspendedinthewatercolumn.
• Deposit-feedingbivalvesmaybeexposedtooilthroughcontaminatedsedimentsastheyfeed
onbenthicdetritus,andastheyabsorbwater-solublecompoundsfromtheinterstitialwaterin
sediments.
Uptakefromthewatertendstobemorerapidthanuptakethroughthedietforbothvertebratesandinvertebrates.StudiesofdietaryuptakeofPAHsininishindicatelowuptakeeficiencies,
ontheorderof1to30%,relectingslowkineticsandshortresidencetimeinthegut(Meadoretal.
1995).Recentstudieshaveshownthattherateofuptakebysedimentcontactandingestionvaries,
yetittendstobelowerthanfromthewater(Meadoretal.1995).HowPAHspartitionamongwater,
sediment,andpreyitemsindifferentaquaticenvironmentsmayimpactthebioavailabilityofthecontaminant.Ingeneral,bothilter-feedinganddeposit-feedingbivalvesareconsideredtobeatahigher
riskofexposurethanpredatoryoromnivorousinishandcrustaceansduetothepersistenceofoilin
contaminatedsediments.
HabitatUtilizationandBehavior
Aspecies’habitatutilizationandbehavioraffectthelikelihooditwillbeexposedtooilduringa
spill(TableII-5).
Finish
• Mostpelagicandbenthicinishthatoccurinrelativelydeepwatershavealowexposurerisk
tospilledoilbecausetheyarehighlymobileandoftenareabletoavoidoiledareas(Molleret
al.1989;Lawetal.1997;LawandHellou1999).Also,oilconcentrationsinthewatercolumn
areusuallylowanddeclineveryrapidly,minimizingexposure.Exceptionsmayoccurifalarge
amountoffresh,lightoilismixedintothewatercolumn(asoccurredattheNorthCapeand
Braeroilspills)orifbottomsedimentsbecomecontaminated.
• Finishthatspawnoroccurinnearshore,shallowwaterareasinintertidalandsubtidalzones
(e.g.,salt,brackish,orfreshwatermarshes,creeks,orrivers)andinshallowreefzoneshavea
greaterriskofexposurethanoffshoreinish,duetoshorelineoiling.
• Pennedinishhaveagreaterriskofexposurethanwildinishbecausetheycannotavoidoilin
thewatercolumn.Mostcasesofinishcontaminationatoilspillshaveinvolvedpennedinish
atspillswhereasigniicantquantityofoilwasmixedintothewatercolumn.
Crustaceans
• Crustaceans(lobsters,crabs,shrimp)haveamoderateriskofexposurebecausetheyhavesome
mobility,bututilizebenthichabitatsinshallownearshoreandestuarineareas.
• Somespeciesoflobstersandshrimpmigrateseasonallybetweenestuariesandoffshoreareas,
andareatahigherriskofexposurewhentheyareinnearshore,shallowwaters.
20
• Whensubtidalsedimentsaresigniicantlycontaminated,speciesthatburrowintosoftsedimentsareathigherriskofexposure.Forexample,duringtheBraerspill,theburrowingNorway
lobsterremainedcontaminatedforoveriveyears,whereasepibenthiclobsterseliminated
petroleumcontaminantstobackgroundlevelsofPAHsinonemonth(Kingston1999).
Mollusks
• Mostmollusks,especiallybivalves,areathighriskofcontaminationbecausetheyaresessile
andunabletoavoidexposure.Theygenerallyoccurinsubstratesinshallowsubtidalandintertidalareaswhereexposuresarelikelytobemostpersistentifsedimentiscontaminated.Filter
feedingmolluskscaningestdispersedoilandoilattachedtosuspendedsediments.Deposit
feederscaningestoil-contaminatedsediments.Thelongestseafoodclosureperiodsassociatedwithoilspillshavebeenforbivalvesinareaswhereadjacentsedimentsremainedheavily
contaminated(Lawetal.1997).
• Somebivalvespeciesusedefensemechanismsduringoilspills,includingclosingtheirshellsor
shuttingdowntheirpumpingsystems,therebyeliminatingtheuptakerouteforthecontaminants(RPI1989).Somespeciescanremainclosedforseveralweekswithoutadverseeffects,
whereasothersstarttodegradeafewdaysafterclosure.
Temperature
Itisgenerallyacceptedthatuptakeandeliminationratesbothtendtoincreasewithincreasingtemperature,thoughthereissomecontradictionamongreportedstudyresultsforPAHs(Fucikand
Neff1977;Landrum1982;JovanovichandMarion1987;Meadoretal.1995).
Therateofreactioninchemicalandbiologicalprocessesgenerallyincreases2-to4-foldfor
a10°Cincreaseintemperature(Kennedyetal.1989;French2000).Uptake,metabolic,andeliminationratestypicallyincreasewithtemperature,butatdifferentrates,makingitdificulttopredict
bodyburdensundertheconstantlychangingoilconcentrationsthatoccuratspills.However,athigh
temperaturesandincreasedrespirationandiltrationrates,itisexpectedthatuptakewilloccurquickly,
torelativelyhighconcentration,followedbyrapiddeclines(Meadoretal.1995).Atlowtemperatures,
bodyburdensarelikelytobelower,buteliminationrateswillalsobeslower.Atverylowtemperatures,
somespeciesstopfeedingandthusareatlowerriskofexposure.Forexample,elevatedlevelsofPAHs
fromtheNorthCapeoilspillweredetectedinsoftshellclams,oysters,andmussels,butnotinquahogs
becausetheystopfeedingat6°Candthewatertemperatureduringthespillwas4°C(NOAAetal.
1999).
Physiology
Lipid,carbohydrate,andproteinlevelsareknowntovaryseasonallyincertainaquaticinvertebratespecies,oftenassociatedwithreproductivechanges(JovanovichandMarion1987).Someof
thesechangesinbiochemicalcompositionmayaffectuptakeandeliminationratesseasonally.Seasonalvariationmayalsoresultfromdifferencesinfeedingrates,microbialactivity,andvariousenvironmentalfactors(Meadoretal.1995).
Organismswithhigheroveralllipidcontentgenerallyexhibithigherlevelsofuptakeorretentionofpetroleumcompounds(NRC1983).Forexample,Herasetal.(1992)foundthatsalmon(muscle
lipidcontentof4.0%wetweight)accumulatedhigherhydrocarbonconcentrationsthancod(muscle
lipidcontentof0.75%wetweight).JovanovichandMarion(1987)havereportedthatuptakeratesof
PAHsinclamspeakedwhengametogenesiswasnearcompletionanddecreasedduringspawning,
whileeliminationratespeakedduringspawning.Benderetal.(1986)foundthatoystersandclams
21
sampledatthehighpointoflipidandglycogenreservesduringtheirspawningcycles(thefall)had
PAHtissuelevelsthatwere2to3timeshigherthantheywerewhensampledduringthespring.High
eliminationratesduringthelossoflipid-richeggsareconsistentwithindingsthatinishandshellish
tendtoaccumulatePAHsintissueswithhighlipidcontentbecausePAHsarestronglyhydrophobic
(Meadoretal.1995).
PotentialvariationsinPAHuptakeandeliminationratesinseafoodspeciesduetoseasonal
andphysiologicalvariationshouldbetakenintoaccountduringspillresponse.Thesedifferences
shouldbeconsideredwhendesigningseafoodsamplingplansandwhencomparinganalyticalresults
fromsamplesfromdifferentspecies,collectedatdifferenttimesofyear,orcollectedduringdifferent
stagesinthelifecycleoftheorganisms.
ChronicExposureStress
Bioaccumulationlevelsandeliminationratesofhydrocarbonsforinishandshellishmay
dependonthetypeanddurationofexposuretopetroleumproducts,andtheextenttowhichthe
organismshavebeenchronicallyexposedtoothercontaminants.Chronicexposureappearstoreduce
eliminationcapacity.Infact,theremaybetwophasesofelimination:aninitialrapidphasefollowed
byasecondslowerphaseforPAHsthataresequesteredinstablecompartmentsoftheorganism,such
asstoragelipids(Meadoretal.1995).Somechronichydrocarbonpollutionstudieshaveindicated
nosigniicantreductionsinPAHlevelsintissuesover2-4monthsforclamsandmussels,evenwhen
theanimalsweremovedtocleanerhabitats(DiSalvoetal.1975;BoehmandQuinn1977).Theratio
ofliver/muscleconcentrationsininishsometimescanbeusedasanindicatorofthelevelofchronic
PAHcontaminationatasite.Liverlevelsrepresentshorter-termexposuretooil,whilemusclelevels
representlonger-termbioaccumulation.Therefore,lowerliver/muscleratiosmayindicatedecreased
eficiencyinanorganism’sabilitytobiotransformabsorbedoringestedoilintocompoundsthatare
easilyexcreted(Hellou1996).
Othersubsistenceandrecreationalseafoodorganisms
Someorganismsthatarecollectedandconsumedforsubsistenceandrecreationwerenot
discussedinthissection.Examplesareoctopus,squid,seals,whales,seaweed,andalgae.Thereisn’t
enoughinformationontheseorganismstothoroughlydiscussthelevelofrisktheymayposetoconsumersfollowinganoilspill.Itshouldbenoted,however,thatiftheseorganismsoccurinaspillarea
andareexposed,restrictionsonharvestorconsumptionadvisoriesmightbewarranted,dependingon
contaminationandconsumptionlevels.
Summary
• Wildinishareunlikelytobecomecontaminatedortaintedbecausetheytypicallyareeither
notexposedorareexposedonlybrielytothespilledoilandbecausetheyrapidlyeliminate
petroleumcompoundstakenup.Exceptionsmayoccurifalargeamountoffresh,lightoilis
mixedintothewatercolumnorifbottomsedimentsbecomecontaminated.Ifnearshoresedimentsarecontaminated,speciesthatspawninnearshoreandshallowwatersaremorelikelyto
beexposedtospilledoilthanpelagicandbenthicspecies.
• Pennedinisharemoresusceptibletotaintingandcontaminationbecausetheyarenot
abletoescapeexposure.Theyareespeciallyatriskiflargeamountsofoilmixintothewater
column.
22
• Shellisharemorelikelythaninishtobecomecontaminatedfromspilledoilbecausetheyare
morevulnerabletoexposureandlesseficientatmetabolizingpetroleumcompoundsonce
exposed.Shellisharegenerallylessmobileandhavemorecontactwithsediments,whichcan
becomecontaminatedandserveasalong-termsourceofexposure.
• Amongcrustaceans,speciesthatburrowareatthehighestriskofexposureatspillswhere
bottomsedimentsarecontaminated,followedbyspeciesthatutilizenearshoreandestuarine
benthichabitats.
• Bivalvesareathighriskofcontaminationbecausetheyaresessile,ilter-anddeposit-feed,
andoccurinsubstratesinshallowsubtidalandintertidalareasthataremorelikelytobecome
contaminated.
• Itisgenerallyacceptedthatuptakeandeliminationratesbothincreasewithtemperature,
thoughstudyresultsaresomewhatcontradictory.
• PAHstendtoaccumulatetohigherconcentrationsinlipid-richtissuesandorganisms.Seasonaldifferencesintissuelipidcontentassociatedwithspawningmayinluenceuptakeand
eliminationratesofPAHsinsomemarinespecies.
• Chronicexposuretohydrocarbonsinwaterandsedimentsmayreduceeliminationcapacity.
SummaryofLiteratureonUptakeandElimination
MostoftheliteratureonoilandPAHuptakeandeliminationbymarineorganismsisbasedon
laboratorystudiesusingthewater-solublefractionordispersedoilinaqueousexposures,orcontaminatedsediments.Theorganismsaretypicallyexposedtoaconstantconcentrationforaperiodof
time(often24hoursforaqueousexposures;28daysforsedimentexposures)andthenplacedinclean
waterandmonitoredfortissueconcentrationsovertime.Therateofeliminationisoftenreportedin
termsofhalf-life,thatis,thetimeittakesfortheconcentrationofacompoundtodecreasebyhalf.
Laboratoryaqueousexposureconcentrationsareoftenanorderofmagnitudeortwohigher
thanexpectedatoilspills.Atactualoilspills,organismsaremorelikelytoexperiencespikedexposures
inthewater:concentrationsthatareinitiallyhigh(forafewhoursorless)andthenrapidlydeclineas
theoildispersesinthreedimensionsanddegrades.Althoughlaboratoryexposureconditionsoften
differfromthoseatactualspills,laboratorytestscanbeusefulindicatorsoftherelativeratesofuptake
andeliminationamongdifferentoilcompoundsandconcentrations,species,routesofexposure,and
environmentalconditions.
LaboratorystudyresultsindicatethatPAHuptakefromwaterisrapid,especiallyforinishand
crustaceans,whichmayberelated,inpart,tohighventilatoryrates(Meadoretal.1995).Forexample,
laboratoryexperimentshavereportedtaintingaftereighthoursofexposureofsalmonto0.4ppm
ofthewater-solublefractionofacrudeoil(AckmanandHeras1992)andafter4hoursofexposure
ofArcticcharto50ppmofacrudeoil(LockhartandDanell1992).Dietaryuptakefromsedimentsis
slower.StudiesindicatethatPAHuptakeratesdecreasewithincreasingmolecularweight(Meadoret
al.1995).
Eliminationratesvarywidely,byorganismtype,species,size,uptakepathway,oiltype,temperature,andseason.However,somegeneralizationscanbederivedfromtheliterature.First,the
half-livesofPAHsinorganismsincreasewithmolecularweight(Meadoretal.1995).TableII-6shows
thistrendforPAHsinbivalves,whichhavelimitedabilitytometabolizePAHs(thePAHsarelistedin
orderofincreasingmolecularweight).ItisimportanttonotethatthemorepersistentPAHs(with
morethanthreebenzenerings)arepresentinpetroleumatverylowlevels.Eliminationratesfor
23
inish,whichmetabolizePAHsmorereadily,wouldbefasterthantheratesshowninTableII-6.Second,
passivereleaseandmetabolismofPAHsareslowerinchronicallyexposedanimals,asdiscussedearlier
(Meadoretal.1995).
TableII-6.Half-livesofPAHsinbivalvesbasedonlaboratorytestsofbothwaterandsedimentexposures(modiiedafter
Meadoretal.1995).
Half-life,indays
mean(range)
Compound
No.ofTests
Naphthalene
3
Phenanthrene
6
3.3(1.7-6.1)
Fluoranthene
6
9.9(2.0-29.8)
Benzo(a)pyrene
6
12.3(4.8-16)
1.6(0.9-2)
Fielddataonthedurationoftaintandbodyburdensislimitedtoafew,well-studiedspills.
TableII-7summarizestheavailabledatabyspillandorganismtype.Thesecasestudiesshowthatwild
inishareseldomtainted,andthedurationoftaintisshort(lessthanonemonth).Cagedsalmon,
however,aremorevulnerabletoexposure,andtaintmaypersistlonger.AttheBraerspill,inwhicha
verylargeamountofalightcrudeoilwasreleasedover12daysandelevatedoilconcentrationsin
waterpersistedinthevicinityofsalmonfarmsforupto50days,thesalmonclosesttothespillreportedlyremainedtaintedfornearly200daysafterthespill(Whittleetal.1997).
Taintingofcrustaceanshasbeenreportedforspillsatwhichalightoilwasnaturallydispersed
intothewatercolumnimmediatelyafterrelease.Someofthedispersedoilcanmixwithsuspended
sedimentsandaccumulateonthesealoorsurface,wherelobsters,forexample,cancomeintocontact
withtheoil.Itappearsthatepibenthiccrustaceansreadilyuptakeoilfromsedimentsandaretainted
atlowPAHlevels.Petroleumhydrocarbonstendtopersistlongerincrustaceansthaninish,perhaps
partlybecausetheyareexposedbybothwaterandsedimentpathways.Thesediment-associated
oilhasmoreofthehigher-molecularweightPAHsthataremorepersistentandareeliminatedmore
slowly(Meadoretal.1995).
Bivalves,particularlyilterfeeders,aremorelikelytohaveelevatedlevelsofPAHswhentheoil
strandsonintertidalbedsormixesintothewatercolumnoversubtidalbeds.Heavilyoiledsediments
canprovideasourceofchronicexposure,asattheSeaEmpressspillwhereintertidalmusselsremained
contaminatedinoneheavilyoiledbayfor19monthsafterthespill(Lawetal.1999).Onceexposure
ceases,eliminationcanbecompletedasrapidlyaslessthanonemonth.Becausebivalvesaccumulate
oilcompoundsandeliminatethemveryslowly,theysometimescanbeusedastoindicatetheextent
anddegreeofoilexposureafteranoilspill.
24
TableII-7.Presenceanddurationoftaintandtissuecontaminationwithpetroleumcompoundsreportedatvariousoil
spills.RefertoTableI-1forthedetailsonspilllocation,date,oiltypeandvolume,environmentalconditions,andreferences.
SpillName
TissuePAHConcentration(µg/kgorppb
wetweight)andPersistence
TaintPersistence
Finfish
T/VSeaEmpress
Wildsalmon:12-186Declined“rapidly”
Wildsalmon:Notaint
T/VBraer
Cod:1.3-74
Haddock:8-262
Plaice:15-184
Whiting:9-2,650
Lemonsole:6-1,240
Dab:25-2,160
Allbutdabreachedbackgroundin1month;dabin2
months
Cod:Notaint
Haddock:1month
Plaice:Suspecttaint2months
Whiting:Nodata
Lemonsole:Notaint
Dab:1month
Cagedsalmon:7months
Cagedsalmon:upto14,000;rapidlossto1,000in25
days,reachedbackgroundin5months
T/BNorthCape
Finfish:5-1,100;0monthsbecausenoincreaseover
backgroundwasobserved
Allfinfish:Notaintin416samples
M/VKure
Rockcrab:5-350;0.5months
Crab:Notaint
M/VNewCarissa
Dungenesscrab:<15
Nosensorytestingconducted
T/VBraer
Lobster:112-1,060;1month
Velvetcrab:94-308;2months
Ediblecrabwhitemeat:19-281;
brownmeat:104-1,390;
12monthsforcrabs
Lobster:1month
Ediblecrab:Notaint
T/BNorthCape
Lobster:0-33,150;2.5-5months
Lobster:2.5-5months
M/VKure
Oyster:264-4,467;0.5months
Oyster:Notaint
M/VNewCarissa
Oyster:70-1,200;3weeks
Oyster:Notaint
T/VSeaEmpress
Whelk:50-3,800;4months
Mussel:upto19,500;2.5-5months
Cockle:similartomussels
Whelk:Notaint
Mussel:Nodata
T/VBraer
Whelk:45-1,130;12months
Scallop:223-3,580;17months
Whelk:Nodata
Scallop:Suspecttaint2months
T/BNorthCape
Steamerclam:8,500-18,400;3months
Oyster:1,400-13,500;3months
Mussel:4,200-24,300;3months
Steamerclam:Notaint
Oyster:Notaint
Mussel:Notaint
Crustaceans
Bivalves
RefinerySpill,ElSalvador
Oysters:30,000;<1month
Oysters:Nodata
T/VExxonValdez
Bivalvesfromfoursmallareaswereabove100;1year
Allotherareas<100
Bivalves:Nodata
25
CorrelationbetweenTaintandBodyBurden
Thespeciiccompoundsresponsibleforpetroleumtaintinseafoodhavenotbeenunequivocallydetermined.Consequently,resultsofchemicalanalysiscannotyetbeusedtopredictpresence
orabsenceoftaint.Nevertheless,resultsfromrecentspillswherebothchemicalandsensorytesting
havebeenconductedindicateahighdegreecorrelationbetweenpresenceoftaintandpresenceof
measuredpetroleumcontaminants,orconversely,absenceofboth.Therelationship,aswellastainting
threshold,mayvarysomewhatdependingonspecies,oiltype,exposurepathway,andotherunknown
factors.Withinaseriesofexperimentsusingthesameoiltypeandspecies,sensorypanelscancorrectlyrankthedegreeoftaintwithbothtissueconcentrationsandexposurewaterconcentrations.
