Volumen 43, Nº 2, 2011. Páginas 303-313
Chungara, Revista de Antropología Chilena
PALEOEPIDEMIOLOGY OF INTESTINAL PARASITES
AND LICE IN PRE-COLUMBIAN SOUTH AMERICA*
PALEOEPIDEMIOLOGÍA DE PARÁSITOS INTESTINALES Y PIOJOS
EN SUDAMÉRICA PRECOLOMBINA
Adauto Araújo1, Karl Reinhard2, Daniela Leles1, Luciana Sianto1, Alena Iñiguez3,
Martin Fugassa4, Bernardo Arriaza5,6,7, Nancy Orellana6,8,9, and Luiz Fernando Ferreira1
Some human parasites originated in prehominid ancestors in Africa. Nematode species, such as Enterobius vermicularis (pinworm),
hookworms and Trichuris trichiura are shared by humans and other close phylogenetic primates (Pan and Gorilla), showing that
they infected a common ancestor to this group. When humans migrated from Africa to other continents they carried these parasites
wherever climate conditions allowed parasite transmission from host to host. Other parasites, however, were acquired throughout
human biological and social evolutive history when new territories were occupied. Paleoparasitology data is a valuable source to
recover emergence and disappearance of parasite infections through analysis of archaeological remains. Parasites can be used as
biological markers of prehistoric human migrations. They are also indicators of diet, as parasite life cycles are related to specific
kinds of food consumed by human groups in the different habitats they occupied. We review paleoparasitological findings in South
America, comparing human-host and intestinal parasites with life conditions and environmental relationships through time.
Key words: Paleoparasitology, coprolites, mummies, infectious diseases, ancient diseases, parasite-human evolution.
Algunos parásitos humanos se originaron en ancestrales prehomínidos de Africa. Especies de nemátodos tales como Enterobius
vermicularis y Trichuris trichiura son compartidos por los humanos y otros primates filogenéticamente emparentados (Pan and
Gorilla), lo cual indica que tales parásitos antiguamente infectaron a un ancestro común de estos grupos. Cuando los humanos
migraron desde Africa a otros continentes, llevaron consigo parásitos a lugares donde las condiciones climáticas permitieran
su transmisión de huésped a huésped. Sin embargo, otros parásitos fueron adquiridos a través de la historia evolutiva humana
biológica y social, durante la ocupación de nuevos territorios. Las evidencias paleoparasitológicas, encontradas a través del
análisis de material arqueológico, son una fuente valiosa para recuperar información de infecciones parasitarias emergentes y
desaparecidas. Los parásitos pueden ser usados como marcadores biológicos de migraciones humanas prehistóricas. Además de
esto, son indicadores de dieta, debido a que los ciclos de vida parasitarios están relacionados con ciertos alimentos que fueron
consumidos por grupos humanos en los diferentes hábitats ocupados. El objetivo de esta revisión bibliográfica es reunir los hallazgos paleoparasitológicos en Sudamérica y comparar la relación huésped humano y parásitos intestinales con condiciones de
vida y relaciones ambientales a través del tiempo.
Palabras claves: paleoparasitología, coprolitos, momias, enfermedades infecciosas, enfermedades antiguas, evolución
parásito-humano.
Parasites have been found in ancient remains
throughout the world (Bouchet et al. 2003;
Gonçalves et al. 2003). Coprolites and latrine
contents are the main source of intestinal parasite
*
1
2
3
4
5
6
7
8
9
eggs. Protozoan cysts, however, are not as easy to
identify. Nevertheless, serologic techniques have been
successfully applied to identify Giardia duodenalis,
Giardia intestinalis and Entamoeba histolytica
Este artículo fue presentado en el Taller de Bioarqueología “Avances y Desafíos del Paleoambiente y la Paleoparasitología”,
Arica, noviembre 2008. De 15 ponencias expuestas 7 fueron seleccionadas para ser evaluadas por investigadores externos.
Luego fueron editadas por Bernardo Arriaza y Nancy Orellana, en su calidad de editores invitados en este número.
Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rua Leopoldo Bulhoes 1480, CEP 21041-210, Rio de Janeiro,
Brasil. adauto@ensp.fiocruz.br; dleles03@yahoo.com; lucianasianto@gmail.com
University of Nebraska, Lincoln, Nebraska, Estados Unidos. kreinhard1@unl.edu
Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, CEP 21045-900, Rio de Janeiro, Brasil. alena@ioc.fiocruz.br
CONICET-Universidad Nacional de Mar del Plata, Argentina. mhfugassa@hotmail.com
Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile. barriazaarica@gmail.com
Convenio de Desempeño-UTA/Mineduc, Universidad de Tarapacá, Arica, Chile.
Departamento de Antropología, Universidad de Tarapacá, Arica, Chile.
Universidad de la Cordillera, La Paz, Bolivia. nancy.orellana@gmail.com
Museo Nacional de Etnografía y Folklore, La Paz, Bolivia.
Recibido: enero de 2010. Aceptado: noviembre 2010.
304
A. Araújo, K. Reinhard, D. Leles, L. Sianto, A. Iñiguez, M. Fugassa, B. Arriaza, N. Orellana, and L. F. Ferreira
antigens in human coprolites (Gonçalves et al. 2002,
2004; Le Bailly et al. 2008). Other parasites, such
as the protozoan Trypanosoma cruzi was recovered
from mummified tissues and bone fragments by
molecular biology techniques (Aufderheide et al.
2004; Fernandes et al. 2008; Ferreira et al. 2000;
Guhl et al. 1999, 2000; Lima et al. 2008).
Parasitology is relevant to anthropology and the
impact of parasites on human culture can be seen
in language, art, religion, biology and archaeology (Araújo et al. 2003). Parasites and parasitic
disease have cultural expressions as represented in
Moche ceramic art (Heck 2004). The use of regular
parasitological techniques, modified and adapted to
paleoparasitological research increased and expanded
parasite findings to other kinds of archaeological
remains (Fugassa et al. 2006; Fugassa, Sardella
et al. 2008; Harter et al. 2003; Harter-Lailheugue
and Bouchet 2006).
History of Paleoparasites Found on
Archaeological Remains
Since the first studies in South American human
coprolites (Pizzi and Schenone 1954), paleoparasitology has developed as a new research line and
this new science appeared based on solid data
founded on parasite findings from well-dated and
well-identified context, as predicted by Cockburn
(1967). Common wisdom about human health
conditions and parasite infections in the New World
was challenged by paleoparasitological finds.
