The Geophysical
Signature
of Terrestrial
ImpactCraters
M. Pilkington
R. A. F. Grieve
Geophysics
Division
GeologicalSurveyof Canada,Ottawa,Ontario
Abstract.A majortoolin theinitialrecognition
andstudy gravityhighrestricted
to the cratercenterandextending
of terrestrialimpact craters,-20% of which are buried out to <0.5D. The magneticsignatureof cratersis more
beneathpostimpact
sediments,
is geophysics.
The general varied.The dominanteffect is a magneticlow due to a
in susceptibility.
Largestructures
(D > 40 km)
geophysicalcharacter of terrestrial impact craters is reduction
compiledand outlinedwith emphasison its relationto the tend to exhibit central high-amplitudeanomalies,with
of <0.5D, due to remanentlymagnetized
impactprocessand as an aid to the recognitionof addi- dimensions
tionalimpactcraters.The mostcommonandconspicuous bodiesin the targetrocks.The sourcesof thesebodiesare
geophysical
signatureis a circulargravitylow. For simple wide rangingand includethe effectsof shock,heat, and
bowl-shapedcraters, gravity models indicate that the chemical
alteration.
Thefew studies
overcratersinvolving
methods
indicateresistivity
lowscoinciding
with
anomaly is largely due to the presenceof an interior electrical
allochthonous
breccialens. In complexcraters,modeling the extent of the potentialfield anomaliesand related to
indicates
thatthemaincontribution
to thegravityanomaly fracturing.Seismic techniques,particularlyreflection
is fromfracturedparautochthonous
targetrocksin thefloor surveys,have provideddetailsof the subsurfacestructure
of the crater.The gravity signatureof both simpleand of craters. Incoherent reflections and reduced seismic
due to brecciation
and fracturingare expected,
complexcraterformscan be modeledwell, usingknown velocities
morphometricparametersof impactstructures.
The size of the degreeof coherency
of reflections
increasing
away
the gravity anomalygenerallyincreaseswith increasing from and below the center of the structure. From the
techniques
a setof generalcriteriacan
craterdiameterreachinga maximumof--20-30 mGal at variousgeophysical
diameters D of -20-30
km. Further increases in D have a
negligibleeffecton the magnitude
of thegravityanomaly
due to lithostaticeffectson deep fractures.The general
gravitysignature
of a simplelow canbe modifiedby target
rock and erosionaleffects,and there is a tendencyfor
beestablished
thatcorrespond
to thegeophysical
signature
of impactcraters.Thesecriteriacanbe usedto evaluatethe
hypothesis
thatanyparticularsetof geophysical
anomalies
is due to impact.Confirmationof an impactorigin,
however,is basedon geologicevidence.
largercomplexstructures(D > 30 km) to exhibita relative
INTRODUCTION
structuralsignatureof terrestrialimpact craters.Conversely, sedimentationserves to protect craters but
removesthem from direct observation.
Approximately
Impact of solid bodiesis the most fundamentalof all
processes
that have takenplaceon the terrestrialplanets 20% of the known terrestrial craters are buffed beneath
[Shoemaker,
1977]. An integralcomponent
in understand- postimpactsediments.Thus the recognition,which is
ing the geological and geophysicalconsequences
of based on surface morphologicaland morphometric
large-scale
impactis thedatasuppliedby terrestrialimpact observationsof terrestrialimpact craters,differs from
craters.Basiccharacterization
studiesof terrestrialimpact planetaryimpact craters.Terrestrialimpact cratersare
craters provide much needed constraintson models of recognized
largelyby lithologicalandstructuralevidence,
crateringmechanics,serveas analogstudiesfor various with a major tool in the recognitionof a lithostmctural
types of lunar and meteoriticsamples,and aid in the anomaly being geophysics.Many terrestrialimpact
interpretationof the nature and significanceof remote structureswere identified initially as geophysical
observationsof planetary surfaces.The very active anomalies
andtheirimpactoriginestablished
laterthrough
terrestrialgeologicenvironment,
however,resultsin the geologicstudies,
for example,EagleButte,Canada.
modification
andpartialdestruction
of muchof therecord
Terrestrialdata are currently the main source of
of impact.Erosion quickly removesthe original mor- information
onthenatureof thethirddimension
of impact
phologicalelementsand, with time, the geologicaland cratersranging up to over 100 km in diameter. This
Copyright1992by theAmericanGeophysical
Union.
8755-1209/92/92RG-00192
Reviews
of Geophysics,
30, 2 / May 1992
pages161-181
Papernumber92RG00192
$15.00
'161'
162 ß Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
29, 1 /REVIEWS OF GEOPHYSICS
informationcan be obtaineddirectlyby observations
at a their geophysicalsignatures,but where no confirmatory
numberof cratersof approximately
the samedimensions geologicevidenceof impactis available.All thestructures
characteristics
discussed
here have
buterodedto differentlevels,by drilling,andby geophysi- and their geophysical
cal methods.Even with direct observations,
geophysical diagnosticevidence of impact in the form of shock
effects.
dataprovidean additionalperspective
of the thirddimen- metamorphic
sion.Geophysics
anddrillingdataarea powerfulcombination for derivingstructuralinformationat depthand for
OF IMPACT
identifyingtargetsat impact structureswith resource GENERAL CHARACTERISTICS
CRATERS
potential,suchas thosewith hydrocarbons,
for example,
Red Wing Creek,NorthDakota,or significantminemlizaBeforediscussing
thegeophysical
signatureof terrestrial
tion, for example,Sudbury,Canada.
In thiscontribution
we haveattempteda compilationof impactcraters,it is informativeto providea brief context
thegeneralgeophysical
characteristics
of terrestrial
impact as to their morphologyand structure.Impactcratershave
craters. The geophysicalmethods discussedinclude two basic morphologicalforms: simple and complex.
gravity,magnetic,seismic,andelectrical.Most emphasis Thesetwo forms occuron virtually all planetarybodies
is placedon gravitybecauseof its utility,beingdirectly witha solidsurfaceanddifferonlyin thediameterrangeat
related to impact-induceddensity changes, and the whichthe transitionfromoneform to anothertakesplace.
considerablegravity data base that exists for impact To first order, this transition diameter is a function of
craters.The compilationof the geophysicalsignatureof surfacegravityand targetrock type [Pike, 1980]. On the
terrestrialimpactcratersis designedto serveas an aid in Earth, simple cratersoccur up to a diameterof 4 km in
the recognitionof possibleimpactcratersin existingand crystallineand 2 km in sedimentarytargetrocks [Dence,
futuregeophysical
surveydata.The discovery
of additional 1972]. Above these diameters, terrestrial craters have a
impactcratersandtheirsubsequent
studyaddsnotonly to complexform.
Simple craters are characterizedby a bowl-shaped
theknowledgebaseof theterrestrialimpactrecordbut also
to the overallunderstanding
of the fundamental
processof depressionwith a structurallyupraisedand fracturedrim
impactand its consequences
for planetaryevolution.The area,which,when fresh,is overlainby an exteriorejecta
presentrateof discoveryis threeto five new structures
per blanketof breccia.The depthfrom the rim to the floor of
year [Grieve, 1991]. As the moreobvioussurfacestruc- thecraterisreferred
to astheapparent
depth(d,).Drilling
dataindicatethatthe apparentfloor of the
tures have been recognized,geophysicshas played an andgeophysical
increasinglyimportantrole in the initial recognitionof simple craters is underlainby a breccia lens, which is
approximately
parabolicin crosssection(Figure 1). This
structures
of possibleimpactorigin.
or displacedand transported
Whereappropriate,
we haverelatedgeophysical
models breccialensis allochthonous
to the physicalnature of impact cratersand the impact material,which exhibitsa range of shockmetamorphic
process.
