Academia.eduAcademia.edu

Chapter

Chapter 10, Solution 1. We first determine the input impedance. 1H 1F     j L  j1x10  j10 1 j C  1   j0.1 j10 x1  1 1 1 Zin  1      1.0101 j0.1  1.015  5.653o  j10  j0.1 1 1 I 2  0o  1.9704  5.653o o 1.015  5.653 i(t) = 1.9704cos(10t+5.65˚) A Chapter 10, Solution 2. Using Fig. 10.51, design a problem to help other students better understand nodal analysis. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem Solve for V o in Fig. 10.51, using nodal analysis. 2 + o 40 V –j5  + _ j4  Vo – Figure 10.51 For Prob. 10.2. Solution Consider the circuit shown below. 2 Vo –j5 + 40 V- _ j4 o At the main node, V V 4  Vo  o  o  j5 j 4 2   40  Vo (10  j ) V o = 40/(10–j) = (40/10.05)5.71˚ = 3.985.71˚ V Chapter 10, Solution 3.  4 2 cos(4t )   2 0 16 sin(4 t )   16 - 90  -j16 2H   jL  j8 1 1 1 12 F     - j3 jC j (4)(1 12) The circuit is shown below. 4 -j16 V -j3  Vo 1 +  j8  20 A Applying nodal analysis, Vo Vo - j16  Vo 2  4  j3 1 6  j8  1 1  - j16 V  2  1   4  j3  4  j3 6  j8  o Vo  Therefore, 3.92  j2.56 4.682  - 33.15   3.835 - 35.02 1.22  j0.04 1.2207 1.88 v o ( t )  3.835cos(4t – 35.02) V 6 Chapter 10, Solution 4. Step 1. Convert the circuit into the frequency domain and solve for the node voltage, V 1 , using analysis. The find the current I C = V 1 /[1+(1/(j4x0.25)] which then produces V o = 1xI C . Finally, convert the capacitor voltage back into the time domain. Ix j1 –j1 Ω V1 160º V 0.5I x Vo Note that we represented 16sin(4t–10º) volts by 160º V. That will make our calculations easier and all we have to do is to offset our answer by a –10º. Our node equation is [(V 1 –16)/j] – (0.5I x ) + [(V 1 –0)/(1–j)] = 0. We have two unknowns, therefore we need a constraint equation. I x = [(16–V 1 )/j] = j(V 1 –16). Once we have V 1 , we can find I o = V 1 /(1–j) and V o = 1xI o . Step 2. Now all we need to do is to solve our equations. [(V 1 –16)/j] – [0.5j(V 1 –16] + [(V 1 –0)/(1–j)] = [–j–j0.5+0.5+j0.5]V 1 +j16+j8 = 0 or [0.5–j]V 1 = –j24 or V 1 = j24/(–0.5+j) = (2490º)/(1.118116.57º) = 21.47–26.57º V. Finally, I x = V 1 /(1–j) = (21.47–26.57º) (0.707145º) = 15.18118.43º A and V o = 1xI o = 15.18118.43º V or v o (t) = 15.181sin(4t–10º+18.43º) = 15.181sin(4t–8.43º) volts. Chapter 10, Solution 5. 0.25H 2 F j L  j0.25 x 4 x10  j1000     3 1 j C  1   j125 6 j4 x10 x 2 x10 3 Consider the circuit as shown below. Io 2000 Vo 250o V + _ -j125 j1000 + – At node V o , Vo  25 Vo  0 Vo  10I o   0  j125 2000 j1000 Vo  25  j2Vo  j16Vo  j160I o  0 (1  j14)Vo  j160I o  25 But I o = (25–V o )/2000 (1  j14)Vo  j2  j0.08Vo  25 Vo  25  j2 25.084.57  1.7768  81.37 1  j14.08 14.11558.94 Now to solve for i o , 25  Vo 25  0.2666  j1.7567   12.367  j0.8784 mA 2000 2000  12.3984.06 Io  i o = 12.398cos(4x103t + 4.06˚) mA. 10I o Chapter 10, Solution 6. Let V o be the voltage across the current source. Using nodal analysis we get: Vo Vo  4Vx 20 Vo 3  0 where Vx  20  j10 20  j10 20 Combining these we get: Vo 4Vo Vo  3  0  (1  j0.5  3)Vo  60  j30 20 20  j10 20  j10 Vo  60  j30 20(3) or Vx    2  j0.5  2  j0.5 29.11–166˚ V. Chapter 10, Solution 7. At the main node, V V 120  15 o  V  630 o   40  j20  j30 50  1 j 1 V     40  j20 30 50  V   115.91  j31.058  5.196  j3  40  j20  3.1885  j4.7805  124.08  154 o V 0.04  j0.0233 Chapter 10, Solution 8.   200, 100mH 50F     jL  j200x 0.1  j20 1 1    j100 jC j200x 50x10  6 The frequency-domain version of the circuit is shown below. 0.1 V o 40  V1 20  615 o + Vo - Io V2 -j100  j20  At node 1, or V V1 V  V2  1 615 o  0.1V1  1  20  j100 40 5.7955  j1.5529  (0.025  j 0.01)V1  0.025V2 (1) At node 2, V1  V2 V  0.1V1  2 40 j20 From (1) and (2),  0  3V1  (1  j2)V2 (0.025  j0.01)  0.025 V1   (5.7955  j1.5529)      3 (1  j2)  V2   0   Using MATLAB, or AV  B (2) V = inv(A)*B leads to V1  70.63  j127.23, V2  110.3  j161.09 V  V2 Io  1  7.276  82.17 o 40 Thus, i o ( t )  7.276 cos( 200t  82.17 o ) A Chapter 10, Solution 9. 10 cos(10 3 t )   10 0,   10 3 10 mH    50 F  jL  j10 1 1   - j20 3 jC j (10 )(50  10 -6 ) Consider the circuit shown below. 20  100 V At node 1, At node 2, V1 -j20  V2 j10  Io +  20  4 Io 30  10  V1 V1 V1  V2   20 20 - j20 10  (2  j) V1  jV2 Vo  (1) V1  V2 V V2 V1  ( 4) 1  , where I o  has been substituted. 20 - j20 20 30  j10 (-4  j) V1  (0.6  j0.8) V2 0.6  j0.8 (2) V1  V2 -4 j Substituting (2) into (1) (2  j)(0.6  j0.8) 10  V2  jV2 -4 j 170 or V2  0.6  j26.2 Vo  Therefore, + 30 3 170 V2    6.154 70.26 30  j10 3  j 0.6  j26.2 v o ( t )  6.154 cos(103 t + 70.26) V Chapter 10, Solution 10. 50 mH 2F     jL  j2000x50 x10  3  j100, 1 1    j250 jC j2000 x 2x10  6   2000 Consider the frequency-domain equivalent circuit below. V1 360o 2k  -j250 j100 V2 0.1V 1 4k  At node 1, 36  V1 V V  V2  1  1 2000 j100  j250   36  (0.0005  j0.006)V1  j0.004V2 (1) 0  (0.1  j0.004)V1  (0.00025  j0.004)V2 (2) At node 2, V1  V2 V  0.1V1  2  j250 4000  Solving (1) and (2) gives Vo  V2  535.6  j893.5  8951.193.43o v o (t) = 8.951 sin(2000t +93.43o) kV Chapter 10, Solution 11. Consider the circuit as shown below. –j5  Io 2 2 V1 40o V + _ V2 j8  2I o At node 1, V  V2 V1  4  2I o  1 0 2 2 V1  0.5V2  2I o  2 But, I o = (4–V 2 )/(–j5) = –j0.2V 2 + j0.8 Now the first node equation becomes, V 1 – 0.5V 2 + j0.4V 2 – j1.6 = 2 or V 1 + (–0.5+j0.4)V 2 = 2 + j1.6 At node 2, V2  V1 V2  4 V2  0   0  j5 2 j8 –0.5V 1 + (0.5 + j0.075)V 2 = j0.8 Using MATLAB to solve this, we get, >> Y=[1,(-0.5+0.4i);-0.5,(0.5+0.075i)] Y= 1.0000 -0.5000 -0.5000 + 0.4000i 0.5000 + 0.0750i >> I=[(2+1.6i);0.8i] I= 2.0000 + 1.6000i 0 + 0.8000i >> V=inv(Y)*I V= 4.8597 + 0.0543i 4.9955 + 0.9050i I o = –j0.2V 2 + j0.8 = –j0.9992 + 0.01086 + j0.8 = 0.01086 – j0.1992 = 199.586.89˚ mA. Chapter 10, Solution 12. Using Fig. 10.61, design a problem to help other students to better understand Nodal analysis. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem By nodal analysis, find i o in the circuit in Fig. 10.61. Figure 10.61 Solution 20 sin(1000t )   20 0,   1000 10 mH    50 F  jL  j10 1 1   - j20 3 jC j (10 )(50  10 -6 ) The frequency-domain equivalent circuit is shown below. 2 Io V1 200 A At node 1, 10  20  V2 -j20  Io j10  20  2 I o  Io  V1 V1  V2  , 20 10 V2 j10 2V2 V1 V1  V2 20    j10 20 10 400  3V1  (2  j4) V2 (1) At node 2, or 2V2 V1  V2 V V   2  2 j10 10 - j20 j10 j2 V1  (-3  j2) V2 V1  (1  j1.5) V2 (2) Substituting (2) into (1), 400  (3  j4.5) V2  (2  j4) V2  (1  j0.5) V2 V2  Io  Therefore, 400 1  j0.5 V2 40   35.74  - 116.6 j10 j (1  j0.5) i o ( t )  35.74 sin(1000t – 116.6) A where Chapter 10, Solution 13. Nodal analysis is the best approach to use on this problem. We can make our work easier by doing a source transformation on the right hand side of the circuit. –j2  18  + 4030º V +  Vx  3 Vx  4030 Vx Vx  50 0   3 18  j6  j2 which leads to V x = 29.3662.88˚ A. j6  500º V +  Chapter 10, Solution 14. At node 1, At node 2, 0  V1 0  V1 V2  V1    2030 - j2 10 j4 - (1  j2.5) V1  j2.5 V2  173.2  j100 (1) V2 V2 V2  V1    2030 j2 - j5 j4 - j5.5 V2  j2.5 V1  173.2  j100 (2) Equations (1) and (2) can be cast into matrix form as 1  j2.5 j2.5  V1   - 200 30   j2.5 - j5.5 V2   200 30    1  j2.5 j2.5 j2.5 - j5.5 1  2   20  j5.5  20.74 - 15.38 - 200 30 j2.5  j3 (20030)  600120 200 30 - j5.5 1  j2.5 - 20030  (200 30)(1  j5)  1020108.7 j2.5 20030 1  28.93135.38 V  2  49.18124.08 V V2   V1  Chapter 10, Solution 15. We apply nodal analysis to the circuit shown below. 