Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2001, Journal of Algebraic Combinatorics an International Journal
…
9 pages
1 file
Using maps due to Ozeki and Broué-Enguehard between graded spaces of invariants for certain finite groups and the algebra of modular forms of even weight we equip these invariants spaces with a differential operator which gives them the structure of a Rankin-Cohen algebra. A direct interpretation of the Rankin-Cohen bracket in terms of transvectant for the group SL(2, C) is given.
The Ramanujan Journal, 2011
The Rankin-Cohen product of two modular forms is known to be a modular form. The same formula can be used to define the Rankin-Cohen product of two holomorphic functions f and g on the upper half-plane. Assuming that this product is a modular form, we prove that both f and g are modular forms if one of them is. We interpret this result in terms of solutions of linear ordinary differential equations.
Letters in Mathematical Physics, 2008
Don Zagier introduced and discussed in [21] a particular algebraic structure of the graded ring of modular forms. In this note we interpret it in terms of an associative deformation of this graded ring.
Moscow Mathematical Journal, 2003
We settle in this paper a question left open in our paper ``Modular Hecke algebras and their Hopf symmetry'', by showing how to extend the Rankin-Cohen brackets from modular forms to modular Hecke algebras. More generally, our procedure yields such brackets on any associative algebra endowed with an action of the Hopf algebra of transverse geometry in codimension one, such that the derivation corresponding to the Schwarzian derivative is inner. Moreover, we show in full generality that these Rankin-Cohen brackets give rise to associative deformations.
Bulletin of the American Mathematical Society, 1980
The character of a highest weight representation of an affine lie algebra can be written as a finite sum of products of classical 0-functions and certain modular functions, called string functions. We find the transformation law for the string functions, which allows us to compute them explicitly in many interesting cases. Finally, we write an explicit formula for the partition function, in the simplest case A[ x \ and compute the string functions directly. After multiplication by the cube of the T?-function, they turn out to be Hecke modular forms! 1. (See [3] or [7] for details.) Let g be a complex finite-dimensional simple lie algebra, § a Cartan subalgebra of g. A the set of roots of § in g. A + a set of positive roots, II = {OL X ,..., a ; } the corresponding set of simple roots, 0 the highest root. Let (,) be an invariant symmetric bilinear form on g normalized by (6,6) = 2. For a€^* with (a, a) * 0 define H a G § by 0(# a) = 2(0, a)/(a, a) for j8 G §*. Let W be the Weyl group of § in g. Denote by M the Z-span of W6 (long roots). Let C[t, t" 1 ] be the algebra of Laurent polynomials over C in an indeterminate t. We regard g' := C[t, t~x] ® c g as an (infinite-dimensional) complex lie algebra. Define the affine Lie algebra g as follows. Let g = 'g © Cc © Cd and define the bracket by (dx \ dx for x, y G 'gf. The algebra g is an important example of a Kac-Moody algebra [5], [10]. Note that Cc is the center of the algebra g. The subalgebra % = i) <B Cc 0 Giis called the Cartan subalgebra of g. For a G §* set g a = {x G g | [ft, x] = a(h)x for ft G §}; then we have the root space decomposition 8 = ®9<r Detine a nondegenerate symmetric bilinear form (,) on § by (ft, ft') is unchanged if ft, ft' G § C 6, (ft, c) = (ft, d) = 0 for ft G fc>, (c, c) = (tf, J) = 0, (c, rf) = 1. We identify § with §* by this form; then §* is identified with a subspace in %* by a(c) = a(<2) = 0 for a G §*. For a G §* set a = aL " so that
2009
Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and polynomial algebras that arise in orbifold theory and representation theory; deformations in this context include graded Hecke algebras and symplectic reflection algebras. We give some general results describing when brackets are zero for polynomial skew group algebras, which allow us in particular to find noncommutative Poisson structures. For abelian groups, we express the bracket using inner products of group characters. Lastly, we interpret results for graded Hecke algebras.
