Proceedings
R u d d i m a n , W . , S a r n t h e i n M . , et a l . , 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH
of the Ocean Drilling Program, Scientific Results, V o l .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ
108
28. BIOSTRATIGRAPHIC SYNTHESIS: LEG 108, EASTERN
EQUATORIAL ATLANTIC 1
P.P.E. Weaver, 2 J. Backman, 3 J. G. Baldauf,4 J. Bloemendal, 5 H. Manivit, 6 K. G. Miller,7,8 E. M. Pokras, 8
M. E. Raymo, 8 L. Tauxe, 9 J.-P. Valet,10 A. Chepstow-Lusty, 11 and G. Olafsson3
ABSTRACT
Leg 108 cored 12 sites in the eastern equatorial Atlantic and along the northwest African continental margin to
investigate the late Neogene and Quaternary oceanographic and climatic history of these regions. Sediments
recovered during Leg 108 provide in part a high-resolution stratigraphic record for the upper Pliocene through
Holocene interval. The bio- and magnetostratigraphy are intercalibrated where possible and provide a useful
chronostratigraphy for paleoceanographic studies.
INTRODUCTION
The objective of Ocean Drilling Program (ODP) Leg 108
was to retrieve Neogene sediment using advanced hydraulic
piston core/extended core barrel (APC/XCB) techniques for
high-resolution paleoclimatic studies along a latitudinal
transect in the eastern equatorial Atlantic. This data was
required to complete the latitudinal transect of cores taken in
the North Atlantic during Deep Sea Drilling Project (DSDP)
Leg 94 and to investigate other questions associated with the
response of surface productivity and eolian input to changing
climatic and oceanographic conditions. In addition, this program was ideal for establishing biostratigraphic reference
sections in undisturbed Neogene sediment cores from the
low-latitude Atlantic Ocean.
Another major objective was to establish a high-resolution
paleomagnetic stratigraphy, thus providing the first opportunity to investigate and evaluate the chronologic properties of
biostratigraphic marker events in pre-upper Pliocene sediments from the low-latitude Atlantic Ocean. Considering the
substantial number of DSDP/ODP sites that have been drilled
in the Atlantic Ocean and the prominence of the low-latitude
Atlantic regions in the history of paleoceanography, surprisingly little sediment has been cored with the APC/XCB tools.
The sediments cored during Leg 108 represent the only APC
1
Ruddiman, W., Sarnthein, M., et al., 1989. Proc. ODP, Sci. Results, 108:
College Station, TX (Ocean Drilling Program).
Institute of Oceanographic Sciences, Brook Road, Wormley, Godalming,
Surrey GU8 5UB, United Kingdom.
Department of Geology, University of Stockholm, S-10691 Stockholm,
Sweden.
Ocean Drilling Program, Texas A&M University, 1000 Discovery Drive,
College Station, TX 77843.
Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, RI 02882.
CNRS-UA 319, Laboratoire de Stratigraphic des Continents et Oceans,
Universite Paris IV, 4 Place Jussieu, 75230 Paris Cedex, France.
Department of Geological Sciences, Rutgers University, New Brunswick,
NJ 08903.
Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY 10964.
Scripps Institution of Oceanography, University of California, San Diego,
La Jolla, CA 92093.
Centre des Faibles Radioactivites, Laboratoire Mixte CNRS-CEA, Pare
du CNRS, B. P. 91198, Gif/Yvette Cedex, France.
Godwin Laboratory, Subdepartment of Quaternary Research, University
of Cambridge, Cambridge CB2 3RS, United Kingdom.
material available from tropical or equatorial environments of
the Atlantic Ocean.
Leg 108 sailed less than a year after Berggren et al. (1985a,
1985b) published their attempt to establish a Cenozoic
geochronology and a thorough compilation of correlations
between Cenozoic bio- and magnetostratigraphy, encompassing most important marine microfossil groups. When the
authors published their correlations, they clearly suffered
from a lack of adequate magnetostratigraphic sections representing equatorial environments even in the Neogene realm.
Consequently, the bio- and magnetostratigraphers on Leg 108
anticipated being able to provide this missing low-latitude bioand magnetostratigraphy.
With respect to calcareous nannofossil biostratigraphy, our
interest was focused on the time interval preceding the top of
the Thvera Subchron (prior to about 4.6 Ma). Pleistocene and
Pliocene calcareous nannofossil marker events that have
occurred since then have been directly correlated to oxygen
isotope stratigraphy (e.g., Thierstein et al., 1977) or to magnetostratigraphy (e.g., Backman and Shackleton, 1983) in
numerous piston cores from low-latitude regions. Therefore,
we saw little reason to expect substantial revision, on the
order of 5%-10% or more, in the age estimates of PliocenePleistocene calcareous nannofossil markers, as viewed within
the frame of the marine magnetic anomaly time scale of
Berggren et al. (1985a, 1985b).
In many early DSDP legs, planktonic foraminifers were
regarded as more important than calcareous nannofossils for
biostratigraphy. Recent investigations, such as those of
Weaver and Clement (1987) and Hodell and Kennett (1986),
however, have shown that many late Neogene species have
diachronous first and last occurrences, and it has become
important to test the accuracy of these datums against the
paleomagnetic record in as many areas as possible. Because
many of the original data were collected in tropical regions,
we hoped that Leg 108 would provide important additional
data, particularly from sites lying in the tropics but under the
influence of cool surface currents. The ages of datum levels
below the Miocene/Pliocene boundary are less well defined;
thus, all additional data from Paleomagnetically dated cores in
this interval are of importance.