Hookworm (ancylostomids), whipworm (Trichuris
trichiura), pinworm (Enterobius vermicularis), and
roundworm (Ascaris lumbricoides) were found
infecting prehistoric populations both in North and
South America.
Paleoparasitology focuses on the recovery of
parasites from archaeological sites to further elucidate the ancient impacts of parasites on culture.
Tracing the origins of parasites is one research thread
of importance to paleopathology (Reinhard 1990).
Parasitism has a central role in bioarchaeology
(Reinhard 2008; Reinhard and Bryant 2008) and has
long been recognized as a tool for the archaeologist
(Reinhard 1992).
As reviewed by Reinhard and Bryant (2008), the
relation between cultural development and the nature
of parasitism has long been investigated. Reinhard
(1988) first formalized this area of research in the
Southwestern United States by testing Cockburn’s
(1971) hypotheses about the impact of agriculture
on parasitism. Reinhard showed that zoonotic
infections, long standing in ancient populations,
nearly disappeared in horticulturalists as humanspecific parasites emerged. Martinson et al. (2003),
Reinhard and Buikstra (2003) and Santoro et al.
(2003) continued to explore the impact of parasitic
disease ecology in the Andes. They clearly defined
the role of trade, dress, and water contamination
on parasitic disease among the Chiribaya of Peru
(Martinson et al. 2003; Reinhard and Buikstra 2003).
Santoro et al. (2003) demonstrated that empire development dramatically modified parasite ecology
of the Lluta Valley, Chile, during Inka expansion
to this lowland territory.
Reinhard (1992) noted that the most sensational
contribution of paleoparasitology was towards a
better understanding of the first human migrations
to the New World. In addition, Araújo et al. (1981),
Araújo, Reinhard et al. (2008), and Montenegro
et al. (2006) stated that human coastal and transoceanic migrations also need consideration because
helminth could not survive the colder Beringia climate. Further work by Reinhard and Bryant (2008)
introduced the concept of pathoecology, which
links parasitism to diet, environmental stress, and
other culturally-defined behaviors in the definition
of ancient disease.
Molecular biology techniques were also applied
in diagnosing intestinal parasites. Loreille et al.
(2001) and Loreille and Bouchet (2003) discussed
the origin and evolution of Ascaris lumbricoides
and Ascaris suum parasitism based on DNA studies performed on parasite eggs recovered from
mediaeval latrines in Europe. Recently, Leles et al.
(2008) applied molecular biology techniques and
were able to recover ancient Ascaris lumbricoides
DNA sequences from South American samples,
negative by microscopy. These findings illustrate
the importance of molecular biology techniques in
diagnosing parasites in ancient remains. Molecular
biology techniques allow the study of genetic evolution of parasites and the timing of their introduction
into human populations (Dittmar et al. 2006;
Dittmar 2009). By recovering aDNA (ancient DNA)
sequences and genotyping parasites from human
remains increases the possibility to reconstruct the
early dispersion patterns of parasites (Raoult and
Drancourt 2008).
This paper summarizes the extent of the knowledge of intestinal parasite remains from South
Paleoepidemiology of intestinal parasites and lice in pre-Columbian South America
America. As such, it familiarizes the reader with the
current findings of parasites from this ecologically
diverse and culturally complex area. We review
intestinal parasite infections in pre-Columbian
South America. Paleoparasitological data is used
by archaeologists and anthropologists to reconstruct
ancient events based on parasite life cycles and biological requirements to maintain transmission from
host to host. Climate changes are also associated
with the presence of parasite infections in ancient
people. For this purpose, paleoparasitological data
gathered by the laboratories of Fundação Oswaldo
Cruz, Universidad Nacional de Mar del Plata, and
Universidad de Tarapacá-Arica, as well as data
from other sources published in the literature were
reviewed. The goal of this paper is to discuss paleoparasitology results in South America aiming to
improve techniques and integrate data obtained by
the laboratories involved in this matter.
Techniques Used to Analyse
Bioarchaeological Material
Organic remains were examined by parasitological regular techniques after rehydration using
a trisodium phosphate aqueous solution (Na3PO40.5%). According to the nature of the sample,
different techniques are recommended. For most
coprolite analyses, spontaneous sedimentation in
glass jars is recommended (Araújo et al. 1998;
Lutz 1919). To prevent bacterial and fungal growth or
taphonomic processes that may cause DNA degradation, thus interfering in molecular biology technique
that may be applied, all the remaining sediment in
the jars should be preserved refrigerated (Pruvost
et al. 2007).
In some archaeological contexts, coprolites
are the main source for paleoparasitology analysis.
For example, in northeasthern Brazil coprolites
are found dispersed in archaeological layers under
rock-shelters or inside caves (Bouchet et al. 2003).
Mummified bodies are rarely found in Brazilian
archaeological sites. According to Mendonça de
Souza (pers. comm. 2008) preservation of the dead
was never a common practice among Brazilian
indigenous cultures because they believe the soul
should be released soon after death. Just after death
the individual was cremated, buried, or sometimes
the ashes were eaten by others (Chagnon 1983).
Paleoparasitological research in Brazil started with an
interest in knowing what parasite infections existed
305
before the coming of Europeans and Africans to
the Americas (Ferreira et al. 1988). These results
were used to trace prehistoric migration routes for
the peopling of the continent (Araújo et al. 1981;
Araújo, Reinhard et al. 2008; Araújo, Reinhard
and Ferreira 2008; Reinhard et al. 2001). Wild
animal coprolites were also examined from many
archaeological sites, especially focused on parasites
of animals that may infect humans (Chame 2003;
Sianto et al. 2005). Due to the collaboration with
the University of Nebraska, Lincoln, ancient food
remains turned to be also a research line at Fundação
Oswaldo Cruz (FIOCRUZ). Molecular paleoparasitology has a special laboratory to develop techniques
and diagnoses in conditions avoiding modern DNA
contamination. The Laboratory of Paleoparasitology
at FIOCRUZ, also has an image bank that will soon
be available on the Internet.
A considerable amount of American paleoparasitological data appeared recently in the literature.
