Skip to main content
    • by 
    •   2  
      Finite Group TheoryAutomorphism P-Group
Following the ideas of our previous works math.QA/0008232 (joint with Andruskiewitsch) and math.QA/0101049, we study families of triangular Hopf algebras obtained by twisting finite supergroups by a twist lying entirely in the odd part.... more
    • by 
    •   4  
      Finite Group TheoryPure MathematicsQuantum AlgebraClifford algebra
    • by 
    •   3  
      Group TheoryFinite Group TheoryPure Mathematics
Let $G$ be a finite group and $M(G)$ be the subgroup of $G$ generated by all non-central elements of $G$ that lie in the conjugacy classes of the smallest size. Recently several results have been proved regarding the nilpotency class of... more
    • by 
    •   3  
      Group TheoryFinite Group TheoryPure Mathematics
Using maps due to Ozeki and Broué-Enguehard between graded spaces of invariants for certain finite groups and the algebra of modular forms of even weight we equip these invariants spaces with a differential operator which gives them the... more
    • by 
    •   7  
      Algebraic CombinatoricsFinite Group TheoryPure MathematicsInvariant Theory
We present a sketch on a problem related to the isomorphism between the simple group of order 168 and the projective general linear group.
    • by 
    •   5  
      AlgebraGroup TheoryFinite Group TheoryAbstract Algebra
A group code structure of a linear code is a description of the code as one-sided or two-sided ideal of a group algebra of a finite group. In these realizations, the group algebra is identified with the ambient space, and the group... more
    • by 
    •   8  
      Coding TheoryAlgebraFinite Group TheoryPure Mathematics
We associate a graph N G with a group
    • by 
    •   3  
      Group TheoryFinite Group TheoryPure Mathematics
Many results show how restrictions on the values of the irre- ducible characters on the identity element (that is, the degrees of the irreducible characters) of a finite group G, influence the structure of G. In the current article we... more
    • by 
    •   2  
      Finite Group TheoryPure Mathematics
    • by 
    •   3  
      Finite Group TheoryPure MathematicsBoolean Satisfiability
The purpose of this paper is the determination of the inertia factors, the computations of the Fischer matrices and the ordinary character table of the split extension G = 3 7 :Sp(6, 2) by means of Clifford-Fischer Theory. We firstly... more
    • by  and +1
    •   2  
      Finite Group TheoryRepresentation theory of finite groups
An approach to representations of finite groups is presented without recourse to character theory. Considering the group algebra C[G] as an algebra of linear maps on C[G] (by left multiplication), we derive the primitive central... more
    • by 
    •   3  
      Finite Group TheoryRepresentation TheoryMatrix Algebra
Este texto es una introducción a la teoría de grupos, con énfasis en grupos finitos, el cual fue elaborado para la clase de Teoría de Grupos de la Licenciatura en Matemáticas de la Universidad de Guadalajara. Incluye temas básicos como la... more
    • by 
    •   6  
      AlgebraGroup TheoryFinite Group TheoryAbstract Algebra
This is an introduction to the theory of induced representations of finite groups with emphasis on the contributions of George Mackey. Some applications to the representation theory of the symmetric group are also presented.
    • by 
    • Finite Group Theory
    • by 
    •   18  
      MathematicsApplied MathematicsMathematical PhysicsAlgebra
In this article, the character tables of some finite groups are constructed. The Mathematical knowledge needed to do such constructions is developed within the first three chapters. The modular theory approach to representation theory was... more
    • by 
    • Finite Group Theory
    • by 
    •   2  
      Finite Group TheoryPure Mathematics
Texto basado en una conferencia de divulgación del DivecFest 2014 en la Universidad de Guadalajara.