International Journal of Algebra, 2015
The aim of this paper is two fold: First to study finite groups G of automorphisms of the homogenized Weyl algebra Bn, the skew group algebra Bn * G, the ring of invariants B G n , and the relations of these algebras with the Weyl algebra An, with the skew group algebra An * G, and with the ring of invariants A G n. Of particular interest is the case n = 1. In the on the other hand, we consider the invariant ring C[X] G of the polynomial ring K[X] in n generators, where G is a finite subgroup of Gl(n, C) such that any element in G different from the identity does not have one as an eigenvalue. We study the relations between the category of finitely generated modules over C[X] G and the corresponding category over the skew group algebra C[X] * G. We obtain a generalization of known results for n = 2 and G a finite subgroup of Sl(2,C). In the last part of the paper we extend the results for the polynomial algebra C[X] to the homogenized Weyl algebra Bn.
Introducción En el Documento de Cátedra La tensión entre explicación y comprensión. En problema de la explicación en las ciencias sociales, la exposición más o menos sistemática de algunos de los representantes de las corrientes explicacionistas y comprensivistas no es exhaustiva, y la mención de unos u otros nombres y teorías corresponde a una decisión que, si bien arbitraria, creemos que es la que mejor ilustra el panorama general del problema con sus representantes más clásicos. Allí, hemos iniciado el recorrido con el surgimiento de las ciencias sociales con Auguste Comte para, luego, mostrar la crítica a la metodología positivista de la mano de Wilhelm Dilthey y Max Weber quienes, entre otros, fueron los primeros en detectar el problema metodológico. Nuestro objetivo aquí es introducirlos al campo de los modelos del comprensivismo en ciencias sociales con el fin de ahondar en el debate entre explicación y comprensión. Presentaremos a aquellos autores que, siguiendo o rechazando parcialmente la línea del comprensivismo diltheyano, avanzan para inclinarse, o bien por una metodología comprensivista crítica, o bien por una metodología que podríamos calificar de mixta, pero que siempre toma como referencia a la comprensión como método de las ciencias del espíritu. Abordaremos una selección de teorías que, creemos, representa los desarrollos de mayor vigencia o el cruce entre dos formas de hacer filosofía. Destacamos aquí las figuras de Georg von Wright, Paul Ricoeur y Anthony Giddens. Pero también, es necesario dar cuenta, aunque sea brevemente y con las limitaciones que un estudio introductorio tiene, de otros autores que, ya sea han derivado sus teorías críticamente de los desarrollos que los precedieron, o han posibilitado el desarrollo de teorías posteriores. Es el caso aquí de Alfred Schütz, de Bas van Fraassen, de Hans-Georg Gadamer y de Peter Winch. Es necesario, asimismo, subrayar que los recientes tratamientos en torno a esta cuestión han procurado de sintetizar o de disolver la antinomia explicar o comprender.
Journal of Archaeological Research in West Asia, 2022
During the 5th millennium BCE in southern Iran, black-on-buff painted pottery spread from the Susiana Plain to the Zagros Mountains. Some researchers argued that the expansion of the painted pottery was due to the specialist potter's migration from the Susiana Plain to the Zagros mountains. However, others also considered potteresses' movement due to interregional marriage and exchange of the pottery as another mechanism for expanding the painted pottery. This presentation approaches the expansion process of the black-on-buff pottery using social network analysis to understand this mechanism's dynamics. This paper uses published/unpublished drawings of exterior-painted black-onbuff ceramics reported in archaeological sites ranging from Luristan to Kerman for this analysis. These materials were roughly subdivided into three phases (the Early, Middle, Late phases) of the 5th millennium BCE to reveal diachronic changes of network patterns. One of the pottery attributes, horizontal design structures, was used to reconstruct networks based on the Brainerd-Robinson coefficient of similarity, thereby allowing for visualization of two different kinds of networks. This paper presents a preliminary result of network analyses and discusses the potentials and limits of this approach.
Bulletin of Science and Practice, 2021
Nueva Revista de Filología Hispánica (NRFH), 2014
Cuadernos de Investigación Filológica, 2012
Coatings, 2018
Journal of Ethnobiology and Ethnomedicine, 2011
Frontiers in Microbiology, 2023
International Journal of Quantum Chemistry, 2018
Annales de la Société royale d'Archéologie de Bruxelles, 2018
Marselinus Nirwan Luru, 2017
REVISTA DA FACULDADE DE DIREITO DA UFMG, 2023