We havenotconsidered
datafromthosestructures effectsbut, in general,consistsof relatively unshocked
thathavebeensuggested
to be of impactorigin,basedon material.The breccialens is flooredby parautochthonous
Fallout
ejecta
dG
dt
Fractured
&
Brecciated
Target•
A • A
/x /x
Breccia
A Lens
Rocks
Shocked Target
Rocks
Figure1. Schematic
cross
section
of a simple
crater.
Thevalued•istheapparent
crater
depth,
anddt isthe
true craterdepth.
30, 2/REVIEWSOF GEOPHYSICS
Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
ß 163
or essentiallyin situ targetrock material,whichformsthe
walls and floor of the so-calledtrue crater (Figure 1). The
of stratigraphicuplift (SU• undergoneby the beds now
exposedin centralstructures[Grieveet al., 1981].
depthto the baseof the breccialensis referredto as the
truedepth(dr).Theparautochthonous
target
rocksbeneath
the breccia lens are fractured and in the center show
GRAVITY
SIGNATURE
petrographic
evidenceof shockpressures
>15 GPa.
The formation of simple craters is relatively well General Character
The most conspicuousgeophysicalsignature over
understood[Grieveet al., 1989;Melosh, 1989]. Briefly, a
crateringflow field is setup in thetargetrocksastheresult impactcratersis a residualnegativegravityanomaly,that
of the shock wave and trailing rarefactionwave fronts is, the anomalyleft after the regional field has been
propagating
from the point of impact.This resultsin the removed.In plan view these anomaliesare generally
by thepresence
of intrinsic
excavationand displacementof material to form the circularbutcanbe complicated
so-calledtransientcavity. The transientcavity is believed lateraldensitycontrastswithin the targetrocks.The cause
to have an original depth-diameter
ratio of-0.3 and is of thenegative
anomalies
is low-density
materialresulting
unstable.Its walls collapseinward to producethe final from both lithologicaland physicalchangesassociated
crater,which is partiallyfilled with allochthonous
breccia with the crateringprocess.For example,relativelylower
derivedfrom the slumpingtransientcraterwalls.
densitypostimpact
sediments
may occupythe topographic
Larger complex craters have shallowerfinal depth- depressionof the crater, and in complex craters the
diameterratios than simplecratersand representa much presenceof slightlylower densitycoherentimpactmelt
moremodifiedform of the transientcavity. Detailsof the sheets
enhance
thenegativegravityeffect.Theselithologimechanics
of complexcratersare lesswell understood,
but cal changesare, however,minor comparedto density
the principleshavebeenestablished
[Schultzand Merrill, contrastsinduced by fracturing and brecciationof the
1981; Melosh, 1989]. The downwarddisplacementof the targetrocks.Fragmentation
and redistributionof target
targetrocksduringtransientcavityformationis not locked lithologies during crater formation leads to increased
in, as in simple craters,and the cavity floor rebounds porosity levels in the allochthonousbreccia deposits.
upward.This resultsin the formationof upliftedcentral Similarly, beneath the allochthonousbreccia deposits,
structures,
which consistof targetrocksshockedto levels shock-induced
fracturingof autochthonous
or in situtarget
similar to those in the floor of simple craters.Uplift is rock also leads to increasedporosityand hencedensities
accompanied
by collapseof the transientcavity rim area, lower than those of the undisturbed formations. Nearresultingin a relatively shallowstructure,with a faulted surfacefracturingalso occursand may extendout to a
rim zone and a flat floor (Figure 2). The floor of the distanceof one crater diameter beyond the crater rim
structureis coveredby allochthonous
materialsthatdid not [Gurov and Gurova, 1982]. This extended zone is,
escapethe transientcavity by ejection.They are generally however,shallow with negligibleeffect on the observed
Generally,thegravitylow extendsto or
relativelyhighly shockedmaterialsand take the form of gravityanomalies.
brecciasand impactmelt rocks.As the transientcavityis only slightlybeyondthecraterrim.
Althoughnumerousdensitymeasurements
are available
essentiallydestroyedin the modificationprocess,thereis
no equivalentto the relatively deep, with respectto for lithologiesfound within impact craters, there are
diameter,interiorbreccialens observedat simplecraters relatively few determinationsof the density contrasts
(cf. Figures 1 and 2). Although intensedisturbanceof betweenfracturedand unfracturedtargetrocks(Table 1).
preimpactlithologiesis confinedto the areaof the original As well as a variationin densitycontrastsbetweencraters,
transientcavity,complexcraterformationis characterized samplesfrom a given craterexhibit a rangeof density
by considerableoverall movementof target materials values,usuallyshowingan increasewith depth(Figure3).
to the decreasein the level of
comparedto simple craters. In structureswith good This increasecorresponds
stratigraphic
controlit is possibleto directly measurethe shock-induced
stressand thusfracturingwith depth.We
relativemovementof lithologies,in particular,the amount know of only onecaseof deepdensitymeasurements
from
Ejecta
Impact melt rocks
AIIochthonous
"'---'
breccia
Limit major disruption t• shock effects in autochthonous rocks
Figure 2. Schematiccrosssectionof a complexcrater.SU denotesthe amountof structural
uplift.
164 ß Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
BULK DENSITY (Kg/m 3)
2000
300
2200
I
2400
•
2600
•
2800
'
3000
400
500
600
29, 1 /REVIEWS OF GEOPHYSICS
characterof the gravity anomaly associatedwith a
particularstructure.The initial size and densitycontrastof
thebrecciatedandfracturedzoneis dependent
on thecrater
diameterand preimpactdensitydistribution
of the target
rocks.Subsequent
modificationof thezonemaythenresult
frompostimpact
processes,
suchaserosion.
To evaluatetherelativeimportanceof thesefactors,we
usethe valueof the maximumnegativegravityanomaly
Ag over the crater.The useof only a singlevalue,Ag, to
characterizethe complete crater anomaly is justified
because
ofthegenerally
similar
shape
andsymmetry
ofthe
-
crater gravity anomalies. Also, craters are surficial
features.They have a small depthextentcomparedwith
their areal size. Hence to first order, their gravitational
700
effect can be modeled as that due to a thin disk. Conse-
quently, the maximum negative gravity anomaly over
cratersis primarilydetermined
by the densitycontrastand
depthof thebrecciatedandfracturedzones.
The distinctionin morphologybetween simple and
900complexcratersis notdirectlyreflectedin theform of their
associated
gravityanomaly.Over simplecraters,a circular
bowl-shaped
negativeanomalyis observed.This is alsothe
t000casefor somesmallcomplexcraters,for example,Deep
Bay, Canada.For larger complexcraters,however,the
1t00
gravitylow may be modifiedby the presenceof a central
gravityhighwhich,in a few casesof erodedcraters,canbe
field, for example,Vredefort,
Figure 3. Loggedbulk formationdensity(averagedover 5-m greaterthanthe background
intervals) for the Ntrdlingen 1973 boreholeat Ries, Germany SouthAfrica.In somecraterserodedto belowtheoriginal
[after Ernstsonand Pohl, 1974]. Solid circles, suevite;open crater floor, only this central high may remain, and the
circles,brecciatedcrystallinerocks with >10% suevite;pluses, crateris characterized
by only a positiveanomaly,for
800-
brecciatedcrystallinerockswith <10% suevite.
example,UpheavalDome, Utah, andKentland,Indiana.