Somereportedminimumconcentrationsofmeasuredoilcompoundsintissuesthatweredetermined
bysensorytestingtobetaintedinclude0.6ppmforcod(Ernstetal.1989b),5ppmforsalmon(Heras
etal.1993),9ppmforplaice(Howgateetal.1977),and100ppminscallops(MotohiroandIseya1976).
Sometimesitispossibletodevelopcorrelationsforspeciicspillsoncealargeenoughdatasetis
generated.Forexample,duringtheBraerspill,taintincagedsalmonwasreadilyperceivedifthePAH
concentrationintheleshwas1,000ppborgreater(Whittleetal.1997).
Laboratorystudieshavereportedtaintingthresholdsinsalmon,rainbowtrout,scallops,and
mussels(Ernstetal.1989a;AckmanandHeras1992;Davisetal.1995;Herasetal.1992,1993;Jacques
WhitfordEnvironment1992).Thedataaredificulttointerpretbecausetissuelevelsareseldommeasured,ortheyarereportedas“ppmoil”ratherthanspeciiccompounds,suchasPAHs.Moreoften,the
studiescorrelatetaintwiththeamountofoilintheexposurewater,againusuallyreportedas“ppmoil.”
Thesestudiesmightprovidesomebasisforpredictingthepotentialfortaintingforthecombinationof
speciesandoiltested.However,itisnotyetpossibletomakegeneralpredictions.
ConceptualModelsofExposure,Uptake,andElimination
Becauseconditionschangerapidlyatoilspills,itishelpfultohaveconceptualmodelsofthe
exposurepathwaysforarangeofspillconditions.Theseconceptualmodelsmayhelpseafoodmanagersinevaluatingtheriskofsigniicantcontaminationofseafoodandmakingdecisionsbasedon
limitedon-scenedata.TableII-8summarizesiveconceptualmodelsforexposure,uptake,andeliminationatoilspills,appliedtoseafood.Thesemodelsarebasedonactualspilldataandsupportedby
laboratoryresearch,ascitedintheprevioussections.Pleaserefertothesesectionstoindthecitations
supportingeachoftheconceptualmodels.Itisimportanttonotethatduringsomespillsmorethan
oneofthemodelswillapply.Eachofthesemodelsisbrielydiscussed.
26
TableII-8.Conceptualframeworkforseafoodexposureto,uptake,andeliminationofoilatspills.
ExposurePathway
ExposureConditions
SeafoodatRisk
TissueContaminants
EliminationRates
-Finfishinthearea
affectedbythedissolved
plume
-Epibiotaandfilterfeedinginfaunawherethe
dissolvedplumecontacts
thebottom
-Themorewater-soluble
compoundswilldominate,i.e.,the2-and3ringedPAHs
-Mostrapidbecausethe
compoundsaremore
water-solubleandare
quicklylostbydiffusion
and/ormetabolism
-Allbiotainthewater
column
-Epibiotaandfilterfeedinginfaunawherethe
dissolved/dispersed
plumecontactsthe
bottom
-Intertidalbiota(e.g.
oyster/musselbeds)
-Sameasthewholeoil
becauseparticulateoil
willdominateoverdissolved
-Overtimeheavierfractionswillpredominate
asthemoresolublefractionsaredepletedfrom
theslick
-TherangeofPAHsinthe
wholeoilispresentin
tissues;
-Eliminationslowerfor
4-5ringedPAHsthanfor
2-3ringedPAHs
Resuspensionofcontam- -Resuspensionofheavily -Nearshorefilterfeeders
inatedsedimentsintothe oiledsedimentsfromthe (epibiotaandinfauna)
shorelineornearshore
watercolumn
sediments
-Exposuretimeislikelyto
beepisodicandrelated
tostorms
-Willfollowweathering
patterninthestranded
oil
-Overtime,thelesssoluble,lessdegradablecompoundswilldominate
-Relativelyslowerrates
becauseofthewide
rangeofPAHsintheoiled
sediments;chronicexposuresmayresultinlonger
persistenceevenafter
exposureends
Dissolvedoilfractiononly -Relativelycalm,soslick
viathewatercolumn
doesnotdisperse
-Separationofdissolved
plumefromsurfaceslick
-Viscousoilsthatdonot
readilydisperse
-Exposuretimeisshort
Dissolvedandparticulate
oilfractionsviathe
watercolumnandwater
surface
-Turbulencethatmixes
theoilasdropletsinto
thewatercolumn
-Lightoilsthatarereadily
dispersed
-Exposuretimeisshort
Contaminatedintertidal
andsubtidalsediments
-Oiledintertidalorsubtidalsediments
-Chronicexposure
-Infaunaandsome
epibiotathatareclosely
associatedwithbottom
sediments,especially
depositfeeders
-Sameasabove
-Sameasabove
Ingestionofcontaminatedfood
-Usuallyoccurswhere
sedimentsarecontaminated
-Exposureoftenchronic
-Predators,scavengers,
andomnivorousfeeders
-Highlyvariableand
poorlyunderstood
-Highlyvariableand
poorlyunderstood
1.
Exposuretothedissolvedoilfractiononly
Thisexposuremodelassumeslittleornodispersionofthewholeoilintothewatercolumn,or
thatthedispersedoilre-coalescedintosurfaceslicks,leavingbehindadissolvedoilplume.Alternately,
windsmaytransportthesurfaceslickinonedirection,whereastidalcurrentscancarrythedissolved
plumeinanotherdirection.Undermostconditions,exposuretimetothewater-solublefractionofoil
isshort(intherangeofhourstodays)duetorapiddilution,evaporation,etc.Exposureconcentrations
areusuallylow(ppbrange).Uptakebyinishandshellishwillberapidanddominatedbythemost
water-solublecompounds.However,eliminationwillalsoberapid.Confoundingfactorscaninclude
longerexposureduetomultipleorchronicreleases,veryslowdilutionorlushingrates,andverycold
temperaturesthatreducemetabolicactivityofanimals.Thoughmanylaboratorystudieshaveshown
rapiduptakeofthewater-solublefraction,therearefewexamplesofseafoodharvestclosuresattributedtothispathwayduringoilspills,probablybecausetheexposureconcentrationsaretoolowor
rapidlydilutedanddonotresultinpersistentcontamination.
27
2.
Exposuretodissolvedandparticulateoil
Thisexposuremodelincludesdispersedoildropletsthatmixintothewatercolumn.This
behaviorcouldoccurwithlight(low-viscosity)oils,turbulentconditions,orchemicallydispersed
oil.Thetotal(bothdissolvedanddispersed)oilconcentrationsinthewatercolumncanberelatively
higher(totaloilconcentrationsuptolowppm)thanwithmodel1.Exposuretimetosuchhighconcentrations,however,isusuallyveryshort(intherangeofhourstodays),asoilconcentrationsrapidly
declinewithmixinginthreedimensions.TissueresiduesmayincludethefullsuiteofPAHsinthe
wholeoil,notjustthewater-solublefraction.Thus,eliminationratesareexpectedtoberelatively
slower,withthehighermolecularweightPAHshavingrelativelylongerhalf-lives.Anexampleofthis
typeofexposureistheNorthCapeoilspill.
3.
Exposuretocontaminatedsedimentsre-suspendedintothewatercolumn
Often,completecleanupofoiledintertidalorsubtidalsedimentsisnotfeasibleandoilisleft
toweatheranddegradenaturally.Theoiledsediments(orinsomecases,freeoildroplets)canbe
re-suspendedduringstormevents,exposingnearbybiota.Filter-feedersareatthegreatestriskof
exposure.Declineintissueconcentrationsofcontaminantsfromthispathwayofexposureislikelyto
bedelayedbecauseofrepeatedexposures,presenceofpersistent,high-molecular-weightPAHs,and
possiblysloweroveralleliminationratesfororganismsthatarerepeatedlyexposed.Thispathwayof
exposurehasbeendocumentedforcrudeandheavyreinedoilsstrandedonmoreshelteredshorelines(e.g.,ExxonValdezoilspill,SeaEmpressoilspill).
4.
Exposuretocontaminatedsediments.
Oiledintertidalandsubtidalsedimentscanprovidepathwaysofoilexposureviasediment
ingestiontoinvertebratedepositfeeders,suchasbivalves,andsedimentgrazers,suchasshrimpand
gastropods.Also,infaunacanbeexposedtodissolvedoilinthesedimentporewater,potentiallycontaminatingtissueswiththemoresoluble,lighter-molecularweightcompounds.Declineintissueconcentrationswillbedelayedfororganismsthatarechronicallyexposed,andmaybeslowforthesame
reasonsdescribedinmodel3above.Intertidalsedimentsaremorelikelythansubtidalsedimentsto
becontaminated.Subtidalsedimentsareseldomcontaminated,andiftheyarecontaminatedtheyare
generallyatlowerconcentrationsthanintertidalsediments.Sorbedoilmightbemorelikelytodissolve,comparedtopyrogenicPAHsderivedfromcombustionoffossilfuelsthataretightlyboundto
thesediments.Thispathwayofexposurehasbeendocumentedatveryfewspills(mostnotably,the
Braeroilspill).Itisprimarilyassociatedwithchronicpollution.
5.
Ingestionofcontaminatedfood.
Thisexposuremodelassumesthatorganismsuptakeoilbyeatingcontaminatedfood,not
sedimentsingestedwhilefeeding.Examplesareoildropletingestionbycopepodsthataretheneaten
byinish,orcrabsfeedingonoiledbivalves.DietaryuptakeofPAHsisnotveryeficient,anddecreases
withincreasingmolecularweight.
28
III.
MONITORINGSEAFOODFORCONTAMINATION
SectionIIdescribedinformationthatcanhelpdeterminethelikelihoodthatspilledoilwill
exposeandcontaminateseafood.Ifitisdecidedthatseafoodisatsigniicantrisk,thenextstepis
monitoringtodeterminewhetherseafoodactuallyiscontaminated,andtocharacterizetheextentand
degreeofcontamination.Thissectionprovidesgeneralguidelinesfordevelopingseafoodsampling
plansandconductingsensoryandchemicaltestingofseafoodsamplesforpetroleumcontamination.
DevelopingSeafoodSamplingPlans
Theirststepindevelopingasamplingplanisdeiningthequestionstobeanswered.Samplingshouldnotbeginbeforestudyobjectiveshavebeenclearlyestablished.Becauseeveryoilspill
isauniquecombinationofconditionsandtheobjectivesofseafoodsamplingmayvaryfromspillto
spill,thereisnostandardsamplingplanthatcanbeappliedtoallseafoodcontaminationmonitoring
studies.Generally,though,anysamplingplantomonitorforpotentialseafoodcontaminationfroman
oilspillshouldspecifythestudyarea,samplinglocations,targetspecies,numberofsamplestobecollected,timingofinitialandrepeatsampling,samplecollectionmethodsandhandlingprocedures,and
analysestobeconducted.Thestatisticaldesignmustensuresuficientstatisticalpowertoprovidethe
informationneededatthedesiredlevelofconidencetosupportseafoodmanagementdecisions.
Wesuggestsomegeneralguidelinesfordesigningaseafood-samplingplanbelow.Formore
detailedguidelines,seeGuidanceforAssessingChemicalContaminantDataforUseinFishAdvisories
Volume1:FishSamplingandAnalysisbytheU.S.EnvironmentalProtectionAgency(2000a).Formore
detailedsamplingguidelinesforsensorytesting,seeGuidanceonSensoryTestingandMonitoringof
SeafoodforPresenceofPetroleumTaintFollowinganOilSpill(ReillyandYork2001).Forgeneralsamplingguidancerelatedtooilspills,seeMearns(1995).
Selectingsamplinglocations
Inselectingsamplinglocations,alllikelypathwaysofoilexposureshouldbeidentiied(e.g.,
surfaceslicks,dispersedordissolvedoilinthewatercolumn,submergedoilassociatedwithbottom
sediments),asdiscussedinSectionII,sothatriskstospeciicisheriescanbeevaluated.Inclusionof
commercial,recreational,andsubsistenceharvestareasshouldbeconsidered.
Collectionofpre-exposuresamplesfromthespillareaorsamplesfromappropriateunexposed
referenceareasisextremelyimportantbecausetheycanprovideinformationonbackgroundlevelsof
contaminationinthespillarea.Petroleumhydrocarbonsareubiquitousinenvironmentalsamples,so
wecannotassumethatallpetroleumhydrocarbonsmeasuredinasampleorallincreasesovertime
arearesultofanoilspill.Furthermore,monitoringoftencontinuesuntilthelevelofcontamination
returnsto“background.”Referencesamplesarekeytodeterminingtherangeofbackgroundconcentrationsandthebaselineagainstwhichchangesovertimewillbeevaluated.
Thebestreferencesamplesarepre-spillsamplestakeninareasnotyetoiledbutinthepotentialpathoftheoil(“before”canbecomparedwith“after”exposure).Ifpre-spillsamplingisnotpossible,unexposedreferencesitescomparabletoexposedsitescanbeselectedforsampling.However,
sitehistoriesanddifferencesinthecharacteristicsofthesitesshouldbecarefullyevaluatedtodeterminewhethertherearesigniicantdifferencesbetweentheexposedandreferenceareas.Often,areas
thatescapeoilingdosobecausetheydifferfundamentallyfromexposedareas(forexample,baysthat
facedifferentdirections),andsowouldnotbeexpectedtoexhibitthesame“background”conditions.
29
Anydifferencesbetweenreferenceandexposedsitesmustbeconsideredwhenanalyzingandinterpretingresults.
NationalmonitoringprogramssuchasNOAA’sNationalMusselWatchProgramcanprovide
valuablepre-spilldatafordetermininghistoricalrangesofbackgroundconcentrationsofPAHsin
shellishatseverallocationsaroundthecountry(Mearnsetal.1998,1999).Whenavailableforanarea,
PAHdatafromtheNOAAStatusandTrendsProgram(includingtheNationalMusselWatchProgram)
orothermonitoringprogramsmayhelpdeterminenormalbackgroundlevelsandseasonalpatternsin
contaminantlevels.
Selectingtargetspeciestobesampled
Evaluatingrisktohumanhealthfromseafoodconsumptionusuallyisaprimarypurposeof
seafoodsampling,soincludingspeciesharvestedcommercially,recreationally,andforsubsistenceuse
maybeimportant.Speciesthatarepresentthroughouttheareaofconcernmaybemostappropriate
forsamplingifresultsaretobecomparedspatiallyoriftheresultsaretobeusedtomakestatistical
inferencestotheentirearea.
Hydrocarbonuptakeandeliminationratesvarywidelyamongspecies,asdescribedinSectionII.Finish,forexample,quicklymetabolizeandeliminatePAHs.Bivalvesgenerallytendtobioaccumulatemostcontaminantsandoftenserveasgoodindicatorsofthepotentialextent,degree,and
persistenceofcontamination.Ontheotherhand,someshellishspeciesstopfeedingorpassingwater
overtheirgillsatextremetemperaturesand,consequently,mayexhibitlowuptakeratesundercertain
conditions.Considersuchdifferenceswhenselectingspeciesformonitoringandcomparingresults
amongspecies.
Samplingfrequencyandduration
Monitoringgenerallyshouldcontinueuntilcontaminantlevelsreachbackgroundlevelsor
pre-determinedacceptablelevels.Periodicsamplingbeforethoselevelsarereachedcanrevealtrends
incontaminantlevels.Appropriatemonitoringfrequencyanddurationwilldependonspillconditions,suchasoiltypeandvolumespilled,lushingratesofaffectedwaterbodies,andthedegreeof
exposuretowaveactionofcontaminatedshorelines.Appropriatemonitoringfrequencyandduration
willalsodependonthespeciesexposedandexposureduration.Finishgenerallyeliminatehydrocarbonswithindaysorweeks,whereasbivalvesmayrequireseveralweeksormonths.Elevatedlevelsof
petroleumcompoundsinbivalveshavebeendetectedforyearsatsomesiteswherehighlevelsofoil
persistinadjacentsediments.Timeofyearshouldalsobeconsideredinsomeclimatesbecauseeliminationratesmaybeslowerincoldtemperatures.Otherfactorstoconsiderwithregardtomonitoring
frequencyaretheturnaroundtimeforsampleanalysisandtimerequiredfortheevaluationteamto
meet,interprettheresults,anddecideontheneedforfurthersampling.Samplingplansmayneedto
beadjustedovertimeasconditionschangeandasmonitoringresultsprovidenewinformationonthe
fateoftheoilandonwhichpathwaysofexposurearesigniicant.
Samplecollectionandhandling
Theseafood-samplingplanshouldspecifyalldetailsaboutsamplecollection.Thisincludes
theareastobesampled,numberofsamplestobecollectedfromanarea(tomeetstatisticalobjectives),numberoforganismsorquantityoftissuetobecomposited(tomeetanalyticalrequirements),
sizeoforganismstobecollected,tidalelevationsforcollection(inthecaseofintertidalinvertebrates),
methodofmarkingorrecordingexactsamplinglocations,andieldnotestoberecorded.
30
Thesamplingplanshouldalsospecifyhowseafoodsamplesshouldbehandled.Thisincludes
anyieldpreparation,packagingandtemperaturerequirements(forexample,wrappinginfoil,keepinginacoolerat4°Corbelow,andfreezingwithinaspeciiedperiodoftime),labeling,andanychainof-custodyrequirementsduringtransporttotheanalyticallaboratory.(Anexamplechain-of-custody
formisincludedintheappendix).Onlyliveanimalsshouldbecollectedforseafoodanalysis.The
edibleportion,whichmayvaryculturally,isusuallytheportionofinterest.Seafoodsamplescollected
forsensorytestinggenerallyshouldbehandledastheywouldbeduringcommercial,recreational,or
subsistenceharvestandtransport.