Even Southern Patagonian coprolites were collected
and examined (Fugassa 2007, 2008; Fugassa, Bayer
and Sardella 2008). However as climatic conditions in
Patagonia are not conducive to preservation, organic
materials are continuously exposed to extreme dryness
and cold and sometimes to water percolation. Due to
the scarcity of coprolites and other organic material
a microscopic method was developed to search for
parasites at the Laboratory of Paleoparasitology of
the University Nacional de Mar del Plata, Argentina
(Fugassa et al. 2006). The method used sediments
recovered from the pelvic girdle and proved to be
effective; it allowed for recovery of parasite eggs
from human sacral foramina stored in museum and
scientific institutions (Jones 1982; Fugassa, Denegri
et al. 2006; Reinhard 1992). The main reason for
pursuing paleoparasitological research in Argentina
is to understand the impact of disease during the
paleoepidemiological transition caused by the contact
of Europeans with Patagonian Aborigins.
At the Universidad Nacional Mayor de San
Marcos in Lima, Perú, Inés Gárate and her team
applied regular parasitological techniques to examine
human coprolites excavated in the archaeological site
of Caral to search for parasites (Gárate et al. 2005).
Caral is the oldest city of the western hemisphere,
dated of 5000 years before present (BP) (Solis
et al. 2001). Paleoparasitological research started
recently exploring this archaeological site material,
and first results are expected to be published soon.
Paleoparasitology in Peruvian archaeological remains
306
A. Araújo, K. Reinhard, D. Leles, L. Sianto, A. Iñiguez, M. Fugassa, B. Arriaza, N. Orellana, and L. F. Ferreira
has a tradition in coprolite (Patrucco et al. 1983)
and mummy analysis (Fornaciari et al. 1992;
Salo et al. 1994), but also on ectoparasites (Rick
et al. 2002; Dittmar 2000; Dittmar et al. 2003; Raoult
et al. 2008). Another group interested in paleoparasitological research was recently created by Luis
Huamán and Hugo Flores, and their students at the
Universidad Cayetano Heredia. The main interest
of these specialists is plant and food remains and
parasite associated with food resources and diet.
Regarding the study of parasites in mummified
bodies, the Chinchorro mummies of Northern Chile
present an interesting challenge. The most ancient
mummies were prepared by defleshing the body
to the bones and taking out abdominal viscera so
intestinal contents are not expected to be found.
Desert climate is especially suitable to preserve
coprolites and paleoparasites. Fouant et al. (1982)
reported a low incidence of parasites in Chilean
and Peruvian mummies. Considering the tradition
of paleoparasitological research in Chile, the interests varied from tuberculosis and Chagas disease
(Rothhammer et al. 1985), intestinal parasites, and
diet as well as implications of ENSO phenomenon
(Arriaza et al. 2010; Williams et al. 2008).
In all the laboratories involved in paleoparasitologial research, ectoparasites have been studied.
Mummies of humans and other animals have been
searched for lice, fleas, and other arthropods. It is
important to look for parasites in the wrapping tissues of the mummies and collect sediment samples
near the body.
Intestinal Parasites
Paleoparasitological research proved that
common intestinal parasites infected pre-Columbian
people long before European and African migrations (Gonçalves et al. 2003). Data also showed
that Amerindians acquired infections by eating
intermediate hosts or being in close contact with
vectors and hosts of parasites that infect humans
(Patrucco et al. 1983; Sianto et al. 2005).
Some intestinal parasites that originated in
hominid African ancestors were introduced into
South America with their human hosts long before
European conquest (Araújo, Reinhard, Ferreira
et al. 2008). Prehistoric people who lived on the
American continent were infected with common
bacteria, protozoa, and helminths as in other parts
of the world. Although hookworms, pinworm,
whipworm, and roundworm infection were the same,
prevalence rates among pre-Columbian populations
and transmission dynamics should behave in a different way according to the different cultures where
they were infecting. Parasite transmission dynamics
was not the same in the city of Caral, in Peru, or in
the Atacama Desert where the Chinchorros lived, and
in the semi-arid region of Brazilian northeast where
hunter-gathering strategy was used by pre-historic
groups. Thus, generalization on parasites and ecology
may lead to erroneous interpretations (Figure 1 and
Table 1). Brazilian groups were numerous and lived
in crowded villages before the European continent
conquest (Heckenberger et al. 2008). Contrary to
what is the common knowledge, Amerindian groups
living in the Brazilian coast where numerous and
just before European conquest some groups were
displaced to the interior after tribal wars, and in turn
exterminated small groups of hunter-gatherers living
in caves and rock-shelters (Medeiros 2002).
Studies about the impact of European contact
with indigenous population opened a new line of
research, especially regarding paleoepidemiological
transition unleashed by European arrival (Guichón
et al. 2006). Fugassa, Cicchino et al. (2008) showed
that hunter-gatherer groups of Patagonia would have
had a parasitological profile, zoonosis caused by
close wild animals contact or ingestion of intermediate hosts meat and vegetables contaminated
with parasite eggs or cysts, as well as arthropods,
such as oribatids, which are intermediate hosts for
anoplocephalids. After European contact parasite
infections and relative abundance of the common
human intestinal worms Ascaris lumbricoides and
Trichuris trichiura changed significantly (Fugassa
et al. 2006). Crowding indigenous populations
in religious missions, reducing mobility of the
nomadic groups, and the fast and abundant arrival of domestic animals, mainly sheeps, caused
a rapid change of the helminth and protozoan
fauna, due to human/animal parasite cross infections. European also caused a reduction of local
fauna. Europeans also introduced food storage,
attracting rodents and their parasites to dwellings
(Guichón et al. 2006).
Trichuris trichiura (whipworm) infection
was common in South America on both sides of
the Andean cordillera (Gonçalves et al. 2003).
Whipworm eggs were the first to be found in a
South American mummy, together with Entamoeba
coli cysts (Pizzi and Schenone 1954). Enterobius
Paleoepidemiology of intestinal parasites and lice in pre-Columbian South America
Figure 1. Map of South America showing the location of paleoparasitological findings listed in Table 1.
Mapa de Sudamérica, muestra la localización de los paleoparásitos hallados, citados en la Tabla 1.
307
308
A. Araújo, K. Reinhard, D. Leles, L. Sianto, A. Iñiguez, M. Fugassa, B. Arriaza, N. Orellana, and L. F. Ferreira
Table 1. Summary of South American paleoparasitological findings.
Resumen de los hallazgos paleoparasitológicos en Sudamérica.
South America
Country
Archaeological Site
Pie de Palo
Perito Moreno, Santa Cruz
Reference
1 not available
Enterobius vermicularis
Fugassa et al. 2006
2 6,540±110 BP
Enterobius vermicularis
Rabditoid larvae
Trichuris sp.