Considerable problems were encountered in obtaining
good paleomagnetic records during Leg 108. These included
the combined effects of low magnetic intensities, the occurrence of slumps and turbidites, the recovery of condensed
sequences, improperly functioning core-orienting devices,
455
P.P.E. WEAVER ET AL.
and magnetic overprinting. In fact, we were only able to define
data were not available, we were forced to rely on the
and identify magnetostratigraphic polarity zones in the
biostratigraphy alone.
Pliocene-Pleistocene interval. These Paleomagnetically dated
Calcareous nannofossil ages are well established throughintervals strengthen our interpretation of Pliocene-Pleistocene
out the Pliocene and Quaternary, but there are several probstratigraphy by adding Atlantic tropical sites to the relatively
lems in pre-Pliocene sediments. Unfortunately, we did not
small number of DSDP and ODP sites with independent age
identify any paleomagnetic boundaries below the Pliocene and
control. The lack of paleomagnetic signals in pre-Pliocene
so these biostratigraphic problems could not be resolved. The
sediments, however, does little to improve the dating of
planktonic foraminiferal datum levels are also unreliable in
biostratigraphic datum levels in these older sequences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pre-Pliocene sediments, and our accumulation rate curves are
therefore based on best-fit criteria.
RESULTS
Since the pre-Pliocene accumulation rates may be subject
The biostratigraphic results, together with some previously
to error, it is difficult to use them to assess the accuracy of
unpublished Leg 108 data, have been compiled into tables
biostratigraphic datum levels. It is generally accepted, howshowing first or last occurrences of biostratigraphic marker
ever, that calcareous nannofossils give more reliable age
species, and the sub-bottom depth intervals assigned for these
information than planktonic foraminifers, and the accumulamarker events (Tables 1-3). In thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proceedings of the Ocean
tion rate curves do fit more calcareous nannofossil datum
Drilling Program, Initial Results volume (Ruddiman, Sarnpoints than planktonic foraminiferal ones. Therefore, we have
thein, et al., 1988), we outline the stratigraphic scheme used to
given age estimates throughout of the planktonic foraminifers
determine stratigraphic ages in these sites. For calcareous
derived from the accumulation rate curves (Table 3). A
nannofossils, planktonic foraminifers, and paleomagnetics,
comparison between Tables 1 and 3 will indicate where
this largely follows Berggren et al. (1985a, 1985b). Departures
paleomagnetic control of this data existed.
from the Berggren dates are discussed in the "Introduction"
OCCURRENCE OF MAJOR GROUPS
chapter of the Initial Results volume. Where paleomagnetic
data were available, it has been possible to assess the accuOf the 12 sites cored during Leg 108 (Fig. 1), 8 did not
racy of the microfossil datum levels. Where paleomagnetic
penetrate below the upper Miocene; the deepest site, however, penetrated into the Upper Cretaceous. Figures 2 and 3
Table 1. Stratigraphic placement in meters
(to the nearest decimeter) of the Leg 108
chron and subchron boundaries.
456
Site and time zone
Age
(Ma)
Depth
(mbsf)
108-657BBrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
Matuyama/Gauss
0.73
.0.91
0.98
2.47
29.0
30.7-34.7
36.2
72.1-73.7
108-658AOlduvai (upper)
Olduvai (lower)
1.66
1.88
109.2-109.8
124.1-129.7
108-658BOlduvai (upper)
Olduvai (lower)
1.66
1.88
108.2
126.2
108-659ABrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
0.73
0.91
0.98
22.8
28.6
31.0
108-659BJaramillo (upper)
Jaramillo (lower)
Olduvai (upper)
Olduvai (lower)
Matuyama/Gauss
0.91
0.98
1.66
1.88
2.47
26.4
29.3
47.8
52.4
74.7
108-660ABrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
Olduvai (upper)
Olduvai (lower)
0.73
0.91
0.98
1.66
1.88
18.5
22.9
24.6
36.4
28.4
108-661ABrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
Olduvai (upper)
Matuyama/Gauss
0.73
0.91
0.98
1.66
2.47
10.5-12.7
14.8
16.0
26.1-26.7
36.8
108-661BBrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
Olduvai (upper)
0.73
0.91
0.98
1.66
13.1-15.7
—
—
25.4
Table 1 (continued).
Site and time zone
Age
(Ma)
Depth
(mbsf)
Olduvai (lower)
Matuyama/Gauss
Gauss/Gilbert
1.88
2.47
3.40
30.2
36.2
52.5
108-664BBrunhes/Matuyama
Jaramillo (upper)
0.73
0.91
27.0
35.5
108-664CBrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
0.73
0.91
0.98
25.9
34.5
37.6
108-664DBrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
0.73
0.91
0.98
27.9
35.8
38.2
108-665ABrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
Olduvai (upper)
Olduvai (lower)
Matuyama/Gauss
0.73
0.91
0.98
1.66
1.88
2.47
14.8
19.3
21.0
33.2
36.4
49.1
108-665BBrunhes/Matuyama
Jaramillo (upper)
Jaramillo (lower)
Olduvai (upper)
Olduvai (lower)
Matuyama/Gauss
0.73
0.91
0.98
1.66
1.88
2.47
13.8
16.9
18.7
32.6
34.3-35.0
49.1
108-666ABrunhes/Matuyama
Olduvai (upper)
Olduvai (lower)
Matuyama/Gauss
0.73
0.91
0.98
2.47
18.4
34.4-37.1
45.0
77.6
108-668BBrunhes/Matuyama
Olduvai (upper)
Olduvai (lower)
0.73
0.91
0.98
12.1-15.3
27.6
29.8
BIOSTRATIGRAPHIC SYNTHESIS: LEG 108, EASTERN EQUATORIAL ATLANTIC
Table 2. Stratigraphic placement in meters of calcareous
nannofossil events from Leg 108 sites and their assigned ages.