Althoughthe existenceof a centraluplift in complex
drilling. This is at Siljan, Sweden, where lower than cratersis nota sufficientconditionfor producinga relative
normal densitiespersist to depthsof-5 km [Dyrelius, gravityhigh,thereis a tendencyfor mostlargercomplex
1988].
structures
withD > 30 km to exhibitsucha centralgravity
high (Figure5). For D = 30-100 km the corresponding
structuraluplift (SU) rangesfrom 3.5 to 9.5 km (SU =
Variationin GravityAnomalies
Figure 4 showsthe relationbetweengravity anomaly
and crater diameterD for 53 of the terrestrialimpact
craterslisted in Table 2. The amplitudeof the negative
gravity anomalyassociatedwith impactcratersincreases
with the craterdiameter[cf. Dabizha and Fedynsky,1975,
1977]. Severalfactorsplay a role in determiningthe final
0.06D
TM)
[Grieve
etal.,1981].
Therefore
it ismore
likely
thatdensercrustalmaterialwill be broughtto the surface
in large-impactevents.In thesecases,preimpactnearsurfacelithologicalvariationswill have a comparably
minoreffecton the resultantcentralgravityanomaly.In
addition,variationsin the degree of fracturingmay
TABLE 1. DensityContrastsBetweenFracturedand UndisturbedTarget Rocksat Several
Terrestrial Impact Structures
DensityContrast,
Target
Rocks
Gosses Bluff, Australia
Brent, Canada
Nicholson Lake, Canada
Clearwater West, Canada
Holleford, Canada
Manicouagan,Canada
Stderfj'firden,
Finland
sedimentary
crystalline
crystalline
crystalline
crystalline
crystalline
crystalline
Average(crystalline)
*Values include effects of sediments and breccias.
kg/m
$
150
170-340'
70-140
170
240*
130
160
177.5
Reference
Barlow [ 1979]
Millman et al. [1960]
Denceet al. [1968]
Plante et al. [1990]
Beals[1960]
Sweeney[1978]
Laurenet al. [1978]
Pilkington
andGrieve:SIGNATURE
OFTERRESTRIAL
IMPACTCRATERS
ß 165
30, 2 / REVIEWSOF GEOPHYSICS
TABLE2. MaximumNegative
Residual
GravityAnomalies
for58Terrestrial
ImpactStructures
Diameter,
Crater
Actaman,
Australia
Aouelloul,
Mauritania
mGal
C.P.
ion
E
Age,m.y.
-14
-1.25
...
...
160
0.39
7
3
>570
3.1
2
1
3
<130
Ernstson
etal.[1987]
0.049 Regan
andHinze
[1975]
88
Dabizha
andFedynsky
[1977]
Azuara,
Spain
Barringer,
Arizona
Boltysh,
Ukraine
-10
--0.6
-30
Carswell,
Canada
-11
Brent,
Canada
Clearwater
East,Canada
Clearwater
West,Canada
-5
...
...
*
.
'1•
30
1.18
25
3
4
22
32
4
5
7
6
39
-13
-16
...
Crooked
Creek,Missouri
-2.5
..
Deep
Bay,Canada
-15
...
13
El'gygytgyn,
Russia
-10
"•
18
Connolly
Basin,*
Australia
--0.3 •
Decaturville,*
Missouri
Dellen,Sweden
DesPlaines,
Illinois
Flynn
Creek,
Tennessee
Glasford,*
Illinois
0
-7
-10
-1
0
9
i
...
•'.')
7
Millman
etal. [1960]
290
290
Planteetal. [1990]
Planteetal. [1990]
115
<60
6
4
<300
15
8
6
7
110
<280
4
360
3.55
4
6
100
<430
-3.5
...
Haughton,
Canada
-9.5
...
20.5
2
5
550
Janisj'arvi,
Russia
Kaluga,
Russia
-13
-12
...
14
15
6
3
698
380
13
8
8
7
6
7
<300
430
400
Kara,
Russia
Kentland,*
Indiana
LacCouture,
Canada
LacLaMoinerie,
Canada
-20
-1
-5
--4
...
2.35
-i•
4
...
65
Lappaj'arvi,
Finland -10
Lonar,
India
-3.6
Manicouagan,
Canada -10
Middlesboro,
Kentucky
Mien,Sweden
--3.5
-5
'")
17
.
1.83
'1• 100
Mistastin,
Canada
-15
...
-6
...
NewQuebec,
Canada
...
...
6
9
28
3.44
5
6
5
2
7
6
6
2
142.5
<250
21.5
73
<300
121
38
1.4
...
...
12.5
1.13
Ries,Germany
-18
...
24
2
6
186
Ragozinka,
Russia
-13
...
9
4
55
5
7
5
220
3.1
13
2
7
12
<100
55
7
368
RoterKarnm,
Namibia
Sa'fiksj'firvi,
Finland
-9
-9.3
-6.5
...
...
...
SaintMartin,Canada
-13.5
-11
Shunak,
Kazakhstan
Sierra
Madera,
Texas
-2.5
-1.5
...
...
Siljan,
Sweden
-15
S6derfj'•den,
Finland
Steinheim,
Germany
-6
-2
---•i•
...
23
2.5
40
6
3.8
SteenRiver,Canada
-11
...
25
Sudbury,
Canada
-30
...
200
Tenoumer,
Mauritania
-10
Upheaval
Dome,*
Utah
0
.
'•
Vredefort,
SouthAfrica
-25
Wanapitei
Lake,Canada
-15
.
WestHawkLake,Canada
WolfeCreek,Australia
-6
-2
...
Wells
Creek,
Tennessee -3
Zhamanshin,
Kazakhstan-6
5
'6
--•i•
1.9
2
7
4
<400
0.2
14.8
5
514
550
14.8
4
95
6
1850
3
Shoemaker
etal.[1989]
Fox[1970]
Offield
and
Pohn
[1979]
Dent[1973]
Wickman
[1988]
Langan[1974]
Roddy
[1977]
Buschback
and
Ryan
[1963]
Barlow[1979]
Thomas
andInnes[1977]
Pohletal.[1988]
Beals[1960]
Dabizha
andFeldman
[1982]
Dabizha
andFedynsky
[1977]
Maslov
[1977]
Tudor[1971]
thisstudy
Thomas
etal. [1978]
77.3 Elo
[1976]
0.052 Fudalietal. [1980]
212 Sweeney
[1978]
Nicholson
Lake,Canada
-7.5
Pretoria
SaltPan,SouthAfrica -5
Rouchouart,
France
6
2
Innes
[1964]
3.5 Dabizha
and
Feldman
[1982]
-5.5
-3
-1.8
7
6
320
Gosses
Bluff,Australia
GowLake,Canada
Holieroral,
Canada
22
4
3
Williams
[1990]
FudaliandCassidy
[1972]
450
7
5
Reference
2.5
thisstudy
Innes[1964]
Denceetal. [1968]
Fudalietal. [1973]
Pohletal. [1977]
Pohletal. [1978]
Vishnevsky
andLagutenko
[1986]
Fudali[1973]
Eloetal.[1990b]
thisstudy
Feldman
etal. [1979]
VanLopikandGeyer[1963]
Dyrelius
[1988]
Lauren
etal.[1978]
Ernstson
[1984]
thisstudy
Popelar
[1972]
FudaliandCassidy
[1972]
5
7
7
1970
7.5
5
37
Dence
andPopelar
[1972]
3.15
.875
4
2
100
<0.3
HallidayandGriffin[1963]
Fudali[1979]
140
14
13.5
6
3
<65
Steinemann
[1980]
tlenkel[1982]
200
0.9
Joesting
and
Plouff[1958]
Slawson
[1976]
Stearns
etal.[1968]
Florenskii
etal.[1979]
Residual
gravity
anomalies
arein milligals.