Fugassa 2008
3 not available
Ascaris lumbricoides
Fugassa et al. 2006
4 3,720-3,978 BP
Ascaridid
Fugassa 2006
5 1,000-500 BP
Ancylostomid
Gonçalves et al. 2003
6 Historic
Capillarids
Fugassa et al. 2008
7 850 years BP
Capillarids
Fugassa et al. 2008
Cerro Norte XI, Pali Aike, Santa Cruz
8 not available
Capillarids
new findings
Salitroso, Santa Cruz
9 not available
Trichuris trichiura
new findings
Parador Nativo, Rio Negro
10 1,513±48 BP
Trichuris trichiura
Fugassa et al. 2006
Centro Minero, Rio Negro
11 689±44 BP
Trichuris trichiura
Fugassa et al. 2006
Huamey Valley
12 1,000 AD
Trichuris trichiura
Patrucco et al. 1983
Coast (southern)
13 10,000-4,000 BP
D. pacificum
Patrucco et al. 1983
Osmore, Peru
14 1,020-1,476 BP
D. pacificum
Patrucco et al. 1983
Huaca Prieta
15 3,000 BP
Diphyllobotrium sp.
Callen and Cameron 1960
Toca do Meio, Piauí
16 8,800±60 BP
Ascaris lumbricoides
Leles et al. 2008
Lapa Pequena, Minas Gerais
17 8,000-7,000 BP
Ascaris lumbricoides
Gonçalves et al. 2003
Santa Elina, Mato Grosso
18 4,000-2,000 BP
Ascaris lumbricoides
Hymenolepis nana
Gonçalves et al. 2003
Gruta do Gentio II, Minas Gerais
19 3,490±120-4,30±70 BP
Ascaris lumbricoides
Leles et al. 2008
Gentio Cave, Minas Gerais
20 3,490±120-430±70 BP
Ascaris lumbricoides
Acantocephala
Gonçalves et al. 2003
Pedra Furada, Piauí l
21 not available
Trichuris trichiura
Gonçalves et al. 2003
22 4,905±85-1,325±60 BP
Trichuris trichiura
Acantocephala
Ferreira et al. 1984
Boqueirão Soberbo, Minas Gerais
Chile
Parasites
Nombre de Jesús, Cabo Virgenes
Caleta Falsa, Tierra del Fuego
Brazil
Date
Orejas de Burro, Santa Cruz
Argentina Valle Encantado, Neuquén
Las Mandibulas, Tierra del Fuego
Peru
No
Estrago Cave, Pernambuco
23 2,000 BP
Trichuris trichiura
Gonçalves et al. 2003
Itacambira, Minas Gerais
24 not available
Trichuris trichiura
Confalonieri 1988
Sítio do Meio, Piauí
25 not available
Ancylostomid
Gonçalves et al. 2003
Tiliviche, Iquique
26 4,110-1,950 BC
D. pacificum
Enterobius vermicularis
Ancylostomid
Ferreira et al. 1984
Gonçalves et al. 2003
Tulán, San Pedro de Atacama
27 1,000 BC
Trichuris trichiura
Ferreira et al. 1984
Lluta Valley, Arica
1,200-1,500 AD
28
(Inka period)
Trichuris trichiura
Hymenolepis nana
Santoro et al. 2003
Toconao, San Pedro de Atacama
29 2,500-2,100 BP
Ancylostomid
Gonçalves et al. 2003
El Plomo, Santiago
30 Pre-Columbian
Trichuris trichiura
Ferreira et al. 1984
Catarpe, San Pedro de Atacama
31 1,450-1,525 AD
Trichonstrongylus sp.
Gonçalves et al. 2003
San Miguel de Azapa
32 4,000-5,000 AP
Dyphyllobotrium sp.
Reinhard and Urban 2003
Paleoepidemiology of intestinal parasites and lice in pre-Columbian South America
vermicularis (pinworm) eggs, curiously, were only
found among ancient populations who lived on the
Pacific side. Molecular biology studies, however,
showed interesting results, with two different pinworm lineages in the Pacific coast populations. One
had the same sequences of North American lineages,
but the other showed divergent nucleotides in some
sequences (Iñiguez et al. 2003). According to the
authors, this may be interpreted as the consequence
of different origins. While one was introduced by
human pre-historic migrations that crossed the Bering
Land Bridge more than 20,000 years ago, the other
lineage suggests an introduction by another route, in
this case supporting transpacific contacts of Asian
people in pre-Columbian times (Araújo, Reinhard
and Ferreira 2008; Iñiguez et al. 2006).
Regarding intestinal protozoan infection, South
American paleoparasitology data is not as representative, although the two most prevalent protozoan
parasites found in coprolites and sediments were
Entamoeba histolytica and Giardia intestinalis
(Gonçalves, Araújo et al. 2002; Gonçalves, da Silva
et al. 2004). Antigens of Giardia sp., Cryptosporidium
sp., Cyclospora sp., and Helicobacter pilori, were
identified in Andean mummies dated up to 3,000
years by fluorescent microscopy (Allison et al. 1999;
Ortega and Bonavia 2003).
As evidenced by paleoparasitology finds,
common human intestinal parasites were infecting South American pre-Columbian populations.
Although data are still missing for many South
American countries, an interesting paleoparasitological picture has been traced from Argentinean,
Bolivian, Brazilian, Chilean, and Peruvian archaeological material (Ferreira et al. 2008). When these
findings are compared with North American paleoparasitology, a similar picture appears and human
strategies to confront different environments can be
seen between the continents (Reinhard 1992).
Many of these parasites originated in Old World
human populations (Araújo and Ferreira 1995). They
came out of Africa with the peopling of Europe.
From there, they spread through the world where
climate conditions allowed transmission (Araújo,
Reinhard and Ferreira 2008). However, humans
acquired other parasites from animals whenever
humans invaded new habitats, adopted new habits,
or created new technologies amplifying their range
of influence on the environment.
Humans adopted food habits according to the
occupied region. This is evidenced by coprolite
309
paleoparasitological analysis. Diphyllobothrium
pacificum was a common intestinal infection in
the past as it is today in the Pacific coast. The consumption of raw fish is a common habit in many
countries and different cultures all over the world.