Species
Age
(Ma)
Table 2 (continued).
Depth
(mbsf)
Species
108-657ALO Discoaster brouweri
FOzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Emiliania huxleyi
FO acme Discoaster triradiatus
0.9-3.3
0.27
LO Pseudoemiliania lacunosa
0.46
LO Discoaster pentaradiatus
0.9-3.3
LO Calcidiscus macintyrei
1.45
LO Discoaster surculus
50.2-51.0
LO Discoaster brouweri
LO Discoaster tamalis
55.2-61.2
1.89
FO acme Discoaster triradiatus
61.9-62.8
2.07
LO Sphenolithus spp.
LO Discoaster
pentaradiatus
59.7-68.5
2.35
LO Reticulofenestra
pseudoumbilica
LO Discoaster surculus
2.45
LO Amaurolithus spp.
—
LO Discoaster tamalis
FO Ceratolithus rugosus
69.2-78.8
2.65
LO Sphenolithus spp.
88.2-97.7
FO Ceratolithus acutus
3.45
LO Reticulofenestra
pseudoumbilica
98.1-98.9
LO Discoaster quinqueramus
3.56
LO Amaurolithus spp.
3.7
97.9-103.6
LO Amaurolithus amplificus
FO Ceratolithus rugosus
4.6
135.7-146.0
FO Amaurolithus amplificus
FO Ceratolithus acutus
5.0
135.7-146.0
FO Amaurolithus primus
LO Discoaster quinqueramus
5.6
135.7-146.0
FO Discoaster quinqueramus
LO Amaurolithus amplificus
5.6
145.2-146.0
LO Discoaster hamatus
FO Amaurolithus amplificus
148.1-150.0
5.9
FO Catinaster calyculus
FO Amaurolithus primus
6.5
150.0-154.8
FO Micula prinsii
FO Discoaster
quinqueramus
8.2
150.0-154.8
FO Micula murus
LO Quadrum trifidum
108-658 AFO Emiliania huxleyi
34.2-43.7
0.27
108-662ALO Pseudoemiliania lacunosa
68.7-70.2
0.46
FO Emiliania huxleyi
LO Calcidiscus macintyrei
99.1-99.4
1.45
LO Pseudoemiliania lacunosa
LO Discoaster brouweri
124.7-126.9
1.89
LO Calcidiscus macintyrei
FO acme Discoaster triradiatus
135.0-145.0
2.07
LO Discoaster brouweri
LO Discoaster pentaradiatus
165.3-165.7
2.35
FO acme Discoaster triradiatus
LO Discoaster surculus
2.45
165.8-166.2
LO Discoaster pentaradiatus
LO Discoaster tamalis
197.7-201.3
2.65
LO Discoaster surculus
LO Sphenolithus spp.
281.4-290.9
3.45
LO Discoaster tamalis
LO Sphenolithus spp.
108-659BLO Reticulofenestra
pseudoumbilica
LO Pseudoemiliania lacunosa
7.8-8.1
0.46
LO Calcidiscus macintyrei
45.8-55.3
1.45
108-663 ALO Discoaster brouweri
54.7-55.9
1.89
FO Emiliania huxleyi
FO acme Discoaster triradiatus
59.8-61.3
2.07
LO Pseudoemiliania lacunosa
LO Discoaster pentaradiatus
70.6-70.8
2.35
LO Calcidiscus macintyrei
LO Discoaster surculus
70.9-71.1
2.45
LO Discoaster brouweri
LO Discoaster tamalis
78.5-80.0
2.65
FO acme Discoaster triradiatus
LO Sphenolithus spp.
104.1-112.4
3.45
LO Discoaster pentaradiatus
LO Reticulofenestra
pseudoumbilica
104.1-112.4
3.56
LO Discoaster surculus
LO Amaurolithus spp.
3.7
123.3-124.8
LO Discoaster tamalis
FO Ceratolithus rugosus
136.4-143.1
4.6
FO Ceratolithus acutus
5.0
148.8-151.1
108-664DLO Discoaster
quinqueramus
148.8-151.1
5.6
LO Pseudoemiliania lacunosa
FO Amaurolithus primus
6.5
159.8-178.8
LO Calcidiscus macintyrei
FO Discoaster
quinqueramus
8.2
182.6-184.8
LO Discoaster brouweri
LO Discoaster hamatus
8.9
188.3-191.7
FO acme Discoaster triradiatus
FO Catinaster calyculus
10.0
191.7-199.1
LO Discoaster pentaradiatus
FO Discoaster hamatus
191.7-199.1
10.0
LO Discoaster surculus
FO Catinaster coalitus
10.8
199.1-200.7
LO Discoaster tamalis
LO Cyclicargolithus floridanus
11.6
211.7-212.9
LO Sphenolithus spp.
FO Triquetrorhabdulus rugosus
211.7-212.9
14.0
LO Reticulofenestra
pseudoumbilica
LO Sphenolithus
heteromorphus
14.4
212.9-214.4
LO Amaurolithus spp.
LO Helicosphaera
ampliaperta
16.0
229.1-232.3
FO Ceratolithus rugosus
FO Sphenolithus
heteromorphus
17.1
235.8-245.3
FO Ceratolithus acutus
LO Sphenolithus belemnos
17.4
235.8-245.3
LO Discoaster quinqueramus
FO Sphenolithus belemnos
21.5
245.3-246.7
LO Amaurolithus amplificus
LO Triquetrorhabdulus
carinatus
?