5A 2 -j20 V At node 1, At node 2, +  j V1 -j2  V2 I 4 2I - j20  V1 V V  V2  5 1  1 2 - j2 j - 5  j10  (0.5  j0.5) V1  j V2 (1) V1  V2 V2 ,  j 4 V where I  1 - j2 5 V2  V1 0.25  j 5  2I  (2) Substituting (2) into (1), - 5  j10  j5  0.5 (1  j) V1 0.25  j j40 (1  j) V1  -10  j20  1  j4 160 j40  ( 2  - 45) V1  -10  j20  17 17 V1  15.81313.5 I V1  (0.590)(15.81313.5) - j2 I  7.90643.49 A Chapter 10, Solution 16. Consider the circuit as shown in the figure below. j4  V1 V2 + Vx – 20o A 5 –j3  345o A At node 1, V  0 V1  V2 2 1  0 5 j4 (0.2  j0.25)V1  j0.25V2  2 (1) At node 2, V2  V1 V2  0  345  0  j4  j3 j0.25V1  j0.08333V2  2.121  j2.121 In matrix form, (1) and (2) become 0.2  j0.25  j0.25  j0.25   V1   2      j0.08333 V2  2.121  j2.121 Solving this using MATLAB, we get, >> Y=[(0.2-0.25i),0.25i;0.25i,0.08333i] Y= 0.2000 - 0.2500i 0 + 0.2500i 0 + 0.2500i 0 + 0.0833i >> I=[2;(2.121+2.121i)] I= (2) 2.0000 2.1210 + 2.1210i >> V=inv(Y)*I V= 5.2793 - 5.4190i 9.6145 - 9.1955i V s = V 1 – V 2 = –4.335 + j3.776 = 5.749138.94˚ V. Chapter 10, Solution 17. Consider the circuit below. j4  10020 V +  Io 1 2 V1 V2 3 -j2  At node 1, 10020  V1 V1 V1  V2   j4 3 2 V1 100 20  (3  j10)  j2 V2 3 (1) At node 2, 10020  V2 V1  V2 V2   1 2 - j2 100 20  -0.5 V1  (1.5  j0.5) V2 (2) From (1) and (2), 10020  - 0.5 0.5 (3  j)  V1  10020  1  j10 3 - j2  V2      - 0.5 1  j10 3 1.5  j0.5 - j2  0.1667  j4.5 1  10020 1.5  j0.5  -55.45  j286.2 10020 - j2 2  - 0.5 10020  -26.95  j364.5 1  j10 3 10020 1  64.74  - 13.08  2 V2   81.17  - 6.35  V  V2  1   2 - 28.5  j78.31  Io  1  2 2 0.3333  j 9 V1  I o  9.25-162.12 A Chapter 10, Solution 18. Consider the circuit shown below. 8 V1 2 445 A j6  V 2 + Vx  2 Vx At node 1, V1 V1  V2  2 8  j6 200 45  (29  j3) V1  (4  j3) V2 (1) At node 2, V1  V2 V V2  2Vx  2  , 8  j6 - j 4  j5  j2 (104  j3) V1  (12  j41) V2 12  j41 V1  V 104  j3 2 (2) 4 -j  j5  -j2  445  (12  j41) V  (4  j3) V2 104  j3 2 200 45  (14.2189.17) V2 20045 V2  14.2189.17 Substituting (2) into (1), 200 45  (29  j3) - j2 - j2 - 6  j8 V2  V2  V2 4  j5  j2 4  j3 25 10 233.13 200 45  Vo  25 14.2189.17 Vo  Vo  5.63189 V where Vx  V1 + Vo  Chapter 10, Solution 19. We have a supernode as shown in the circuit below. j2  V1 2 Notice that V2 + 4 -j4  Vo  V3 0.2 V o Vo  V1 . At the supernode, V3  V2 V2 V1 V1  V3    4 - j4 2 j2 0  (2  j2) V1  (1  j) V2  (-1  j2) V3 At node 3, V1  V3 V3  V2 0.2V1   j2 4 (0.8  j2) V1  V2  (-1  j2) V3  0 (2) Subtracting (2) from (1), 0  1.2V1  j V2 (3) But at the supernode, V1  12 0  V2 or V2  V1  12 (4) Substituting (4) into (3), 0  1.2V1  j (V1  12) j12 V1   Vo 1.2  j Vo  1290 1.56239.81 Vo  7.68250.19 V (1) Chapter 10, Solution 20. The circuit is converted to its frequency-domain equivalent circuit as shown below. R V m 0 Let Z  jL || 1  jC + +  L C jL  1 jC If and Vo  A , then A  Vo  1 jC jL 1  2 LC jL jL 1  2 LC Vm  V jL R (1  2 LC)  jL m R 1  2 LC   L Vm L 90  tan -1   R (1  2 LC)  R 2 (1  2 LC) 2  2 L2  Z Vo  V  RZ m Vo  jL L Vm R 2 (1   2 LC) 2   2 L2   90  tan -1 L R (1   2 LC) Chapter 10, Solution 21. (a) Vo  Vi 1 jC R  jL  At   0 , 1 jC As    , At   (b) Vo  Vi 1 LC jL At   0 , As    , At   1 LC , 1 1  2 LC  jRC Vo 1   1 Vi 1 Vo  0 Vi Vo  Vi , R  jL   1 jC  1 jRC  1  -j L R C LC  2 LC 1  2 LC  jRC Vo  0 Vi Vo 1   1 Vi 1 Vo  Vi 1 jRC  1 LC  j L R C Chapter 10, Solution 22. Consider the circuit in the frequency domain as shown below. R1 R2 Vs 1 jC +  jL Let Z  (R 2  jL) || + Vo  1 jC 1 (R  jL) R 2  jL jC 2  Z 1 1  jR 2  2 LC R 2  jL  jC R 2  jL Vo 1  2 LC  jR 2 C Z   R 2  jL Vs Z  R 1 R1  1  2 LC  jR 2 C Vo R 2  jL  2 Vs R 1  R 2   LCR 1  j (L  R 1 R 2 C) Chapter 10, Solution 23. V  Vs V   jCV  0 1 R jL  j C V jRCV  2LC  1  jRCV  Vs  1  2LC  jRC  jRC  j3RLC2   V  Vs  2   1   LC   V  (1   2 LC )V s 1   2 LC  jRC ( 2   2 LC ) Chapter 10, Solution 24. Design a problem to help other students to better understand mesh analysis. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem Use mesh analysis to find V o in the circuit in Prob. 10.2. Solution Consider the circuit as shown below. 2 + o 40 V I1 + _ j4  –j5  Vo I2 – For mesh 1, 4  (2  j 5) I1  j 5 I1 For mesh 2, (1) 0  j 5I 1  ( j 4  j 5) I 2   I1  1 I2 5 (2) Substituting (2) into (1), 1 4  (2  j 5) I 2  j 5I 2 5   I2  1 0.1  j V o = j4I 2 = j4/(0.1+j) = j4/(1.00499 84.29°) = 3.98 5.71° V Chapter 10, Solution 25.  2 10 cos(2t )   100 6 sin(2t )   6  - 90  -j6 2H   jL  j4 1 1 0.25 F     - j2 jC j (2)(1 4) The circuit is shown below. 4 j4  Io 100 V +  -j2  I1 For loop 1, - 10  (4  j2) I 1  j2 I 2  0 5  (2  j) I 1  j I 2 (1) For loop 2, j2 I 1  ( j4  j2) I 2  (- j6)  0 I1  I 2  3 I2 +  6-90 V (2) In matrix form (1) and (2) become  2  j j   I 1   5  1 1   I    3  2       2 (1  j) , I o  I1  I 2  Therefore,  1  5  j3 ,  2  1  j3 4 1   2   1  j  1.414245  2 (1  j ) i o ( t )  1.4142cos(2t + 45) A Chapter 10, Solution 26. 0.4 H 1 F     j L  j10 x 0.4  j400 3 1 j C  1   j1000 6 j10 x10 3 The circuit becomes that shown below. 2 k –j1000 Io 100o + _ + _ I1 j400 –j20 I2 For loop 1, 10  (12000  j 400) I1  j 400 I 2  0   1  (200  j 40) I1  j 40 I 2 (1) For loop 2,  j 20  ( j 400  j1000) I 2  j 400 I1  0   12  40 I1  60 I 2 (2) In matrix form, (1) and (2) become  1   200  j 40  j 40   I1   12    40 60   I 2     Solving this leads to I 1 =0.0025-j0.0075, I 2 = -0.035+j0.005 I o = I 1 – I 2 = 0.0375 – j0.0125 = 39.5 –18.43° mA i o (t) = 39.5cos(103t–18.43°) mA Chapter 10, Solution 27. For mesh 1, For mesh 2, - 40 30  ( j10  j20) I 1  j20 I 2  0 4 30  - j I 1  j2 I 2 (1) 50 0  (40  j20) I 2  j20 I 1  0 5  - j2 I 1  (4  j2) I 2 (2) From (1) and (2),  430  - j j2  I 1   5    - j2 - (4  j2)  I   2       -2  4 j  4.472116.56  1  -(4 30)(4  j2)  j10  21.01211.8  2  - j5  8120  4.44 154.27 I1  I2  1  4.69895.24 A  2  992.837.71 mA  Chapter 10, Solution 28. 1 1    j0.25 jC j1x 4 The frequency-domain version of the circuit is shown below, where 1H   V1  100 o , jL  j4,   1F V2  20  30 o . 1 j4 j4 1 -j0.25 + + V1 I1 1 I2 V2 - - V1  100 o , V2  20  30 o Applying mesh analysis, 10  (2  j3.75)I1  (1  j0.25)I 2 (1)  20  30 o  (1  j0.25)I1  (2  j3.75)I 2 (2) From (1) and (2), we obtain 10    2  j3.75  1  j0.25  I1          17.32  j10    1  j0.25 2  j3.75  I 2  Solving this leads to I1  2.741  41.07 o , I 2  4.11492 o Hence, i 1 (t) = 2.741cos(4t–41.07˚)A, i 2 (t) = 4.114cos(4t+92˚)A. Chapter 10, Solution 29. Using Fig. 10.77, design a problem to help other students better understand mesh analysis. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem By using mesh analysis, find I 1 and I 2 in the circuit depicted in Fig. 10.77. Figure 10.77 Solution For mesh 1, (5  j5) I 1  (2  j) I 2  30 20  0 30 20  (5  j5) I 1  (2  j) I 2 (1) For mesh 2, (5  j3  j6) I 2  (2  j) I 1  0 0  - (2  j) I 1  (5  j3) I 2 (2) From (1) and (2), 3020  5  j5 - (2  j)  I 1   0    - (2  j) 5 - j3  I   2       37  j6  37.489.21  1  (30 20)(5.831 - 30.96)  175 - 10.96  2  (30 20)(2.356 26.56)  67.0846.56 I1  I2  1  4.67–20.17 A  2  1.7937.35 A  Chapter 10, Solution 30. 300m H 200m H 400m H 50  F   j L  j100 x 300 x10 3   j L  j100 x 400 x10 3 j L  j100 x 200 x10     3  j20  j40 1   j200 6 j100 x 50 x10 The circuit becomes that shown below. 1 j C   j30 20  j40 j20 10  + o 12090 + _ I1 j30 –j200 I2 vo I 3` - + _ 800o For mesh 1, 120  90o  (20  j30) I1  j 30 I 2  0   j120  (20  j 30) I1  j 30 I 2 For mesh 2,  j 30 I1  ( j 30  j 40  j 200) I 2  j 200 I 3  0   0  3I1  13I 2  20 I 3 For mesh 3, 80  j200I 2  (10  j180)I 3  0  8  j20I 2  (1  j18)I 3 (3) We put (1) to (3) in matrix form. 0   I1   j12 2  j3  j3   3  13 20  I 2    0    0 j20 1  j18  I 3    8 This is an excellent candidate for MATLAB. >> Z=[(2+3i),-3i,0;-3,-13,20;0,20i,(1-18i)] Z= 2.0000 + 3.0000i 0 - 3.0000i 0 (1) (2) -3.0000 0 -13.0000 20.0000 0 +20.0000i 1.0000 -18.0000i >> V=[12i;0;-8] V= 0 +12.0000i 0 -8.0000 >> I=inv(Z)*V I= 2.0557 + 3.5651i 0.4324 + 2.1946i 0.5894 + 1.9612i V o = –j200(I 2 – I 3 ) = –j200(–0.157+j0.2334) = 46.68 + j31.4 = 56.2633.93˚ v o = 56.26cos(100t + 33.93˚) V. Chapter 10, Solution 31. Consider the network shown below. 80  100120 V +  For loop 1, For loop 2, For loop 3, From (2), I1 Io -j40  j60  I2 -j40  20  I3 +  60-30 V - 100120  (80  j40) I1  j40 I 2  0 10 20  4 (2  j) I 1  j4 I 2 (1) j40 I 1  ( j60  j80) I 2  j40 I 3  0 0  2 I1  I 2  2 I 3 (2) 60  - 30  (20  j40) I 3  j40 I 2  0 - 6 - 30  j4 I 2  2 (1  j2) I 3 (3) 2 I 3  I 2  2 I1 Substituting this equation into (3), - 6  - 30  -2 (1  j2) I 1  (1  j2) I 2 (4) From (1) and (4),  10120   4 (2  j) j4  I 1   - 6 - 30   - 2 (1  j2) 1  j2 I      2   2  8  j4 - j4  32  j20  37.7432 - 2  j4 1  j2 8  j4 10120  -4.928  j82.11  82.2593.44 - 2  j4 - 6 - 30 Io  I2  2  2.17961.44 A  Chapter 10, Solution 32. Consider the circuit below. j4  2 4-30 V For mesh 1, where Hence, Io + Vo  I1 +  3 Vo I2 (2  j4) I 1  2 (4 - 30)  3 Vo  0 Vo  2 (4 - 30  I 1 ) (2  j4) I 1  8 - 30  6 (4  - 30  I 1 )  0 4  - 30  (1  j) I 1 I 1  2 2 15 or Io  3 Vo 3  (2)(4 - 30  I 1 ) - j2 - j2 I o  j3 (4 - 30  2 2 15) I o  8.48515 A Vo  - j2 I o  5.657-75 V 3 -j2  5A Chapter 10, Solution 33. Consider the circuit shown below. I4 2 j I -j20 V For mesh 1, +  I1 -j2  I2 2I j20  (2  j2) I 1  j2 I 2  0 (1  j) I 1  j I 2  - j10 (1) For the supermesh, ( j  j2) I 2  j2 I 1  4 I 3  j I 4  0 Also, For mesh 4, 4 I3 (2) I 3  I 2  2 I  2 (I 1  I 2 ) I 3  2 I1  I 2 (3) I4  5 (4) Substituting (3) and (4) into (2), (8  j2) I 1  (- 4  j) I 2  j5 (5) Putting (1) and (5) in matrix form,  1 j j  I 1   - j10  8  j2 4  j I    j5    2      -3  j5 , I  I1  I 2   1  -5  j40 ,  2  -15  j85  1   2 10  j45   - 3  j5  7.90643.49 A Chapter 10, Solution 34. The circuit is shown below. Io 5 I2 8 4090 V For mesh 1, +  3A -j2  10  I1 20  I3 j4  - j40  (18  j2) I 1  (8  j2) I 2  (10  j4) I 3  0 For the supermesh, (13  j2) I 2  (30  j19) I 3  (18  j2) I 1  0 Also, I2  I3  3 Adding (1) and (2) and incorporating (3), - j40  5 (I 3  3)  (20  j15) I 3  0 3  j8 I3   1.46538.48 5  j3 I o  I 3  1.46538.48 A j15  (1) (2) (3) 4 Chapter 10, Solution 35. j2  Consider the circuit shown below. I3 8 1 -j3  10  20 V +  I1 -j4 A For the supermesh, - 20  8 I 1  (11  j8) I 2  (9  j3) I 3  0 Also, For mesh 3, I2 -j5  (1) I 1  I 2  j4 (2) (13  j) I 3  8 I 1  (1  j3) I 2  0 (3) Substituting (2) into (1), (19  j8) I 2  (9  j3) I 3  20  j32 (4) Substituting (2) into (3), - (9  j3) I 2  (13  j) I 3  j32 (5) From (4) and (5),  19  j8 - (9  j3)  I 2   20  j32   - (9  j3) 13  j  I    j32    3      167  j69 , I2   2  324  j148  2 324  j148 356.2  - 24.55    167  j69 180.69  - 22.45 I 2  1.971–2.1 A Chapter 10, Solution 36. Consider the circuit below. j4  490 A -j3  + 2 I1 Vo  2 I2 +  2 I3 20 A Clearly, I 1  4 90  j4 and I 3  -2 For mesh 2, (4  j3) I 2  2 I 1  2 I 3  12  0 (4  j3) I 2  j8  4  12  0 - 16  j8  -3.52  j0.64 I2  4  j3 Thus, Vo  2 (I 1  I 2 )  (2)(3.52  j4.64)  7.04  j9.28 Vo  11.64852.82 V 120 V Chapter 10, Solution 37. I1 + 120  90 o V - Ix Z=80-j35  Z I2 Iz o 120  30 V + Iy Z I3 For mesh x, ZI x  ZI z   j120 (1) ZI y  ZI z  12030 o  103.92  j60 (2)  ZI x  ZI y  3ZI z  0 (3) For mesh y, For mesh z, Putting (1) to (3) together leads to the following matrix equation: 0 (80  j35)  I x    j120   (80  j35)      0 (80  j35) (80  j35)  I y     103.92  j60     (80  j35) (80  j35) (240  j105)  I   0   z    Using MATLAB, we obtain  - 0.2641  j2.366    I  inv(A) * B   - 2.181 - j0.954   - 0.815  j1.1066    I 1  I x  0.2641  j 2.366  2.38  96.37 o A I 2  I y  I x  1.9167  j1.4116  2.38143.63 o A I 3   I y  2.181  j 0.954  2.38 23.63 o A   AI  B Chapter 10, Solution 38. Consider the circuit below. Io 2 I1 20 A j2  1 I2 -j4  40 A I3 +  I4 1090 V 1 A Clearly, For mesh 2, I1  2 (1) (2  j4) I 2  2 I 1  j4 I 4  10 90  0 (2) Substitute (1) into (2) to get (1  j2) I 2  j2 I 4  2  j5 For the supermesh, (1  j2) I 3  j2 I 1  (1  j4) I 4  j4 I 2  0 j4 I 2  (1  j2) I 3  (1  j4) I 4  j4 At node A, I3  I4  4 Substituting (4) into (3) gives j2 I 2  (1  j) I 4  2 (1  j3) From (2) and (5), 1  j2 j2  I 2   2  j5   j2 1  j I    2  j6    4      3  j3 ,  1  9  j11 -  1 - (9  j11) 1  (-10  j)  3  j3 3  I o  3.35174.3 A Io  -I2  (3) (4) (5) Chapter 10, Solution 39. For mesh 1, (28  j15)I1  8I 2  j15I 3  1264 o (1)  8I1  (8  j9)I 2  j16I 3  0 (2) j15I1  j16I 2  (10  j)I 3  0 (3) For mesh 2, For mesh 3, In matrix form, (1) to (3) can be cast as 8 j15  I1  1264 o   (28  j15)    (8  j9)  j16  I 2    0   8    j15  j16 (10  j)  I 3   0     or AI  B Using MATLAB, I = inv(A)*B I 1  0.128  j 0.3593  381.4109.6° mA I 2  0.1946  j 0.2841  344.3124.4° mA I 3  0.0718  j 0.1265  145.5–60.42° mA I x  I 1  I 2  0.0666  j 0.0752  100.548.5° mA 381.4109.6° mA, 344.3124.4° mA, 145.5–60.42° mA, 100.548.5° mA Chapter 10, Solution 40. Let I o = I o1 + I o2 , where I o1 is due to the dc source and I o2 is due to the ac source. For I o1 , consider the circuit in Fig. (a). Clearly, 4 2 I o1 +  8V (a) I o1 = 8/2 = 4 A For I o2 , consider the circuit in Fig. (b). 