Baer et al. (1967) reported the presence of D. pacificum in modern Peruvian coast population, later
D. pacificum infection was confirmed in Peruvian
and Chilean pre-Columbian coprolites (Araújo
et al. 1983; Ferreira et al. 1984; Patrucco et al. 1983;
Reinhard and Urban 2003). Diphyllobothrium pacificum human transmission is due to the consumption
of raw fish containing parasites.
Echinostoma sp. eggs were found in a Brazilian
mummy (Sianto et al. 2005). As this parasite was
not recorded in modern South American population, the finding was carefully investigated before
publishing this information. It is interesting to note
that this case of Echinostoma human infection in
pre-historic South America was associated with
a case of Chagas disease, with intestinal lesions
characterized by megacolon (Fernandes et al. 2008).
In this case two important points should be emphasized: firstly, the description of Chagas disease
lesions in a mummy outside the Andean region,
confirmed by molecular paleoparasitology studies
(Fernandes et al. 2008); secondly, an infection by
Echinostoma in South American human population
not yet described (Sianto et al. 2005). These findings point to the need of further detailed studies at
this archaeological site.
Animal Parasites in Humans
The presence of animal parasites in human
coprolites shows the use of different food resources.
However, these habits may still be maintained today
by traditional groups. For example, Coimbra Jr.
and Mello (1981) found Capillaria eggs in modern
Amazonian Indian group, and Fugassa, Bayer and
Sardella (2008) identified Capillaria eggs in animal
coprolites in Patagonia, which may point to a potential source of infection for humans in this region.
Capillaria species rarely infect humans, but eggs
can pass with feces when humans eat an infected
host. Thus, the eggs can be found in human feces,
but disappear after a few days.
Fugassa et al. (2006) presented an overview of
human and animal intestinal helminths and protozoa found in archaeological material excavated in
Patagonia. These findings illustrate the diversity
310
A. Araújo, K. Reinhard, D. Leles, L. Sianto, A. Iñiguez, M. Fugassa, B. Arriaza, N. Orellana, and L. F. Ferreira
of parasites that can be found in archaeological
remains, in close contact with humans beginning
10,000 years ago. Therefore, paleoparasitology is
a powerful tool to investigate the variety of food
sources used by humans at different times by
studying organic remains preserved in archaeological sites.
Ectoparasites
South American mummies provided positive
results for ectoparasites. In the fur of mummified
guinea pigs (Cavia aperea f. porcellus), numerous
well-preserved ectoparasites (lice, fleas, mites) could
be recovered (Dittmar 2002; Dittmar et al. 2003).
Moreover, paleoparasitological examination of
Amerindian clothes provided parasite finds, such
as ectoparasites (Fugassa et al. 2007). Molecular
biology studies were also performed (Dittmar
et al. 2003; Raoult et al. 2008), as well as paleoepidemiological and quantitative attempts
to evaluate head lice infection (Reinhard and
Buikstra 2003). Head lice were found still attached to hair fragments of a skeleton dated to
10,000 years in northeastern Brazilian (Araújo
et al. 2000). Crablouse was also found infecting
Peruvian mummies (Rick et al. 2002). Rivera et
al. (2008) reviewed the findings of head lice in
South American mummies recording new finds of
Anthropophthirus capitis (a new genus proposed
by Retana-Salazar and Ramirez-Morales 2006 to
substitute Pediculus humanus capitis) in mummies
of the Chinchorro tradition dated to 4,000 years.
This new species proposal is very controversial,
but it was proposed due to genetic similitudes
found between Pediculus humanus (human body
lice) and the Parapediculus (ectoparasite of South
American monkeys).
To conclude, South American paleoparasitologists, together with North American colleagues, are
building an evolving picture of parasite infections
dated from the peopling of the Americas (Araújo,
Reinhard and Ferreira 2008; Araújo, Reinhard
et al. 2008). Paleoparasitological data, through the
use of microscopic, immunology and molecular
techniques, is an efficient way to provide information about human behavior in the past, contributing
to understanding the origin and evolution of infectious diseases and their impact on prehistoric
populations.
Acknowledgements: Supported by the Brazilain
agencies CNPq, CAPES, and FAPERJ. We also
want to thanks the Convenio Desempeño UTAMINEDUC for their support and the manuscript
editors, and outside reviewers for their comments
and suggestions.
References Cited
Allison, M.J., T. Bergman, and E. Gerszten
1999 Further studies on fecal parasites in antiquity. American
Journal of Clinical Pathology 112(5):605-609.
Araújo, A., and L.F. Ferreira
1995 Oxiuriase e migrações pré-históricas. Historia, Ciencias,
Saude - Manguinhos 2(1):99-109.
Araújo, A., L.F. Ferreira, and U. Confalonieri
1981 A contribution to the study of helminth findings in
archaeological material in Brazil. Revista Brasileira de
Biología 41:873-881.
Araújo, A., L.F. Ferreira, U.E. Confalonieri, L. Nuñez, and
F.O. Cruz
1983 Eggs of Diphyllobothrium pacificum in precolumbian
human coprolites. Paleopathology Newsletter 41:11-13.
Araújo, A., L.F. Ferreira, N. Guidon, N. Maues Da Serra Freire,
K.J. Reinhard, and K. Dittmar
2000 Ten thousand years of head lice infection. Parasitology
Today 16(7):269.
Araújo, A., A.M. Jansen, F. Bouchet, K. Reinhard, and
L.F. Ferreira
2003 Parasitism, the diversity of life, and paleoparasitology.
Memórias do Instituto Oswaldo Cruz 98:5-11.
Araújo, A., K. Reinhard, O.M. Bastos, L.C. Costa, C. Pirmez, A.
Iñiguez, A.C. Vicente, C.M. Morel, and L.F. Ferreira
1998 Paleoparasitology: perspectives with new techniques. Revista
do Instituto de Medicina Tropical de Sao Paulo 40(6):371-376.
Araújo, A., K. Reinhard, and L.F. Ferreira
2008 Parasite findings in archaeological remains: diagnosis
and interpretation. Quaternary International 174:1-4.
180:17-21.
Araújo, A., K.J. Reinhard, L.F. Ferreira, and S.L. Gardner
2008 Parasites as probes for prehistoric human migrations?
Trends in Parasitology 24:112-115.
Arriaza, B., K. Reinhard, A. Araújo, N. Orellana, and
V. Standen
2010 Possible influence of the ENSO phenomenon on the
pathoecology of diphyllobothriasis and anisakiasis in ancient
Chinchorro populations. Memórias do Instituto Oswaldo
Cruz 105(1):66-72.