245.3-246.7
FO Amaurolithus amplificus
FO Discoaster druggii
23.2
246.7-248.6
FO Amaurolithus primus
LO Sphenolithus ciperoensis
252.1-254.8
25.2
FO Discoaster quinqueramus
108-660ALO Pseudoemiliania
lacunosa
LO Calcidiscus macintyrei
LO Discoaster brouweri
FO acme Discoaster triradiatus
LO Discoaster
pentaradiatus
LO Discoaster surculus
LO Discoaster tamalis
LO Sphenolithus spp.
LO Reticulofenestra
pseudoumbilica
FO Ceratolithus rugosus
LO Discoaster
quinqueramus
0.46
1.45
1.89
2.07
2.35
2.45
2.65
3.45
3.56
4.6
5.6
11.3-16.5
32.3-33.1
39.8-40.9
41.6-42.7
45.7-47.2
47.2-48.7
53.0-54.5
61.9-63.4
63.4-64.9
71.9-74.5
74.5-76.5
108-661ALO Pseudoemiliania lacunosa
LO Calcidiscus macintyrei
0.46
1.45
5.3-8.5
21.4-22.9
LO Discoaster
FO Catinaster
FO Discoaster
hamatus
calyculus
hamatus
108-665ALO Pseudoemiliania lacunosa
LO Calcidiscus macintyrei
LO Discoaster brouweri
FO acme Discoaster triradiatus
LO Discoaster pentaradiatus
LO Discoaster surculus
LO Discoaster tamalis
LO Sphenolithus spp.
LO Reticulofenestra
pseudoumbilica
LO Amaurolithus spp.
FO Ceratolithus rugosus
Age
(Ma)
Depth
(mbsf)
1.89
2.07
2.35
2.45
2.65
3.45
3.56
3.7
4.6
5.0
5.6
5.6
5.9
6.5
8.2
8.9
10.0
66.6
68.7
72.3
27.7-28.9
30.0-30.9
33.9-35.4
35.4-36.9
40.5-41.6
51.5-52.4
53.0-54.5
54.6-56.0
65.1-67.0
67.0-69.0
68.2-69.0
69.0-71.6
71.6-73.1
73.1-77.6
78.3-78.7
81.9-82.1
82.6-?
107.1-107.5
114.5-115.6
124.0-124.9
0.27
0.46
1.45
1.89
2.07
2.35
2.45
2.65
3.45
3.56
4.1-4.8
21.7-22.2
106.8-108.5
122.2-123.2
130.4-133.5
148.3-152.1
151.3-151.5
159.5-160.5
189.7-193.9
193.9-196.7
0.27
0.46
1.45
1.89
2.07
2.35
2.45
2.65
4.3-5.8
14.5-15.8
48.2-61.9
103.1-103.7
109.8-111.7
133.0-135.0
135.0-138.6
141.6-143.2
0.46
1.45
1.89
2.07
2.35
2.45
2.65
3.45
3.56
3.7
4.6
5.0
5.6
5.6
5.9
6.5
8.2
8.9
10.0
10.0
14.9-16.4
59.3-68.8
68.8-78.3
89.6-92.6
99.4-102.4
97.3-106.8
116.3-125.8
157.0-160.0
163.0-163.8
7-192.3
203.4-207.9
222.6-227.1
227.1-231.9
231.9-236.2
250.9-255.6
260.4-263.4
282.5-285.5
294.4-295.9
296.8-?
294.4-295.9
0.46
1.45
1.89
2.07
2.35
2.45
2.65
3.45
3.56
3.7
4.6
8.9-9.5
29.9-30.7
35.6-36.8
39.6-39.8
45.5-47.0
47.0-48.5
50.7-51.2
63.8-64.4
65.0-65.4
67.1-69.9
72.7-73.8
457
zyxwvutsrqp
P.P.E. WEAVER ET AL.
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
discoasters survive longer and frequently provide stratigraphic information in strongly dissolved intervals. Calcareous nannofossils were completely absent below the uppermost
Age
Depth
Species
(Ma)
(mbsf)
part of the upper Miocene at Site 660, from the middle
Miocene to the lowermost Pliocene at Site 661, and below the
lower Pliocene at Site 665.
108-666A0.46
9.1-10.6
LOzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pseudoemiliania
lacunosa
Manivit (this vol.) has provided a site-by-site description of
1.45
32.9-33.3
LO Calcidiscus macintyrei
the
calcareous nannofossil biostratigraphy, including range
LO Discoaster brouweri
1.89
46.0-48.6
charts that show the stratigraphic distribution of the total
2.07
51.6-54.5
FO acme Discoaster triradiatus
assemblages and the critical marker species. She also dis2.35
67.0-68.3
LO Discoaster
pentaradiatus
2.45
70.0-75.7
LO Discoaster surculus
cussed the general character of preservation, abundance, and
LO Discoaster tamalis
2.65
75.7-86.9
diversity of the nannofossil assemblages, with respect to the
3.45
123.1-126.3
LO Sphenolithus spp.
environmental setting of the individual sites.
LO Reticulofenestra
pseudoumbilica
3.56
123.1-126.3
Chepstow-Lusty et al. (this vol.) and Olafsson (this vol.)
LO Amaurolithus spp.
3.7
126.3-131.5
4.6
144.9-150.5
FO Ceratolithus rugosus
provided quantitative studies of calcareous nannofossils from
5.0
FO Ceratolithus acutus
150.5-?
the late Pliocene of Sites 658, 659, and 662 and the Oligocene
to middle Miocene of Site 667, respectively. These studies
108-667 A6.6-6.9
0.46
LO Pseudoemiliania lacunosa
have in common (1) the adoption of an identical counting
1.45
16.5-29.8
LO Calcidiscus macintyrei
technique, (2) the use of closely spaced sample intervals, and
16.5-29.8
1.89
LO Discoaster brouweri
(3) resolved biostratigraphic information—in the case of Olafs2.07
16.5-29.9
FO acme Discoaster triradiatus
son, as a main focus in the Oligocene through middle Miocene
2.35
32.2-33.8
LO Discoaster
pentaradiatus
35.1-37.0
2.45
LO Discoaster surculus
interval from Site 667, and in the case of Chepstow-Lusty and
40.5-41.7
2.65
LO Discoaster tamalis
others, as a by-product of their interest in the significance of
48.8-49.6
3.45
LO Sphenolithus spp.
late Pliocene discoaster abundance fluctuations from Sites
49.6-54.2
3.56
LO Reticulofenestra
pseudoumbilica
658, 659, and 662.