C. P.denotes
themagnitude
of thecentral
gravity
highif present.
E denotes
erosional
level[Grieve
andRobertson,
1979]:1,ejecta
largely
preserved;
2, ejecta
partlypreserved;
3, ejecta
removed,
rimpartly
preserved;
4, rimlargely
eroded,
crater-fill
products
preserved;
5,crater-fill
products
partly
preserved;
6,remnants
ofcrater-fill
preserved,
crater
floorexposed;
7,crater
floorremoved,
substructure
exposed.
*The exact value is unknown.
*Heavily
eroded
structures
overwhich
onlythecentral
highremains.
These
values
arenotplotted
inFigure
4.
29, 1 / REVIEWSOF GEOPHYSICS
166ß Pilkington
andGrieve:SIGNATURE
OFTERRESTRIAL
IMPACT
CRATERS
[]
•
[][]
01_+
x
TARGET
ROCKS
CRATER
CENTRAL HIGH
PRESENT
NO CENTRAL
HIGH
CRYSTALLINE
+
m
SEDIMENTARY
X
ß
DTAMETER
(km}
Figure 4. Variationin themaximumnegativegravityanomalywith craterdiameter.Line marked
BAZ showsthe variationpredictedby the simplehemispherical
cratermodelof Basilevsky
et al.
[]983].
contribute
to thecentralgravityanomalies.As thetransient
cavityfloorrebounds
in complexcraters,
particlevelocities
in
the
central
portion
are
directed
upward
and inward,
WOLFE
leadingto a stateof compression
in the resultingcentral
CREEK
D:O.875kmuplift. Hence initial impact-induced
porosityis reduced,
and densityincreasedwith respectto the surrounding
mGals
craterfloor [Grieve, 1988].
For smaller structures(D < 30 km) the existenceof a
-'15
•
WANAP
ITEl
LAKE
D=7.5km
mGoIs
_J-••
-10
-.__.i_
•
centralrelativegravityhigh is primarilydetermined
by the
preimpacttargetlithologies.For example,at Lake Lappaj'•vi, Finland,the 3-mGal centralhigh is causedby
upliftedshockedPrecambrian
granodiofites
and gneisses
havinghigherdensitiesthanthe surrounding
brecciasand
sediments[Elo, 1976]. At Carswell,Canada,the gravity
highof 11 mGalis theresultof a centralcoreof fractured
LAPPAJARVI
basement
gneiss
(p=2610
kg/m
3)rin4ged
byupto1500m
of
D=17km
Athabasca
sandstone
(p = 2490 kg/m•) andsmalleramounts
ofdolomite
(p= 2850kg/m
3)[Innes,
1964].Theopposite
mayalsooccur.Forexample,thecentralupliftat Steinheim,
Germany,has broughtlower-densityDogger and Lias
WEST
claystones
and sandstones
to the surface,resultingin a
CLEARWATER
LAKE
greatercontributionto the negativeanomalythan that
D=32km
caused
by fracturing
andbrecciation
alone[Ernstson,
1984].
As crater diameters increase past 20-30 krn, the
maximum negativegravity anomaly appearsto reach a
limitingvalueof-30 mGal (Figure4). Increasingcrater
MAN!COUAGAN
diameterthen has a negligibleeffect on the anomaly
D='lOOkm
amplitude,and we can replaceour simpledisk with an
infinite slab model (Figure 6). The limiting gravity
Figure 5. Residualgravityanomalyprofilesover impactcraters anomalyvaluecan be interpretedin termsof a maximum
scaledto crater diameterand maximum gravity anomalyvalue.
depthto thebaseof the fracturedzoneassociated
with the
Arrows indicate crater rim. All but Wolfe Creek, Westem
crater [Basilevskyet al., 1983]. Using the infinite slab
Australia,are complexcraters.Profile for Lappaj'firvi,Finland, formula fig = 2tcGzAp,where G is the gravitational
does not crossthe 3-mGal central high noted in the text and
constant,
Ap is the densitycontrastbetweenfracturedand
Table 2.
undisturbed
targetrocks,and z is the depthextentof the
mGols
•
mo,s
._/
Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
ß 167
30, 2 / REVIEWSOF GEOPHYSICS
havinglargeranomalies
for a givencraterdiameter.Thiscan
be explainedpartiallyin termsof the initial densitiesof the
targetrocks.If crateringcauses10%voidsin a sandstone
(p
= 2400kg/m
3)ora gneiss
(p= 2700kg/m3),
theresulting
densitycontrasts
betweennormalandfracturedmaterialare
INFINITE
220 and250 kg/m
3, respectively.
This interpretation,
SLAB
100 ;• • • •_•110'
•
however,cannotbe supportedby actual sample density
measurements
becauseof the paucityof availableinformation.Nevertheless,
the singlesedimentaryexamplein Table
1 doeslie at thelowerendof thesampledensityrange.
The erosionallevel of cratersappearsto have only a
minoreffecton thecorrelation
betweengravityanomalyand
craterdiameter.Figure7 showsthatin the caseof complex
craterstheheavilyerodedstructures,
with an erosionallevel
E = 6-7 (seeTable 2 captionfor an explanationof E), tend
to have smaller gravity anomalies.For a given diameter
range,however,anomalyamplitudeshowssomevariation
:• • •_•110•
CRATER DIAMETER
within
a particular
erosional
level(Figure
7, inset).
In the
(km)
definition, however, of the observed erosional level
Figure 6. Comparison
betweenmaximumgravityanomalies
due [Grieve and Robertson, 1979] the amount of crater fill
to an infinite slab and single-diskmodels.The disk modelshave productsremoved and/or the degree of removal of the
constantdepths(z) in kilometersand densitycontrasts(Ap) in disturbedzone beneaththe crateris poorly constrainedfor
kg/m
3.
highly erodedstructures(E = 6-7) and allows for significantvariationin thecorresponding
gravityeffect.
fractured
zone,
fora slabwithAp= 100kg/m
3anda depth
extentof 8 km, the maximumgravityanomalyproducedis Modeling
From the precedingdiscussionwe have seen that the
-33 mGal, similar to the maximum crater anomaly.
Differentdensitycontrasts
wouldresultin differentdepth primarycontrolson anomalyamplitudeare the depthof
extents.Nevertheless,
8 km is the depthbeyondwhichit is the brecciatedand fracturedzones(which scalewith crater
expectedthatfracturesare essentially
closedby lithostatic diameter)and their densitycontrastswith the surrounding
targetlithologies.Effectsdue to the exactcratergeometry,
pressure
[PerrierandQuiblier,1974].
erosionallevel, and preimpact target lithologiescan be
considered secondary. Consequently, simple source
Effectof TargetRockandErosion
canbe usedin modelingthe gravitationaleffect
Figure 4 also shows a distinctionbetween craters geometries
Basilevskyet al. [1983] showedthatif
formedin sedimentary
andcrystallinelithologies,thelatter of impactstructures.
3
Figure 7. Variationin the maximum negative gravity anomaly
6
7
with crater diameter. Each crater
5
,
7
3
is labeledby its erosionallevel.
See Table 2 for an explanation
5
2
of erosional
2
2
level
values. Inset
shows the maximum negative
gravity anomalyversuserosional level for complexcraterswith
6
4
3
diameters between 6 and 16 km.