Aufderheide A.C., W. Salo, M. Madden, J. Streitz, J. Buikstra,
F. Guhl, B. Arriaza, C. Renier, L.E. Wittmers Jr.,
G. Fornaciari, and M. Allison
2004 A 9,000-year record of Chagas’ disease. Proceedings
of the National Academy of Sciences 101(7):2034-2039.
Paleoepidemiology of intestinal parasites and lice in pre-Columbian South America
Baer, J.G., H. Miranda, W. Fernandez, and J. Medina
1967 Human diphyllobothriasis in Peru. Zeitschrift für
Parasitenkunde 28(3):277-289.
Bouchet F, N. Guidon, K. Dittmar, S. Harter, L.F. Ferreira,
S.M. Chaves, K. Reinhard, and A. Araújo
2003 Parasite remains in archaeological sites. Memorias do
Instituto Oswaldo Cruz 98(1):47-52.
Callen, O., and T.W.M. Cameron
1960 A prehistoric diet as revealed in coprolites. The New
Scientist 8:35-40.
Chagnon, N.A.
1983 Yanomamo: The Fierce People. CBS College Publishing,
New York, NY.
Chame, M.
2003 Terrestrial mammal feces: A morphometric summary
and description. Memórias do Instituto Oswaldo Cruz
98(Suppl. I):71-94.
Cockburn, A.
1967 Infectious Diseases: Their Evolution and Eradication.
Charles C. Thomas, Springfield.
1971 Infectious diseases in ancient populations. Current
Anthropology 12:45-62.
Coimbra Jr., C.E.A., and D.A. Mello
1981 Enteroparasitas e Capillaria sp. entre o grupo Suruí,
Parque Indígena Aripuanã, Rondônia. Memórias de Instituto
Oswaldo Cruz 76:299-302.
Confalonieri, U.
1988 Paleoepidemiologia de Trichuris trichiura na América.
In Paleoparasitologia no Brasil, edited by L.F. Ferreira,
A. Araújo, and U. Confalonieri, pp. 120-137. Editora PEC/
ENSP, Rio de Janeiro.
Dittmar, K.
2000 Evaluation of ectoparasites on the Guinea pig mummies of El Yaral and Moquegua Valley, in Southern Peru.
Chungara Revista de Antropología Chilena 32:123-125.
2002 Arthropod and helminth parasites of the wild guinea
pig, Cavia aperea, from the Andes and the Cordillera
in Peru, South America. Journal of Parasitology 88:
409-411.
2009 Old parasites for a New World: The future of paleoparasitological research. A review. Journal of Parasitology
95:365-371.
Dittmar, K., U. Mamat, M. Whiting, T. Goldmann, K. Reinhard,
and S. Guillen
2003 Techniques of DNA-studies on prehispanic ectoparasites
(Pulex sp., Pulicidae, Siphonaptera) from animal mummies of the Chiribaya culture, Southern Peru. Memórias
do Instituto Oswaldo Cruz 98:53-58.
Dittmar, K., S.M. de Souza, and A. Araújo
2006 Challenges of phylogenetic analyses of aDNA sequences.
Memorias do Instituto Oswaldo Cruz 101:9-13.
Fernandes, A., A.M. Iñiguez, V.S. Lima, S.M. de Souza,
L.F. Ferreira, A.C. Vicente, and A.M. Jansen
2008 Pre-Columbian chagas disease in Brazil: Trypanosoma
cruzi I in the archaeological remains of a human in Peruaçu
Valley, Minas Gerais, Brazil. Memórias do Instituto Oswaldo
Cruz 103:514-516.
Ferreira L.F., A. Araújo, and U. Confalonieri
1988 Paleoparasitologia no Brasil. Ed. PEC/ENSP-FIOCRUZ,
Rio de Janeiro.
311
Ferreira, L.F., A.J.G. Araújo, and U.E.C. Confalonieri
1982 The finding of helminth eggs in a Brazilian mummy.
Tropical Medicine & Hygiene 77(1):65-67.
Ferreira, L.F., A.J. de Araújo, U.E. Confalonieri, and
L. Nuñez
1984 The finding of eggs of Diphyllobothrium in human
coprolites (4,100-1,950 B.C.) from Northern Chile.
Memórias do Instituto Oswaldo Cruz 79:175-180.
Ferreira, L.F., C. Britto, M.A. Cardoso, O. Fernandes,
K. Reinhard, and A. Araújo
2000 Paleoparasitology of Chagas disease revaled by infected
tissues from Chilean mummies. Acta Tropica 75:79-84.
Ferreira, L.F., K. J. Reinhard, and A. Araújo
2008 Paleoparasitologia. Ed. Fiocruz, Rio de Janeiro,
Brasil.
Fornaciari, G., M. Castagna, P. Viacava, A. Togneti, G.
Bevilaqua, and E.L. Segura
1992 Chagas’ disease in Peruvian Inca mummy. Lancet
339:128-129.
Fugassa, M.H.
2006 Enteroparasitosis en Poblaciones CazadorasRecolectoras de Patagonia Austral. Tesis Doctoral.
Universidad Nacional de Mar del Plata, Buenos Aires.
2007 Camélidos, parásitos y ocupaciones humanas: registros paleoparasitológicos en Cerro Casa de Piedra 7
(Parque Nacional Perito Moreno, Santa Cruz, Argentina).
Intersecciones en Antropología 8:265-269.
2008 Aportes paleoparasitológicos para el sitio arqueológico
CCP7, P. N. Perito Moreno, Santa Cruz. Cuadernos
del Instituto Nacional de Antropología y Pensamiento
Latinoamericano 21:263-265.
Fugassa, M.H., A. Araújo, and R.A. Guichón
2006 Quantitative paleoparasitology applied to archaeological sediments. Memórias do Instituto Oswaldo Cruz
101:29-33.
Fugassa, M.H., M.S. Bayer, and N.H. Sardella
2008 Examen paleoparasitológico de coprolitos de felinos
en Patagonia (Holoceno Medio). Manuscript in possession
of the authors.
Fugassa M. H., A. Cicchino, N. H. Sardella, R. A. Guichón,
G. M. Denegri, and A. Araújo
2007 Nuevas fuentes de evidencia para la paleoparasitología
y la antropología biológica en Patagonia. Revista de la
Asociación de Antropología Biológica 9:51-57.