    • by 
    •   6  
      Finite Simple GroupsFinite Group TheoryPure MathematicsMatemáticas
For a finite groupG, #Cent(G) denotes the number of centralizers of its elements. A groupG is called n-centralizer if #Cent(G) =n, and primitiven-centralizer if $\# Cent(G){\text{ = \# }}Cent{\text{(}}\frac{G}{{Z(G)}}){\text{ = }}n$ . In... more
    • by 
    •   2  
      Finite Group TheoryMathematical Sciences
For a finite group G, let Cent(G) denote the set of centralizers of single elements of G and #Cent(G) = |Cent(G)|. G is called an n-centralizer group if #Cent(G) = n, and a primitive n-centralizer group if #Cent(G) = #Cent(G/Z(G)) = n. In... more
    • by 
    •   2  
      Finite Group TheoryPure Mathematics
La transitività della normalità in teoria dei gruppi è strettamente correlata alla proprietà dei sottogruppi di essere pronormali. Ammettere solo sottogruppi pronormali è sufficiente per godere della proprietà T. Partendo... more
    • by 
    •   11  
      MathematicsAlgebraGroup TheoryFinite Group Theory
    • by 
    •   5  
      Finite Group TheoryCommunication modelLower BoundUpper Bound
To any finite group Γ⊂Sp(V) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, Hκ of the algebra ℂ[V]#Γ, smash product of Γ with the polynomial algebra on V. The parameter κ runs over points of... more
    • by 
    •   11  
      Algebraic GeometryFinite Group TheoryPure MathematicsRepresentation Theory
The purpose of this article is to give a proof of the Orbifold Theorem announced by Thurston in late 1981: If $O$ is a compact, connected, orientable, irreducible and topologically atoroidal 3-orbifold with non-empty ramification locus,... more
    • by 
    •   3  
      Finite Group TheoryPure MathematicsDimensional
Representation theory of groups: the first part concern the representation theory of finite groups (with also character theory) and the second part the discussion is focused on the Lie Groups/Algebras. The topics are:... more
    • by 
    •   7  
      MathematicsTheoretical PhysicsGroup TheoryFinite Group Theory
Let \pi(G) denote the set of prime divisors of the order of a finite group G. The prime graph of G is the graph with vertex set \pi(G) with edges {p,q} if and only if there exists an element of order pq in G. In this paper, we prove that... more
    • by 
    •   8  
      Graph TheoryCombinatoricsGroup TheoryFinite Group Theory
Estas son las notas del curso impartido en el Centro Universitario de Ciencias Excactas e Ingenierías de la Universidad de Guadalajara del 4 al 8 de abril de 2011. La teoría de representaciones de grupos es un área del álgebra abstracta... more
    • by 
    •   3  
      Finite Group TheoryRepresentation TheoryAlgebra Lineal
    • by 
    •   6  
      Group TheoryFinite Group TheoryPure MathematicsRepresentation Theory
We associate a graph Γ G to a non locally cyclic group G (called the non-cyclic graph of G) as follows: take G\Cyc(G) as vertex set, where Cyc(G) = {x ∈ G | x, y is cyclic for all y ∈ G}, and join two vertices if they do not generate a... more
    • by 
    •   3  
      Group TheoryFinite Group TheoryPure Mathematics
Emmy Noether’s many articles around the time that Felix Klein and David Hilbert were arranging her invitation to Göttingen include a short but brilliant note on invariants of finite groups highlighting her creativity and perspicacity in... more
    • by 
    • Finite Group Theory
Proof. All the non-abelian subgroups of G are G and Q 8 . Furthermore, G = Q 8 and Q 8 = Z (Q 8 ), the center of Q 8 , which are normal in G. Hence D(G) = G, and G is non-abelian. 2 Example 1.3. As Aut(Q 8 ) ∼ = S 4 and D 8 S 4 , we have... more
    • by 
    •   4  
      AlgebraFinite Group TheoryPure MathematicsBoolean Satisfiability
A Latin square of order n is an n × n array of n symbols, in which each symbol occurs exactly once in each row and column. A transversal is a set of n entries, one selected from each row and each column of a Latin square of order n such... more
    • by 
    •   5  
      Finite Group TheoryPure MathematicsTransversalUpper Bound