Symbolsasin Figure4.
4001
i
2
:• • .•3•I,10 '
•
CRATER DTAMETER
3
i
4
EROSIoNAL
I
:• • • •'•3•1,10"•
(km}
i
5
6
LEVEL
168 ß PilkingtonandGrieve: SIGNATUREOF TERRESTRIAL
IMPACTCRATERS
thefracturedzoneis modeledas a hemisphere
with a radius
equal to that of the crater and a densitycontrastof 100
kg/m
3,thentherelation
between
AgandD issimply-Ag
(mGal) = D (km). This approximation
providesa reasonable
fit for craterdiameterslessthan--5 km, althougha significant amountof scatteraroundthe line occurs(Figure4).
Factorscontributingto the misfit includeambiguitiesin
regional/residual
separationof the gravity anomaly,the
preimpactdensity distribution,and post-impacttectonic
history.The hemispherical
fracturevolumemodel,however,
has no directphysicalbasisand clearlyoverestimates
the
sizeof thegravityanomalyat D > 20-30 km (Figure4).
A morerealisticapproachto predictingthegravitational
effects of impact craters should incorporate known
observational
dataconcerningcraterstructureand make,if
possible,the distinctionbetween simple and complex
forms.In this studywe useknown morphometric
scaling
relationshipsto develop simple models relating crater
diameterD and gravity effect. Simplecratersare characterizedby a bowl-shapedform, where the apparentcrater
Crystalline
29, 1 /REVIEWSOF GEOPHYSICS
dt=0.200
ø'3
da=0.150
0'4
dt=0.520
0'2
(4)
(5)
(6)
wheretheda valuesarefromGrieveandPesonen
[1992]
andthedt valuesarefromGrieveandRobertson
[1979].
Figure9 alsoshowsthe variationin Ag versuscratersize
for our simpletwo-diskmodelusingthe complexcrater
scalingrelations(3)-(6). The modelclearlyunderestimates
thegravity
anomaly,
even
forthelarger-density
3contrasts
considered
(APt
= 250kg/m
3,Apo= 150kg/m
), which
represent
an upperboundto theexpectedrange(Table 1).
Moreover,the existenceof significantgravityanomalies
overheavilyerodedcomplexcraters(i.e., craterswherethe
allochthonous
depositshave been removedand the crater
floor exposed)indicates that the volume of fractured/
disturbed target rocks involved in the formation of
complexcratersis muchgreaterthanthatindicated
by the
depthtothecrater
floor(dt).
A measure
of thedepthof thedisturbed
zoneatcomplex
(depth
da)maybefilledwithpostimpact
sediments
andthe
truecraterfloor(depthdt) is markedby thebaseof the cratersis givenby the structuraluplift (SU) definedas the
allochthonous
breccialens. From morphometricdata over amount of uplift undergoneby the deepesthorizon
a number of simple craters the following empirical presentlyexposedin thecentraluplift [Grieveet al., 1981].
relationships,which are independentof target lithology, Figure 10 showsthe amountof structuraluplift versus
havebeen determined[Grieve et al., 1989].
da=0.13D
1'06
(1)
dt= 0.2801'02
(2)
craterdiametercomparedwith the maximumdepthsof
reduceddensityfrom previousgravity modelsof several
complexcraters.The good agreementbetweenthe two
suggests
thatSU providesa usefulestimate
of thedepthof
the fractured zone. For diameters above-30 km the lack of
dependenceof Ag on D suggeststhat the infinite slab
model is appropriate.As D increasesabove~30 km, the
where dimensions are in kilometers.
We modela simplecraterusingtwo disksof diameterD
depthof the fracturedzoneappearsto reacha limiting
andD - 2da, thickness
da and(dt -da) , anddensity value,andthegravityeffectis essentiallyconstant.
contrasts
APt,Apb(Figure8). Our modelassumes
postimpactsedimentary
infill whichis foundevenin relatively
youngcraterssuchas the49,000-year-oldBarringercrater. MAGNETIC SIGNATURE
Figure 9 shows the maximum gravity anomaly Ag
calculatedover sucha modelusing(1) and(2) anddensity General Character
The generalcharacterof magneticanomaliesassociated
contrasts
asindicated.
ForAPtandApbbothequalto 100
kg/m
3 the variation
in Ag is similarto thatof the with impactcratersis morecomplexthan the gravity
Basilevskyet al. [1983] model.Figure 9 showsthat disk
models
with
density
contrasts
between
100
and
200
kg/m
3
lie
within
the
scatter
ofthe
observations
for
simple
craters.
GRAVITY
Previous
modeling
of
gravity
data
at
simple
craters
[Fudali
ANOMALY
and Cassidy, 1972; Grieve et al., 1989] confirms that
apparentand true craterdepthsfrom (1) and (2) provide
goodestimates
for modelbodydimensions,
if theappropriate densitycontrastsare used.Thereforereduceddensities
due to fracturingof autochthonous
rocksbeneaththe crater
floor do not appear to contributesignificantlyto the
gravityanomalyat simplecraters.
For complexcratersthe scalingrelationships
between
apparentand truecraterdepthanddiameterare
Sedimentary
da= 0.120
ø'3
(3)
Figure 8. Geometry of the two-disk crater model and its
associated
gravityanomaly.
30, 2 / REVIEWS
OF GEOPHYSICS
Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
ß 169
C9
L•
Z
-
_
<I:
r'rC9
-
• ••.o
o •
• ••_4•.o,
CRATER
•
• ••.4•.½
DIANETER
(km)
relationships
(equations
(3-6)). The densitycontrasts
of
Figure9. Variationin themaximum
negative
gravityanomaly scaling
with diameterof the two-diskmodel for simple and complex theupperandlowerdisksin complexcratersare 250 and 150
3,respectively.
Verticaldashed
linesdenote
thediameters
craters.
AptandApt
, arethedensity
contrasts
of theupper kg/m
associated
with
the
transition
from
simple
to
complex
formsfor
(sedimentary
infill) andlower(breccia
lens)disksfor thesimple
(2 km) andcrystalline(4 km) targetrocks.Symbols
cratermodelin kg/m
3. Simplecraterdiskthicknesses
are sedimentary
calculatedfrom scalingrelationships
(equations(1) and (2)).
Disk thicknesses
for the complexcratersare calculatedfrom
uj
O
-
T
-
I--
_
.
.
MIEe
•
oCLW
MIDo .•'LAP o eHAU
0_..
asin Figure4.
signaturebecauseof the muchgreatervariation(ordersof
magnitude)in the magnetic propertiesof rocks. The
dominanteffectovercratersis a magneticlow [cf. Dabizha
and Fedynsky,1975; Clark, 1983] ranging in amplitude
from tensto a few hundrednanoteslas
(nT). This type of
signature is most easily recognized, particularly in
crystallineenvironments,
by the truncationand disruption
of regional magnetictrends(Figure 11). The magnetic
lows are best defined over simple craters, where the
anomalyis smoothand simple, for example,Barfinger,
Arizona,andWest Hawk Lake, Canada(Figure 12). Lower
field intensifies
arealsofoundoverlargerstructures,
where
the reducedfield can be modified by the presenceof
shorter-wavelength
anomalies.Theselocalizedanomalies
are usuallyof large amplitude,for example,+ 1000 nT,
and
occur
atornear
thecrater
center
(Figure
13).Table
3
summarizesthe magnetic anomaly character over 37
impact structures.As in the gravity case, there is not a
Figure 10. Resultsof modelingof gravity anomaliesover one-to-onecorrelationof the characterof the magnetic
complexcratersby previousworkers(seeTable2 for references
anomalyandcratermorphology.In addition,the presence
and detailsof the modelsused).Depthto modelbaseis shown
of a centralgravityhigh doesnot imply the existenceof an
versus crater diameter. Also shown is the amount of structural
centralmagneticanomaly.A broadcorrelation
uplift(SU) calculated
fromGrieveet al. [1981]versusdiameter. associated
does,
however,
exist between anomaly form and crater
SOD, S0derfj'•rden;MID, Middlesboro;MIE, Mien; LAP,
with D < -10 km all havemagneticlows,
Lappaj'firvi;DEE, Deep Bay; ELG, El'gygytgyn; HAU, size.Structures
Haughton;
RIE, Ries;SIL, Siljan;CLW, WestClearwater
Lake; while all structures with D > 40 km exhibit central
MAN, Manicouagan.
high-amplitude
anomalies.