Proceduresshouldbefollowedtopreventcross-contaminationintheield(suchaspreventing
exposureofsamplesorsamplingequipmenttoexhaustfumesandenginecoolingsystemsonvessels)
andtomaintaintheintegrityofthesamples.Likewise,goodlaboratorypracticesshouldbeemployed
topreventcontaminationofsamplesduringpreparationandanalysis.
TestingSeafoodforContaminationandTainting
Generally,twodifferenttypesofevaluationscanbeconductedafteroilspillstodetermine
whetherseafoodiscontaminated.Sensorytestingdetermineswhetherseafoodistainted,i.e.,ifit
hasanoff-odororoff-lavor.Chemicalanalysisdetermineswhethertissuesarecontaminatedwith
targetedcompounds.Detailedmethodsofchemicalanalysiscanindicatethepresenceaswellas
thequantityofspeciiccontaminantsintissues.Theseresultscanbeusedtoevaluaterisktohuman
healththroughconsumptionofcontaminatedseafood(asdescribedinSection5).Summariesofthese
typesofseafoodtestingaredescribedbelow.
Sensoryevaluationofseafoodforpresenceofpetroleumtaint
Whenanoilspilloccurs,localseafoodresourcesmaybeexposedtopetroleumcompounds
thataffecttheirsensoryqualities;thatis,smell,taste,andappearance.Evenwhenseafoodfromaspill
areaisconsideredacceptablewithregardtofood-safety,lavorandodormaystillbeaffected,negativelyimpactingtheseafood’spalatability,marketability,andeconomicvalue.Furthermore,tainted
seafoodisconsideredbytheU.S.FoodandDrugAdministrationtobeadulteratedand,therefore,is
restrictedfromtradeininterstatecommerce.
Overviewofsensorytestingofseafood
Taintedseafoodisdeinedascontainingabnormalodororlavornottypicaloftheseafood
itself(ISO1992).Underthisdeinition,theodororlavorisintroducedintotheseafoodfromexternal
sourcesandexcludesanynaturalby-productsfromdeteriorationduetoagingduringstorage,decompositionoffats,proteins,orothercomponents,orduetomicrobialcontaminationnormallyfound
inseafood.Taintisdetectedthroughsensoryevaluation,whichhasbeendeinedas“thescientiic
disciplineusedtoevoke,measure,analyzeandinterpretthosereactionstocharacteristicsoffoods
andmaterialsasperceivedthroughthesensesofsight,smell,taste,touchandhearing”(FoodTechnologySensoryEvaluationDivision1981).Humanshavereliedforcenturiesonthecomplexsensations
thatresultfromtheinteractionofoursensestoevaluatequalityoffood,water,andothermaterials.In
morerecenttimes,sensorytestinghasdevelopedintoaformalized,structured,andcodiiedmethodologyforcharacterizingandevaluatingfood,beverages,cosmetics,perfumes,andothercommercial
products.Sensoryevaluationtechniquesareroutinelyusedcommerciallyinqualitycontrol,product
development,andresearch.Sensorytestingcanbeeithersubjectiveorobjective.Subjectivetestingmeasuresfeelingsandbiasestowardaproductratherthantheproduct’sattributes.Forobjective
31
testing,highlytrainedassessorsusethesensestomeasureproductattributes.Testingofseafoodfor
petroleumtaintshouldbecompletelyobjectiveandshouldbeconductedbyhighlytrainedanalysts.
Objectivesensorytestingservesasapractical,reliable,andsensitivemethodforassessing
seafoodquality.Onlyhumantesterscanmeasuremostsensorycharacteristicsoffoodpractically,completely,andmeaningfully.Thoughadvancescontinuetobemadeindevelopinginstrument-based
analysis,humansensesremainunmatchedintheirsensitivityfordetectingandevaluatingorganolepticcharacteristicsoffood.TheU.S.FoodandDrugAdministrationandNOAA’sNationalMarine
FisheriesServiceroutinelyemploysensoryevaluationininspectingseafoodquality.Seafoodinspectorsareessentiallysensoryanalysts,orassessors,whoworkasexpertevaluatorsintheapplicationof
productstandards.Amajorobjectiveofseafoodsensoryinspectionistoevaluatequalitywithregard
todecompositionofisheriesproducts.Sensoryanalysiscanalsoprovideinformationonpresenceof
taintfromexternalsources,suchasspilledoilandchemicals.
Sensorypanels
Objectivesensoryevaluationofseafoodisusuallyconductedusingapaneloftrainedand
experiencedanalysts.Sensoryanalystsmustbescreenedforsensitivityandthentrainedinapplying
establishedsensorysciencemethodology.Participationincalibrationor“harmonization”workshops
ensuresuniformapplicationofsensoryevaluationcriteriaforparticulartypesofcontaminants,includingstandardterminologyandconsensusonlevelsofintensityofsensorycharacteristics.Descriptive
analysesandreferencesareusedtoyieldresultsthatareconsistentlyaccurateandprecise.
Therearedifferenttypesofsensoryanalysts,whichfunctiondifferentlyandhavespeciicselection,training,andvalidationrequirements.Trainedassessorsaresensoryanalystsselectedandtrained
toperformaspeciictask.Expertassessorsarethemosthighlytrainedandexperiencedcategoryof
sensoryanalyst.Expertassessorsgenerallyevaluateproductfull-time,functionindependently,and
oftenareusedinqualitycontrolandproductdevelopment.Examplesofproductsevaluatedbyexpert
sensoryassessorsincludewine,tea,coffee,andseafood.Throughextensivestandardizedtraining
andexperiencewithsensorymethodology,theseexpertassessorshavebecomeextremelyobjective
andevaluatequalitywithahighdegreeofaccuracyandprecision.Seafoodinspectorsfallintothe
categoryofexpertassessors,andcanmakeconsistentandrepeatablesensoryassessmentsofquality
characteristicsofseafoodastheyrelatetogradelevelordecisionstoacceptorrejectproduct.
Thenumberofpanelistsneededdependsonthelevelofexpertiseandexperienceofthe
analystsused.Forpanelsofexpertassessors,suchasNMFSandFDAseafoodinspectors,usuallyonly
threetoiveanalystsareneeded.Iflessexperiencedanalystsareused,alargernumberofpanelistsis
recommended.Wheneverpossible,useofexpertseafoodassessors,suchasseafoodinspectors,isrecommendedforevaluationofseafoodforpresenceofpetroleumtaint.Extensiveproductknowledge
andexperienceenableseafoodinspectorstoveryaccuratelydistinguishvariationsrelatedtoproduct
processing,storage,deterioration,etc.fromtaintduetoexternalsources.Someseafoodinspectorsfor
NMFSandFDAhavehadspecializedtrainingfordetectingpetroleumtaintinseafoodandexperience
evaluatingseafoodsamplesatoilspills.Ifcalledupon,thesespecializedinspectorsareavailableto
conductsensoryevaluationofseafoodduringspillevents.
Sensoryevaluationprocedures
Appliedasascience,sensoryevaluationshouldbeconductedunderspeciic,highlycontrolled
conditionsinordertopreventextraneousinluencesinthetestingenvironmentfromaffectingpanelists’sensoryresponses.Accordingly,sensorytestingisbestconductedinfacilitiesspeciicallydesigned
forsensorytesting.TheNMFSSeafoodInspectionBranchmaintainsseveralsuchlaboratoriesaround
thecountry.Seafoodsamplescollectedduringaspilleventcanbeshippedtotheselaboratoriesfor
sensoryevaluation.Inmostcases,NMFSandFDArecommendthatsamplesbeshippedandevaluated
inthesamemannerastheynormallyareshippedandsold(i.e.,fresh,live,frozen).Whenthisisnotpos-
32
sible,asmaybethecaseforoilspillsinveryremoteareas,sensoryanalystscanconductevaluationsat
thesceneofanincident.
Allsensorytestingshouldbeconductedunderthesupervisionofasensoryprofessional,
whodesignsandimplementsthesensorytestingprocedure.Atrained“facilitator”shouldcoordinate
sensoryanalysis.Thefacilitatorconductsthetesting,includingreceiving,preparing,andpresenting
samplestotheexpertsensorypanel,andcollectingtheresultingdatainascientiicandunbiased
manner.Allofthesestepsshouldbeconductedaccordingtostandardizedproceduresunderhighly
controlledconditions.Suspectsamplesarepresentedtoassessorsinblindtests,alongwithcontrol
orreferencesamples.Samplesareirstsmelledraw,thensmelledcooked,andinallytastedbyeach
panelistindependentlytodeterminewhetherpetroleumtaintispresent.Asensoryprofessionalstatisticallyanalyzespanelist’sresponsestodeterminewhethersamplespassorfailwithregardtopresence
ofpetroleumtaint.Theseresults,inturn,helpseafoodmanagersdeterminewhetherrestrictionsare
neededonseafoodharvestormarketingfromthespillareaduetotainting.
Inthatwearenotcertainwhichcompoundsinpetroleumareresponsiblefortaintperceived
byhumans,chemicalanalysiscannotyetsubstituteforsensorytestingindeterminingwhetherataint
ispresent.Ithasbeensuggestedthattheprincipalcomponentsofcrudeandreinedoilsresponsible
fortaintingincludethephenols,dibenzothiophenes,naphthenicacids,mercaptans,tetradecanes,and
methylatednaphthalenes(GESAMP1977).Thehumanolfactorysystemgenerallyisverysensitiveto
phenolicandsulfurcompounds,eventhoughtheyareminorcomponentsofoil.
In2001,NOAApublishedatechnicalguidancedocumentonappropriatesensorymethodologytoobjectivelyassessseafoodforthepresenceofpetroleumtaint.Writtenbysensoryscientists
withNOAA’sNationalMarineFisheriesServiceSeafoodInspectionProgramandCanada’sFoodInspectionAgency,incooperationwiththeU.S.FoodandDrugAdministration,GuidanceonTestingand
MonitoringofSeafoodforPresenceofPetroleumTaintFollowinganOilSpillcomprehensivelydescribes
recommendedstandardprocedures,includingcollection,preservation,andtransportofseafood
samples,forsensoryevaluation.Theguidanceisintendedtoassistinconductingscientiicallysound
andlegallydefensiblesensorytestsonseafoodduringoilspillresponse,withadequateandappropriatequalitycontrol.
Chemicaltestingtechniquesforpetroleumcontaminantsinseafood
Chemicaltestingofseafoodoftenisconductedafteranoilspilltodeterminewhetherseafood
tissuesarecontaminatedwithpetroleumcompounds.Bothdetailedandscreeningmethodsofanalysiscanbeemployed.Below,wesummarizemethodstypicallyusedafterpastoilspills,includingsome
oftheiradvantagesanddisadvantages.
Detailedmethodsofchemicalanalysis:gaschromatography/massspectrometry
Detailedchemicalanalysisofseafoodafteroilspillstypicallyisconductedusinggaschromatographyandmassspectrometry(GC/MS),whichmeasuresindividualPAHsatverylowdetection
levelsandprovidesaPAHpattern(oringerprint)tocomparetothatofthesourceoil.Priortoanalysis,
hydrocarbonsareextractedfromseafoodtissuesamplesandtheextractissplitintothreefractions:
1)thesaturatedhydrocarbonsfraction(f1),containingthen-alkanes,isoprenoids,steranesandtriterpanes;2)thearomatichydrocarbonfraction(f2),containingthePAHsandsulfurheterocyclics;and3)
thepolarhydrocarbonfraction(f3),containingthenitrogenheterocycliccompounds.Recoverystandardsappropriatetoeachfractionareadded(LauensteinandCantillo1993).
ThePAHsinthef2fractiongenerallyareofgreatestconcernwithregardtorisktohuman
health.ThegaschromatographseparatestargetedPAHcompoundsyieldingaretentiontimethat,
incombinationwiththemassspectrafromthemassspectrometer,enabledetailedidentiicationof
individualcompoundsbytheirionmasses.Themethodoftenusedisusuallyreferredtoas“Modi-
33
ied”EPAMethod8270,whichisEPAMethod8270forsemi-volatilecompoundsmodiiedtoinclude
quantiicationofthealkyl-substitutedPAHhomologues,inadditiontothestandardPAH“priority
pollutants.”TableII-3liststhePAHsandtheiralkylhomologuesusuallyincludedinthisanalysis.Inoil,
alkylatedhomologuesofPAHsaremorepredominantthanparentPAHcompounds,oftenbyanorder
ofmagnitude.Thisisincontrasttopyrogenic(combustion)andotherpotentialPAHsources.The
detailedchemicalingerprintprovidedbyGC/MSanalysisenablesdifferentiationamongsourcesof
PAHsfoundinthesample.Contaminationfromaspeciicspillcanbedistinguishedfrombackground
sourcesofcontamination,suchasPAHsderivedfromcombustionsources.GC/MScanalsomeasure
analytesotherthanPAHstohelpwithingerprintanalysisofoilortotrackoilweathering.TheGC/MS
canberunintheselectedionmonitoring(SIM)mode,ratherthanthefull-scanmode,toincreasethe
minimumdetectionlevels(MDL)oftheindividualparentandselectedhomologuePAHsbyafactorof
10to40.MinimumdetectionlevelsforindividualPAHsareverylow,intherangeofpartsperbillion
(ng/g)intissue.Thequantitativeresultsforspeciic,targetedPAHscanbeusedtoassesswhether
levelsdetectedposearisktohumanhealththroughseafoodconsumption.
NormalturnaroundtimeforanalysisoftissuesamplesforPAHsisapproximatelytwoweeks.
Fastturnaroundtimeisapproximatelythreedaysforabatchofsamples.CostsforGC/MS-SIManalysis
oftissuesarerelativelyhigh,startingfromabout$750persample,pluspremiumsof50-100%forfast
turnaround.Thesample-processingratedependsonthethroughputcapabilitiesofthelaboratoryand
thedegreeofqualitycontrol(QC)ofthedatabeforetheresultsarereleased,rangingfromapproximately20toamaximumof100samplesperweek.
DataReportingandInterpretation
Theimportanceofdatareportingandinterpretationshouldnotbeunderestimatedinplanningseafoodsafetymonitoringprogramsafteroilspills.Somesimplestepscanbetakentohelpavoid
confusionandpreventincorrectconclusions.Forexample,theanalyticallaboratoryshouldincludeat
leastthefollowinginformationforallanalyticaldatareported:
Sample“Header”Information
34
•
•
•
•
•
•
•
•
•
•
•
•
•
SampleNameorFieldID:thesamplenameornumberassignedbythesampler
SampleType:e.g.,sample,ieldblank,tripblank,proceduralblank,QC
BatchNo.:analyticalbatchnumber(sosamplesrunasabatchcanbeidentiied,particularlyif
problemsarefoundwithabatchrun)
Matrix:e.g.,water,sediment,tissue,oil
PercentMoisture:fortissueandsedimentsamples
SampleSize:weightorvolumeofsampleusedforanalysis
CollectionDate:datethesamplewascollected
ExtractionDate:datethesamplewasextracted
AnalysisDate:datethesamplewasanalyzed
AnalysisMethod:EPAMethodorotherdescription
SurrogateCorrected?:Arethereportedconcentrationscorrectedforsurrogaterecovery?
MethodDetectionLimit:theminimumdetectionlevel
Units:unitsinwhichtheconcentrationisreported,includingwhetherconcentrationsarewet
weightordryweight(fortissue)
AnalyteData
•
•
•
•
•
IndividualandTotalPAHconcentrations
SurrogateRecovery(%):foreverysample
KeytoDataQualiiers:Thelabshouldincludeakeytoanyqualiiersusedtolagreportedvalues
thathavesomekindofdataaccuracyissue.Forexample,twostandardqualiiersusedunderthe
USEPAContractLaboratoryProgramguidelines(USEPA1994)are:
U=theanalytewasanalyzedfor,butwasnotdetectedabovethereportedsamplequantita-
tionlimit
J=theanalytewaspositivelyidentiied;theassociatednumericalvalueistheapproximate
concentrationoftheanalyteinthesample
Analysisofthesourceoil,ifavailable,isneededtoenableingerprintcomparisons.Onlyexpert
petroleumhydrocarbonchemistsshouldinterpretingerprintsbecausethecomplexprocessesofoil
weatheringanduptakeresultinvariablePAHpatternsinorganisms(SauerandBoehm1995).Also,
patternscanbedificulttointerpretinsamplescollectedfromareaswithhighbackgroundlevelsof
contamination.
Cautionisadvisedwhencomparinganalyticalresultsforsamplesofdifferenttypes,orsamples
collectedfromdifferentareasoratdifferenttimes.Beforedrawingconclusions,consideranydifferencesintheanalysesconductedorthewaythedataarereported.Examplesofdifferencestowatch
forinclude:
• theunitsinwhichresultsarereported,andwhetherreportedconcentrationsaredryorwet
weight;
• whetherthelistsofanalytesandminimumdetectionlimitsforindividualPAHsarethesame;
• whetherreportedconcentrationshavebeencorrectedforsurrogaterecovery;and
• whetherreportedconcentrationshavebeenlipid-normalized.AsdescribedinSectionII,PAH
uptakeandretentiontendtoincreasewiththeincreasinglipidcontentoftissues.Consequently,differencesinlipidcontentmayneedtobeconsideredwhencomparingandinterpretinganalyticalresultsovertimeoramongdifferentorganisms.
Rapidscreeningmethodsofanalysis
Rapid,low-costanalyticalmethods,generallyknownasscreeningmethods,canbeemployed
toidentifycontaminatedsamplesandprioritizethemfordetailedanalysis.DetailedmethodsofanalysisforPAHsintissuearetime-consumingandexpensive.Thelargenumberofsamplesoftencollected
afteranoilspillcanquicklyoverwhelmlaboratorycapacityandstrainresources.Screeningmethods
ofanalysiscanrapidlyprocesslargenumbersofsamplestoyieldsemi-quantitativeestimatesofcontaminantconcentrationsandallowrankingofsamplesbydegreeofcontamination.Usedinatiered
approach,screeningmethodscanidentifythemostcontaminatedsamples,prioritizingorreducing
thenumberofsamplesthatneedtobeprocessedbydetailedanalyticaltechniques,suchasGC/MS.
Forexample,inresponsetotheneedtoanalyzelargenumbersofsubsistenceseafoodsamples
collectedaftertheExxonValdezoilspillinPrinceWilliamSound,Alaska,NOAA’sNorthwestFisheries
ScienceCenterusedreverse-phase,highperformanceliquidchromatography(HPLC)withluorescencedetectiontoscreenformetabolitesofaromaticcompoundsininishbile(Krahnetal.1982,
1984,1986,1992,1993a,1993b,1993d).Finishrapidlymetabolizearomaticcompoundsandconcentratetheresultingmetabolitesinbileforexcretion,oftenatconcentrationsthatareordersofmagnitudegreaterthanthoseinedibletissue.Usingthisrapid,low-costmethod,hundredsofinishtissue
sampleswerescreenedforindicationofexposuretopetroleumcontaminants,enablingGC/MSanaly-
35
sestobefocusedonselectedsamplestoconirmpresenceandquantitiesofindividualcontaminants.