4 2 I o2 100 V j4  +  (b) If we transform the voltage source, we have the circuit in Fig. (c), where 4 || 2  4 3  . I o2 2.50 A 4 2 j4  (c) By the current division principle, 43 Io2  (2.50) 4 3  j4 I o 2  0.25  j 0.75  0.79 - 71.56 Thus, I o 2  0.79 cos(4t  71.56) A Therefore, I o = I o1 + I o2 = [4 + 0.79cos(4t–71.56)] A Chapter 10, Solution 41. We apply superposition principle. We let vo = v1 + v2 where v 1 and v 2 are due to the sources 6cos2t and 4sin4t respectively. To find v 1 , consider the circuit below. -j2 + + _ 60o 2 V1 – 1/ 4F   1 j C  1   j2 j2 x1/ 4 (6) = 3+j3 = 4.243 45° Thus, v 1 (t) = 4.243cos(2t+45°) volts. To get v 2 (t), consider the circuit below, –j + 40o + _ 2 V2 – 1/ 4F   1 j C  1   j1 j4 x1/ 4 or v 2 (t) = 3.578sin(4t+25.56°) volts. Hence, v o = [4.243cos(2t+45˚) + 3.578sin(4t+25.56˚)] volts. Chapter 10, Solution 42. Using Fig. 10.87, design a problem to help other students to better understand the superposition theorem. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem Solve for I o in the circuit of Fig. 10.87. j10  o 200 V + _ 50  60  Io –j40  + _ 3045o V Figure 10.87 For Prob. 10.42. Solution Let I o  I1  I 2 where I 1 and I 2 are due to 20<0o and 30<45o sources respectively. To get I 1 , we use the circuit below. I1 j10  60  o 200 V + _ 50  –j40  Let Z 1 = -j40//60 = 18.4615 –j27.6927, Z 2 = j10//50=1.9231 + j9.615 Transforming the voltage source to a current source leads to the circuit below. I1 Z2 Z1 –j2 Using current division, Z2 I1  ( j 2)  0.6217  j 0.3626 Z1  Z 2 To get I 2 , we use the circuit below. j10  I2 50  60  –j40  + _ After transforming the voltage source, we obtain the circuit below. I2 Z2 Z1 0.545o Using current division,  Z1 I2  (0.5  45o )  0.5275  j 0.3077 Z1  Z 2 3045o V Hence, I o = I 1 + I 2 = 0.0942+j0.0509 = 109 30° mA. Chapter 10, Solution 43. Let I x  I 1  I 2 , where I 1 is due to the voltage source and I 2 is due to the current source.  2 5 cos(2t  10)   510 10 cos(2t  60)   10  - 60 4H   1  F  8 jL  j8 1 1   -j4 jC j (2)(1 / 8) For I 1 , consider the circuit in Fig. (a). -j4  3 I1 j8  +  10-60 V (a) I1  10 - 60 10  - 60  3  j8  j4 3  j4 For I 2 , consider the circuit in Fig. (b). 510 A -j4  3 j8  (b) I2  - j8 - j40 10 (510)  3  j8  j4 3  j4 I x  I1  I 2  1 (10 - 60  j4010) 3  j4 49.51 - 76.04  9.902  - 129.17 Ix  553.13 Therefore, i x  9.902 cos(2t – 129.17) A I2 Chapter 10, Solution 44. Let v x  v1  v 2 , where v 1 and v 2 respectively. For v 1 ,   6 , 5 H   are due to the current source and voltage source jL  j30 The frequency-domain circuit is shown below. 20  16  Is Let Z  16 //(20  j30)  + V1 - 16(20  j30)  11.8  j3.497  12.3116.5 o 36  j30 V1  I s Z  (1210 o )(12.3116.5 o )  147.726.5 o For v 2 ,   2 , 5 H j30   jL  j10   v1  147.7 cos(6 t  26.5 o ) V The frequency-domain circuit is shown below. 20  16  j10 + V2 + Vs - - Using voltage division, - V2  Thus, 16(500 o ) 16  21.41  15.52 o Vs  36  j10 16  20  j10   v 2  21.41sin(2t  15.52 o ) V v x  [147.7cos(6t+26.5°)+21.41sin(2t–15.52°)] V Chapter 10, Solution 45. Let i  i1  i2 , where i 1 and i 2 are due to 16cos(10t +30o) and 6sin4t sources respectively. To find i 1 , consider the circuit below. I1 20  + _ 16 30o V jX X   L  10 x 300 x103  3 Type equation here. .47° = 0.7913 i 1 (t) = 791.1cos(10t+ .47°) mA. To find i 2 (t), consider the circuit below, I2 20  + _ 60o V jX X   L  4 x 300 x103  1.2 = 0.2995 176.57° or i 2 (t) = 299.5sin(4t+176.57°) mA. Thus, i(t) = i 1 (t) + i 2 (t) = [791.1cos(10t+21.47°) + 299.5sin(4t+176.57°)] mA. Chapter 10, Solution 46. Let v o  v1  v 2  v 3 , where v1 , v 2 , and v 3 are respectively due to the 10-V dc source, the ac current source, and the ac voltage source. For v1 consider the circuit in Fig. (a). 6 2H + 1/12 F +  v1  10 V (a) The capacitor is open to dc, while the inductor is a short circuit. Hence, v1  10 V For v 2 , consider the circuit in Fig. (b).  2 2H   jL  j4 1 1 1 F     - j6 jC j (2)(1 / 12) 12 6 -j6  + 40 A V2  (b) Applying nodal analysis, V V V 1 j j  4  2  2  2      V2 6 - j6 j4  6 6 4  V2  Hence, 24  21.4526.56 1  j0.5 v 2  21.45 sin( 2 t  26.56) V For v 3 , consider the circuit in Fig. (c). 3 j4  2H   jL  j6 1 1 1    - j4 F  12 jC j (3)(1 / 12) 6 120 V +  j6  + -j4  V3  (c) At the non-reference node, 12  V3 V3 V3   6 - j4 j6 12 V3   10.73 - 26.56 1  j0.5 Hence, v 3  10.73 cos(3t  26.56) V Therefore, v o  [10+21.45sin(2t+26.56)+10.73cos(3t–26.56)] V Chapter 10, Solution 47. Let i o  i1  i 2  i 3 , where i1 , i 2 , and i 3 are respectively due to the 24-V dc source, the ac voltage source, and the ac current source. For i1 , consider the circuit in Fig. (a). 1 24 V 1/6 F  + 2H i1 2 4 (a) Since the capacitor is an open circuit to dc, 24 4A i1  42 For i 2 , consider the circuit in Fig. (b). 1 2H   jL  j2 1 1   - j6 F  6 jC 1 j2  -j6  I2 10-30 V +  2 I1 I2 4 (b) For mesh 1, For mesh 2, - 10  - 30  (3  j6) I 1  2 I 2  0 10  - 30  3 (1  2 j) I 1  2 I 2 (1) 0  -2 I 1  (6  j2) I 2 I 1  (3  j) I 2 (2) Substituting (2) into (1) Hence, 10  - 30  13  j15 I 2 I 2  0.504 19.1 i 2  0.504 sin( t  19.1) A For i 3 , consider the circuit in Fig. (c). 3 2H   jL  j6 1 1 1 F     - j2 jC j (3)(1 / 6) 6 1 -j2  j6  I3 2 20 A 4 (c) 2 || (1  j2)  2 (1  j2) 3  j2 Using current division, 2 (1  j2)  (20) 2 (1  j2) 3  j2 I3   2 (1  j2) 13  j3 4  j6  3  j2 I 3  0.3352  - 76.43 Hence i 3  0.3352 cos(3t  76.43) A Therefore, i o  [4 + 0.504 sin(t + 19.1) + 0.3352 cos(3t – 76.43)] A Chapter 10, Solution 48. Let i O  i O1  i O 2  i O 3 , where i O1 is due to the ac voltage source, i O 2 is due to the dc voltage source, and i O3 is due to the ac current source. For i O1 , consider the circuit in Fig. (a).   2000 50 cos(2000t )   500 40 mH   jL  j (2000)(40  10 -3 )  j80 1 1   - j25 jC j (2000)(20  10 -6 )  20 F  I 500 V -j25  I O1 80  +  j80  (a) 100  60  80 || (60  100)  160 3 50 30 I  160 3  j80  j25 32  j33 - 80 I -1 10180  I 80  160 3 4645.9  0.217 134.1 i O1  0.217 cos(2000 t  134.1) A Using current division, I O1  I O1 Hence, For i O 2 , consider the circuit in Fig. (b). i O2 80  100  60  +  (b) 24 V i O2  24  0 .1 A 80  60  100 For i O3 , consider the circuit in Fig. (c).   4000 2 cos(4000t )   2 0 40 mH   20 F   jL  j (4000)(40  10 -3 )  j160 1 1   - j12.5 jC j (4000)(20  10 -6 ) -j12.5  I2 80  j160  I O3 I3 20 A 60  I1 (c) ` For mesh 1, I1  2 (1) For mesh 2, (80  j160  j12.5) I 2  j160 I 1  80 I 3  0 Simplifying and substituting (1) into this equation yields (8  j14.75) I 2  8 I 3  j32 (2) For mesh 3, 240 I 3  60 I 1  80 I 2  0 Simplifying and substituting (1) into this equation yields I 2  3 I 3  1.5 (3) 100  Substituting (3) into (2) yields (16  j44.25) I 3  12  j54.125 12  j54.125  1.17827.38 I3  16  j44.25 Hence, Therefore, I O 3  - I 3  -1.17827.38 i O 3  -1.1782 sin( 4000t  7.38) A i O  {0.1 + 0.217 cos(2000t + 134.1) – 1.1782 sin(4000t + 7.38)} A Chapter 10, Solution 49. 