CRATER 0IAHETER
(km)
29, 1 /REVIEWS OF GEOPHYSICS
170 ß Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
/
/
/
/I
!
\
/
/
/
100
nT
20nT
•
... •
/
/
/
/
.•-•
/
/
/
1
}
/
0
I
/
- •
km
I
I)/
2
I
//
Figure 11. Residualmagneticfield intensityover DeepBay, Saskatchewan,
Canada.Contourintervalis 20
nT, flight height300 m.
Contrary to the gravity case,severalimpact sites are
marked by the absenceof significantchangesin the
observedmagneticfield (Table3). For someof thesmaller
structuresthis may be, in part, due to attenuationand
undersampling
of any anomalouseffectsrelatedto flight
heightand line spacingin aeromagnetic
surveys.Unfortunately,groundsurveydata are only availableat a small
numberof craters.In the caseswheremagneticanomalies
relatedto impactare present,severalmechanisms
related
to the impactprocessmay be operative,all of whichmay
be sufficientto radicallychangethe magneticproperties
of
the targetrocks.
Shock Effects
Peak pressuresrecordedin the autochthonous
rocksof
the centraluplift at complexcratersmay reach-30 GPa,
whichis sufficientto produceshockdemagnetization
and
remagnetization
effects.Experimentalstudieshaveshown
that shockpressuresof the order of 1 GPa can remove
existingremanentmagnetizations
[HargravesandPerkins,
1969; Pohl et al., 1975; Cisowskiand Fuller, 1978]. At
pressuresof >10 GPa, Kumar and Ward [1963] have also
detecteda reductionin magneticsusceptibilitydue to
shock.Similarly, decreasesin susceptibilitylevels have
beendetectedat nuclearexplosionsites[Short,1965].The
effects of shock metamorphismcan also aid in the
productionand modificationof magneticcarriers;for
amphiboleand biotitedecompose
to producemagnetite
[Chao, 1968]. At lower pressures,
titanomagnetite
can
resultfrom thebreakdownof ilmenite[Chao, 1968].
In additionto demagnetization,
targetrockscan also
acquirea shockremanentmagnetization
(SRM) in the
directionof the Earth'sfield at the time of impact.The
intensityof SRM is proportionalto the ambientfield
strength[Pohl et al., 1975] and decreaseswith distance
fromthe pointof impact[Cisowski
and Fuller, 1978].
Although
thepresence
of SRM hasbeendemonstrated
for
nuclearexplosionsites[Hargravesand Perkins,1969], its
recognitionis rare at impactcraters.Cisowskiand Fuller
[1978], however,detecteda secondarycomponentof
magnetization
probablyacquiredat the time of impactat
Barringer,Arizona,and Lonar, India, while Halls [1979]
hasdocumented
the existence
of a secondary
magnetization at Slate Islands, Canada, which exhibits several
propertiesin keepingwith thoseof SRM as determined
experimentally[Cisowskiand Fuller, 1978]. Halls [1979]
foundthatthe intensityof the SRM decreases
awayfrom
thepointof impactandis restricted
to thelow coercivity
fraction. The remanencewas also acquiredrapidly
(between
impactandtheformation
of thecentraluplift),as
evidenced by a small directional scatter. Studies at
Charlevoix,Canada,suggestthat the large reductionin
remanence
intensityin samples
fromthecentralupliftis
shockrelated[Robertson
and Roy, 1979]. However,the
example,at pressures
of >40 GPa and T > 1000øC, high coercivityof the carrierphase(titanohematite)
at
30, 2/REVIEWSOF GEOPHYSICS
Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
ß 171
95ø09'W
Charlcvoixmay explainwhy an acquiredSRM is absent.
SRM is mostlikely to occurin autochthonous
targetrocks
experiencing
pressures
greaterthan1 GPabuttemperatures
lessthantheCuriepointsof themagneticphases
present.
95o{5'W
Thermal Effects
For material occurringclose to the point of impact,
postshock
temperatures
are greatenough(>1000øC)to
causewholerock melting,whichcanresultin the production of nonmagneticimpact glasses[Pohl, 1971]. Unlike
impactglasses,slowercooledcrystallineimpactmelt rocks
canacquirea thermoremanent
magnetizationCrRM) in the
direction of the Earth's magnetic field at the time of
impact.MagneticresettingthroughTRM in the ambient
field directionhas led to a number of palaeomagnetic
dating studiesat impactcraters[Angenheisterand Pohl,
49 ø
1964; Larochelie and Currie, 1967; Robertson, 1967;
Currie and Larochelie, 1969; Pohl and Soffel, 1971;
Bylund, 1974; Cisowski, 1988; Pesonen and Marcos,
1990]basedon samplesof impactmelt rocksandbreccia.
lkm
Figure 12. (Opposite)
Total magneticfield intensityoverWest
Hawk Lake, Manitoba, Canada [after Clark, 1980]. Contour
intervalis 100 nT, flightheight300 m.
Figure 13. Residualmagneticfield
intensityover Ries, Germany[after
Pohl et al., 1977]. Contourinterval is
5 nT, flight height 1000 m. Dashed
line shows crater rim. The large
positiveanomalyin the southwestern
part of the crateris causedby basic
and
43o80 '
45ø90'
0
I
krn 4
I
44ø00'
44øt0'
ultrabasic
basement
rocks
unrelatedto the impactevent[Pohl et
al., 1977].
172 ß PilkingtonandGrieve: SIGNATUREOF TERRESTRIAL
IMPACTCRATERS
A stableremanenceand low directionalscatterappearto
be characteristics
of impact melt rocks and most likely
reflecttherapidacquisitionof themagnetization
[Pohland
Softel, 1971]. At lower temperatures,
remagnetization
of
magneticmineralsthroughthe acquisitionof a TRM also
occurs.Even below the Curie temperature,
a partialTRM
may still be acquired.
Chemical Effects
29, 1 /REVIEWSOF GEOPHYSICS
1985]. Oxidationof magnetiteto hematitehas led to the
formation
of a highcoercivityCRM at Siljan,Sweden,asa
resultof circulationof meteoricwater throughimpactinducedcracksand fissures[Elmingand Bylund,1991].
Althoughpostimpact
processes,
suchas chemicalweathering, leaching,and metamorphism,
will furthermodify
magneticpropertiesover large time intervals,the CRMs
underdiscussion
can be contemporary
with the impact
event.