Hufnagleetal.(1999)hasdevelopedanHPLC/UVluorescencescreeningmethodforrapidlymeasuringaromaticcompoundsininvertebratetissues.ThisscreeningmethodwasusedsuccessfullyonlobstersamplescollectedaftertheNorthCapeoilspilloffthecoastofRhodeIslandin1996.Fordetailson
arapidscreeningmethodforparentaromaticcompoundsinsedimentsseeKrahnetal.(1991,1993c).
Screeninganalyses,suchastheHPLC/luorescencemethoddescribedabove,generallycanbe
completedinrapidturnaroundtime(within24hours)andcanbeconductedonaresearchvesselor
onshorelab.Rapidavailabilityofresultsenablessamplingmodiicationsbasedonindicationsofexposure.Thiscanbeveryhelpfulduringthecriticalearlyphasesofanoilspillresponse,whendecisions
regardingclosingorotherwiserestrictingseafoodharvestmaybemade.
TheutilityofHPLC/luorescenceandotherscreeningmethods,however,ismorelimitedthan
detailedmethodsofanalysis.Forexample,thoughitmaybepossibletorecognizechromatographic
patternsassociatedwithcharacteristicclassesofpetroleumproducts,HPLC/luorescencescreening
doesnotproduceadetailed“ingerprint”similartotheresultsacquiredfromGC/MS.Consequently,
HPLC/luorescenceusuallywillnotenabledifferentiationbetweenbackgroundcontaminationsources
andthespilledoil,especiallyinverypollutedareas.SinceHPLC/luorescencescreeningdoesnot
quantifyindividualaromaticcompounds,theresultscannotbeusedtoassessrisktohumanhealth
fromconsumptionofcontaminatedseafood.Furthermore,measurementofluorescentaromaticcompoundsinbileisnotastandardanalysis,limitingtemporalandspatialcomparisonsusinghistorical
datasets.Lastly,HPLC/luorescencescreeningforluorescentaromaticcompoundsinbileisaspecializedtechnique,andlaboratoryavailabilityandexpertiseneededtoconducttheanalysesreliablymay
belimited.
WaterMonitoring
Watersamplesoftenarecollectedandanalyzedaspartoftheinitialspillresponseandassessment.Seafoodsafetymanagerscanusetheseresultstohelpestimatetheextentanddurationofseafoodexposuretooilinthewatercolumn.Monitoringofwaterconcentrationsmayalsobeimportant
ifwater-qualitycriteriaareappliedasaconditionforre-openingaclosedisheryorremovingother
harvestrestrictions.
Oilconcentrationsinthewatercolumngenerallypeakearlyafteranoilspilland,inmostcases,
rapidlydeclinetobackgroundlevelswithindaystoaweek,aswasthecaseforexampleattheNew
Carissaoilspill(PayneandDriskell1999).Accordingly,ifwatersamplingistobeconducted,initial
samplingshouldcommenceverysoonafteranoilspilloccurs.Oilmaypersistlongerthanusualin
thewatercolumniftherearemultipleorongoingoilreleases,ifthereleasedvolumeisextraordinarily
large,oriflargevolumesofoilarephysicallydispersed.AftertheBraeroilspill,forexample,elevatedoil
concentrationsweredetectedinthewatercolumnaslongas50daysafterrelease(Daviesetal.1997).
Dissolvedanddispersedoilplumesinthewatercolumnaredrivenbycurrentsandsomayhaveavery
differentspatialdistributionthansurfaceslicks,whicharedrivenprimarilybywind.
UndertheauthorityoftheCleanWaterAct(63FR68354-68364),EPAhasissuednationalrecommendedwater-qualitycriteriaforprioritytoxicpollutantstobeusedbystatesandtribesinadoptingwaterqualitystandards.EPAhasissuedwater-qualitycriteriaforprotectionagainsthumanhealth
effectsforthreemono-aromatichydrocarbonsandeightPAHs(listedinTableIII-1).Theseparticular
compounds,however,arepresentincrudeoilsandreinedproductsatverylowlevelsandconstitute
atinypercentageofthePAHsnormallydetectedinwatersamplesafteranoilspill.Noneofthewater
qualitycriteriatoprotectaquaticcommunities(bothfreshwaterandsaltwater)issuedbyEPAarefor
PAHs.EPAhasissuedrecommendedwaterqualitycriteriafororganolepticeffectsfor23chemicals,
thoughnotforanyofthecompoundspresentinpetroleumproducts.Somestateshaveestablished
statewaterqualitystandardsforPAHsintheircoastalwaters.
36
TableIII-1.Nationalrecommendedwaterqualitycriteriaforprioritytoxicpollutantsforprotectionagainsthumanhealth
effects(63FR68354).
PAHPriorityPollutant
HumanhealthcriteriaforconsumptionofWater+Organism(µg/L)
HumanhealthcriteriaforconsumptionofOrganismOnly(µg/L)
Benzo(a)anthracene
0.0044
0.049
Benzo(a)pyrene
0.0044
0.049
Benzo(b)fluoranthene
0.0044
0.049
Benzo(k)fluoranthene
0.0044
0.049
Dibenzo(a)anthracene
0.0044
0.049
300
370
1,300
14,000
Fluoranthene
Fluorene
SedimentMonitoring
Sedimentmonitoringcanbeincludedaspartofapost-spillmonitoringprogramtodetermine
whethersedimentsmaybeapotentialchronicsourceofoilexposuretoadjacentseafoodcollection
sites,particularlyatintertidalsiteswherebivalvesareharvested.Sedimentsamplingalsomayfacilitate
ingerprintanalysisofPAHsintissuesbyprovidingthePAHpatternincontaminatedsediments,which
maybedifferentthanthePAHpatterninthefreshsourceoil.Itisimportanttorecognize,however,
thatsedimentsoftencontainhighlevelsofbackgroundPAHcontamination,particularlyinurbanareas
andharbors.PAHsandothercontaminantsdetectedmaynotberelatedtoaparticularoilspill.Also,
characterizationofsedimentcontaminationcanbedificultbecauseoftheinherentheterogeneityof
intertidalsedimentsoverspace,depth,andtime.
TherearenonationalsedimentqualitycriteriaforPAHsinmarineorfreshwatersediments.
Somestateshaveestablishedsedimentqualitystandardsandcleanupscreeninglevelstoprevent
adversebiologicaleffects.Howthesestandardswouldrelatetoseafoodadulterationorsafetyissuesis
unclear.
37
IV.
SEAFOODRISKASSESSMENT
Severaldifferentendpointscanbeconsideredwhenassessingrisksposedtohumanhealth
fromconsumingcontaminatedseafood.Theseincludebothcarcinogenicandnon-carcinogenic
effectstothegeneralpopulation,aswellastoparticularlysusceptiblesegmentsofthepopulation
suchaschildren,pregnantwomen,andsubsistenceseafoodconsumers.Humanepidemiological
studies,whenavailable,andlaboratorystudiesinvolvinganimalsareusedtoassessthelikelyeffectsof
contaminantsatvariousexposurelevels.
AsdiscussedinSectionII,petroleumoilsarecomposedofcomplexandvariablemixturesof
hundredsofdifferenthydrocarboncompounds.Ofthese,polycyclicaromatichydrocarbons(PAHs)
aretypicallyofgreatestconcernwithregardtohealtheffectsbecauseoftheirrelativepersistenceand
carcinogenicity.EvidencefromoccupationalstudiesofworkersexposedtomixturesofPAHsindicates
thatmanyofthesecompoundsmaybecarcinogenictohumans.IndividualPAHsthatareconsidered
tobeprobablehumancarcinogensincludebenz[a]anthracene,benzo[a]pyrene,benzo[b]luoranthene,
benzo[k]luoranthene,chrysene,dibenz[a,h]anthracene,andindeno[1,2,3-cd]pyrene(IRIS1994).Most
ofthedatagatheredfromlaboratorystudiesprovidesinformationoncarcinogeniceffectsoflifetime
exposuretoPAHs.Informationonnon-carcinogeniceffectsislimited.Consequently,cancergenerally
istheprimaryendpointconsideredwhenassessingpotentialriskstohumanhealthfromconsumption
ofseafoodfromanoilspillarea.
OverviewofCancerRiskCalculationsforPAHsinSeafood
MostseafoodriskassessmentsconductedafteroilspillsintheU.S.havefollowedanapproach
usedbytheU.S.FoodandDrugAdministration(USFDA)in1990aftertheExxonValdezoilspillinPrince
WilliamSound,Alaska.AttherequestoftheAlaskaOilSpillHealthTaskForce,agroupestablishedafter
thespilltoconductasurveyandassesstheimpactofthespillonsubsistencefoodsupplies,USFDA
conductedariskassessmentandprovidedanadvisoryopiniononthesafetyofaromatichydrocarbonresiduesinsubsistenceseafoodinthespillarea(Bolgeretal.1996;BolgerandCarrington1999).
ThisapproachusesasetofcalculationstodetermineinishorshellishPAHtissueconcentrations,
expressedinbenzo[a]pyrene(BaP)equivalents(µg/kg),abovewhichanacceptablerisklevelforcancer
isexceeded.Thevaluesforseveralvariablesinthesecalculationscanbeadjustedonacase-by-case
basis,dependingonlocalseafoodconsumptionlevelsoftheexposedpopulation,averagebody
weightoftheexposedpopulation,estimatesofexposuretimeforaparticularspill,andthecancer
riskleveldeemedacceptable.Thisapproachtocalculatingseafoodadvisoryoractionlevelshassince
beenusedafterseveralotheroilspills,includingtheNorthCapespillinRhodeIsland,theJulieNspillin
Maine,theKurespillinCalifornia,andtheNewCarissaspillinOregon.
Thebasicequationandinputparametersaredescribedbelow:
�������� �� ������ ����� ������� ��� ����������� �
������������
������������
AcceptableRiskLevel(RL):Theacceptablerisklevelisthemaximumlevelofindividuallifetimecarcinogenicriskthatisconsidered“acceptable”byriskmanagers.ThetypicalRLusedincancer
riskcalculationsis1x10-6.InthecaseofPAHs,thisimpliesthatexposuretoPAHsinseafoodbelowa
speciiedtissueconcentrationlevelatadeinedconsumptionrateoverthedeinedexposureperiod
wouldyieldalifetimecancerriskofnogreaterthan1in1,000,000.Somestatesconsiderhigherrisk
levels,suchas1x10-5(alifetimecancerriskofnogreaterthan1in100,000)tobeacceptable.
38
Arisklevelof1x10-6wasusedintheriskcalculationsdonebyUSFDAfortheExxonValdezoil
spill,aswellasthosedonebytheStateofRhodeIslandfortheNorthCapeoilspill,theStateofCaliforniafortheKureoilspill,andtheStateofOregonfortheNewCarissaoilspill.Arisklevelof1x10-5was
usedintheriskassessmentconductedbytheStateofMainefortheJulieNoilspillandtheStateof
AlaskafortheKuroshimaoilspill.
BodyWeight(BW):Thevalueforbodyweightusedinriskcalculationsisintendedtorepresentthebodyweightofanindividualconsumer(kg).Anaveragebodyweightof60-70kg(132-154
lb)isoftenusedforadultsinthegeneralU.S.population.Ifaparticulargroupofat-riskconsumersis
consideredinariskcalculation,alternativebodyweightsmaybeused.Forinstance,childrenorsubsistenceharvestersmayhaveloweraveragebodyweightsthan60-70kg.Becauseallowableconsumptionlimitsatacertainseafoodtissueconcentrationarelinearlyrelatedtobodyweight,riskassessors
shouldconsidertheactualbodyweightsofthetargetedpopulation.
AveragingTime(AT):Atypicalaveragingtimevalueusedincancerriskcalculationsis70
years.Thisvaluerepresentstheaveragelengthofahumanlifetime,whichisthetimeperiodofinterest
forexaminingcancerasanendpoint.
BaPCancerSlopeFactor(SF):Thecancerslopefactor,orcancerpotency(q1*),isderivedfrom
dose-responsedataobtainedfromhumanepidemiologicalandanimaltoxicitystudies(USEPA2000b).
Highdosesofthecontaminantofinterestareoftenusedindose-responsestudies,andextrapolation
ofthedatatolowerdosesthatmaybeencounteredbythegeneralpopulationisoftennecessary.
Cancerpotencyisestimatedasthe95-percentupperconidencelimitoftheslopeofthedoseresponsecurveinthelow-doseregion.Thismethodprovidesaconservativeestimateofthepotential
cancerriskofacontaminant.Theactualriskmaybesigniicantlylower.TheUSEPA(2000b)hasused
acancerpotencyfactorof7.3permg/kg/daytocalculatemonthlyconsumptionlimitsforthegeneral
populationoverarangeofPAHtissueconcentrationsininish.Thissamepotencyvaluewasusedin
cancerriskcalculationsfortheNewCarissaandJulieNoilspills.Acancerpotencyfactorof9.5mg/kg/
day,establishedbytheStateofCaliforniaEPA,wasusedtocalculatecarcinogenicriskassociatedwith
consumingcontaminatedshellishfollowingtheKurespillinCalifornia.
ExposureDuration(ED):Theexposuredurationisthetimeperiodoverwhichanindividual
isexposedtoacontaminant.Whencalculatingrisksassociatedwithseafoodconsumptionfollowing
anoilspill,theexposuredurationisequivalenttothetimeintervaloverwhichanindividualconsumes
contaminatedseafoodharvestedfromthespillzone.Exposuredurationvariesdependingonspill
conditions.Thedefaultassumptionforriskassessmentsgenerallyis70years,theaveragetimefora
lifetimeexposure.Unlikesomeothercontaminants,however,PAHconcentrationsincontaminated
inishandshellishdecreaseovertimeandexposurelevelswilldecline,eventuallydroppingtobackgroundconcentrations.Consequently,exposureperiodsmuchshorterthana70-yearlifetimeexposureassumptionaremorerealisticandappropriateforPAHs,particularlyforoilspillsbecausetheyare
typicallyveryshort-term,pulsedcontaminationevents.
AnexposuredurationoftwoyearswasassumedfortheriskcalculationsfortheNewCarissa
andKureoilspills.AnexposuredurationofiveyearswasusedfortheNorthCapeoilspillcalculations
(Mausethetal.1997).Moreconservativeexposureassumptionshavebeenmadeatotherspills.Both
ten-and30-yearexposuredurationswereusedinriskcalculationsfortheJulieNoilspill.Consumption
risksfortheExxonValdezspillwerecalculatedforbothtenand70-year(lifetime)exposuredurations.
SeafoodConsumptionRate(CR):Typically,consumptionratesarecalculatedforaverageand
upper-endconsumersandcorrespondtothequantityofseafood(unitsexpressedasgrams)thatan
individualmayconsumeperday.Thevaluesusedforservingsizesandfrequencyofseafoodmeals
areoftenadjusted,duetothesigniicantvariabilityinseafoodconsumptionamongindividualsand
particulargroups.
39
Datafromnationalsurveys,suchastheContinuingSurveyofFoodIntakebyIndividuals(CSFII)
conductedbyUSDA,canbeusedtohelpestimatenationalseafoodconsumptionrates.TheconsumptionratetypicallyusedfortheaverageU.S.seafoodconsumeris7.5grams/person/day.Thisvalue
isderivedfromtheassumptionthatanaverageseafoodconsumereatsone8-ounce(227grams)
seafoodmeal(suchasaishillet)onceamonth(per70kgconsumerbodyweightforadults)(USEPA
2000b).
ThecarcinogenicriskassessmentconductedaftertheExxonValdezoilspillusedseafood
consumptionratescalculatedfromsubsistenceharvestsurveydata(Bolgeretal.1996;Bolgerand
Carrington1999).ResidentsofAlaskaNativecommunitiesrelyonlocalinishandshellishresources
forsigniicantportionsoftheirdiets.TheAlaskaDepartmentofFishandGameDivisionofSubsistence
Consumptionhadconductedhouseholdharveststudiesbeforethespill(Fall1999;Scottetal.1992).
Subsistenceconsumptionrateswereestimatedtobe89grams/person/dayforsalmon,52grams/
person/dayforotherinish,21grams/person/dayforcrustaceans,and2grams/person/dayforbivalve
mollusks.NotethattheseconsumptionlevelsaremuchhigherthanthosederivedforthegeneralU.S.
populationfromnationalsurveydata,describedabove.
TheNewCarissaandKureriskassessmentsusedshellishconsumptionratesfortheaveragecommercialproductconsumerof7.5g/day(ChallengerandMauseth1998;Gilroy2000).An
upper-endconsumptionrateof32.5g/day(onemeal/week)fortheNewCarissariskassessmentwas
basedonareasonableestimateforlocalrecreationalharvesters/consumers(Gilroy2000).Upper-end
consumptionratesof50g/dayand30g/daywereusedfortheKureandNorthCaperiskassessments,
respectively(Mausethetal.1997).FortheJulieNoilspill,averageconsumptionratesoflobsterwere
assumedtobe13.6g/day.
SeafoodAdvisoryandActionLevelsfromPreviousU.S.OilSpills
Theactionoradvisorylevelsresultingfromcancerriskcalculationsdifferamongspills,
dependingontheassumptionsmadeandinputvaluesselected.AttheNewCarissaoilspill,the
OregonHealthDivisioncalculatedactionlevelsforaverageandupper-endshellishconsumersof45
ppbBaPequivalents(BaPE)and10ppbBaPE,respectively(Gilroy2000).Actionlevelsderivedbythe
CaliforniaDepartmentofHealthServicesforaverageandupper-endshellishconsumersfollowing
theKurespillwere34ppbBaPEand5ppbBaPE,respectively.AttheNorthCapeoilspill,theRhode
IslandDepartmentofHealthessentiallyappliedaBaPEcriterionof20ppbforthemaximallyexposed
lobsterconsumerovertheive-yearexposureduration.ActionlevelscalculatedbytheMaineBureau
ofHealthforlobsterconsumptionaftertheJulieNoilspillfortenand30-yearexposuredurations
were50ppband16ppbBaPE,respectively.AdvisorylevelsforsubsistenceconsumersaftertheExxon
Valdezoilspill,assumingaten-yearexposureperiod,werethreeppbBaPEforsalmon,iveppbBaPEfor
inish,11ppbBaPEforcrustaceans,and120ppbBaPEforbivalvemollusks.Advisorylevelsbasedona
lifetimeexposureassumptionwereapproximatelyanorderofmagnitudelower.Noneoftheinishor
shellishsamplescollectedfromharvestingareasnearPrinceWilliamSoundexceededtheseadvisory
levels.Interestingly,theupper-boundlifetimecancerriskforAlaskansubsistenceseafoodconsumers
eatingthemostcontaminatedbivalvemollusksfromthespillareawascalculatedtobetwoordersof
magnitudelowerthanthelifetimeriskcalculatedforconsumersoflocallysmokedsalmon(Bolgeretal.
1996).