8 sin( 200t  30)   830,   200 5 mH    1 mF  jL  j (200)(5  10 -3 )  j 1 1   - j5 jC j (200)(1  10 -3 ) After transforming the current source, the circuit becomes that shown in the figure below. 5 4030 V I 3 I j +  -j5  40 30 40 30   4.47256.56 5  3  j  j5 8  j4 i  [4.472sin(200t+56.56)] A Chapter 10, Solution 50. Using Fig. 10.95, design a problem to help other students to better understand source transformation. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem Use source transformation to find v o in the circuit in Fig. 10.95. Figure 10.95 Solution 5 cos(10 5 t )  50,   10 5 0.4 mH    0.2 F  jL  j (10 5 )(0.4  10 -3 )  j40 1 1   - j50 5 jC j (10 )(0.2  10 -6 ) After transforming the voltage source, we get the circuit in Fig. (a). j40  20  0.250 -j50  (a) Let and Z  20 || - j 50  - j100 2  j5 Vs  (0.250) Z  - j25 2  j5 80  + Vo  With these, the current source is transformed to obtain the circuit in Fig.(b). j40  Z Vs 80  +  +  (b) By voltage division, - j25 80 80  Vs  - j100 2  j5 Z  80  j40  80  j40 2  j5 8 (- j25) Vo   3.615 - 40.6 36  j42 v o  3.615 cos(105 t – 40.6) V Vo  Therefore, Vo Chapter 10, Solution 51. There are many ways to create this problem, here is one possible solution. Let V 1 = 40 30° V, X L = 10 Ω, X C = 20 Ω, R 1 = R 2 = 80 Ω, and V 2 = 50 V. If we let the voltage across the capacitor be equal to V x , then I o = [V x /(–j20)] + [(V x –50)/80] = (0.0125+j0.05)V x – 0.625 = (0.051539 75.96°)V x – 0.625. The following circuit is obtained by transforming the voltage sources. Vx 4-60 V j10  -j20  40  V x = (4-60+1.25)/(–j0.1+j0.05+0.025) = (2–j3.4641+1.25)/(0.025–j0.05) = (3.25–j3.4641)/( 0.025–j0.05) = (4.75 –46.826°)/(0.055902 –63.435°) = 84.97 16.609° V. Therefore, 1.250 A I o = (0.051539 75.96°)(84.97 16.609°) – 0.625 = 4.3793 92.569° – 0.625 = –0.196291+j4.3749 – 0.625 = –0.821291+j4.3749 = 4.451 100.63° A. Chapter 10, Solution 52. We transform the voltage source to a current source. 600  6  j12 Is  2  j4 The new circuit is shown in Fig. (a). -j2  Ix 2 I s = 6 – j12 4 6 j4  590 A -j3  (a) Let 6 (2  j4)  2.4  j1.8 8  j4 Vs  I s Z s  (6  j12)(2.4  j1.8)  36  j18  18 (2  j) Z s  6 || (2  j4)  With these, we transform the current source on the left hand side of the circuit to a voltage source. We obtain the circuit in Fig. (b). Zs -j2  Ix Vs 4 +  -j3  (b) Let Z o  Z s  j2  2.4  j0.2  0.2 (12  j) Vs 18 (2  j) Io    15.517  j6.207 Z o 0.2 (12  j) j5 A With these, we transform the voltage source in Fig. (b) to a current source. We obtain the circuit in Fig. (c). Ix Io 4 Zo -j3  j5 A (c) Using current division, Zo 2.4  j0.2 Ix  (I o  j5)  (15.517  j1.207) Z o  4  j3 6.4  j3.2 I x  5  j1.5625  5.23817.35 A Chapter 10, Solution 53. We transform the voltage source to a current source to obtain the circuit in Fig. (a). -j3  4 50 A Let j4  j2  + 2 Vo  -j2  (a) Z s  4 || j2  j8  0.8  j1.6 4  j2 Vs  (50) Z s  (5)(0.8  j1.6)  4  j8 With these, the current source is transformed so that the circuit becomes that shown in Fig. (b). Zs Vs -j3  j4  2 +  -j2  + Vo  (b) Let Z x  Z s  j3  0.8  j1.4 V 4  j8 Ix  s   3.0769  j4.6154 Z s 0.8  j1.4 With these, we transform the voltage source in Fig. (b) to obtain the circuit in Fig. (c). j4  Ix Zx 2 (c) Let Z y  2 || Z x  1.6  j2.8  0.8571  j0.5714 2.8  j1.4 -j2  + Vo  Vy  I x Z y  ( 3.0769  j4.6154)  (0.8571  j0.5714)  j5.7143 With these, we transform the current source to obtain the circuit in Fig. (d). j4  Zy Vy -j2  +  + Vo  (d) Using current division, Vo  - j2 ( j5.7143) - j2 Vy   (3.529 – j5.883) V Z y  j4  j2 0.8571  j0.5714  j4  j2 Chapter 10, Solution 54. 50 x( j 30)  13.24  j 22.059 50  j 30 We convert the current source to voltage source and obtain the circuit below. 50 //(  j 30)  40  + V s =115.91 –j31.06V 13.24 – j22.059  j20  + - I 134.95-j74.912 V V - + - Applying KVL gives -115.91 + j31.058 + (53.24-j2.059)I -134.95 + j74.912 = 0 or I   250.86  j105.97  4.7817  j1.8055 53.24  j 2.059 But  Vs  (40  j20)I  V  0   V  Vs  (40  j20)I V  115.91  j 31.05  (40  j 20)( 4.7817  j1.8055)  124.06  154 o V which agrees with the result in Prob. 10.7. Chapter 10, Solution 55. (a) To find Z th , consider the circuit in Fig. (a). j20  10  -j10  Z th (a) Z N  Z th  10  j20 || (- j10)  10  ( j20)(- j10) j20  j10  10  j20  22.36-63.43  To find Vth , consider the circuit in Fig. (b). j20  5030 V +  10  + -j10  V th  (b) Vth  IN  (b) - j10 (50 30)  -5030 V j20  j10 Vth - 50 30  2.236273.4 A  Z th 22.36  - 63.43 To find Z th , consider the circuit in Fig. (c). -j5  8 j10  (c) Z th Z N  Z th  j10 || (8  j5)  ( j10)(8  j5)  1026  j10  8  j5 To obtain Vth , consider the circuit in Fig. (d). -j5  Io 40 A 8 j10  (d) By current division, 32 8 Io  (40)  8  j5 8  j10  j5 Vth  j10 I o  IN  j320  33.9258 V 8  j5 Vth 33.92 58   3.39232 A 10 26 Z th + V th  Chapter 10, Solution 56. (a) To find Z th , consider the circuit in Fig. (a). j4  6 -j2  Z th (a) Z N  Z th  6  j4 || (- j2)  6  ( j4)(- j2)  6  j4 j4  j2 = 7.211-33.69  By placing short circuit at terminals a-b, we obtain, I N  20 A Vth  Z th I th  (7.211 - 33.69) (20)  14.422-33.69 V (b) To find Z th , consider the circuit in Fig. (b). j10  30  60  -j5  (b) 30 || 60  20 (- j5)(20  j10) 20  j5 = 5.423-77.47  Z N  Z th  - j5 || (20  j10)  Z th To find Vth and I N , we transform the voltage source and combine the 30  and 60  resistors. The result is shown in Fig. (c). j10  445 A 20  a -j5  (c) IN  2 20 (445)  (2  j)(445) 5 20  j10 = 3.57818.43 A Vth  Z th I N  (5.423 - 77.47) (3.57818.43) = 19.4-59 V IN b Chapter 10, Solution 57. Using Fig. 10.100, design a problem to help other students to better understand Thevenin and Norton equivalent circuits. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem Find the Thevenin and Norton equivalent circuits for the circuit shown in Fig. 10.100. Figure 10.100 Solution To find Z th , consider the circuit in Fig. (a). 5 -j10  2 j20  Z th (a) ( j20)(5  j10) 5  j10  18  j12  21.633-33.7  Z N  Z th  2  j20 || (5  j10)  2  To find Vth , consider the circuit in Fig. (b). 5 60120 V +  -j10  2 + j20  V th  (b) Vth  j20 j4 (60 120)  (60120) 5  j10  j20 1  j2 = 107.3146.56 V IN  Vth 107.3146.56   4.961-179.7 A Z th 21.633 - 33.7 Chapter 10, Solution 58. Consider the circuit in Fig. (a) to find Z eq . 8 -j6  j10  Z eq (a) Z eq  j10 || (8  j 6)  ( j10)(8  j 6)  5 (2  j ) 8  j4 = 11.1826.56  Consider the circuit in Fig. (b) to find V Thev . Io 8 545 A j10  -j6  (b) Io  4  j3 8  j6 (545) (545)  4  j2 8  j6  j10 VThev  j10 I o  ( j10)(4  j 3)(545) (2)(2  j ) = 55.971.56 V + V Thev Chapter 10, Solution 59. Calculate the output impedance of the circuit shown in Fig. 10.102. –j2 Ω + 0.2V o j40 Ω Vo  10  Figure 10.102 For Prob. 10.59. Solution Since there are no independent sources, we need to inject a current, best value is to make it 1 amp, into the terminals on the right and then to determine the voltage at the terminals. –j2 Ω V1 + 0.2V o j40 Ω Vo  10  a 1A b Clearly V o = –(–j2) = j2 and V 1 = (0.2V o + 1)j40 = (1+j0.4)j40 = –16+j40 V. Next, V ab = 10 – j2 – 16 + j40 = –6+j38 = 38.47 98.97° V or Z eq = (–6+j38) Ω. Chapter 10, Solution 60. (a) To find Z eq , consider the circuit in Fig. (a). 