Low-temperature
(<130øC)
oxidation
of titanomag-
Following impact, elevatedresidualtemperatures
and
hydrothermal
alterationcanproducenew magneticphases
leadingto the acquisitionof a chemicalremanentmagnetization(CRM) in the directionof the ambientfield. The
central magnetic anomaly at Saint Martin, Canada, is
netireto maghemite
at Ries,Germany,occurredat thetime
of impact,resulting
in boththeoriginalandalteredphases
showingthe same magnetizationdirections[Iseri et al.,
1989].
attributed to the formation of hematite from the breakdown
Modeling
of mafic silicatesin the floor of the centraluplift [Coles
Clearly, severalmechanisms
can resultin the formation
and Clark, 1982].Fracturingof the targetrocksaidsin the of remanentmagnetizations
both during and after the
circulationof hydrothermalfluids, and the presenceof crateringevent. No one magneticphaseseemsto be
oxygen favors higher magnetizationintensifies[Grant, characteristic
of impactsites.Magnetizations
havebeen
TABLE 3. MagneticAnomalyCharacterfor 37 TerrestrialImpactStructures
Crater
Barringer,
Arizona
Bosumtwi,
Ghana
Brent,Canada
Carswell,
Canada
Clearwater
East,Canada
Clearwater
West,Canada
Crooked
Creek,Missouri
Decaturville,
Missouri
DeepBay,Canada
El'gygytgyn,
Russia
Gosses
Bluff,Australia
Haughton,
Canada
Holleford,
Canada
Janisj'grvi,
Russia
Kara,Russia
LacCouture,
Canada
LacLaMoinerie,
Canada
Lappaj'firvi,
Finland
Logancha,
Russia
Manicouagan,
Canada
Manson,
Iowa
Mien,Sweden
Mistastin,
Canada
NewQuebec,
Canada
Nicholson
Lake,Canada
PilotLake,Canada
Ries,Germany
Ragozinka,
Russia
SaintMartin,Canada
Serpent
Mound,Ohio
Shunak,
Kazakhstan
Siljan,Sweden
SUdbury,
Canada
Vredefort,
South
Africa
Wanapitei
Lake,Canada
WestHawkLake,Canada
Anomaly Diameter,
Ion
L/S
C
L/S
C
L/S
L/S
N
L/S
L/S
L/S
C
C
L/S
L/S
C
L/S
N
L/S
L/S
C
C
C
N
N
L/S
N
C
L/S
C
N
L/S
C
C
C
L/S
L/S
Zhamanshin,
Kazakhstan L/S
E
1.18
10.5
3
39
22
32
7
6
13
18
22
20.5
2.35
1
3
4
7
4
5
6
4
5
3
7
2
5
14
65
8
8
17
1.83
100
35
9
28
3.44
12.5
5.8
24
9
40
6.4
6
5
6
7
6
2
5
6
6
6
2
6
6
2
4
5
2
3.1
55
200
140
7.5
3.15
13.5
2
7
6
7
5
4
3
Age,rn.y.
0.049
1.3
450
115
290
290
320
<300
100
3.5
142.5
21.5
550
698
73
430
400
77.3
50
212
65.7
121
38
1.4
<400
445
14.8
55
220
<320
12
368
1850
1970
37
100
0.9
Reference
Regan
andHinze[1975]
Jones
etal. [1981]
Millmanetal. [1960]
Currie[1969]
thisstudy
thisstudy
Fox[1970]
OffieldandPohn[1979]
Innesetal. [1964]
Dabizha
andFeldman
[1982]
Young
[1972]
thisstudy
Beals[1960]
Dabizha
andFeldman
[1982]
Maslov[1977]
thisstudy
thisstudy
Eloetal. [1990a]
Feldman
etal. [1983]
Coles
andClark[1978]
Hartung
etal. [1990]
Henkel[1982]
thisstudy
thisstudy
thisstudy
thisstudy
Pohletal. [ 1977]
Vishevsky
andLagutenko
[1986]
ColesandClark[1982]
Sappenfield
[1950]
Dabizha
andFeldman
[1982]
Pedersen
etal. [1990]
Gupta
etal. [1984]
Corner
etal. [1990]
Clark[1981]
Clark[1980]
Florenskii
etal.[1979]
E denotes
erosional
level(seeTable2 footnotes
fordetails).
L/S:magnetic
low,subdued
anomalies;
C:central
magnetic
anomalypresent;N: no apparentanomalous
effects.
30, 2 / REVIEWSOF GEOPHYSICS
Pilkington
andGrieve:SIGNATURE
OFTERRESTRIAL
IMPACTCRATERS
ß 173
observedin carrierssuchas magnetite[Larochelieand magneticfieldsobservedover cratersin suchterranesare
in susceptibility
levels.As in
Curtie, 1967; Pohl, 1971], hematite-ilmenite[Robertson primarilydue to a decrease
the
case
of
density
data,
there
are
relatively
few studies
and Roy, 1979;Colesand Clark, 1982],and pyrrhotite
[Pesonenand Marcos, 1990]. As well as the effectsof thatcomparethe magneticpropertiesof fracturedautochoutside
remanence,the intensity of induced magnetization thonousrocksand their undisturbedcounterparts
(essentially
dueto thepresence
of magnetite)
mustalsobe the crater. Masaitis et al. [1975], however, have found
taken into account, when consideringthe magnetic nearly a tenfold decreasein susceptibilitybetween
anomalies over craters.
undisturbedand fracturedbasementgneissesat Popigai,
The anomalous
field is determined
by thevectorsumof Russia.The dominantmechanismproducingthisdecrease
thefieldsdueto boththeremanentandinducedmagnetiza- is notclear,althougha reductionfrom shockandenhanced
alterationeffectsfrom fluids throughout
tion, with the relativemagnitudeof the two givenby the low-temperature
the
fractured
zone
[Henkeland Guzman,1977] are likely
Kanigsberger
ratio Q. Brecciasand impactmelt rocks
to
be
significant.
generally
showQ valuesmuchlargerthanunity:Q < 50 at
Haughton,Canada[Pohl et al., 1988], Q > 10 at
Rochechouart,
France[Pohl and Soffel,1971], Q ~ 15 at
Dellen,Sweden[Bylund,1974], Q - 10 at Mien, Sweden
[Stanfors,
1973],andQ ~ 10at Ries,Germany[Pohlet al.,
1977]. Therefore,at least in thesecases,inducedmagnetizationcanbe considered
negligiblein thesecases,and
the observedmagnetic anomaliesare mainly due to
remanentmagnetization.
This is obviouslythe casefor
thoseanomalieswhoseshapeclearlyindicatesa causative
ELECTRICAL
SIGNATURE
General Character
Brecciationand fracturing of target rocks indirectly
causeslarge changesin their electricalproperties.The
conductivityof rocksis heavilydependenton their water
content.A less than 1% change in water content can
producemore than an order of magnitudechangein
magnetization
in a direction
otherthantheambient
field.
The degreeof fragmentation
determines
the
Quantitative
analyses
of therelativelyshortwavelength, conductivity.
amount
and
distribution
of
fluids
within
the
rock
and
hence
centralmagneticanomalies
at a limitednumberof craters
The largeincreasein conductivity
haveall successfully
modeledtheseintenseanomalies
as its electricalproperties.
of
fluid-filled
fractured
material results in electrical
the productof remanentlymagnetizedbodies[Young,
1972; Coles and Clark, 1978, 1982; Henkel, 1982]. We methodsbeingpotentiallyusefulin mappingthe structure
have found no documentedcasesof inductively mag- of impactcraters.
netized bodies. The source of these central anomalies is
wideranging.Magneticbasement
maybe exposedin the
central uplift at highly eroded structures(Carswell,
Vredefort),wherethe anomalous
field coincideswith the
basementoutcrop.Alterationzonesof small areal extent
may occurwithinthe centraluplift (SaintMartin)or the
centralanomalymaybe causedby thepresence
of highly
magnetic
impactmeltrocks/suevite/breccias
(Mien,Ries).