58.3-67.8
3.7
LO Amaurolithus spp.
4.6
75.8-78.3
FO Ceratolithus rugosus
Planktonic and benthic foraminifers have similar strati79.7-85.1
5.0
FO Ceratolithus acutus
graphic distributions at Leg 108 sites and are absent when
84.2-85.1
5.6
LO Discoaster
quinqueramus
there is strong dissolution. They are present in all sites
106.8-108.3
6.5
FO Amaurolithus primus
throughout the Quaternary and upper Pliocene, but they
118.3-120.0
8.2
FO Discoaster
quinqueramus
157.9-158.3
11.6
LO Cyclicargolithus floridanus
become poorly represented in the deeper water sites through
157.6-158.0
14.0
FO Triquetrorhabdulus rugosus
the early Pliocene and Miocene. Sites 659 and 667 contain
160.3-160.9
14.4
LO Sphenolithus
heteromorphus
foraminifers from the middle Oligocene to Holocene. The
166.2-166.6
16.0
LO Helicosphaera
ampliaperta
planktonic foraminiferal fauna from the upper Miocene to
207.7-208.0
17.1
FO Sphenolithus
heteromorphus
211.3-211.7
17.4
LO Sphenolithus
belemnos
Holocene has been discussed by Weaver and Raymo (this
244.7-229.8
21.5
FO Sphenolithus belemnos
vol.),
and the Oligocene to middle Miocene fauna has been
9
251.4-251.8
LO Triquetrorhabdulus carinatus
described by Miller et al. (this vol.). The former study was
250.4-257.8
FO Discoaster druggii
23.2
limited to core-catcher samples augmented by extra samples
293.0-293.4
25.2
LO Sphenolithus
ciperoensis
343.3-352.2
28.2
LO Sphenolithus distentus
from around zonal boundaries. The study by Miller et al. (this
364.8-376.0
30.2
FO Sphenolithus ciperoensis
vol.) was based on a more detailed examination of 1-6
samples per core and included a comparison of Site 667 with
108-668BLO Pseudoemiliania lacunosa
0.46
8.5-10.0
Site 366, which was also drilled on the Sierra Leone Rise
LO Calcidiscus macintyrei
1.45
22.8-24.6
during DSDP Leg 41.
LO Discoaster brouweri
1.89
29.6-30.1
The quality of the diatom assemblage in the upper
FO acme Discoaster triradiatus
2.07
31.2-?
Pliocene to Holocene varied greatly among the Leg 108
Note: Ages are as presented in Ruddiman, Sarnthein, et al., 1988.
sites. Preservation and abundances were relatively good at
FO = first occurrence and LO = last occurrence.
sites underlying the waters with the highest primary productivity, specifically Sites 658, 662, and 663. Abundances and
preservation were moderate at Site 664. Sites underlying
show the intervals that were cored at each site and indicate the
unproductive waters, such as Sites 657, 659-661, and
stratigraphic occurrence of the major microfossil groups (cal665-668, were generally very poor in diatoms. Diatoms only
careous nannofossils, planktonic and benthic foraminifers,
occur sporadically in sediments older than Pliocene in age.
and diatoms), together with the intervals in which paleomagThe marine diatom flora is described by Baldauf and Pokras
netic results can be regarded as reliable. One can see from the
(this vol.).
distributions that the paleomagnetic signals were only detected between 0 and 2.5 or 3 Ma in most cases and only reach
the Gauss/Gilbert boundary in Hole 661B.
CONCLUSION
The most complete biostratigraphic records are also
The stratigraphic resolution obtained in the Pliocenelimited to the Pliocene to Holocene interval, although there
Pleistocene interval of all the Leg 108 sites was excellent and
is some information from the Miocene and Oligocene, parusually backed up by paleomagnetic data. Therefore, these
ticularly from Sites 659 and 667. The Eocene was cored at
sites will provide considerable insight into previous oceanSite 660. Although no calcareous microfossils were found in
ographic and climatic conditions that prevailed in the eastthese cores, middle Eocene diatoms and radiolarians do
ern equatorial Atlantic Ocean during the latest Neogene.
occur. Site 661 drilled through to the Upper Cretaceous,
Below the Pliocene, numerous biostratigraphic problems
which was recognized on the basis of its calcareous nannostill remain; and, although we cored significant thicknesses
fossil flora.
of these sediments, we did not obtain the vital paleomagCalcareous nannofossils are the most widely distributed
netic results that could have improved the stratigraphic
group in Leg 108 sites. Although this group suffers dissolution
resolution.
and the placoliths disappear along with the foraminifers, the
Table 2 (continued).
458
BIOSTRATIGRAPHIC SYNTHESIS: LEG 108, EASTERN EQUATORIAL ATLANTIC
Table 3. Stratigraphic placement in meters of planktonic foraminifer
events from Leg 108 sites and their assigned ages.
Species
Age a
Depth
Age c
Table 3 (continued).