10  -j4  a j5  4 Z eq b (a) Z eq  4 || (- j 4  10 || j 5)  4 || (- j 4  2  j 4) Z eq  4 || 2 = 1.333  To find VThev , consider the circuit in Fig. (b). 10  200 V +  -j4  V1 V2 j5  40 A 4 + V Thev  (b) At node 1, 20  V1 V1 V1  V2   10 j5 - j4 (1  j0.5) V1  j2.5 V2  20 (1) V1  V2 V2  - j4 4 V1  (1  j) V2  j16 (2) At node 2, 4 Substituting (2) into (1) leads to 28  j16  (1.5  j3) V2 28  j16  8  j5.333 V2  1.5  j3 VThev  V2  9.61533.69 V Therefore, (b) To find Z eq , consider the circuit in Fig. (c). Z eq 10  c -j4  j5  d 4 (c)  j10   Z eq  - j 4 || (4  10 || j 5)  - j 4 ||  4  2  j   Z eq  - j 4 || (6  j 4)  - j4 (6  j 4)  (2.667 – j4)  6 To find VThev ,we will make use of the result in part (a). V2  8  j5.333  (8 3 ) (3  j2) V1  (1  j) V2  j16  j16  (8 3) (5  j) VThev  V1  V2  16 3  j8  9.61456.31 V Chapter 10, Solution 61. Find the Thevenin equivalent at terminals a-b of the circuit in Fig. 10.104. V 1 and V 2 4 a Ix + -j3  o 20 A 1.5I x V oc  I sc b Figure 10.104 For Prob. 10.61. Solution Step 1. First we solve for the open circuit voltage using the above circuit and writing two node equations. Then we solve for the short circuit current which only need one node equation. For being able to solve for V oc , we need to solve these three equations, –2 + [(V 1 –0)/(–j3)] + [(V 1 –V oc )/4] = 0 and [(V oc –V 1 )/4] – 1.5I x = 0 where I x = [(V 1 –0)/(–j3)]. To solve for I sc , all we need to do is to solve these three equations, –2 + [(V 2 –0)/(–j3)] + [(V 2 –0)/4] = 0, I sc = [V 2 /4] + 1.5I x , and I x = [V 2 /–j3]. Finally, V Thev = V oc and Z eq = V oc /I sc . Step 2. Now all we need to do is to solve for the unknowns. For V oc , I x = j0.33333V 1 and (0.25+(1.5)(j0.33333))V 1 = 0.25V oc or (0.25+j0.5)V 1 = (0.55902 .4 °)V 1 = 0.25V oc or V 1 = (0.44721 – .4 °)V oc which leads to, (0.25+j0.33333)V 1 – 0.25V oc = 2 . = (0.41666 = (0.186335 – °)(0.44721 – .4 °)V oc – 0.25V oc . °)V oc – 0.25V oc = (0.183333–0.25–j0.033333)V oc = (–0.066667–j0.033333)V oc = (0.074536 – .4 °)V oc = 2 or V oc = V Thev = 26.83 153.44° V = (–24+j12) V. Now for I sc , I sc = [V 2 /4] + 1.5I x = (0.25+(1.5)(j0.33333))V 2 = (0.25+j0.5)V 2 . [(V 2 –0)/(–j3)] + [(V 2 –0)/4] = 2 = (0.25+j0.3333)V 2 = (0.41667 53.13°)V 2 = 2 or V 2 = 4.8 –53.13° I sc = (0.25+j0.5)V 2 = (0.55901 63.435°)(4.8 –53.13°) = 2.6832 . °A Finally, Z eq = V oc /I sc = 26.833 153.435°/2.6832 = 10 4 . . ° ° Ω or = (–8+j6) Ω. Chapter 10, Solution 62. First, we transform the circuit to the frequency domain. 12 cos( t )   120,   1 2H   1 F   4 1 F   8 jL  j2 1  - j4 jC 1  - j8 jC To find Z eq , consider the circuit in Fig. (a). 3 Io Io 4 Vx j2  1 Ix 2 -j4  -j8  +  1V (a) At node 1, Thus, At node 2, Vx Vx 1  Vx   3Io  , j2 4 - j4 where I o  Vx 2 Vx 1  Vx   - j4 4 j2 Vx  0.4  j0.8 I x  3Io  1 1  Vx  - j8 j2 I x  (0.75  j0.5) Vx  j I x  -0.1  j0.425 Z eq  3 8 1  -0.5246  j 2.229  2.29 - 103.24  Ix - Vx 4 To find VThev , consider the circuit in Fig. (b). 3 Io Io 4 j2  V1 1 120 V +  V2 2 -j4  -j8  + V Thev  (b) At node 1, At node 2, 12  V1 V V  V2 12  V1  3Io  1  1 , where I o  4 4 - j4 j2 24  (2  j) V1  j2 V2 (1) V1  V2 V2  3Io  j2 - j8 72  (6  j4) V1  j3 V2 (2) From (1) and (2),  24  2  j - j2  V1   72    6  j4 - j3  V   2      -5  j6 , Vth  V2  Thus, Therefore, 2  3.073 - 219.8   2  - j24 2 (2)(3.073 - 219.8) Vth  2  Z th 1.4754  j2.229 6.146  - 219.8  2.3 - 163.3 Vo  2.673 - 56.5 Vo  v o  2.3cos(t–163.3) V Chapter 10, Solution 63. Transform the circuit to the frequency domain. 4 cos(200t  30)   430,   200 10 H    5 F  jL  j (200)(10)  j2 k 1 1   - j k jC j (200)(5  10 -6 ) Z N is found using the circuit in Fig. (a). j2 k -j k 2 k ZN (a) Z N  - j  2 || j2  - j  1  j  1 k We find I N using the circuit in Fig. (b). -j k 430 A j2 k 2 k (b) j2 || 2  1  j By the current division principle, 1 j (4 30)  5.657 75 IN  1 j  j Therefore, i N (t) = 5.657 cos(200t + 75) A Z N  1 k IN Chapter 10, Solution 64. Z N is obtained from the circuit in Fig. (a). 60  40  ZN -j30  j80  (a) Z N  (60  40) || ( j80  j30)  100 || j50  Z N  20  j40  44.7263.43  (100)( j50) 100  j50 To find I N , consider the circuit in Fig. (b). 60  I1 40  I2 -j30  IN 360 A Is j80  (b) I s  360 For mesh 1, 100 I 1  60 I s  0 I 1  1.860 For mesh 2, ( j80  j30) I 2  j80 I s  0 I 2  4.860 I N = I 2 – I 1 = 360 A Chapter 10, Solution 65. Using Fig. 10.108, design a problem to help other students to better understand Norton’s theorem. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem Compute i o in Fig. 10.108 using Norton's theorem. Figure 10.108 Solution 5 cos(2 t )   50,   2 4H   1 F   4 1 F   2 jL  j (2)(4)  j8 1 1   - j2 jC j (2)(1 / 4) 1 1   -j jC j (2)(1 / 2) To find Z N , consider the circuit in Fig. (a). 2 -j2  ZN (a) -j  Z N  - j || (2  j2)  - j (2  j2) 1  (2  j10) 2  j3 13 To find I N , consider the circuit in Fig. (b). 2 50 V +  -j2  IN  50  j5 -j -j  IN (b) The Norton equivalent of the circuit is shown in Fig. (c). Io ZN IN j8  (c) Using current division, ZN (1 13)(2  j10)( j5) 50  j10  IN  Io  (1 13)(2  j10)  j8 2  j94 Z N  j8 I o  0.1176  j0.5294  0542 - 77.47 Therefore, i o  542 cos(2t – 77.47) mA Chapter 10, Solution 66.   10 0.5 H   jL  j (10)(0.5)  j5 1 1    - j10 10 mF  jC j (10)(10  10 -3 ) To find Z th , consider the circuit in Fig. (a). -j10  10  Vx + j5  Vo  2 Vo 1A (a) 1  2 Vo  Vx Vx  , j5 10  j10 19 Vx V - 10  j10 1  x   Vx  10  j10 j5 21  j2 Z N  Z th  where Vo  10Vx 10  j10 Vx 14.142 135  670129.56 m  1 21.0955.44 To find Vth and I N , consider the circuit in Fig. (b). 120 V -j10  -j2 A 10   + + Vo  j5  I (b) where (10  j10  j5) I  (10)(- j2)  j5 (2 Vo )  12  0 Vo  (10)(- j2  I ) + 2 Vo V th  Thus, (10  j105) I  -188  j20 188  j20 I - 10  j105 Vth  j5 (I  2 Vo )  j5 (19I  j40)   j95 I  200  j 95 (188  j 20) (95  90)(189.066.07) Vth   200   200 - 10  j105 105.4895.44  170.28  179.37  200  170.27  j1.8723  200  29.73  j1.8723 Vth  29.79–3.6 V IN  Vth 29.79  3.6   44.46–133.16 A Z th 0.67129.56 Chapter 10, Solution 67. Z N  Z Th  10 //(13  j 5)  12 //( 8  j 6)  10(13  j 5) 12(8  j 6)   11.243  j1.079 23  j 5 20  j 6 Va  Vb  10 (6045 o )  13.78  j21.44, 23  j5 (8  j6) (6045 o )  12.069  j26.08 20  j6 VTh  Va  Vb  1.711  j 4.64  4.945  69.76 o V, IN  VTh 4.945  69.76   437.8  75.24 o mA 11.295 5.48 Z Th Chapter 10, Solution 68. 