Smooth and symplectic symmetries of an infinite family of distinct exotic K3 surfaces are studied, and comparison with the corresponding symmetries of the standard K3 is made. The action on the K3 lattice induced by a smooth finite group... more
    • by 
    •   3  
      Finite Group TheoryTopologyPure Mathematics
The second author introduced notions of weak permutablity and commutativity between groups and proved the finiteness of a group generated by two weakly permutable finite subgroups. Two groups H, K weakly commute provided there exists a... more
    • by 
    •   4  
      Group TheoryFinite Group TheoryPure MathematicsFinite Abelian Group
We characterise the class of finite solvable groups by two-variable identities in a way similar to the characterisation of finite nilpotent groups by Engel identities. Let u 1 = x −2 y −1 x, and u n+1 = [xu n x −1 , yu n y −1 ]. The main... more
    • by  and +1
    •   6  
      Group TheoryFinite Group TheoryPure MathematicsComputer Algebra
Let W be an associative PI -algebra over a
    • by 
    •   3  
      MathematicsFinite Group TheoryPure Mathematics
Vol.3,2020 of International Journal of Mathematical Combinatorics (ISSN 1937-1055)
    • by 
    •   4  
      Graphs TheoryCombinatoricsDifferential GeometryFinite Group Theory
    • by 
    •   6  
      Harmonic AnalysisTheoretical PhysicsQuantum Field TheoryGroup Theory
    • by  and +1
    •   3  
      Group TheoryFinite Group TheoryComputer Algebra
Un elemento finito lineal con sección transversal constante puede adoptar cualquier orientación en el plano y sus extremos o nodos lo ligan al resto de los elementos. La energ a cinética (T ) y potencial (V ) de un elemento elástico... more
    • by 
    •   43  
      EngineeringMathematicsApplied MathematicsPhysics
Um grupo cristalográfico tridimensional é um subgrupo do grupo de simetrias de um reticulado. Todo o grupo cristalográfico pontual (isto é, um grupo finito gerado por translações de R^3 ) é um grupo cristalográfico cujo reticulado contém... more
    • by 
    •   7  
      MathematicsGeometry And TopologyFinite GeometriesFinite Group Theory
We show that the permutation of six Sylow 5-subgroups by conjugation is a faithful action, so that G is isomorphic to a subgroup of S 6 .
    • by 
    •   5  
      AlgebraGroup TheoryFinite Group TheoryAbstract Algebra
    • by 
    •   6  
      Group TheoryFinite Group TheoryPure MathematicsRepresentation Theory
The present paper deals with a maximal subgroup of the Thompson group, namely the group 2 1+8 + · A9 := G. We compute its conjugacy classes using the coset analysis method, its inertia factor groups and Fischer matrices, which are... more
    • by 
    •   2  
      Finite Group TheoryRepresentation theory of finite groups
Finite group extensions offer a natural language to quantum computing. In a nutshell, one roughly describes the action of a quantum computer as consisting of two finite groups of gates: error gates from the general Pauli group P and... more
    • by 
    •   10  
      Quantum PhysicsGroup TheoryFinite Group TheoryQuantum Coherence
This abstract presents (without proofs) some new results on commutativity degree of finite groups.
    • by 
    •   2  
      Group TheoryFinite Group Theory
Abstract. We study the module category associated to the quantum double of a finite abelian group G twisted by a 3-cocycle, which is known to be a braided monoidal category, and investigate the question of when two such categories are... more
    • by  and +1
    •   4  
      Finite Group TheoryPure MathematicsQuantum AlgebraConformal Field Theory
    • by 
    •   4  
      Finite Group TheoryPure MathematicsBoolean SatisfiabilityGreatest common divisor
The partial group algebra of a group G over a field K, denoted by Kpar(G), is the algebra whose representations correspond to the partial representations of G over K-vector spaces. In this paper we study the structure of the partial group... more
    • by 
    •   8  
      MathematicsAlgebraGroup TheoryFinite Group Theory