Species
Age a
Depth
Age c
3.80-4.00
3.9
108-657A59.9-62.5
LO Globigerina nepenthes
3.80-4.00
59.9-62.5
1.9
4.15
FOzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Globorotalia
truncatulinoides
54.7-60.6
1.7-1.95
FO Globorotalia puncticulata
3.18-3.74
3.4
49.1-58.6
1.8
LO Globigerinoides obliquus
54.7-60.6
1.7-1.95
FO Globorotalia miocenica
4.60-5.38
5.6
FO Globorotalia inflata
65.1-68.1
2.1
2.15-2.25
64.2-65.9
FO Globorotalia margaritae
4.60-5.38
2.2
LO Globorotalia miocenica
65.1-68.1
5.3
LO Globoquadrina dehiscens
2.15-2.25
64.2-65.9
Reapp. Pulleniatina spp.
2.2
2.15-2.25
64.2-65.9
108-662ALO Globorotalia puncticulata
2.3
2.25-2.35
65.9-68.2
1.73-1.94
117.2-126.7
1.8
LO Globigerinoides obliquus extremus
LO Dentogloboquadrina
altispira
2.9
2.97-3.05
83.2-84.5
1.52
82.4-107.7
1.9
FO Globorotalia truncatulinoides
LO Sphaeroidinellopsis
seminulina
3.0
83.2-84.5
2.97-3.05
1.94-2.14
2.1
FO Globorotalia inflata
126.7-136
Disapp. Pulleniatina spp.
3.3
4.18-4.28
130.7-131.6
2.24-2.36
140.5-145.7
2.1
LO Globorotalia exilis
LO Globorotalia margaritae
3.4
92.7-130.7
3.35-4.18
2.18-2.24
137.5-140.5
LO Globorotalia miocenica
2.2
FO Globorotalia crassaformis
4.15
4.28-4.55
131.6-134.6
2.18-2.24
137.5-140.5
Reapp. Pulleniatina spp.
2.2
LO Globigerina nepenthes
3.9
4.18-4.28
130.7-131.6
2.18-2.24
137.5-140.5
LO Globorotalia puncticulata
2.3
FO Globorotalia puncticulata
4.15 c 131.6-134.6
4.28-4.55
2.86-2.90
LO Dentogloboquadrina
altispira
166.8-168.4
2.9
FO Globorotalia miocenica
3.4
92.7-130.7
3.35-4.18
2.90-3.04
LO Sphaeroidinellopsis
seminulina
168.4-174.2
3.0
FO Globorotalia margaritae
5.6
5.40-5.55
144.3-146.1
Disapp. Pulleniatina spp.
3.26-3.49
183.7-193.2
3.3
108-658ALO Globorotalia margaritae
3.59-3.66
3.4
197.5-200.5
FO Globorotalia
truncatulinoides
1.9
1.75-1.90
119.7-129.2
FO Globorotalia miocenica
3.26-3.49
183.7-193.2
3.4
LO Globigerinoides obliquus
1.8
91.2-100.7
0.62-1.46
LO Globorotalia miocenica
2.2
2.30-2.36
108-664D155.3-157.7
FO Globorotalia inflata
1.20-1.40
2.1
138.7-148.2
49.8-59.3
1.8
2.04-2.19
LO Globigerinoides obliquus extremus
LO Globorotalia puncticulata
1.80-1.95
2.3
78.3-87.8
2.36-2.48
FO Globorotalia truncatulinoides
157.7-167.4
1.9
LO Dentogloboquadrina
altispira
1.80-1.95
2.9
FO Globorotalia inflata
214.9-224.9
78.3-87.8
2.1
2.90-3.00
LO Sphaeroidinellopsis
seminulina
1.95-2.2
3.0
LO Globorotalia exilis
87.8-97.3
2.1
3.00-3.08
224.4-233.9
LO Globorotalia margaritae
2.20-2.4
3.4
97.3-106.8
LO Globorotalia miocenica
290.9-300.4
2.2
3.60-3.69
2.20-2.4
Reapp. Pulleniatina spp.
97.3-106.8
2.2
108-659ALO Globorotalia puncticulata
106.8-125.8
2.40-2.8
2.3
1.9
FO Globorotalia truncatulinoides
36.3-45.8
1.25-1.60
LO Dentogloboquadrina
altispira
2.80-3.0
125.8-135.3
2.9
1.8
LO Globigerinoides obliquus
45.8-64.8
1.60-2.20
LO Sphaeroidinellopsis
seminulina
2.80-3.0
125.8-135.3
3.0
FO Globorotalia inflata
2.1
1.60-2.20
45.8-64.8
Disapp. Pulleniatina spp.
3.38-3.57
154.3-163.8
3.3
LO Globorotalia exilis
2.1
2.20-2.25
64.8-65.7
LO Globorotalia margaritae
3.78-3.97
173.3-182.8
3.4
LO Globorotalia miocenica
2.2
64.8-65.7
2.20-2.25
FO Globorotalia miocenica
4.60-4.80
211.3-220.8
3.4
Reapp. Pulleniatina spp.
2.2
64.8-65.7
2.20-2.25
LO Globigerina nepenthes
182.8-192.3
3.97-4.18
3.9
LO Globorotalia puncticulata
2.3
2.25-2.50
65.7-74.3
FO Globorotalia crassaformis
3.97-4.18
4.15 182.8-192.3
LO Dentogloboquadrina
altispira
2.9
83.8-84.8
2.85-2.90
FO Globorotalia puncticulata
4.18-4.38
192.3-201.8
4.15
LO Sphaeroidinellopsis
seminulina
3.0
2.95-3.05
87.5-90.5
FO Globorotalia margaritae
5.72-6.22
230.3-239.8
5.6
Disapp. Pulleniatina spp.