Atseveralofthesespills,thecalculatedactionlevelswereusedasrecommendedlevelsfor
reopeningharvestofclosedseafoodisheries.Forexample,attheNewCarissaoilspill,shellishwere
consideredsafeifallsamplescontainedlessthan10ppbBaPequivalents.Ifanyshellishtissuelevels
wereabove45ppbBaPequivalents,shellishinthoseareaswouldbeconsideredunsafe,andfurther
40
monitoringconsiderednecessary.Ifsamplescontainedmorethan10ppbbutlessthan45ppbBaP
equivalents,theneedforfurthermonitoringwouldbeassessedonacase-by-casebasis.Asimilar
tieredapproachwasusedattheKureoilspill.Ifallsamplescontainedlessthan5ppbBaPequivalents,
shellishbedscouldbereopened.Ifanysamplescontainedbetween5and34ppbBaPequivalents,
theneedforfurtheractionbeforereopeningwouldbeassessed.Ifanysamplescontainedmorethan
34ppbBaPequivalents,additionalsamplingandenvironmentalmonitoringpriortoreopeningwould
beconsidered.
TheEquivalencyApproachforRiskAssessment
Theequivalencyapproachusedinrelativecancerriskassessmentisamethodusedforassessingtheriskofexposuretoamixtureofseveraldifferentcompoundsthatarerelatedintermsofchemicalandbiologicalactivity.Ratherthancalculatingindividualrisksforeachcompound,onecomponent
ofknownpotencyisusedasastandard.Concentrationsofeachoftheothercompoundsareadjusted
basedontheirestimatedpotencyrelativetothestandard,tocalculateanequivalentconcentrationfor
thestandard.Summingtheequivalentconcentrationsyieldsasinglenumberfromwhichthecancer
riskcanbeestimated(ICF-Clements1988;BolgerandCarrington1999).
Thistoxicityequivalencyapproachhasbeenwidelyusedformixturesofdioxinsandfurans,
forexample.Therelativepotenciesofindividualdioxinandfurancompoundsareexpressedinterms
of2,3,7,8-tetra-chlorodibenzo-p-dioxin(2,3,7,8-TCDD)equivalents.2,3,7,8-TCDDwaschosenasthe
standardbywhichthepotencyofindividualdioxinandfurancompoundsareestimatedbecausemost
laboratorystudiesontheeffectsofdioxinshavebeenconductedusing2,3,7,8-TCDD.Dataaremore
limitedontheeffectsofothercongeners.Thesameapproachcanbeusedwithpetroleumcompounds,whichalsooccurincomplexmixtures.
BaPequivalencyapproachforPAHcontamination
BolgerandCarrington(1999)provideagoodsummaryoftherationaleforusinganequivalencyapproachtoriskassessmentforPAHs.ToxicologicaldataavailableforBaParemuchbetterthan
dataavailableforanyoftheotherPAHs.ThoughthereisnotadequatedatatoassessrisksforindividualPAHs,thereissuficientstudydataforseveralcompoundstoenableapproximationofcancer
potenciesrelativetoBaP.Theequivalencyapproachtherebyreliesmostheavilyondataconsidered
tobethemostsoundandleastlikelytoneedrevision.Thoughthecancerriskcalculatedbythis
methodisanestimate,itismorereasonablethanestimatesobtainedeitherbyignoringallbutafew
well-studiedcompoundsorbyassumingallcongenershaveequivalentpotencies.Ontheotherhand,
compoundsforwhichthereisn’tenoughtoxicitydatatocalculateacancerpotencyrelativetoBaPare
omittedfromthetotal,eventhoughsomeofthesecompoundsmaycontributetocarcinogenicity.As
canbeseenfromthelistsinTableIV-1,fewofthePAHcompoundstypicallymeasured(seeTableII-3)
areincludedintheBaPequivalencytotal.Furthermore,thePAHsforwhichcancerpotenciesrelativeto
BaPhavebeencalculatedoccurpredominatelyinpyrogenicratherthanpetrogenicsources.
ThepotenciesrelativetoBaPofotherPAHsarebasedprimarilyonanimalbioassaystudies.
Estimatesofthepotenciescandifferdependingonthestudiesselectedtoderivethem.Forinstance,
ICF-Clements(1988)incorporateddataintotheirpotencymodelonlyifBaPwastestedinthesame
bioassaysystemastheotherPAHs,inthesamelaboratory,andatthesametime.Differentmathematicalmodelsalsomayyielddifferentpotencies.ExamplesofpotenciesforPAHsrelativetoBaPusedor
suggestedbyvariousagenciesandresearchersarelistedinTableIV-1.Mostoftheseestimatesare
similar,thoughsomedifferbyasmuchasanorderofmagnitude.
41
TableIV-1.RelativePAHpotencyestimatesderivedfromvarioussources.
RelativePAHPotency
Compound
ICF/EPAa
USEPAb
FDAc
Nisbet&
Lagoye
CAEPAd
Benzo[a]pyrene
1.0
1.0
1.00
1.00
1
Dibenzo[a,h]anthracene
1.11
1.0
1.05
0.36
5
0.1
0.10
Indeno[1,2,3-c,d]pyrene
0.232
Pyrene
0.081
Benzo[b]fluoranthene
0.140
Benzo[k]fluoranthene
0.066
Benzo[g,h,i]perylene
0.022
Fluoranthene
0.25
0.13*
0.1
0.11
0.01
0.07
0.1
0.001
0.10
0.1
0.10
0.1
0.03
0.01
0.02*
0.001
Benz[a]anthracene
0.145
0.1
0.014
0.10
0.1
Chrysene
0.0044
0.001
0.013
0.01
0.01
Anthanthrene
0.320**
Benzo[j]fluoranthene
0.061
Benzo[e]pyrene
0.004
Cyclopentadieno[c,d]-pyrene
0.023
Anthracene
0.01
Acenaphthene
0.001
Acenaphthylene
0.001
Fluorene
0.001
2-Methylnaphthalene
0.001
Naphthalene
0.001
Phenanthrene
0.001
a
b
c
ICF-ClementsAssociates(1988).
** IdentiiedinNisbetandLaGoy(1992)asanthracene.
U.S.EnvironmentalProtectionAgency(1993).
U.S.FoodandDrugAdministration,ContaminantsStandardsMonitoringandProgramsBranch,
CenterforFoodSafetyandAppliedNutrition(Bolgeretal.1996)
* DivisionofMathematics,CenterforFoodSafetyandAppliedNutrition.
d CaliforniaEnvironmentalProtectionAgency(1997).
e NisbetandLaGoy(1992).
Equivalencycalculations
ToestimatethetotalamountofPAHsinasample,itisirstnecessarytocalculatetheweighted
potencyforeachcompoundbymultiplyingtherelativepotency(seeTableIV-1)ofthecompoundby
theconcentration(wetweight)ofthatcompoundinthetissuesample.TheproductsofthesecalculationscanthenbesummedandaddedtothetotalamountofBaPinthesample(theproductofthe
tissueconcentrationofBaPmultipliedbyapotencyof1.0)toestimatethetotalconcentrationofBaP
equivalents.
42
Theequationisshownbelow:
�
���� �
�� �� � �
���
Thevariablesaredeinedasfollows:
TPAH=totalPAHexposure
n=thetotalnumberofindicatorPAHsexclusiveofBaP
yj=exposuretothejthindicatorPAH
Rj=relativepotencyofthejthindicatorPAHcomparedtoBaP
x=exposuretoBaP
TheassumptionthatexposuretoseveralcarcinogenicPAHsinamixturewillhavethesame
carcinogeniceffectasexposuretoeachcompoundseparatelyatthesamedose(“doseadditivity
assumption”)isreasonablebecausemostPAHsappeartometabolizetosimilarreactivederivatives
thatproducesimilarhistologicaleffects(ICF-Clements1988).
HumanConsumptionRateAssumptions
Ideally,riskassessmentsshouldbebasedonactualseafoodconsumptionlevelsforthe
exposedpopulationratherthandefaultvalues,suchasnationalaveragesforconsumptionrates.
Unfortunately,dataonseafoodconsumptionlevelsmaynotbereadilyavailableforallconsumer
groups.Becauseseafoodadvisoriesorharvestrestrictionsoftenarebasedoncancerriskcalculations,
itisimportanttounderstandhowconsumptionrateassumptionsaffectcancerriskcalculationsand,
therefore,mayaffectseafoodmanagementdecisionsafteraspill.
Groupsofconsumersthatmaybeimpactedbycontaminatedseafoodinclude:
• Consumersofcommerciallyharvestedseafood;
• Consumersofrecreationallyharvestedseafood;and
• Subsistenceishersandharvestersandtheirfamiliesandcommunities.
Consumptionestimatesforconsumersofcommerciallyharvestedseafood
Consumersofcommerciallysoldproductsoftenarenotmembersofthelocalpopulationin
thespillregionwheretheseafoodisharvested,thereforenationalseafoodconsumptiondatamaybe
appropriateforderivingconsumptionestimatestouseincancerriskcalculationsfortheseconsumers.
AssummarizedbyUSEPA(2000b),varioussurveyshavereportedmeanseafoodconsumptionrates
forthegeneralU.S.populationrangingfrom6.5-20.1g/day,and95thpercentileconsumptionrates
rangingfrom41.7–102g/day.Rateswerebasedonconsumptionofcommercialandrecreational
freshwater,saltwater,andestuarineseafood.Beforeusingrateswithintheserangesforanyactualrisk
assessmentcalculations,itisimportanttorefertotheoriginaldatasources.Closuresofcommercial
isheriesandaquaculturehaveoccurredfollowingseveralrecentoilspills,includingtheExxonValdez,
Kure,NorthCape,JulieN,andNewCarissa.
43
Consumptionestimatesforconsumersofseafoodharvestedrecreationallyorfor
subsistenceuse
Consumersofseafoodharvestedrecreationallyorforsubsistenceusearegenerallyofgreater
concernthanthegeneralpopulationwhenestimatingriskbecausetheytendtohavehigherseafood
consumptionratesandrelymoreheavilyonlocalseafoodresourcesforsourcesofprotein.Consequently,theseseafoodconsumersmaybeatgreaterriskofhealtheffectsthanthegeneralpopulation.
Nationalaverageconsumptionratesmayunderestimatetheirexposure.Ontheotherhand,overestimatesoftheirconsumptionratesmayresultinunnecessarilyconservativeadvisoriesorharvestrestrictions,limitinguseofanimportantfoodsource,withconcomitantdetrimentalhealth,economicand
culturalconsequences.
Forthesereasons,wedonotrecommendusingnationalsurveydatatodeveloplocalrisk
assessmentsifmoreaccuratelocalseafoodconsumptioninformationisavailableorcanbecollected
andanalyzedinareasonabletimeframe.Datasourcesthatcanprovideusefulinformationoncommunityconsumptionhabitsinclude:
Creelsurveys:Creelsurveysareconductedbystateishandwildlifemanagementagencies,
andconsistofon-siteinterviewsofishers.Informationiscollectedonspecies,sizes,andquantitiesof
ishcaughtandtakenhome.
Fishinglicensesurveys:Althoughdemographicinformationonthelicensesislimited,a
recordofnames,addresses,licensepurchaselocations,anddurationofishingseasonsmaybeavailable,enablingconsumptionsurveystobeconductedthroughthemail.
Subsistencesurveys:Somestateagenciesconductperiodicsubsistencesurveys,suchas
thebaselineresearchconductedbytheDivisionofSubsistenceoftheAlaskaDepartmentofFishand
GameonsubsistenceishandwildlifeusebyAlaskaNativecommunities.
Anecdotalinformation:Usefulanecdotalinformationonconsumptionhabitsofnon-ishers,
especiallypeoplefromminorityandlow-incomepopulationswhomaybesoldorgivenishprivately,
canbegatheredbyspeakingwithlocalcommunitygroupsinaninformalsetting.
Behavioralrisksurveillancesurveys(BRSS):Thesearerandomtelephonesurveysfundedby
theAgencyforToxicSubstancesandDiseaseRegistry(ATSDR).Somestateshaveaddedquestionson
isherdemographicsandconsumption.
Ifitisnotpossibletouselocal,community-speciicinformationonseafoodconsumptionby
recreationalorsubsistenceishers,itmaybefeasibletousesurveydatageneratedfromapreviously
studiedrepresentativepopulationthatmayhavesimilarconsumptionpatternstothegroupofinterest.Summariesofseafoodconsumptiondataobtainedfromsportandsubsistenceishersurveysare
showninTablesIV-2andIV-3,fromUSEPA(2000b).
44
TableIV-2.Sportishersaconsumptiondata(fromUSEPA2000b).
SeafoodConsumptionRates(grams/day)
FisherGroup
Alabama
Mean
Median
80thPercentile
90thPercentile
95thPercentile
FishType
50.7
F+S,F+C
45.8
Louisiana
(coastal)
65
F+S,R+C
NewYork
28.1
F+S,F+C
NewYork
(HudsonRiver)
40.9
F+S,R
Michigan
14.5
Michigan
18.3
Michigan
44.7
Wisconsin(10
counties)
12.3
37.3
F,R
Wisconsin(10
counties)
26.1
63.4
F,R+C
Ontario
22.5
30
62
80
50
F+S,R
F+S,F+C
F,R
F,R
LosAngeles
Harbor
37
225
S,R
WashingtonState
(Commencement
Bay)
23
54
S,R
WashingtonState
(ColumbiaRiver)
7.7
Maine(inland
waters)
6.4
F+S,R+C
2.0
13
26
F,R
F=freshwater,S=saltwater,R=recreationallycaught,C=commerciallycaught.
a Sportishersmayincludeindividualswhoeatsport-caughtishasalargeportionoftheirdiets.
TableIV-3.Subsistenceishersaconsumptiondata(fromUSEPA2000b).
SeafoodConsumptionRates(grams/day)
FisherGroup
Mean
GreatLakesTribes
351
ColumbiaRiverTribes
58.7
High-endCaucasianconsumersonLakeMichigan
48
27c
NativeAlaskanadults
109
b
95thPercentile
Max
FishType
1,426
F
170
F
144
132
F
F+S
F=ish,S=shellish.
a Subsistenceishersincludeindividualswhoeatsport-caughtishathighratesbutdonotsubsistonishasalargepartoftheirdiets.
b Datafrom1982surveyofisheaters.
c Datafrom1989surveyofisheaters.
45
Consumptionestimatesforotherpotentiallyat-riskgroups
Otherfactorsthatshouldbeconsideredwhenestimatingriskareage,reproductivestatus,
generalhealth,andadditionaloccupationalorlifestyleexposurepotential.Forinstance,though
youngchildrenmayeatsmallerportionsthanadults,theymayconsumesigniicantlymoreseafood
perunitbodyweight.Therefore,atypicalriskestimatefora60-70kgadultconsumingan8-ounce
portionofseafoodoveraspeciiedtimeperiodmayunderestimateachild’spotentialexposurelevel.
Whenchildrenareconsideredinriskassessmentcalculations,theUSEPAusesanaveragebodyweight
of14.5kgforchildrenunder6yearsold.Riskstodevelopingchildrenoveralargerangeofbody
weights,however,maynotbeestimatedaccuratelyusingthisvalue(USEPA2000b).
FetusesmaybesusceptibletomaternalPAHexposurebecausetheirenzymaticsystemsare
tooimmaturetoeliminatetoxicmetabolitesthatreadilypassthroughtheembryonicandfetalbloodbrainbarrier.Therefore,itisimportanttoinformwomenofreproductiveageifactionlevelsandconsumptionlimitsforPAHsaregeneratedforacarcinogenicendpoint.Theelderly,peoplewithcertain
diseases,andpeoplewhomaybeexposedtoPAHsthroughsmokingorathighlevelsoccupationally
alsomaybemoresusceptibletotheeffectsofPAHexposurefromseafoodconsumptionthanthegeneralpopulation.Consequently,itmaybeadvisableforpeopleinthesegroupstolimittheirconsumptionofcontaminatedseafoodtolevelsbelowthoseconsideredsafeforthegeneralpopulation.
Consideringthatmanylocalseafoodconsumersmayfallintothesepotentiallyhigher-risk
groups,riskestimatesbasedonaveragebodyweights,mealsizes,andconsumptionestimatesforthe
generalpopulationmaynotaccuratelyrelectactualrisklevelsoftheexposedpopulation.Therefore,
itisimportanttocommunicatetothepublictheassumptions(i.e.,bodyweights,mealsizes,mealfrequencies)usedtogenerateriskestimatesandactionoradvisorylevels.
Forfurtherinformationoncalculatingrisk-basedconsumptionlimitsforinishandshellish,
seethethirdeditionoftheUSEPAGuidanceforAssessingChemicalContaminantDataforUseinFish
AdvisoriesVolume2:RiskAssessmentandFishConsumptionLimits(2000b).
46
V.
RISKCOMMUNICATION
GeneralConsiderations
Riskcommunicationisdeinedas“aninteractiveprocessofexchangeofinformationandopinionsconcerningriskandrisk-relatedfactorsamongriskassessors,riskmanagers,consumers,andother
interestedparties”(FAO/WHO1998).Thedeinitionofriskisessentialtothediscussion.Riskhasbeen
deinedas“acombinationoftheprobability,orfrequency,ofoccurrencetoadeinedhazardandthe
magnitudeoftheconsequencesoftheoccurrence”(Warner1992citedinJonesandHood1996).Both
technicalandsocialfactorsshouldbeconsideredwhencommunicatinginformationonthehealthand
safetyofseafoodfollowinganoilspill,particularlywhendealingwithdifferentgroups.Therisksand
consequenceshavedifferentmeaningsforthesubsistenceuser,sportisher,averageconsumer,commercialisher,electedoficial,regulator,andresponsiblepartyrepresentative.Regulatorsandscientists
measureriskquantitativelyandaccepttheuncertaintyinherentintherisk-assessmentprocess.The
publicperceivesriskmorequalitativelyandsubjectively,andisinluencedbypriorexperiencewith
similarrisksandinformationmadeavailabletothem.Thepublicwantstoknowwhethertheseafood
issafetoeat;yettheanswersgivenaretypicallyposedintermsof“acceptablerisk”or“notasigniicant
risk.”Riskcommunicatorsshouldbeawareofandtrytoovercome:1)gapsinknowledge,2)obstacles
inherentintheuncertaintiesofscientiicriskassessment,and3)barrierstoeffectiveriskcommunication(NighswanderandPeacock1999).
Generalrecommendationsforriskcommunicationduringoilspillsinclude:
Generalrecommendationsforriskcommunicationduringoilspillsinclude:
• Beproactive.Acknowledgeanddiscussthepotentialimpactstoseafoodsafetyfromanoil
spillassoonaspossible.Establishagroupresponsibleforassessingtheriskstoseafoodearly
andreviewtherisksasnecessaryasthespillevolvesandnewinformationismadeavailable.