1H   jL  j10x1  j10 1 1 1      j2 F 1 20 j C j10 x 20 We obtain V Th using the circuit below. Io 4 a + + 6<0o - V o /3 + - -j2 j10 b j10( j2)   j2.5 j10  j2 Vo  4I o x ( j2.5)   j10I o 1  6  4I o  Vo  0 3 j10 //( j2)  (1) (2) Combining (1) and (2) gives Io  6 , 4  j10 / 3 Vo 4I o VTh  Vo   j10I o   j60  11.52  50.19 o 4  j10 / 3 v Th  11.52 sin(10t  50.19 o ) To find R Th, we insert a 1-A source at terminals a-b, as shown below. Io 4 a + + - V o /3 -j2 j10 Vo 4I o - 1 4I o  Vo  0 3  V Io   o 12 1  4I o  Vo Vo   j2 j10 Combining the two equations leads to Vo  1  1.2293  j1.4766 0.333  j0.4 V Z Th  o  1.2293  1.477 1 1<0o Chapter 10, Solution 69. This is an inverting op amp so that Vo - Z f -R    –jRC 1 jC Vs Zi When Vs  Vm and   1 RC , 1  RC  Vm  - j Vm  Vm  - 90 Vo  - j  RC Therefore, v o ( t )  Vm sin(t  90)  - V m cos(t) Chapter 10, Solution 70. Using Fig. 10.113, design a problem to help other students to better understand op amps in AC circuits. Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition. Problem The circuit in Fig. 10.113 is an integrator with a feedback resistor. Calculate v o (t) if v s = 2 cos 4  104t V. Figure 10.113 Solution This may also be regarded as an inverting amplifier. 2 cos(4  10 4 t )   2 0,   4  10 4 1 1 10 nF     - j2.5 k 4 jC j (4  10 )(10  10 -9 ) Vo - Z f  Vs Zi where Z i  50 k and Z f  100k || (- j2.5k )  Thus, If Vs  2 0 , Vo - (- j2)  Vs 40  j - j100 k . 40  j Vo  Therefore, j4 490   0.191.43 40  j 40.01 - 1.43 v o ( t )  100 cos(4x104 t + 91.43) mV Chapter 10, Solution 71. 8 cos(2t  30 o )  830 o 1 1 0. 5F      j1M jC j2x 0.5x10  6 At the inverting terminal, Vo  830 o Vo  830 o 830 o    j1000k 10k 2k   Vo (1  j100)  830  800  60  4000   60 Vo  6.928  j4  2400  j4157 4800  59.9   4829.53o 1  j100 100  89.43 v o (t) = 48cos(2t+29.53o) V Chapter 10, Solution 72. 4 cos(10 4 t )   4 0,   10 4 1 1 1 nF     - j100 k 4 jC j (10 )(10 -9 ) Consider the circuit as shown below. 50 k 40 V +  -j100 k At the noninverting node, 4  Vo Vo  50 - j100 Io  Therefore, Vo   Vo  +  Vo Io 100 k 4 1  j0.5 Vo 4 mA  35.78 - 26.56 A  100k (100)(1  j0.5) i o ( t )  35.78cos(104t–26.56) A Chapter 10, Solution 73. As a voltage follower, V2  Vo  C1  10 nF  1 1   -j20 k 3 jC1 j (5  10 )(10  10 -9 ) 1 1 C 2  20 nF     -j10 k 3 jC 2 j (5  10 )(20  10 -9 ) Consider the circuit in the frequency domain as shown below. -j20 k I s 10 k 20 k V1 VS +  -j10 k Z in At node 1, Vs  V1 V1  Vo V1  Vo   10 - j20 20 2 Vs  (3  j)V1  (1  j)Vo (1) At node 2, V1  Vo Vo  0  20 - j10 V1  (1  j2)Vo (2) Substituting (2) into (1) gives 2 Vs  j6Vo or 1 Vo  -j Vs 3 2 1 V1  (1  j2)Vo    j  Vs 3 3 V2 +  Io Vo Vs  V1 (1 3)(1  j)  Vs 10k 10k 1 j  30k Is  Is Vs Z in  Vs 30k   15 (1  j) k Is 1  j Z in  21.21–45 k Chapter 10, Solution 74. Zi  R1  Zf  R 2  1 , jC1 1 jC 2 R2  1  C   1  j R 2 C 2  V jC 2 - Zf      1   Av  o  1 Vs Zi C 2   1  jR 1C1   R1  jC1 Av  – At   0 , C1 C2 As    , Av  – At   1 , R 1 C1  C   1  j R 2 C 2 R 1C1   A v  – 1   1 j   C2   1 , R 2C2 C   1 j  A v  – 1    C 2   1  j R 1C1 R 2 C 2  At   R2 R1 Chapter 10, Solution 75.   2  10 3 C1  C 2  1 nF   1 1   -j500 k 3 jC1 j (2  10 )(1  10 -9 ) Consider the circuit shown below. 100 k Let V s = 10V. -j500 k -j500 k V2 +  V1 VS 100 k +  40 k Vb 20 k + Vo  At node 1, [(V 1 –10)/(–j500k)] + [(V 1 –V o )/105] + [(V 1 –V 2 )/(–j500k)] = 0 or (1+j0.4)V 1 – j0.2V 2 – V o = j2 (1) [(V 2 –V 1 )/(–j500k)] + [(V 2 –0)/100k] + 0 = 0 or –j0.2V 1 + (1+j0.2)V 2 = 0 or V 1 = [–(1+j0.2)/(–j0.2)]V 2 = (1–j5)V 2 (2) At node 2, At node b, Vb = R3 V Vo  o  V 2 3 R3  R4 From (2) and (3), V 1 = (0.3333–j1.6667)V o Substituting (3) and (4) into (1), (1+j0.4)(0.3333–j1.6667)V o – j0.06667V o – V o = j2 (1+j0.4)(0.3333–j1.6667) = (1.07721.8˚)(1.6997–78.69˚) = 1.8306–56.89˚ = 1–j1.5334 (3) (4) (1–1+j(–1.5334–0.06667))V o = (–j1.6001)V o = 1.6001–90˚ Therefore, V o = 290˚/(1.6001–90˚) = 1.2499180˚ Since V s = 10, V o /V s = 0.12499180˚. Chapter 10, Solution 76. Let the voltage between the -jk  capacitor and the 10k  resistor be V 1. 230 o  V1 V1  Vo V1  Vo    j4k 10k 20k   230 o  (1  j0.6)V1  j0.6Vo = 1.7321+j1 Also, V1  Vo V  o  j2k 10k  V1  (1  j5)Vo (1) (2) Solving (2) into (1) yields 230  (1  j0.6)(1  j5)Vo  j0.6Vo  (1  3  j0.6  j5  j6)Vo = (4+j5)V o 230 Vo   0.3124  21.34 o V 6.40351.34 = 312.4–21.34˚ mV I o = (V 1 –V o )/20k = V o /(–j4k) = (0.3124/4k)(–21.43+90)˚ = 78.168.57˚ µA We can easily check this answer using MATLAM. Using equations (1) and (2) we can identify the following matrix equations: YV = I where >> Y=[1-0.6i,0.6i;1,-1-0.5i] Y= 1.0000 - 0.6000i 0 + 0.6000i 1.0000 -1.0000 - 5.0000i >> I=[1.7321+1i;0] I= 1.7321 + 1.0000i 0 >> V=inv(Y)*I V= 0.8593 + 1.3410i 0.2909 - 0.1137i = V o = 312.3–21.35˚ mV. The answer checks. Chapter 10, Solution 77. Consider the circuit below. R3 2 R1 1 +  VS At node 1, At node 2, V1  + C2 R2 V1 C1 Vs  V1  jC V1 R1 Vs  (1  jR 1C1 ) V1 + Vo  (1) 0  V1 V1  Vo   jC 2 (V1  Vo ) R3 R2  R3   jC 2 R 3  V1  (Vo  V1 )  R2    1  V1 Vo  1   (R 3 R 2 )  jC 2 R 3    Vs R2  1  1  jR 1C1  R 3  jC 2 R 2 R 3  From (1) and (2), Vo  Vo R 2  R 3  jC 2 R 2 R 3  Vs (1  jR 1C 1 ) ( R 3  jC 2 R 2 R 3 ) (2) Chapter 10, Solution 78. 2 sin(400t )   20,   400 1 1 0.5 F     - j5 k jC j (400)(0.5  10 -6 ) 1 1    - j10 k 0.25 F  jC j (400)(0.25  10 -6 ) Consider the circuit as shown below. 20 k 10 k V 1 20 V +  -j5 k V2 +  Vo 40 k -j10 k 10 k 20 k At node 1, At node 2, But V V  V2 V1  Vo 2  V1  1  1  10 - j10 - j5 20 4  (3  j6) V1  j4 V2  Vo (1) V1  V2 V2   j5 10 V1  (1  j0.5) V2 (2) V2  (3) 20 1 Vo  Vo 20  40 3 From (2) and (3), 1 V1   (1  j0.5) Vo 3 Substituting (3) and (4) into (1) gives 1 4 1  4  (3  j6)   (1  j0.5) Vo  j Vo  Vo  1  j  Vo 3 3 6  24  3.945  9.46 Vo  6 j Therefore, v o ( t )  3.945sin(400t–9.46) V (4) Chapter 10, Solution 79. 0.5 cos(1000 t )   0.50,   1000 1 1    - j10 k 0.1 F  jC j (1000)(0.1  10 -6 ) 1 1 0.2 F     - j5 k jC j (1000)(0.2  10 -6 ) Consider the circuit shown below. 20 k -j10 k 10 k V s = 0.50 +   + 40 k -j5 k Since each stage is an inverter, we apply Vo  Vo  and V1  - Zf V to each stage. Zi i - 40 V1 - j5 (1) - 20 || (- j10) Vs 10 (2) From (1) and (2),  - j8  - ( 20)(-j10)  Vo    0.50   10  20  j10  Vo  1.6 ( 2  j)  35.7826.56 Therefore,  + V1 v o ( t )  3.578cos(1000t + 26.56) V + Vo  Chapter 10, Solution 80. 4 cos(1000t  60)   4  - 60,   1000 1 1 0.1 F     - j10 k jC j (1000)(0.1  10 -6 ) 1 1    - j5 k 0.2 F  jC j (1000)(0.2  10 -6 ) The two stages are inverters so that  20 20  - j5   Vo   V   (4 - 60)  50 o  10   - j10 -j 2 -j   ( j2)  (4 - 60)   Vo 2 5 2 (1  j 5) Vo  4 - 60 4 - 60  3.922  - 71.31 Vo  1 j 5 Therefore, v o ( t )  3.922 cos(1000t – 71.31) V 1 Chapter 10, Solution 81. We need to get the capacitance and inductance corresponding to –j2  and j4 . 