3.3
3.15-3.45
93.3-102.8
LO Globoquadrina dehiscens
5.72-6.22
230.3-239.8
5.3
LO Globorotalia margaritae
3.4
3.45-3.72
102.8-112.3
FO Neogloboquadrina
humerosa
5.72-6.22
230.3-239.8
7.5
FO Globorotalia crassaformis
4.15
4.20-4.40
125.5-131.3
LO Globigerina nepenthes
3.9
125.5-131.3
4.20-4.40
108-665AFO Globorotalia puncticulata
4.15
4.20-4.40
125.5-131.3
2.28-2.57
46.1-50.4
1.8
LO Globigerinoides obliquus extremus
FO Globorotalia miocenica
3.4
112.3-116.0
3.72-3.85
1.03-1.52
21.9-31.4
1.9
FO Globorotalia truncatulinoides
FO Globorotalia margaritae
5.6
6.20-8.10
159.8-182.8
2.09-2.28
40.9-46.1
2.1
FO Globorotalia inflata
LO Globoquadrina dehiscens
5.3
8.20-10.50
188.3-197.8
2.09-2.28
40.9-46.1
2.1
LO Globorotalia exilis
FO Neogloboquadrina
humerosa
7.5
159.8-182.8
8.20-10.50
2.09-2.28
2.2
40.9-46.1
LO Globorotalia miocenica
FO Neogloboquadrina
acostaensis
10.2
159.8-182.8
8.20-10.50
2.09-2.28
2.2
40.9-46.1
Reapp. Pulleniatina spp.
2.09-2.28
40.9-46.1
2.3
LO Globorotalia puncticulata
108-660A2.67-2.92
52.6-55.7
LO Dentogloboquadrina
altispira
2.9
FO Globorotalia
truncatulinoides
1.9
39.8-44.0
1.95-2.25
2.92-3.13
55.7-58.9
LO Sphaeroidinellopsis
seminulina
3.0
d
LO Globigerinoides obliquus
1.8
20.8-30.3
0.80-1.30
3.82-3.86
Disapp. Pulleniatina spp.
3.3
69.4-69.9
FO Globorotalia inflata
2.1
1.95-2.25
39.8-44.0
LO Globorotalia exilis
2.1
2.25-2.42
44.0-46.7
108-667ALO Globorotalia miocenica
2.2
2.25-2.42
44.0-46.7
1.1-2.00
18.1-27.4
LO Globigerinoides obliquus extremus
1.8
Reapp. Pulleniatina spp.
2.2
1.90-2.07
39.8-41.6
1.48-2.00
18.1-27.4
FO Globorotalia
truncatulinoides
1.9
LO Globorotalia puncticulata
2.3
2.25-2.42
44.0-46.7
0.76-1.05
FO Globorotalia inflata
2.1
10.8-14.9
LO Dentogloboquadrina
altispira
53.8-56.6
2.9
2.87-3.08
LO Globorotalia exilis
2.00-2.18
27.4-29.8
2.1
LO Sphaeroidinellopsis
seminulina
3.0
3.08-3.24
56.6-58.8
LO Globorotalia miocenica
2.00-2.18
27.4-29.8
2.2
FO Globorotalia crassula
3.08-3.24
56.6-58.8
Reapp. Pulleniatina spp.
2.18-2.68
29.8-39.3
2.2
Disapp. Pulleniatina spp.
58.8-68.3
3.3
3.24-3.84
LO Globorotalia puncticulata
2.00-2.18
27.4-29.8
2.3
FO Globorotalia miocenica
3.4
3.08-3.24
56.6-58.8
LO Dentogloboquadrina
altispira
2.72-2.85
40.6-43.6
2.9
LO Globorotalia margaritae
3.4
68.3-69.4
3.84-3.90
LO Sphaeroidinellopsis
seminulina
2.72-2.85
40.6-43.6
3.0
FO Globorotalia crassaformis
4.15
69.4-72.1
3.90-4.55
Disapp. Pulleniatina spp.
3.32-3.50
52.9-55.9
3.3
LO Globigerina nepenthes
69.4-72.1
3.9
3.90-4.55
LO Globorotalia margaritae
3.32-3.50
3.4
52.9-55.9
LO Neogloboquadrina pachyderma (s)
69.4-72.1
3.90-4.55
FO Globorotalia miocenica
4.56-5.70
77.3-86.8
3.4
FO Globorotalia puncticulata
4.15
58.8-68.3
3.24-3.84
LO Globigerina nepenthes
3.80-3.98
62.3-65.3
3.9
FO Globorotalia crassaformis
4.12-4.56
68.8-77.3
4.15
108-661AFO Globorotalia puncticulata
4.12-4.56
68.8-77.3
4.15
FO Globorotalia
truncatulinoides
1.9
1.6-11.1
0.1-0.67
FO Globorotalia margaritae
5.50-6.34
96.3-105.8
5.6
LO Globigerinoides obliquus
1.8
11.1-20.6
0.67-1.30
LO Globoquadrina dehiscens
4.56-5.70
77.3-86.8
5.3
LO Globorotalia exilis
2.1
31.5-34.5
1.96-2.24
LO Neogloboquadrina
humerosa
6.34-7.80
7.5
105.8-115.3
FO Globorotalia inflata
2.1
30.1-31.5
1.85-1.96
LO Neogloboquadrina
acostaensis
8.60-10.30
124.8-134.3
10.2
LO Globorotalia miocenica
2.2
31.5-34.5
1.96-2.24
Reapp. Pulleniatina spp.
1.96-2.24
2.2
31.5-34.5
Note: FO = first occurrence, LO = last occurrence, and Disapp. = disappearLO Globorotalia puncticulata
31.5-34.5
1.96-2.24
2.3
ance.
a
LO Dentogloboquadrina
altispira
2.9
2.70-2.87
41.0-44.0
Ages as presented in Ruddiman, Sarnthein, et al., 1988.
b
LO Sphaeroidinellopsis
seminulina
3.0
44.0-47.0
2.87-3.05
Revised ages interpolated from the sedimentation curves presented in Ruddiman,
Disapp. Pulleniatina spp.