Fugassa, M.H., A., Cicchino, N. H. Sardella, R.A. Guichón,
G.M. Denegri, and A. Araújo
2008 Nuevas fuentes de evidencia para la paleoparasitología
y la antropología biológica en Patagonia. Revista Argentina
de Antropología Biológica 9:51-57.
Fugassa, M.H., G.M. Denegri, N.H. Sardella, A. Araújo,
R.A. Guichón, P.A. Martinez, M.T. Civalero, and C.
Aschero
2006 Paleoparasitological records in canid coprolite from
Patagonia, Argentina. Journal of Parasitology 92:11101113.
Fugassa, M.H., N.H. Sardella, R.A. Guichón, G.M. Denegri,
and A. Araújo
2008 Paleoparasitological analysis applied to museum-curated
sacra from meridional Patagonian collections. Journal of
Archaeological Science 35:1408-1411.
312
A. Araújo, K. Reinhard, D. Leles, L. Sianto, A. Iñiguez, M. Fugassa, B. Arriaza, N. Orellana, and L. F. Ferreira
Fugassa, M.H., V. Taglioretti, M.L.C. Gonçalves, A. Araújo,
N.H. Sardella, and G.M. Denegri
2008 Capillaria spp. findings in Patagonian archaeological
sites: Statistical analysis of morphometric data. Memórias
do Instituto Oswaldo Cruz 103:104-105.
Gárate, I., B. Suyo, M. Delgado, H. Solís, and P. Castellanos
2005 Hallazgo de nematode y huevos de Ascaris sp. en
coprolitos de la momia “Shamana Alada”, Cerrilos, Ica,
Peru. Boletín Chileno de Parasitología y de Parasitología
al Día 60 (T2):325.
Gonçalves, M.L., A. Araújo, R. Duarte, J.P. da Silva, K. Reinhard,
F. Bouchet, and L.F. Ferreira
2002 Detection of Giardia duodenalis antigen in coprolites
using a commercially available enzyme-linked immunosorbent assay. Transactions of the Royal Society of Tropical
Medicine and Hygiene 96:640-643.
Gonçalves, M.L., A. Araújo, and L.F. Ferreira
2003 Human intestinal parasites in the past: New findings
and a review. Memórias do Instituto Oswaldo Cruz 98:
103-118.
Gonçalves, M.L., V.L. da Silva, C.M. de Andrade, K. Reinhard,
G.C. da Rocha, M. Le Bailly, F. Bouchet, L.F. Ferreira,
and A. Araújo
2004 Amoebiasis distribution in the past: First steps using an
immunoassay technique. Transactions of the Royal Society
of Tropical Medicine and Hygiene 98:88-91.
Guhl, F., C. Jaramillo, G.A. Vallejo, F. Cárdenas-Arroyo, and
A. Aufderheide
2000 Chagas disease and human migration. Memórias do
Instituto Oswaldo Cruz 95:553-555.
Guhl, F., C. Jaramillo, G.A. Vallejo, R. Yockteng, F. CárdenasArroyo, G. Fornaciari, B. Arriaza, and A.C. Aufderheide
1999 Isolation of Trypanosoma cruzi DNA in 4,000-year-old
mummified human tissue from Northern Chile. American
Journal of Physical Anthropology 108:401-407.
Guichón, R.A., J.A. Suby, R. Casali, and M.H. Fugassa
2006 Health at the time of Native-European contact in Southern
Patagonia: First steps, results, and prospects. Memórias do
Instituto Oswaldo Cruz 101:97-105.
Harter, S., M. Le Bailly, F. Janot, and F. Bouchet
2003 First paleoparasitological study of an embalming rejects
jar found in Saqqara, Egypt. Memórias do Instituto Oswaldo
Cruz 98:119-121.
Harter-Lailheugue S., and F. Bouchet
2006 Etude paléoparasitologique d’éléments atypiques de
la Basse et Haute Vallée du Nil. Bulletin de la Société de
Pathologie Exotique 99:53-57.
Heck, J.
2004 Krankheit und körperdeformation in darstellungen auf
Moche-Tongefäßen analyse und synopse aus ärztlicher Sicht.
Baessler-Archiv 52:105-124.
Heckenberger, M.J., J.C. Russell, C. Fausto, J.R. Toney,
M.J. Schmidt, E. Pereira, B. Franchetto, and A. Kuikuro
2008 Pre-Columbian urbanism, anthropogenic landscapes,
and the future of the Amazon. Science 321:1214-1217.
Iñiguez, A.M., K.J. Reinhard, A. Araújo, L.F. Ferreira, and
A.C. Vicente
2003 Enterobius vermicularis: ancient DNA from North and
South American human coprolites. Memórias do Instituto
Oswaldo Cruz 98:67-69.
Iñiguez, A.M., K. Reinhard, M.L. Carvalho Gonçalves,
L.F. Ferreira, A. Araújo, and A.C. Paulo Vicente
2006 SL1 RNA gene recovery from Enterobius vermicularis
ancient DNA in pre-Columbian human coprolites. Internatinal
Journal for Parasitology 36:1419-1425.
Jones, A.
1982 Recent finds of intestinal parasites ova at York, England.
Papers on Paleopathology. 4th European Members Meeting,
Middelburg, Antwerpen, p. 7.
Leles, D., A. Araújo, L.F. Ferreira, A.C. Vicente, and
A.M. Iñiguez
2008 Molecular paleoparasitological diagnosis of Ascaris sp.
from coprolites: new scenery of ascariasis in pre-Colombian
South America times. Memórias do Instituto Oswaldo Cruz
103:106-108.
Le Bailly, M., M.L. Gonçalves, S. Harter-Lailheugue, F. Prodéo,
A. Araújo, and F. Bouchet
2008 New finding of Giardia intestinalis (Eukaryote,
Metamonad) in Old World archaeological site using immunofluorescence and enzyme-linked immunosorbent assays.
Memórias do Instituto Oswaldo Cruz 103:298-300.
Lima, V., A. Iñiguez, K. Otsuki, LF, Ferreira, A. Araújo,
A. Vicente, and A. Jansen
2008 Chagas disease by Trypanosoma cruzi lineage I in
hunter-gatherer ancient population in Brazil. Emerging
Infectious Diseases 14:1001-1002.
Loreille, O., and F. Bouchet
2003 Evolution of ascariasis in humans and pigs: a multidisciplinary approach. Memórias do Instituto Oswaldo
Cruz 98:39-46.