1 1  j2   C   0.5 F  X c 1x 2 X j4   L  L  4H  The schematic is shown below. When the circuit is simulated, we obtain the following from the output file. FREQ VM(5) VP(5) 1.592E-01 1.127E+01 -1.281E+02 From this, we obtain V o = 11.27128.1o V. Chapter 10, Solution 82. The schematic is shown below. We insert PRINT to print V o in the output file. For AC Sweep, we set Total Pts = 1, Start Freq = 0.1592, and End Freq = 0.1592. After simulation, we print out the output file which includes: FREQ 1.592 E-01 which means that VM($N_0001) 7.684 E+00 V o = 7.68450.19o V VP($N_0001) 5.019 E+01 Chapter 10, Solution 83. The schematic is shown below. The frequency is f   / 2  1000  159.15 2 When the circuit is saved and simulated, we obtain from the output file FREQ 1.592E+02 VM(1) 6.611E+00 VP(1) -1.592E+02 Thus, v o = 6.611cos(1000t – 159.2o) V Chapter 10, Solution 84. The schematic is shown below. We set PRINT to print V o in the output file. In AC Sweep box, we set Total Pts = 1, Start Freq = 0.1592, and End Freq = 0.1592. After simulation, we obtain the output file which includes: FREQ VM($N_0003) 1.592 E-01 1.664 E+00 VP($N_0003) E+02 Namely, V o = 1.664–146.4o V –1.646 Chapter 10, Solution 85. Using Fig. 10.127, design a problem to help other students to better understand performing AC analysis with PSpice. Although there are many ways to solve this problem, this is an example based on the same kind of problem asked in the third edition. Problem Use PSpice to find V o in the circuit of Fig. 10.127. Let R 1 = 2 Ω, R 2 = 1 Ω, R 3 = 1 Ω, R 4 = 2 Ω, I s = 20˚ A, X L = 1 Ω, and X C = 1 Ω. Solution The schematic is shown below. We let   1 rad/s so that L=1H and C=1F. When the circuit is saved and simulated, we obtain from the output file FREQ 1.591E-01 VM(1) 2.228E+00 VP(1) -1.675E+02 From this, we conclude that V o = 2.228–167.5° V. Chapter 10, Solution 86. The schematic is shown below. We insert three pseudocomponent PRINTs at nodes 1, 2, and 3 to print V 1 , V 2 , and V 3 , into the output file. Assume that w = 1, we set Total Pts = 1, Start Freq = 0.1592, and End Freq = 0.1592. After saving and simulating the circuit, we obtain the output file which includes: FREQ VM($N_0002) 1.592 E-01 6.000 E+01 FREQ VM($N_0003) 1.592 E-01 2.367 E+02 FREQ VM($N_0001) 1.592 E-01 1.082 E+02 VP($N_0002) 3.000 E+01 VP($N_0003) -8.483 E+01 VP($N_0001) E+02 Therefore, V 1 = 6030o V V 2 = 236.7-84.83o V V 3 = 108.2125.4o V 1.254 Chapter 10, Solution 87. The schematic is shown below. We insert three PRINTs at nodes 1, 2, and 3. We set Total Pts = 1, Start Freq = 0.1592, End Freq = 0.1592 in the AC Sweep box. After simulation, the output file includes: FREQ VM($N_0004) 1.592 E-01 1.591 E+01 FREQ VM($N_0001) 1.592 E-01 5.172 E+00 FREQ VM($N_0003) 1.592 E-01 2.270 E+00 VP($N_0004) 1.696 E+02 VP($N_0001) -1.386 E+02 VP($N_0003) E+02 Therefore, V 1 = 15.91169.6o V V 2 = 5.172-138.6o V V 3 = 2.27-152.4o V -1.524 Chapter 10, Solution 88. The schematic is shown below. We insert IPRINT and PRINT to print I o and V o in the output file. Since w = 4, f = w/2 = 0.6366, we set Total Pts = 1, Start Freq = 0.6366, and End Freq = 0.6366 in the AC Sweep box. After simulation, the output file includes: FREQ VM($N_0002) 6.366 E-01 3.496 E+01 1.261 FREQ IM(V_PRINT2) IP 6.366 E-01 8.912 E-01 VP($N_0002) E+01 (V_PRINT2) -8.870 E+01 Therefore, V o = 34.9612.6o V, v o = 34.96 cos(4t + 12.6o)V, I o = 0.8912-88.7o A i o = 0.8912cos(4t – 88.7o )A Chapter 10, Solution 89. Consider the circuit below. R1 R2 V in 2 R3 1 V in 0  Vin Vin  V2  R1 R2 R - Vin  V2  2 Vin R1 V2  Vin Vin  V4  R3 1 jC Vin  V2 - Vin  V4  jCR 3 (2) From (1) and (2), - Vin  V4  Thus, - R2 V jCR 3 R 1 in I in  Vin  V4 R2  V R4 jCR 3 R 1 R 4 in Z in  Vin jCR 1R 3 R 4   jL eq R2 I in where R4 L eq  I in  + (1) At node 3, 4 3  + At node 1, C R 1R 3 R 4C R2 +  V in Chapter 10, Solution 90. Let Z 4  R || 1 R  jC 1  jRC 1 1  jRC Z3  R   jC jC Consider the circuit shown below. Z3 Vi +  + Z4 Vo  R1 Vo R2 R2 Z4 Vi  V R1  R 2 i Z3  Z 4 R Vo R2 1  jC   R 1  jRC R 1  R 2 Vi  1  jC jC  jRC R2  2 jRC  (1  jRC) R1  R 2 Vo R2 jRC   2 2 2 Vi 1   R C  j3RC R 1  R 2 For Vo and Vi to be in phase, 1  2 R 2 C 2  0 1   2f RC or f Vo must be purely real. This happens when Vi 1 2RC At this frequency, Vo 1 R2 Av    Vi 3 R 1  R 2 Chapter 10, Solution 91. (a) Let V2  voltage at the noninverting terminal of the op amp Vo  output voltage of the op amp Z p  10 k  R o Z s  R  jL  1 jC As in Section 10.9, Zp V2   Vo Z s  Z p Ro R  R o  jL  CR o V2  Vo C (R  R o )  j ( 2 LC  1) j C For this to be purely real, o2 LC  1  0   o  fo  1 2 LC  1 LC 1 2 (0.4  10 -3 )(2  10 -9 ) f o  180 kHz (b) At oscillation, o CR o Ro V2   Vo o C (R  R o ) R  R o This must be compensated for by Vo 80 Av   1 5 V2 20 Ro 1  R  Ro 5   R  4R o  40 k Chapter 10, Solution 92. Let V2  voltage at the noninverting terminal of the op amp Vo  output voltage of the op amp Zs  R o RL 1 1  Z p  jL || || R  1 1 L  jR ( 2 LC  1) jC  jC  R jL RL V2 L  jR (2 LC  1)   RL Vo Z s  Z p Ro  L  jR (2 LC  1) V2 RL  Vo RL  R o L  jR o R (2 LC  1) As in Section 10.9, Zp For this to be purely real, o2 LC  1   f o  (a) 1 2 LC At   o , o RL V2 R   Vo o RL  o R o L R  R o This must be compensated for by Vo Rf 1000k Av   1  1  11 Ro V2 100k Hence, (b) fo  R 1    R o  10R  100 k R  R o 11 1 2 (10  10 -6 )(2  10 -9 ) f o  1.125 MHz Chapter 10, Solution 93. As shown below, the impedance of the feedback is jL 1 jC2 ZT  1 jC1 ZT  1 1   ||  jL  jC1  jC 2  -j  -j  1   jL   LC 2 C1  C 2    ZT  -j -j j (C1  C 2   2 LC1C 2 )  jL  C1 C 2 In order for Z T to be real, the imaginary term must be zero; i.e. C1  C 2  o2 LC1 C 2  0 C  C2 1 o2  1  LC1C 2 LC T 1 fo  2 LC T Chapter 10, Solution 94. If we select C1  C 2  20 nF C1 C 2 C1 CT    10 nF C1  C 2 2 Since f o  1 2 LC T L , 1 1   10.13 mH 2 2 (2f ) C T (4 )(2500  10 6 )(10  10 -9 ) Xc  1 1   159  C 2 ( 2 )(50  10 3 )(20  10 -9 ) We may select R i  20 k and R f  R i , say R f  20 k . Thus, C1  C 2  20 nF, L  10.13 mH R f  R i  20 k Chapter 10, Solution 95. First, we find the feedback impedance. C ZT L2 L1  1   Z T  jL1 ||  jL 2  jC    j   jL1  jL 2  2 L1C (1  L 2 )  C   ZT  j j (2 C (L1  L 2 )  1) jL1  jL 2  C In order for Z T to be real, the imaginary term must be zero; i.e. o2 C ( L 1  L 2 )  1  0 1  o  2 f o  C (L1  L 2 ) 1 fo  2 C ( L1  L2 ) Chapter 10, Solution 96. (a) Consider the feedback portion of the circuit, as shown below. jL Vo V2  +  V1 R V2 R jL V R  jL 1 jL   V1  R  jL V2 jL Applying KCL at node 1, Vo  V1 V1 V1   jL R R  jL  1 1  Vo  V1  jL V1    R R  jL   j2RL  2 L2   Vo  V1 1  R (R  jL)   (2) From (1) and (2),  R  jL  j2RL  2 L2  V 1  Vo   R (R  jL)  2  jL  Vo R 2  jRL  j2RL  2 L2  V2 jRL V2  Vo 1 R  2 L2 3 jRL 2 V2 1  Vo 3  j (L R  R L ) (1) (b) V2 must be real, Vo Since the ratio o L R  0 R o L o L  R2 o L  o  2 f o  (c) R L When   o V2 1  Vo 3 fo  R 2 L This must be compensated for by A v  3 . But Av  1 R2 3 R1 R 2  2 R1