3.3
49.1-58.6
3.20-3.75
Sarnthein, et al., 1988.
c
LO Globorotalia margaritae
3.4
3.74-3.80
58.6-59.9
Interval occurs in a slump.
FO Globorotalia crassaformis
4.15
59.9-62.5
3.80-4.00
Probably reworked.
459
zyxwvutsrqp
P.P.E. WEAVER ET AL.
20°W
10°
0°
Figure 1. Location of sites cored during Leg 108. Arrows mark current systems; stippled areas indicate regions of strong
Pliocene-Pleistocene up welling and divergence.
460
BIOSTRATIGRAPHIC SYNTHESIS: LEG 108, EASTERN EQUATORIAL ATLANTIC
659
series
Epoch
1.66
5.3
MNFD
660
MNFD
661
MNFD
zyxwvutsrq
667
MNFD
zyxwvutsrqponmlkjihg
Quaternary
late Pliocene
early Pliocene
late Miocene
zA
middle Miocene
early Miocene
t
23.7
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
late Oligocene
early Oligocene
37
late Eocene
CU
middle Eocene
<
early Eocene
57.8
late Paleocene
early Paleocene
66.4
late Cretaceous
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
95.5
Figure 2. Representation of cored intervals (thick lines) and distribution of major fossil groups in the deeper Leg 108
sites. Diagonal shading = hiatuses, M = paleomagnetic record, N = calcareous nannofossil distribution, F = planktonic
and benthic foraminifer distribution, and D = diatom distribution.
461
P.P.E. WEAVER ET AL.
657
EpOCh
658
MNFD
MNFD
662
MNFD
663
MNFD
664
MNFD
665
MNFD
666
MNFD
668
MNFD
Quaternary
1.66
late Pliocene
3.4
early Pliocene
03
^
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.3
late Miocene
10.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. Representation of cored intervals (thick lines) and distribution of major fossil groups in the shallower Leg 108 sites. Diagonal lines =
hiatuses, M = paleomagnetic record, N = calcareous nannofossil distribution, F = planktonic and benthic foraminifer distribution, and D =
diatom distribution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
from the Atlantic, Indian and Pacific Oceans. Mar. Micropaleontol, 8:141-170.
Baldauf, J., 1987. Diatom biostratigraphy of the middle- and highlatitude North Atlantic Ocean, Deep Sea Drilling Project Leg 94.
In Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., Init. Repts.
Depth
Age
DSDP, 94, Pt. 2: Washington (U.S. Govt. Printing Office),
(Ma)
Species
(mbsQ
729-763.
Berggren, W. A., Kent, D. V., and Flynn, J. J., 1985a. Jurassic to
108-658A/658BPaleogene: Part 2, Geochronology and chronostratigraphy. In
60.2-64.7
LOzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Nitzschia reinholdii
"0.65(0.44)
126.4-132.9
1.8
FO Pseudoeunotia doliolus
Snelling, N. J. (Ed.), The Chronology of the Geological Record.
163.1
Occ. Thalassiosira convexa >2.2
Geol. Soc. Mem. (London), 10:141-195.
Berggren, W. A., Kent, D. V., and Van Couvering, J. A., 1985b. The
108-662Aa
Neogene: Part 2, Neogene geochronology and chronostratigraphy.
22.2-31.7
0.65(0.44)
LO Nitzschia reinholdii
In Snelling, N. J. (Ed.), The Chronology of the Geological Record.
FO Pseudoeunotia doliolus
126.7-131.2
1.8
Geol. Soc. Mem. (London), 10:211-260.
Occ. Nitzschia jouseae
162.31
>2.6
Hodell, D. A., and Kennett, J. P., 1986. Late Miocene-early Pliocene
108-663A/663Bstratigraphy and paleoceanography of the south Atlantic and
99.7-109.2
FO Pseudoeunotia doliolus
1.8
southwest Pacific oceans: a synthesis. Paleoceanography,
1:
133.0
Occ. Thalassiosira convexa >2.2
285-311.
108-664DRuddiman, W., Sarnthein, M., et al., 1988. Proc. ODP, Init. Repts.,
78.3-87.8
FO Pseudoeunotia doliolus
1.8
108: College Station, TX (Ocean Drilling Program).
125.8
LO Nitzschia jouseae
>2.6
Thierstein, H. R., Geitzenauer, K. R., Molfino, B., and Shackleton,
N. J., 1977. Global synchroneity of late Quaternary coccolith
Note: Ages are as presented in Ruddiman, Sarnthein, et al.,
datum levels: validation by oxygen isotopes. Geology, 5:400-404.
1988. FO = first occurrence, LO = last occurrence, and
Weaver, P.P.E., and Clement, B. M., 1987. Magnetobiostratigraphy
Occ. = occurrence.
a
of planktonic foraminiferal datums: Deep Sea Drilling Project Leg
Age assigned to this event by Baldauf, 1987.
94, North Atlantic. In Ruddiman, W. F., Kidd, R. B., Thomas,
E., et al., Init. Repts. DSDP, 94, Pt. 2: Washington (U.S. Govt.
Printing Office.), 815-829.
Table 4. Stratigraphic placement in meters of diatom
events from Sites 658, 662, 663, and 664 and their
assigned ages.
REFERENCES
Backman, J., and Shackleton, N. J., 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils
462
Date of initial receipt: 8 February 1989
Date of acceptance: 26 May 1989
Ms 108B-171
z