• Keepthepublicinformed.Tellthepublicwhatyouaredoingtodeterminewhetherseafood
safetyisatrisk.Releaseinformationquickly.Publishmapsshowingwhereandwhattype
ofseafoodsamplesarebeingcollected,andhowtheyarebeingtested.IdentifyaPointof
Contactforfurtherinformation,andmakesurethatthepubliccanreachthePointofContact
withoutdelay.MakesurethatthePointofContacthasthemostcurrentinformationandis
preparedtoanswerquestions,orknowshowtogetanswersquickly.Responsetoallrequests
forinformationisimportant.Consideraweb-basedstrategyfordistributingseafoodsafety
information,whereindividualscanchecktoseewhetherseafoodintheirareahasbeentested
andtoobtaintestresults.
• Meetdirectlywithaffectedgroupstodiscusstheissuesandprocess.Directmeetingswith
groupssuchascommercialishingassociations,recreationalusers,subsistenceusers,seafood
vendors,etc.providingopportunitiestoaskquestionscanbeveryeffective.However,meetingscanfailiftheriskcommunicatorsarenotpreparedorknowledgeable,orappeartobe
withholdinginformation.Specializedbulletinsorcommunicationmethodsmaybenecessary
forspecialgroups,suchasNativeAmericansubsistenceusersandnon-English-speakingusers.
• Useunambiguoustermswheneverpossible.Healthrisksarecommonlydescribedintermsof
probabilitiesofcancerbasedonassumedconsumptionratesandperiods.Itisassumedthat
carcinogensdonothavesafethresholdsforexposures;thatis,anyexposuretoacarcinogen
47
mayposesomecancerrisk(USEPA2000b).However,itisbothusefulandappropriatetodeine
“safe”and“unsafe”levelsofPAHsinseafoodbasedonriskratesthatarecommonlyconsidered
tobeacceptable.Forexample,water-qualitycriteriaforcarcinogeniccontaminantsinwater
usuallyuseriskratesintherangeof10-5to10-6.Thegeneralpublicunderstandstheconcepts
ofacceptablerisks,althoughtheremaybecomponentsofsocietywheretheserisksconlict
withlocalcultures,suchastheAlaskaNativesubsistenceusersduringtheExxonValdezoilspill
(Fieldetal.1999).Aslongastheriskcommunicatorsclearlydeinewhatismeantby“safe”and
“unsafe,”thesetermsareappropriate.
LessonsLearnedfromPreviousOilSpills
TheExxonValdezandNewCarissaoilspillsprovideexamplesoftherangeofissuesfacedin
dealingwithseafoodsafetyatoilspillsandthelessonslearnedintermsofriskcommunication.Eachis
summarizedbrielybelow.
TheExxonValdezoilspillimpactedsubsistenceseafoodusersoveradistanceofnearly800
kilometers,affecting1,750kilometersofshorelineandtheharvestareasof15predominantlyAlaska
Nativevillages(Fieldetal.1999).Itwasperceivedthatseafoodsafetyforsubsistenceuserswas
addressedrelativelylateinthespillresponse,andtheactiveroleoftheresponsiblepartyintheseafoodsafetystudieswasaconstantsourceofsuspiciononthepartofthevillageresidents.Furthermore,therewereconlictsintermsofthetechnicalguidanceforseafoodsafety(“useyourownsensory
testsandavoidcollectingseafoodinareasthatshowedevidenceofoil”)andthesubsistenceusers’
expectationsthatchemicaltestingwouldprovidedeinitiveanswerstothequestionsaboutwhether
itwassafetoeattheseafood.AnOilSpillHealthTaskForce,formedafterthespilltodealwithsubsistenceseafoodissues,hadtodealwiththecomplexculturalissuesofNativeAlaskansubsistence
userswithoutanyguidanceorhealthcriteria.Infact,muchoftheguidanceinusetodaywithregard
toseafoodriskfrompetroleumcontaminationisbasedontheapproachdevelopedbythetaskforce
forthisspill.Falletal.(1999)providedaten-yearperspectiveonthelessonslearnedforthisspillwitha
signiicantimpacttoNativesubsistenceusers:
• Theactiveroleoftheresponsiblepartywasmetwithconsiderableskepticismandresultedin
perceivedconlictofintereststhataffectedallphasesofdatacollection,interpretation,and
recommendations.
• Thereweresigniicantculturalconlictsindeiningseafoodsafetyandedibility.Aspillthat
impactedsomanyanimalsandhabitatswasperceivedtoalsohavesigniicantimpactsto
humanhealth,regardlessoftheinformationprovidedonactualhealthriskstoconsumersin
theimpactarea.
• Therewasaperceived“doublestandard”forsubsistenceusers,comparedwithcommercial
isheries.Somecommercialisherieswereclosedwithintheirstyearafterthespill,applyinga
“zero-tolerancepolicy”inordertoprotectthemarketforAlaskansalmon,whichwasnotbased
onconcernsaboutconsumersafety.Incontrast,subsistenceusersweretoldtoavoidoiled
areasandnoteatfoodthatsmelledortastedlikeoil.
• Therewasaneedfordirectcommunicationwithvillageresidents,especiallyduringtheirst
yearwhenconcernsweregreatest.Individualcommunitymemberswillnotnecessarilyreceive
health-safetyinformationdistributedtocommunityrepresentatives.Formalmechanismsare
neededforsolicitingfeedbackandevaluatinghowwelltheriskcommunicationeffortsare
beingreceived.
48
IncontrasttotheExxonValdezoilspill,theNewCarissaoilspilloutsideCoosBay,Oregon
occurredinaregionofcommercialandrecreationalisherieswherehealthadvisoriesareroutine.The
OregonDepartmentofAgriculture(ODA)regulatescommercialshellishharvestunderastrictwater
qualitystandardsetbytheU.S.FoodandDrugAdministration,whichassumestheremayberawconsumptionoftheproduct.Commercialisheriesareroutinelycloseddependingontheamountofrainfallwithinspeciicwatersheds,basedonestablishedcorrelationsbetweenrainfallandcoliformcounts.
“Rainfall”closuresareacommonoccurrence,andthereareestablishedcommunicationmechanisms
fornotiicationofrainfallclosuresandopenings.Withregardtorecreationalisheries,clammingand
musselharvestingareoftenclosedduetodomoicacidoramnesicshellishpoisoning.FiguresV-1
andV-2showoficialnotiicationsforclosureandopeningofshellishharvestsduringtheNewCarissa
oilspill.Commercialandrecreationalusersareaccustomedtonotiicationsofclosuresandopenings
basedonacceptedcriteriaforseafoodsafety.TheclosureofbothcommercialandrecreationalshellishharvestsduringtheNewCarissaoilspillwasmetwithlimitedresistanceandconfusionbecauseof
thisestablishedrelationshipbetweentheregulatorandusercommunities.
49
FigureV-1.CommercialshellishharvestclosurenoticeissuedduringtheNewCarissaoilspill.
To: InterestedParties
From:
OregonDepartmentofAgriculture,ShellishProgram
Date:
February17,1999(correctedupdate)
Subject:
StatusofCommercialShellish“Rainfall’Closure
CommercialshellishharvestisregulatedbytheDepartmentofAgriculture(ODA)underastrictwater
qualitystandardsetbytheU.S.FoodandDrugAdministration(FDA),whichassumestheremayberaw
consumptionoftheproduct.ODAdoesnotcloserecreationalshellishareaswithoutthecooperationof
OregonDepartmentofFishandWildlife(ODF&W).Whensewageorbiotoxincontaminationisevident,
thisagencywillconferwithODF&W,DEQandlocalcountyhealthdepartmentstodeterminewhether
recreationalshellishharvestersareatriskandiftheyshouldbenotiiedthatshellishharvestisclosed.
Call(503)986-4720.
NehalemBayremainsclosed.NehalemRdidnotfallbelow7’sinceitpeakedon2/8.Nehalemclosesif
rainfallatTillamookover1”in24hrs(newplanusingriverstageinworks).
TillamookBay,MainBayclosedtoday,February17,1999.TheWilsonroseabove7’about1amtoday.
TheMainBayisclosedwhenWilsonR.exceeds7.0’.
CapeMearesAreaofTillamookBayremainsclosed.CapeMearesisclosedfor7daysif24hrsrainfall
exceeds1”orwhenWilsonR.exceeds7.0’.
NetartsBayisopen.Thisbayisclosedforshellishtoxineventsorloodingcatastrophes.
YaquinaBay,MainRiver,isopen.Thisareaclosesfor5dayswhenToledorainfallexceeds1.5”/24hrsor
if3daysaccumulativerainexceeds3”.
WinchesterBayandtheUmpquaRivertoBigBend,remainsclosedforrainfall;andharvest
restrictionsareongoingduetopotentialforcontaminationfromtheNewCarissaoilspill.This
areaclosesfor7dayswhentheriverexceeds7.5’or>1.5”/24hrs.
UmpquaR.Triangle,SoJetty,closedtodayFebruary17,1999forrainfall/riverht;andharvest
restrictionsareongoingduetopotentialforcontaminationfromtheNewCarissaoilspill.The
Umpquawentover12’ataround4pmtoday.Thisareaclosesfor5daysifUmpquaR.@Elktonexceeds
12’orrainfall>2.0”/24hrs.
LowerCoosBayisclosed;harvestrestrictionsareongoingduetopotentialforcontamination
fromtheNewCarissaoilspill.(downbayfromNo.Bendairport)isnotclosedforrainfallevents.
UpperCoosBay,openedFebruary12,1999fromrainfallclosure;butharvestrestrictionsare
ongoingduetopotentialforcontaminationfromtheNewCarissaoilspill.UpperCoosisclosed5
daysif24hrrainfallexceeds1.5”or3dayaccumulativerainfallexceeds3”
South&JoeNeySloughsopened,February12,1999fromrainfallclosure;butharvestrestrictions
areongoingduetopotentialforcontaminationfromtheNewCarissaoilspill.SoSloughisclosed5
daysif24hrrainfallexceeds1.5”or3dayaccumulativerainfallexceeds3”Inadditiontorainfallcriteria,
UpperSo.Slough(areaaboveYounkerPt)closeswhentidalexchangeexceeds7.5’.Duringtidalclosures
growersmaytendbutnotmoveshellstock.
50
FigureV-2.ShellishharvestclosurenoticeissuedduringtheNewCarissaoilspill.
LowerCoosBayandtheCharlestonBoatBasinAreaAddedtoClammingandMusselClosureDue
toOilLeaksFromtheNewCarissa
OysterHarvestingonHold
February12,1999.TheOregonDepartmentofAgricultureisaddingLowerCoosBayandtheCharlestonBoatBasintotheareasclosedtoshellishharvestingasresultoftheoilspillingfromtheNewCarissa.
Surveysoftheareamadetodayindicatethatoilsheenandoilglobulesarevisibleintheseareas.The
upperboundaryfortheLowerCoosBayclosureistherailroadbridgeaboveNorthBend;theupper
boundaryfortheboatbasinareaclosureistheCharlestonBridge.
MusselandclamharvestingwasprohibitedonthebeachesinCoosandDouglascountiesyesterday
duetopossiblecontaminationfromtheNewCarissaoilspill.Theextentofcontaminationonthe
beachesandbaysisbeingsurveyedtoday.Theseareasremainclosedatthistime.Thepublicshould
takeheedofanysignsonCoosandDouglasCountybeachesandbaysthatalertthemtoshellishclosures.
TheDepartmenthasrequiredoystergrowerstolimitharvestingtoareasthathavebeensurveyedand
conirmedtobeunaffectedbythespreadofoil.Thisisanongoingprocessduetothechangingtides
andthesurveyreportingprocess.Atthistimenooilhasbeenseenintheoystergrowingareas.Commercialoysterharvestwillbeprohibitedfromanyareascontaminatedbyoil.Thereareinspectorson
thescenetoinspectshellishandassurecommercialshellishsafety.
TheDepartmentisincontactwithnaturalresourceadvisorsattheincidentcommandandwillkeepthe
publicandthecommercialindustryadvisedofshellishsafetyinformation.
FormoreinformationcalltheDepartmentofAgriculture’sshellishinformationlineat(503)986-4728or
RonMcKayat(503)986-4720.
CommunicatingRelativeRisks
Riskcommunicatorscommonlycomparetherelativeriskofaspeciicactivitytoknownrisks
ofotheractivities.Forexample,thepublicisaccustomedtohearingtherisksofdeathbyautomobile
accidentorairplanecrash.Theseareconsideredvoluntaryriskstakenbypeoplewhodecidetodrive
orlyafterconsideringtherisksandbeneitsassociatedwiththeseactivities,whetherornottheirperceptionsarerealistic.Thepublicgenerallywillacceptrisksfromvoluntaryactivitiesthatareroughly
1,000timesgreaterthaninvoluntaryrisksthatprovidethesamelevelofbeneits(Starr1996).
Becausethepotentialhuman-healthrisksfromeatingseafoodcontaminatedbyanoilspillare
associatedwithPAHs,itistemptingtocomparethePAHlevelsinseafoodsampleswiththosefound
inotherfoodsources.PAHsareubiquitouscontaminants,measurableinmanyfoods.TableV-1summarizesthelevelsofPAHsinsomecommonlyconsumedfoods.Basedoninformationfromprevious
spills,PAHlevelsinseafoodfromoil-spill-contaminatedwatersgenerallyareconsiderablylowerthan
PAHlevelsfoundinsmokedfoods.DuringtheExxonValdezoilspill,however,villagecommunityresidentsbecameupsetwhenitwaspointedoutthatsamplesofsmokedishfromthevillagescontained
carcinogenichydrocarbonlevelshundredsoftimeshigherthananyshellishsamplescollectedfrom
oiledbeaches,andnearly10,000timeshigherthanwildsalmon(NighswanderandPeacock1999).The
residentsconsideredeatingsmokedsalmontobeanacceptable,voluntaryrisk,andeatingoil-contaminatedseafoodtobeaninvoluntary,unacceptablerisk.Guidelinesforriskcommunicationinclude
beingsensitivetothedistinctionbetweenvoluntaryandinvoluntaryrisk,andavoidingriskcomparisonsthatequatethetwo(Chessetal.1994).Riskcomparisonsshouldbemadecarefully.
51
TableV-1.PAHsinfoods(BolgerandCarrington1999).
Source
PAH(ppborµg/kg)
B[a]P(ppborµg/kg)
Cornoil
2-10
0.4-1.0
Smokedmeatandfish
10-20
0.3-60
Bakersyeast
10-350
2-40
Kale
60-500
13-48
52
VI.LiteratureCited
Ackman,R.G.andH.Heras.1992.Taintingbyshort-termexposureofAtlanticsalmontowatersoluble
petroleumhydrocarbons.InProceedingsofthe15thArcticandMarineOilSpillProgramTechnicalSeminar.EnvironmentCanada,Ottawa.2:757-762.
AgencyforToxicSubstancesandDiseaseRegistry(ATSDR).1995.ToxicologicalProileforPolycyclic
AromaticHydrocarbons(PAHs).Atlanta:U.S.DepartmentofHealthandHumanServices,PublicHealth
Service,AgencyforToxicSubstancesandDiseaseRegistry.
AmericanSocietyforTestingandMaterials(ASTM).1994.CompilationofASTMStandardDeinitions,
EighthEdition.Philadelphia:ASTM.
Bender,M.E.,P.O.DeFur,andR.J.Huggett.1986.Polynucleararomatichydrocarbonmonitoringinestuariesutilizing:oysters,brackishwaterclamsandsediments.InOceans’86ConferenceRecord,Monitoring
StrategiesSymposium,Vol.3.Piscataway,NewJerseyandWashington,D.C.:InstituteofElectricaland
ElectronicsEngineersandMarineTechnologySociety.pp.791-796.
Boehm,P.D.andJ.G.Quinn.1977.Thepersistenceofchronicallyaccumulatedhydrocarbonsinthehard
shellclamMercenariamercenaria.MarineBiology44:227-233.
Bolger,M.andC.Carrington.1999.HazardandriskassessmentofcrudeoilinsubsistenceseafoodsamplesfromPrinceWilliamSound:lessonslearnedfromtheExxonValdez.InL.JayFieldetal.(eds.).EvaluatingandCommunicatingSubsistenceSeafoodSafetyinaCross-CulturalContext:LessonsLearnedfrom
theExxonValdezOilSpill.Pensacola:SocietyofEnvironmentalToxicologyandChemistry.pp.195-204.
Bolger,M.,S.H.Henry,andC.D.Carrington.1996.Hazardandriskassessmentofcrudeoilcontaminants
insubsistenceseafoodsamplesfromPrinceWilliamSound.AmericanFisheriesSymposium18:837-843.
CaliforniaEnvironmentalProtectionAgency.1997.Publichealthgoalsforbenzo[a]pyreneindrinking
water.Sacramento:PesticideandEnvironmentalToxicologySection,OficeofEnvironmentalHealth
HazardAssessment.
Challenger,G.E.andG.S.Mauseth.1998.Closingandopeningisheriesfollowingoilspills;acasestudy
inHumboldtBay,California.InProceedingsofthe21stArcticandMarineOilspillProgramTechnicalSeminar,Edmonton,Alberta,Canada,June10-12,1998,1:167-179.
Chess,C.,B.J.Hance,andP.M.Sandman.1994.Improvingdialoguewithcommunities:ashortguidefor
governmentriskcommunication.NewBrunswick,NewJersey:NewJerseyDepartmentofEnvironmentalProtection,DivisionofScienceandResearchandEnvironmentalCommunicationResearchProgram;
NewJerseyAgriculturalExperimentStation;andCookCollege,RutgersUniversity.
Coates,P.J.1998.TheSeaEmpressoilspillanditseffectontheishermenandisheriesofSouthWest
Wales.InR.EdwardsandH.Sime(eds.).TheSeaEmpressOilSpill.London:TheCharteredInstitutionof
WaterandEnvironmentalManagement.pp.137-151.
Conover,R.J.1971.SomerelationsbetweenzooplanktonandbunkerCoilinChedabuctoBayfollowing
thewreckofthetankerArrow.JournaloftheFisheriesResearchBoardofCanada28:1327-1330.
Davies,J.M.,A.D.McIntosh,R.Stagg,G.Topping,andJ.Rees.1997.ThefateoftheBraeroilinthemarine
andterrestrialenvironments.InJ.M.DaviesandG.Topping(eds.).TheImpactofanOilSpillinTurbulent
Waters:TheBraer.Edinburgh:TheStationeryOficeLTD.pp.26-41.
Davis,H.K.,E.N.Geelhoed,A.W.MacCrae,andP.Howgate.1992.Sensoryanalysisoftrouttaintedby
dieselfuelinambientwater.WaterScienceTechnology25:11-18.
53
Davis,H.K.,N.Shepherd,andC.F.Moffat.1995.Uptakeanddepurationofoiltaintfromish.InProceedingsoftheSecondInternationalResearchandDevelopmentConference,InternationalMaritimeOrganization,London,pp.353-361.
DiSalvo,L.H.,H.E.Guard,andL.Hunter.1975.Tissuehydrocarbonburdenofmusselsaspotentialmonitorofenvironmentalhydrocarboninsult.EnvironScience&Technology9:247-251.