Loreille, O., E. Roumat, O. Verneau, F. Bouchet, and C. Hänni
2001 Ancient DNA from Ascaris: extraction amplification and
sequences from eggs collected in coprolites. International
Journal of Parasitology 31:1101-1106.
Lutz, A.
1919 O Schistosomum mansoni e a schistosomatose, segundo
observações feitas no Brasil. Memórias do Instituto Oswaldo
Cruz 11:121-150.
Martinson, E., K.J. Reinhard, J.E. Buikstra, and K. Dittmar
2003 Pathoecology of Chiribaya parasitism. Memórias do
Instituto Oswaldo Cruz 98:195-205.
Medeiros, R.P.
2002 Povos indígenas do sertão nordestino no período colonial: descobrimento, alianças, resistência e encobrimento.
FUMDHAmentos 2:7-52.
Montenegro, A., A. Araújo, M. Eby, L.F. Ferreira, R. Hetherington,
and A. Weaver
2006 Parasites, paleoclimate and the peopling of the Americas:
using the hookworm to time the Clovis migration. Current
Anthropology 47:193-198.
Ortega, Y.R., and D. Bonavia
2003 Cryptosporidium, Giardia, and Cyclospora in ancient
Peruvians. Journal of Parasitology 89:635-636.
Patrucco, R., R. Tello, and D. Bonavia
1983 Parasitological studies of coprolites of pre-hispanic
Peruvian populations. Current Anthropology 24:393-394.
Pizzi, T., and H. Schenone
1954 Hallazgo de huevos de Trichuris trichiura en el contenido
intestinal de un cuerpo arqueológico arcaico Inca. Boletín
Chileno de Parasitología 9:73-75.
Paleoepidemiology of intestinal parasites and lice in pre-Columbian South America
Pruvost, M., R. Schwarz, V.B. Correia, S. Champlot, S. Braguier,
N. Morel, Y. Fernandez-Jalvo, T. Grange, and E.M. Geigl
2007 Freshly excavated fossil bones are best for amplification
of ancient DNA. Proceedings of the National Academy of
Sciences 104:739-744.
Raoult, D., and M. Drancourt
2008 Paleomicrobiology: Past Human Infections. SpringerVerlag, Berlin Heidelberg.
Raoult, D., D.L. Reed, K. Dittmar, J.J. Kirchman, J.M. Rolain,
S. Guillen, and J.E. Light
2008 Molecular identification of lice from pre-Columbian
mummies. Journal of Infectious Diseases 197:535-543.
Reinhard, K.J.
1988 Cultural ecology of prehistoric parasitism on the Colorado
Plateau as evidenced by coprology. American Journal of
Physical Anthropology 77:355-366.
1990 Archaeoparasitology in North America. American
Journal of Physical Anthropology 82:145-163.
1992 Parasitology as an interpretive tool in archaeology.
American Antiquity 57:231-245.
2008 Parasite pathoecology of chacoan great houses: the
healthiest and wormiest ancestral puebloans. In Chaco’s
Northern Prodigies Salmon, Aztec, and the Ascendancy of
the Middle San Juan Region after AD 1100, edited by P.F.
Reed, pp. 86-95. University of Utah Press, Salt Lake City.
Reinhard, K., A. Araújo, L.F. Ferreira, and C.E. Coimbra
2001 American hookworm antiquity. Medical Anthropology
20:96-101.
Reinhard, K.J., and V.M. Bryant
2008 Pathoecology and the future of coprolite studies in
bioarchaeology. In Reanalysis and Reinterpretation in
Southwestern Bioarchaeology, edited by A.W.M. Stodder,
pp. 205-224. Arizona State University Press, Tempe.
Reinhard, K., and J. Buikstra
2003 Louse infestation of the Chiribaya Culture, Southern
Peru: variation in prevalence by age and sex. Memórias do
Instituto Oswaldo Cruz 98:173-179.
Reinhard, K., and O. Urban
2003 Diagnosing ancient diphyllobothriasis from Chinchorro
mummies. Memórias do Instituto Oswaldo Cruz 98:191-193.
313
Retana-Salazar, A.P., and R. Ramirez-Morales
2006 Establecimiento de un nuevo género de piojos
(Phthiraptera: Pediculidae) asociado al hombre (Primates:
Hominidae). Brenesia 65:61-70.
Rick, F.M., G.C. Rocha, K. Dittmar, C.E. Coimbra Jr, K. Reinhard,
F. Bouchet, L.F. Ferreira, and A. Araújo
2002 Crab louse infestation in pre-Columbian America.
Journal of Parasitology 88:1266-1267.
Rivera, M.A, K.Y. Mumcuoglu, R.T. Matheny, and D.G.
Matheny
2008 Huevecillos de Anthropophthirus capitis en momias de
la tradición Chinchorro, Camarones 15-D, Norte de Chile.
Chungara Revista de Antropología Chilena 40:31-39.
Rothhammer, F., M.J. Allison, L. Núñez, V. Standen, and
B. Arriaza
1985 Chagas’ disease in pre-Columbian South America.
American Journal of Physical Anthropology 68:495-498.
Salo, W., A. Aufderheide, J. Buikstra, and T. Holcomb
1994 Identification of Mycobacterium tuberculosis DNA
in a pre-Columbian Peruvian mummy. Proceedings of the
National Academy of Sciences 91:2091-2094.
Santoro, C., S.D. Vinton, and K. Reinhard
2003 Inca expansion and parasitism in the Lluta Valley:
preliminary data. Memórias do Instituto do Oswaldo Cruz
98:161-163.
Sianto, L., K.J. Reinhard, M. Chame, S. Chaves, S. Mendonça, M.L.
Gonçalves, A. Fernandes, L.F. Ferreira, and A. Araújo
2005 The finding of Echinostoma (Trematoda: Digenea) and
hookworm eggs in coprolites collected from a Brazilian
mummified body dated 600-1,200 years before present.
Journal of Parasitology 91:972-975.
Solis, R.S., J. Haas, and W. Creamer
2001 Dating Caral, a preceramic site in the Supe Valley on
the central coast of Peru. Science 292:723-726.
Williams A., C.M. Santoro, M.A. Smith, and C. Latorre
2008 The impact of ENSO in the Atacama Desert and
Australian arid zone: exploratory time-series analysis of
archaeological records. Chungara Revista de Antropología
Chilena 40:245-259.