Ernst,R.,J.Carter,andN.Ratnayake.1989a.Taintingandtoxicityinseascallops(Placopectenmagellancius)exposedtothewater-solublefractionofScotianShelfnaturalgascondensate.Dartmouth,Nova
Scotia:MarineEnvironmentProtectionBranch,EnvironmentCanada.
Ernst,R.J.,W.M.N.Ratnayake,T.E.Farquharson,R.G.Ackman,W.G.Tidmarsh,andJ.A.Carter.1989b.TaintingofAtlanticcod(Gadusmorhua)bypetroleumhydrocarbons.InF.R.Engelhardtetal.(eds.)Drilling
Wastes.NewYork:ElsevierAppliedScience.pp.827-839.
Fall,JamesA.1999.ChangesinsubsistenceusesofishandwildliferesourcesfollowingtheExxon
Valdezoilspill.In:L.JayFieldetal.(eds).EvaluatingandCommunicatingSubsistenceSeafoodSafetyina
Cross-CulturalContext:LessonsLearnedfromtheExxonValdezOilSpill.Pensacola:SocietyofEnvironmentalToxicologyandChemistry.pp.51-104.
Fall,J.A.andL.J.Field.1996.SubsistenceusesofishandwildlifebeforeandaftertheExxonValdezoil
spill.AmericanFisheriesSocietySymposium18:819-836.
Fall,J.A.,L.J.Field,T.S.Nighswander,J.E.Stein,andM.Bolger.1999.Overviewoflessonslearnedfrom
theExxonValdezoilspill:a10-yearretrospective.InL.J.Fieldetal.(eds.).EvaluatingandCommunicating
SubsistenceSeafoodSafetyinaCross-CulturalContext:LessonsLearnedfromtheExxonValdezOilSpill.
Pensacola:SocietyforEnvironmentalToxicologyandChemistry.pp.237-269.
Field,L.J.,J.A.Fall,T.S.Nighswander,N.Peacock,andU.Varanasi(eds.).1999.EvaluatingandCommunicatingSubsistenceSeafoodSafetyinaCross-CulturalContext:LessonsLearnedfromtheExxonValdezOilSpill.
Pensacola:SocietyforEnvironmentalToxicologyandChemistry,338pp.
Fingas,M.,B.Fieldhouse,andJ.Mullin.1994.Studiesofwater-in-oilemulsionsandtechniquestomeasureemulsiontreatingagents.InProceedingofthe17thArcticandMarineOilspillProgramTechnical
Seminar,Vancouver,BritishColumbia,June,8-10,1998,1:213-244.
FoodandAgricultureOrganization/WorldHealthOrganization(FAO/WHO).1998.JointFAP/WHO
expertconsultationontheapplicationofriskcommunicationtofoodstandardsandsafetymatters,
February2-6,1998,ItalianMinistryofHealth,Rome.
FoodTechnologySensoryEvaluationDivision.1981.Sensoryevaluationguidefortestingfoodand
beverageproducts.FoodTechnology35(11):50-59.
French,D.P.1998.ModelingtheimpactsoftheNorthCapeoilspill.InProceedingsofthe21stArctic
MarineOilSpillProgramTechnicalSeminar,EnvironmentCanada,Ottawa,1:387-430.
French,D.P.2000.Estimationofoiltoxicityusinganadditivetoxicitymodel.InProceedingsofthe23rd
ArcticMarineOilSpillProgramTechnicalSeminar,EnvironmentCanada,Ottawa,1:561-600.
Fucik,K.W.andJ.M.Neff.1977.Effectsoftemperatureandsalinityonnaphthalenesuptakeinthe
temperateclamRangiacuneataandtheborealclamProtothacastaminea.InW.D.Wolfe(ed.)Fateand
EffectsofPetroleumHydrocarbonsinMarineOrganismsandEcosystems.NewYork:PergamonPress.pp.
305-312.
GESAMP(IMO/FAO/UNESCO/WMO/IAEA/UN/UNEPJointGroupofExpertsontheScientiicAspects
ofMarinePollution).1977.Impactofoilonthemarineenvironment.ReportsandStudiesNo.6.Rome:
FoodandAgricultureOrganizationoftheUnitedNations.250pp.
54
Gilroy,D.J.2000.DerivationofshellishharvestreopeningcriteriafollowingtheNewCarissaoilspillin
CoosBay,Oregon.JournalofToxicologyandEnvironmentalHealth,PartA,60:317-329.
Hayes,M.O.andJ.Michel.1999.Factorsdeterminingthelong-termpersistenceofExxonValdezoilin
gravelbeaches.MarinePollutionBulletin38:92-101.
HellouJ.1996.Polycyclicaromatichydrocarbonsinmarinemammals,inish,andmollusks.InG.H.
HeinzandA.W.Redmon-Norwood(eds.).EnvironmentalContaminantsinWildlife:InterpretingTissue
Concentrations.BocaRaton,Florida:LewisPublishers.pp.229-250.
Heras,H.,R.G.Ackman,andE.J.MacPherson.1992.TaintingofAtlanticsalmon(Salmosalar)bypetroleumhydrocarbonsduringashort-termexposure.MarinePollutionBulletin24:310-315.
Heras,H.,S.Zhou,andR.G.Ackman.1993.Uptakeanddepurationofpetroleumhydrocarbonsby
Atlanticsalmon:effectofdifferentlipidlevels.InProceedingsofthe16thArcticMarineOilSpillProgram
TechnicalSeminar1:343-351.
Howgate,P.,P.R.Mackie,K.J.Whittel,J.Farmer,A.D.McIntyre,andA.Eleftheriou.1977.Petroleumtainting
inish.Rapportsetproces-verbauxdesreunions.InConseilpermanentinternationalpourl’exploration
delaMer171:143-146.
Hufnagle,L.C.Jr.,S.E.Camarata,D.Ernest,C.A.Krone,S.-L.Chan,andM.M.Krahn.1999.Developmentand
applicationofahigh-performanceliquidchromatographyscreeningmethodforaromaticcompounds
ininvertebratetissues.ArchivesofEnvironmentalContaminationandToxicology37:220-226.
ICF-ClementsAssociates.1988.Comparativepotencyapproachforestimatingthecancerriskassociatedwithexposuretomixturesofpolycyclicaromatichydrocarbons.InteriminalreportEPA68/02/
4403.Fairfax,Virginia:U.S.EnvironmentalProtectionAgency.
IntegratedRiskInformationSystem(IRIS).1994.EPA’scarcinogenicityriskassessmentveriication
endeavorworkgroup.Cincinnati:U.S.EnvironmentalProtectionAgency,EnvironmentalCriteriaand
AssessmentOfice.
InternationalStandardsOrganization(ISO).1992.SensoryAnalysis–Methodology–Vocabulary.
ReportISO5942.Geneva:ISO.
JacquesWhitfordEnvironmentLimited.1992.CharacteristicsoftaintinginfarmedAtlanticsalmonand
culturedbluemussels,exposedtowatersolublefractionsofBrentcrudeoilandScotianShelfcondensate.Dartmouth,NovaScotia:MarineEnvironmentProtectionBranch,EnvironmentCanada.30pp.
Javitz,H.1980.Seafoodconsumptiondataanalysis.FinalReport.EPA68/01/3887.Washington,D.C.:
OficeofWaterRegulationsandStandards.U.S.EnvironmentalProtectionAgency.
Jokuty,P,S.Whiticar,Z.Wang,M.Fingas,B.Fieldhouse,P.Lambert,andJ.Mullin.1999.Propertiesofcrude
oilsandoilproducts.EE-165.Ottawa,Ontario:EnvironmentCanada.
Jones,D.andC.Hood.1996.Introduction.In:C.HoodandD.K.CJones(eds.).AccidentandDesign:ContemporaryDebatesinRiskManagement.London:UCLPress.
Jordan,R.E.andJ.R.Payne.1980.FateandWeatheringofPetroleumSpillsintheMarineEnvironment.Ann
Arbor:AnnArborScience.174pp.
Jovanovich,M.C.andK.R.Marion.1987.Seasonalvariationinuptakeanddepurationofanthraceneby
thebrackishwaterclamRangiacuneata.MarineBiology95:395-403.
Kennedy,C.J.,K.A.Gill,andP.J.Walsh.1989.Thermalmodulationofbenzo[a]pyreneuptakeinthegull
toadish,Opsanusbeta.EnvironmentalToxicologyandChemistry8:863-869.
55
Kingston,P.1999.RecoveryofthemarineenvironmentfollowingtheBraerspill,Shetland.InProceedings1999OilSpillConference,Seattle,Washington,March8-11,1999,pp.103-109.
Krahn,M.M.,D.G.Burrows,G.M.Ylitalo,D.W.Brown,C.A.Wigren,T.K.Collier,S-L.Chan,andU.Varanasi.
1992.MassspectrometricanalysisforaromaticcompoundsinbileofishsampledaftertheExxon
Valdezoilspill.EnvironmentalScience&Technology26(1):116-126.
Krahn,M.M.,T.K.Collier,andD.C.Malins.1982.Aromatichydrocarbonmetabolitesinish:automated
extractionandhigh-performanceliquidchromatographicseparationintoconjugateandnon-conjugatefractions.JournalofChromatography236:441-452.
Krahn,M.M.,L.K.Moore,andW.D.MacLeod,Jr.1986.StandardAnalyticalProceduresoftheNOAA
NationalAnalyticalFacility,1986:Metabolitesofaromaticcompoundsinishbile.NOAATechnical
MemorandumNMFSF/NWC-102.Seattle:NationalMarineFisheriesService,NationalOceanicand
AtmosphericAdministration.
Krahn,M.M.,M.S.Myers,D.G.Burrows,andD.C.Malins.1984.Determinationofmetabolitesofxenobioticsinthebileofishfrompollutedwaterways.Xenobiotica14(8):633-646.
Krahn,M.M,G.M.Ylitalo,J.Buzitis,J.L.Bolton,C.A.Wigren,S-L.Chan,andU.Varanashi.1993a.Analysesfor
petroleum-relatedcontaminantsinmarineishandsedimentsfollowingtheGulfoilspill.MarinePollutionBulletin27:285-292.
Krahn,M.M.,G.M.Ylitalo,J.Buzitis,S.-L.-Chan,andU.Varanasi.1993b.Rapidhigh-performanceliquid
chromatographicmethodsthatscreenforaromaticcompoundsinenvironmentalsamples.Journalof
Chromatography642:15-32.
Krahn,M.M.,G.M.Ylitalo,J.Buzitis,S.-L.Chan,U.Varanasi,T.L.Wade,T.J.Jackson,J.M.Brooks,D.A.Wolfe,
andC-A.Manen.1993c.Comparisonofhigh-performanceliquidchromatography/luorescencescreeningandgaschromatography/massspectrometryanalysisforaromaticcompoundsinsediments
sampledaftertheExxonValdezoilspill.EnvironmentalScience&Technology27(4):699-708.
Krahn,M.M.,G.M.Ylitalo,J.Buzitis,C.A.Krone,J.E.Stein,S.-L.-Chan,andU.Varanasi.1993d.Screening
methodsforassessingdamagetonaturalresourcesfollowingtheExxonValdezoilspill.InProceedings
ofthe1993OilSpillConference,Tampa,Florida,March29-April1,1993.pp.872-873.
Krahn,M.M.,G.M.Ylitalo,J.Joss,andS.-L.-Chan.1991.Rapid,semi-quantitativescreeningofsediments
foraromaticcompoundsusingsonicextractionandHPLC/luorescenceanalysis.MarineEnvironmental
Research31:175-196.
Landrum,P.F.1982.Uptake,depuration,andbiotransformationofanthracenebythescudPontoporeia
hoyi.Chemosphere11:1049-1057.
Lauenstein,G.G.andA.Y.Cantillo(eds.).1993.SamplingandanalyticalmethodsoftheNationalStatus
andTrendsProgram,NationalBenthicSurveillanceandMusselWatchProjects1984-1992,Vol.IV,Comprehensivedescriptionsoftraceorganicanalyticalmethods.NOAATechnicalMemorandumNOAA
ORCA71.SilverSpring,Maryland:OficeofOceanResourcesConservationandAssessment,NOAA.181
pp.
Law,R.J.andJ.Hellou.1999.Contaminationofishandshellishfollowingoilspillincidents.EnvironmentalGeoscience6:90-98.
Law,R.J.,C.A.Kelly,K.L.Graham,R.J.Woodhead,P.E.J.Dyrynda,andE.A.Dyrynda.1997.Hydrocarbons
andPAHsinishandshellishfromsouthwestWalesfollowingtheSeaEmpressoilspillin1996.InProceedings1997InternationalOilSpillConference,FortLauderdale,Florida,April7-10,1997,pp.205-211.
56
Lehr,W,D.Wesley,D.Simecek-Beatty,R.Jones,G.KachookandJ.Lankford.2000.AlgorithmandInterfaceModiicationsoftheNOAAOilSpillBehaviorModel.InProceedingsofthe23rdArcticandMarineOil
SpillTechnicalSeminar,Vancouver,BritishColumbia,June,14-16,2000,2:525-540.
Lockhart,W.L.andR.W.Danell.1992.Fieldandexperimentaltaintingofarcticfreshwaterishbycrude
andreinedpetroleumproducts.InProceedingsofthe15thArcticandMarineOilSpillProgramTechnical
Seminar,Edmonton,Alberta,pp.763-771.
Mackenzie,K.M.andD.M.Angevine.1981.Infertilityinmiceexposedinuterotobenzo[a]pyrene.BiologyofReproduction24:183-191.
Marsh,J.W.,J.K.Chipman,andD.R.Livingstone.1992.ActivationofxenobioticstoreactiveandmutagenicproductsbythemarineinvertebratesMytilusedulis,Carcinusmaenus,andAsteriasrubens.Aquatic
Toxicology22:115-128.
Mauseth,G.S.andG.E.Challenger.2001.TrendsinRescindingSeafoodHarvestClosuresFollowingOil
Spills.InProceedingofthe2001InternationalOilSpillConference,Tampa,Florida,March26-29,2001,pp.
679-684.
Mauseth,G..S.,C.A.Martin,andK.Whittle.1997.Closingandreopeningisheriesfollowingoilspills;
threedifferentcaseswithsimilarproblems.InProceedingsofthe21stArcticandMarineOilSpillProgram
TechnicalSeminar,Vancouver,BritishColumbia,Canada,June11-13,1997,2:1283-1303.
McAuliffe,C.D.1987.Organismexposuretovolatile/solublehydrocarbonsfromcrudeoilspills-aield
andlaboratorycomparison.InProceedings1987OilSpillConference,Baltimore,Maryland,April6-9,1987,
pp.275-288.
Meador,J.P.,R.Stein,andU.Varanasi.1995.Bioaccumulationofpolycyclicaromatichydrocarbonsby
marineorganisms.ReviewsofEnvironmentalContaminationandToxicology143:79-165.
Mearns,A.J.1995.Elementstobeconsideredinassessingtheeffectivenessandeffectsofshoreline
countermeasures.SpillScience&TechnologyBulletin2:5-10.
Mearns,A.J.,G.Lauenstein,andT.O’Connor.1998.TheU.S.MusselWatch:Nationwidegeographicand
longtermtrendsofPAHsincoastalmusselsandoysters.InProceedingsofthe21stArcticandMarineOil
SpillTechnicalSeminar1:465-472.
Mearns,A.J.,T.P.O’Connor,andG.G.Lauenstein.1999.Relevanceofthenationalmusselwatchprogram
toseafoodisheriesmanagementissuesduringoilspillresponse.InProceedings1999InternationalOil
SpillConference,Seattle,Washington,March8-11,1999,pp.701-708.
Mearns,A.J.andR.Yender.1997.Workshoponmanagingseafoodproblemsduringtheresponsephase
ofanoilspill.InProceedingsofthe20thArcticandMarineOilSpillTechnicalSeminar1:203-217.
Michel,J.2000.InterimPreassessmentReport,M/VNewCarissaOilSpill,CoosBayandWaldport,
Oregon.SilverSpring,Maryland:DamageAssessmentCenter,NationalOceanicandAtmospheric
Administration.84pp.andappendices.
Moller,T.H.,B.Dicks,andC.N.Goodman.1989.Fisheriesandmaricultureaffectedbyoilspills.InProceedings1989OilSpillConference,SanAntonio,Texas,February13-16,1989,pp.389-394.
Moller,T.H.,B.Dicks,K.J.Whittle,andM.Girin.1999.Fishingandharvestingbansinoilspillresponse.In
Proceedings1999InternationalOilSpillConference,Seattle,Washington,March8-11,1999.pp.693-699.
Motohiro,T.andZ.Iseya.1976.Effectsofwaterpollutedbyoilonaquaticorganisms.II.n-parafins,
aromatichydrocarbonsandcrudeoilconcentrationontaintinscallop(Pectenyessoensis).Bulletinofthe
HokkaidoUniversityFacultyofFisheries26:367-371.
57
NationalOceanicandAtmosphericAdministration(NOAA)andAmericanPetroleumInstitute(API).
1994.Inlandoilspills:Optionsforminimizingenvironmentalimpactsoffreshwaterspillresponse.
AmericanPetroleumInstitutePubl.No.4558.SeattleandWashington,D.C.:NOAAandAPI.130pp.
NationalOceanicandAtmosphericAdministration(NOAA)andAmericanPetroleumInstitute(API).
2001.Environmentalconsiderationsformarineoilspillresponse.AmericanPetroleumInstitutePublicationNo.4706.SeattleandWashington,D.C.:NOAAandAPI.
NationalOceanicandAtmosphericAdministration(NOAA),RhodeIslandDepartmentofEnvironmentalManagement,U.S.DepartmentoftheInterior.1999.RestorationplanandenvironmentalassessmentfortheJanuary19,1996NorthCapeoilspill.SilverSpring,Maryland:DamageAssessmentCenter,
OficeofResponseandRestoration.
NationalResearchCouncil(NRC).1983.Polycyclicaromatichydrocarbonsintheaquaticenvironment:
Formation,sources,fateandeffectsonaquaticbiota.NRCC18981.Washington,D.C:NationalAcademy
Press.pp.106-107.
NationalResearchCouncil(NRC).1985.OilintheSea:Inputs,Fates,andEffects.Washington,D.C.:National
AcademyPress.601pp.
NationalResearchCouncil(NRC).1999.SpillsofNonloatingOils:RiskandResponse.Washington,D.C.:
NationalAcademyPress.75pp.
NationalResearchCouncil(NRC).2002.OilintheSeaIII:Inputs.Washington,D.C.:NationalAcademy
Press.260pp.+appendices.
Nighswander,T.andN.Peacock.1999.Thecommunicationofhealthriskfromsubsistenceseafoodin
across-culturalsetting:LessonslearnedfromtheExxonValdez.InL.J.Fieldetal.(eds).Evaluatingand
CommunicatingSubsistenceSeafoodSafetyinaCross-CulturalContext:LessonsLearnedfromtheExxon
ValdezOilSpill.Pensacola:SocietyforEnvironmentalToxicologyandChemistry.pp.205-236.
Nisbet,I.C.T.andP.K.LaGoy.1992.ToxicEquivalencyFactors(TEFs)forpolycyclicaromatichydrocarbons(PAHs).RegulatoryToxicologyandPharmacology16:290-300.
Payne,J.R.andW.B.Driskell.1999.AnalysisofwatersamplescollectedinsupportoftheM/VNewCarissa
oilspillnaturalresourcedamageassessment.SilverSpring,Maryland:DamageAssessmentCenter,
NationalOceanicandAtmosphericAdministration.69pp.
Reilly,T.I.andR.K.York.2001.Guidanceonsensorytestingandmonitoringofseafoodforpresenceof
petroleumtaintfollowinganoilspill.NOAATechnicalMemorandumNOSOR&R9.Seattle:Oficeof
ResponseandRestoration,NationalOceanicandAtmosphericAdministration.109pp.
RPIInternational,Inc.1987.Naturalresourceresponseguide:Marineish.Seattle:OceanAssessments
Division,NationalOceanicandAtmosphericAdministration.95pp.
RPIInternational,Inc.1989.Naturalresourceresponseguide:Marineshellish.Seattle:OceanAssessmentsDivision,NationalOceanicandAtmosphericAdministration.95pp.
Salazar,M.H.andS.M.Salazar.2001.Standardguideforconductingin-situieldbioassayswithmarine,
estuarineandfreshwaterbivalves.In2001AnnualBookofASTMStandards.Philadelphia:AmericanSocietyforTestingandMaterials.
Sauer,T.C.,andP.D.Boehm.1995.Hydrocarbonchemistryanalyticalmethodsforoilspillassessments.
MSRCTechnicalReportSeries95-032.Washington,D.C.:MarineSpillResponseCorporation114pp.
Scott,C.L.,A.W.Paige,G.Jennings,andL.Brown.1992.Communityproiledatabasecatalog.Technical
Paper104.Juneau:AlaskaDepartmentofFishandGame,DivisionofSubsistence.
58
Shigenaka,G.andC.B.Henry,Jr.1995.Useofmusselsandsemipermeablemembranedevicestoassess
bioavailabilityofresidualpolynucleararomatichydrocarbonsthreeyearsaftertheExxonValdezoilspill.
InG.Wellsetal.(eds.).ExxonValdezOilSpill:FateandEffectsinAlaskanWaters.ASTMSTP1219.Philadelphia:AmericanSocietyforTestingandMaterials.pp.239-260.
Shigenaka,G.(ed.).1997.IntegratingphysicalandbiologicalstudiesofrecoveryfromtheExxonValdez
oilspill.NOAATechnicalMemorandumNOSORCA114.Seattle:OficeofOceanResourcesConservationandAssessment,NationalOceanicandAtmosphericAdministration.206pp.
Spacie,A.andJ.L.Hamelink.1982.Alternativemodelsfordescribingthebioconcentrationoforganics
inish.EnvironmentalToxicologyandChemistry1:309-320.
Starr,C.1996.Socialbeneitversustechnologicalrisk.Science165:1232-1238.
Topping,G.,J.M.Davies,P.R.Mackie,andC.F.Moffat.1997.TheimpactoftheBraerspilloncommercial
ishandshellish.InJ.M.DaviesandG.Topping(eds.).TheImpactofanOilSpillinTurbulentWaters:The
Braer.Edinburgh:TheStationeryOficeLTD.pp.121-143.
U.S.EnvironmentalProtectionAgency(USEPA).1993.Provisionalguidanceforquantitativeriskassessmentofpolycyclicaromatichydrocarbons.EPA/600/R-93/089.FinalDraft.Cincinnati:Environmental
CriteriaandAssessmentOfice,U.S.EnvironmentalProtectionAgency,20pp.
U.S.EnvironmentalProtectionAgency(USEPA).1994.USEPAcontractlaboratoryprogramnational
functionalguidelinesfororganicdatareview.Publication9240.1-05.Washington,D.C.:OficeofEmergencyandRemedialResponse,U.S.EnvironmentalProtectionAgency.
U.S.EnvironmentalProtectionAgency(USEPA).2000a.Guidanceforassessingchemicalcontaminant
dataforuseinishadvisories,Volume1:Fishsamplingandanalysis,ThirdEdition.EPA823/B/00/007.
Washington,D.C.:OficeofScienceandTechnology,U.S.EnvironmentalProtectionAgency.
U.S.EnvironmentalProtectionAgency(USEPA).2000b.Guidanceforassessingchemicalcontaminant
dataforuseinishadvisories,Volume2:Riskassessmentandishconsumptionlimits,ThirdEdition.
EPA823/B/00/008.Washington,D.C.:OficeofScienceandTechnology,U.S.EnvironmentalProtection
Agency.
Varanasi,U.,J.E.Stein,M.Nishimoto.1989.Biotransformationanddispositionofpolycyclicaromatic
hydrocarbons(PAH)inish.In:U.Varanasi(ed.).MetabolismofPolycyclicAromaticHydrocarbonsinthe
AquaticEnvironment.BocaRaton,Florida:CRCPress.pp.94-149.
Whittle,K.J.,D.A.Anderson,P.R.Mackie,C.F.Moffat,N.J.Shephard,andA.H.McVicar.1997.Theimpactof
theBraeroiloncagedsalmon.InJ.M.DaviesandG.Topping(eds.).TheImpactofanOilSpillinTurbulent
Waters:TheBraer.Edinburgh:TheStationeryOficeLTD.pp.144-160.
59
VII.GlossaryofTerms
APIgravity:Anarbitraryscaleexpressingthegravityordensityofliquidpetroleumproducts.The
petroleumindustryusesAPIgravityratherthandensitybecausetheAPIscaleprovidesgreaterdistinctionbetweendifferentkindsofoilsthandoesspeciicgravity.Themeasuringscaleiscalibratedin
termsofdegreesAPI.APIgravityisdeterminedbytheequationAPIat60°F=141.5/oildensity-131.5.
APIgravityisbasedonthedensityofpurewaterwithanarbitraryAPIgravityvalueof10.Thehigher
theAPIgravity,thelightertheproduct.Lightcrudeoilsgenerallyexceed38degreesAPIandheavy
crudeoilsarecommonlylabeledasallcrudeoilswithanAPIgravityof22degreesorbelow.Intermediatecrudeoilsfallintherangeof22degreesto38degreesAPIgravity.Mostoilshavedensitiesthat
arelessthanwaterandwillgenerallyloatonthewatersurface.Oilswithaspeciicgravitygreater
than1.0(APIgravityoflessthan10)willsinkinfreshwater(whichhasaspeciicgravityof1.0andan
APIgravityof10).Non-loatingoilsinseawaterhaveaspeciicgravitygreaterthan1.02oranAPIgravitylessthan7.
Adulteration:Afoodisdeemedtobeadulteratedifitbearsorcontainsanypoisonousordeleterioussubstancethatmayrenderitinjurioustohealth,orifitcontainsanyilthy,putrid,ordecomposed
substances,orifitisotherwiseunitforfood.
Advection:Thetransportofoilbywatercurrents.
Aerialobservation:Trainedexpertslyinhelicoptersorairplanestomakesystematicobservations
onthepositionofoilslicksandstrandedoil,oceanographicfeaturesthatmightinluenceoilbehavior
(suchaseddies,ripcurrents,riveroutlowplumes,currentspeeds),distributionofwildlife(birds,turtles,
marinemammals),ortheeffectivenessofresponseoperations(dispersantapplications,skimming).
Aliphatics:Hydrocarboncompoundscomposedofstraightorbranchedchainsofhydrogenand
carbon.Theyhavelowwatersolubilityandlowaquatictoxicity.Thelowmolecularweightcompounds
havehighratesofmicrobialdegradation.
Aromatics:Hydrocarboncompoundsthatcontainoneormorebenzenerings.Mono-aromatics
includebenzene,toluene,ethylbenzene,andxylenes.Polycyclicaromatichydrocarbons(PAH)(also
sometimesreferredtoaspolynucleararomatichydrocarbons)containtwoormorebenzenerings.
Mostofthetoxicityofoiltowater-columnorganismsresultsfromthelowmolecularweightaromatic
compounds.
Asphaltenes:Large,heavycompoundsinoilthatweatherextremelyslowly.Notpresentinlight,
reinedproductssuchasgasolineanddiesel.Canbethedominantgroupofcompoundsinheavy
reinedoils.
Barrel:Avolumemeasureofoil=42U.S.gallons.
Benthos/Benthic:Animalsassociatedwiththebottomofabodyofwater.Iftheanimalsareonthe
surface,theyarecalledepifauna;iftheyliveinthesediment,theyarecalledinfauna.
Bioaccumulation:Thenetaccumulationofasubstancebyanorganismasaresultofuptakefromall
environmentalsourcesandallpossibleroutesofexposure,includingcontact,respiration,andingestion.
Bioconcentration:Thenetaccumulationofasubstanceasaresultofuptakedirectlyfromaqueous
solution.
60
Biodegradation:Thebreakdownofsubstancessuchasoilbymicrobes(bacteria,fungi,yeast)asthey
useitasafoodsource.Intermediateproductsareformedduringtheprocess,buttheinalproducts
arecarbondioxideandwater.Thisprocessislimitedtoagreatextentbytemperature,nutrientand
oxygenavailability,andtheamountofoilpresent.
Biomagniication:Theincreaseinbodyburdenofacontaminantwithtrophiclevel.
Densityofoil(speciicandAPIgravity):Massofagivenvolumeofoil(ingrams/cm3)usedtodeine
“light”and“heavy”oils.Alsomeasuredinspeciicgravity(theoil’srelativedensitycomparedwiththat
ofwaterat15°C).Thehigherthespeciicgravity,theheaviertheproduct.APIgravityisbasedonthe
densityofpurewaterwithanarbitraryAPIgravityvalueof10.ThehighertheAPIgravity,thelighter
theproduct.Mostoilshavedensitiesthatarelessthanwaterandgenerallywillloatonwater.Nonloatingoilsinseawaterhaveaspeciicgravitygreaterthan1.02oranAPIgravitylessthan7.
Dispersants:Speciallydesignedproductscomposedofdetergent-likesolventsandagentsapplied
directlyfromplanes,helicopters,orvesselstohelpbreakoilslicksintosmalldropletsthatdisperseinto
thewatercolumnandspreadinthreedimensionsthroughnaturalwatermovement.
Dispersion:Theprocessofbreakingoilintoverysmallparticlesordroplets(ranginginsizefromless
than0.5micronstoseveralmm)thatmixintothewatercolumn.Thesmallerdropletswillnotreloat
tothesurface,butratherwillmovewiththecurrents;largerdropletsmayreloatundercalmconditionsandreformslicksorsheens.
Dissolution:Lossofwater-solublecomponentsofoilintowater.Compoundsinoilareonlyvery
slightlysoluble(maximumwater-solublefractionforcrudeoilsinsaltwaterisusually10to30ppm).
DistillationFractions:Thefraction(generallymeasuredbyvolume)ofoilthatisboiledoffatagiven
temperature.Usedinmodelstopredicttheamountofoillossviaevaporation.
Elimination:Alloftheprocessesthatcandecreasetissueconcentrationsofacontaminant,including
metabolism,excretion,anddiffusiveloss.
Emulsiication(mousseformation):Theprocesswherebysmallwaterdropletsareincorporated
intotheoil,changingmanyoftheoil’sproperties.Oftenhastheconsistencyofchocolatemousse.
Watercontentcanbeashighas80%,increasingthevolumeofoilymaterialforrecoveryanddisposal.
Greatlyaffectstheeficiencyofskimmersandpumps.
Evaporation:Transferofthevolatilefractionsinoilfromtheliquidphasetothevaporphase.Itisthe
singlemostimportantweatheringprocessfortheirstseveraldaysofanoilspill.
Fingerprinting:Chemicalanalysesandinterpretationsusedtocompareanoil(usuallythespilledoil)
withotheroilstodeterminewhethertheyarefromthesamesource.Itisacriticalprocesswhenthe
spillsourceisunknown.Itisalsoimportanttodeterminethesourceofoilinenvironmentalsamples,
suchasseafood,comparedtobackgroundcontamination.
GrowthDilution:Theprocesswherebytherateofaccumulationisexceededbytherateoftissue
growthsothatwhentheconcentrationisexpressedonmassofchemicalpermassoftissueovertime,
itappearsasthougheliminationisoccurringbecausethetissueconcentrationisdecreasing.
Half-life:Thetimeittakesfortheconcentrationofacompoundtodecreasebyhalf.
HAZMAT:NOAAHazardousMaterialResponseDivision.CoordinatesscientiicsupporttotheU.S.
CoastGuardforoilandchemicalspills.HasinformationforoilspillresponseatWebsites:
http://response.restoration.noaa.govandhttp://www.IncidentNews.gov
High-molecularweightPAHs:PAHswith4-6benzenerings.
61
Hydrophobic:“Water-fearing,”asubstancethatisattractedtooil,lipids,andfatsandrepelledby
water.
Lipophilic:“Lipid-loving,”asubstancethatisattractedtooil,lipids,andfats.
Low-molecularweightPAHs:PAHswith2-3benzenerings.
Metabolism:Enzymaticprocessthatconvertsinsolublepetroleumhydrocarbonsintomoresoluble
breakdownproducts(metabolites)thatcanbemorereadilyexcretedbyanimalsthathaveakidneyor
kidney-likeorgan.
Microbes:Atoilspills,thefocusisonbacteria,fungi,andyeastthatareabletodegradepetroleum
hydrocarbons.
Pelagic:Marineanimalsthatlivefreefromdirectdependenceontheseabottomorshore.Free-swimmingformsarenektonic;loatingformsareplanktonic.
Petrogenic:Hydrocarbonsderivedfrompetroleumoils,incontrasttopyrogenichydrocarbons,
derivedfromthecombustionoffossilfuels.
Photo-oxidation:Theprocessbywhichthecomponentsinoilarechemicallytransformedthrougha
photochemicalreaction,inthepresenceofoxygen.
Polarcompounds:Veryheavy,persistentcompoundsinoil,includingasphaltenes(verylargecompounds)andresins(smallercompoundsthatbondwithsulfur,nitrogen,oroxygen).Slowesttobiodegrade.
Pourpoint:Thetemperaturetowhichasubstancemustbeheatedtomakeitlow.Oilswithahigh
pourpointcancongealintosemi-solidmasseswhenspilled.
Pyrogenic:Hydrocarbonsderivedfromthecombustionoffossilfuels.
Salinity:Ameasureofhowmuchsaltisdissolvedinwater.Fullstrengthseawaterisabout35parts
perthousand(ppt).Freshwateris0ppt.Thewaterinestuariesisamixtureofthesetwo.
Saturates:Groupofpetroleumhydrocarbonsconsistingprimarilyofalkanes,butalsocyclo-alkanes
andwaxes(largesaturates).
ScientiicSupportCoordinator(SSC):ProvidesliaisonwiththescientiicresearchandresponsecommunitytotheU.S.CoastGuardforoilandchemicalspills.
Sedimentation:Whenparticlessuspendedinthewatercolumnsettletothebottom.Canincludesettlingofsiltandclayincalmwaterandoilandsandmixturesinthesurfzoneandinrivers.
Sheen:Averythinlayerofoilonwater.Colorindicatesthethicknessandvolumeperarea:
Silversheen
0.00007mm
75gallons/squarenauticalmile
Firstcolortrace 0.0001mm
150gallons/squarenauticalmile
Rainbowcolors 0.0003mm
300gallons/squarenauticalmile
Dullcolors
0.001mm
1,000gallons/squarenauticalmile
Darkcolors
0.003mm
3,000gallons/squarenauticalmile
Solubility:Howmuchofanoilwillenterthewatercolumnonamolecularbasis.Solubilityofoilin
waterisgenerally<100partspermillion(ppm);thusitnotasigniicantlossmechanismforoil.
Taint:Anoff-lavororoff-odorinseafoodthatisnottypicalofthelavororodoroftheseafooditself.
Tonnes(metric):aweightmeasureforoil,approximately=300gallons.
62
Toxicity(acuteandchronic):Anadverseaffectonalivingorganismcausedbyexposuretoacontaminant,suchasoil.Acutetoxicityoccursoveraveryshortexposureperiod(hourstodays)andusually
resultsindeath.Chronictoxicityoccursfromlong-termexposure(weeksormore)andcausesimpacts
toreproduction,growth,andbehavior.
Trajectory:Apredictionofwheretheoilwillbetransportedbywindandcurrentsovertime.
Uptake:Acquisitionofasubstancefromtheenvironmentbyanorganismasaresultofanyactive
orpassiveprocess.Uptakeiscontrolledexternallybythepartitioningbehaviorofthecontaminant
(betweensediment,water,andfood)andinternallybytheorganism’sbehaviorandphysiology.
Viscosity:Resistancetolowinaliquid.Determineswhetherdispersantswillbeeffectiveonanoil
slick.Viscosityincreasesasitgetscolderandastheoilweathers.Lowviscosityislikewater,medium
viscosityislikemolasses,andhighviscosityisliketar.
Weathering:Changesinthephysicalandchemicalpropertiesofoilduetonaturalprocessesthat
beginwhenthedischargeoccursandcontinueuntiltheoilisremoved.Majorweatheringprocesses
includeevaporation,emulsiication,dissolution,photo-oxidation,andbiodegradation.
63
Appendix
64
�������� �
��
�
�
�
��
��
��
��
NOAA/NMFS NATIONAL SENSORY SECTION
CHAIN OF CUSTODY FORM
� ��������
��
��
�
�������
���
��
��
�
��
��
���
�
�� � � �
��
�
7600 Sand Point Way NE, Seattle, WA
For more information contact Michael DiLiberti
978-281-9123 or FAX 978-281-9125
Project___________________
Sample
I.D. #
Date
Collected
Location
Sampler________________________
Sample Type
(Tissue, oil, water. Include
Comments
species name and tissue type)
Collected by
Received by:(signature)
Condition:
Date/Time
Relinquished by: (signature)
Received by:(signature)
Condition:
Date/Time
Relinquished by: (signature)
Received by:(signature)
Condition:
Date/Time
Relinquished by: (signature)
Received by:(signature)
Condition:
Date/Time
Relinquished by: (signature)
Received by:(signature)
Condition:
Date/Time
Relinquished by: (signature)
Received by:(signature)
Condition:
Date/Time
* If shipped, include carrier name and copy of shipping invoice
65
DonaldL.Evans
Secretary,U.S.DepartmentofCommerce
ViceAdmiralConradC.Lautenbacher,Jr.,USN(Ret.)
UnderSecretaryforOceansandAtmosphereandNOAAAdministrator
JamisonS.Hawkins
ActingAssistantAdministratorfor
OceanServicesandCoastalZoneManagement,
NOAAOceanService
November2002
U.S.DepartmentofCommerce•NationalOceanicandAtmosphericAdministration•NOAA’sNationalOceanService
66