The sourceof the magneticlowsover cratersis more
problematical.
Undoubtedly,
theimpactprocess
results
in a
reductionin magnetization
(remanent,induced,or both)
intensityof thetargetmaterial.In thecaseof freshcraters
(E < 3, Table3), postimpact
sedimentary
infill will tendto
be nonmagnetic,
if CP,M mechanisms
are not operative
[Wasilewski,1973], and so contributeto the reducedfield
intensity.Similarly,Bealset al. [1963] suggestthat for
relativelyunerodedcratersin nonsedimentary
targets,the
magneticlow may be causedin part by the random
orientation
(dueto disruption
duringthecrateringevent)of
magnetization
vectorsin crystallinerocksin the breccia
lens.Thesecausescannot,however,explainthe low fields
overthe moreerodedstructures.
By analogyto thegravity
casean importantcontribution
to themagneticfield must
come from the autochthonous basement beneath the crater
floor.
In Precambriancrystalline terranes,most magnetic
anomaliesare due to inductive magnetization[Grant,
1985], which leads us to suggestthat the diminished
Resistivity
Few examplesof electricalinvestigations
of impact
structuresexist, however, in the literature and most of
these involve DC resistivitymethods.Where a distinct
contrastexistsbetweenthe allochthonous
brecciadeposits
and the underlyingautochthonous
targetrocks,electrical
profilingusingresistivitysoundingcan map the structure
of the truecraterfloor, for example,at Ragozinka,Russia
[Vishevsky
andLagutenko,1986]. At theRiesstructurethe
resistivity contrast between lake sedimentsand the
underlyingsuevitehasallowedthe boundaryof the inner
craterto be determined[Ernstson,1974]. Drilling at Ries
showsthe increasein resistivitywith depth, from lake
sediments(<10 •m), to suevite (10-90 •m) and brecciatedbasement(100-300 •m).
Resistivity soundings at Kaalijarvi, Estonia, also
exemplifythe changein electricalpropertiesas a function
of the degreeof fracturing [Aaloe et al., 1976]. Nearsurface,stronglyfractureddolomitesshowresistivitiesof
130-150 •m and are underlainby lessfracturedmaterial
(.-250 •m) and relativelyundisturbed
targetrocks(>300
•m). Florenskiiet al. [1979] were able to detectthe base
of allochthonous
depositsat the edgesof the Zhamanshin
structure,Kazakhstan,basedon a resistivitycontrastof
20-100 •m at depth.As in the caseof refractionseismic
surveysoutlininglower velocitiesoutsidethe craterrim,
electrical profiling has detected lower than normal
29, 1 /REVIEWS OF GEOPHYSICS
174 ß Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
surveyat Barringercraterhasshownthat
resistivities
up to onecraterdiameterbeyondthecraterrim A reconnaissance
[Aaloe et al., 1976; Clark, 1980]. For example,at West featuressuchas the craterwall and the baseof the ejecta
Hawk Lake, Clark [1980] found resistivitiesincreasing blanketcan be mappedwith this approach[Pilon et al.,
from 50 to 300 f•m near the crater rim to ~8000 f•m at ~3
1991]. Figure 14 showsan exampleof a raw and interkm from the center of the structure.
pretedsectionacrossthe exterior ejecta blanket at the
Barringer structure.Indicationsof the ejecta-bedrock
contactcan be seen, as well as subsurfacelithological
Magnetotellurics
In order to determine the deeper electrical structure contacts and faults.
associated
with impact,magnetotelluric
(MT) surveyshave
beencarriedout at Siljan [Zhanget al., 1988] and Charlevoix [Mareschaland Chouteau,1990].At Siljan theMT SEISMIC SIGNATURE
resultsindicatea conductiveregion,1000f•m comparedto
10,000f•m for normalgraniticcrust,thatapproximates
the General Character
horizontalextentof thecraterbutoccursat a depthof 5-20
Seismicrefractionand reflectionsurveysprovide a
km. No surfaceconductivezone was found.Zhang et al. detailedimage of the subsurfacestructureof impact
[1988] invoked fluid migration throughimpact-induced craters.Both techniquesare capableof determiningthe
fractures at these depths to explain their results. At velocitydistribution,which reflectsthe degreeof fracturCharlevoix, Mareschal and Chouteau [1990] found that ing as a resultof shockstress.The relativechangein
culturalnoiseprecludeda definitiveinterpretation
of the seismicvelocitiesdue to impact-induced
fracturingand
near-surface structure. They found, however, that a brecciation
aremuchlargerthanthecorresponding
change
subhorizontal
conductorwith resistivity100 f•m compared in density,for example,up to 50% for velocities
compared
to an uppercrustalaverageof 10,000f•m at 1.5 km depth to a 5% differencein densities
at Barringer.For complex
was suggestedby high-frequencydata. This featurewas craters,in particular,reflectionseismicsurveyscanlocate
interpretedasa subhorizontal
faultrelatedto impact.
andmapmajorstructural
featuressuchasthecentraluplift,
peripheraldepression,
distributionof craterfill, faultedrim
and the possibletraceof the transientcavity. Due to the
Ground-Penetrating
Radar
For detailed subsurfacemapping, ground-penetrating high resolving power of the reflection method, the
radar has been shown to have utility at relatively small estimatedmorphological
parametersin the seismicrecord
impactcraters[Pilon et al., 1991]. As with conventional can be used in testing and refining models of crater
electrical methods,the presenceof water within pore structureandcrateringmechanics.
spacesstronglyinfluencesthe responseto the radarpulse.
Fracturinghas a major effect on the propagationof
In particular,the depthof penetrationis dependenton the seismicenergy,with the presenceof discontinuities
and
electromagnetic
absorptionpropertiesof the subsurface. voidscausinglower thannormalvelocities.The effectsof
Reflecting horizons are caused by dielectric contrasts, fracturingshouldbe distinguished
from straightforward
whichmay or may not correspond
to lithologicalchanges. changesin porosity,which also lead to density and
Distance
(m)
.....
....
,. 7.
I,t ....
•- '•...::•......
•., .•.......
,• .•.
.•,•....
,.,•,•,.,
.....
0.......,•,.,,•,••,,,,,,.•'
•, ..•.,
Distance
•
5o
¾
,•o
,•o
too
I
t•o
I
too
!
•o
•o
I
•o
qo
•o
__
109-
-•
I
-3.8
-
_
• 173E
.--
I
Moenkopi
Formalion
-7.0
Kaibab
Formation
_
_
237-
•
•o1•
/
•'•
"'
/
/
/•/
•
Geological contact
/
/
Fault
--16.6
............. Parabolic
echo
frommain
powerline
Figure 14. Ground-probing
radar data acrossexteriorejecta area seriesof subhorizontal
subsurface
lithologicalcontactsand
blanketat Barringercrater,Arizona.The craterrim corresponds high-anglefaults. The large parabolic reflectorsat stations
to station 708. (Top) Processedradar data. (Bottom) Line 580-660 are due to an overheadpowerline. The datahavenot
interpretationof data. The ejecta-bedrock
contactis visible, as beentopographically
corrected.
30, 2/REVIEWSOF GEOPHYSICS
PilkingtonandGrieve:SIGNATUREOF TERRESTRIAL
IMPACTCRATERS
ß 175
velocitychanges.
The natureof the fracturingdetermines foundat the Kaalij'•vi structure[Aaloeet al., 1976].
At complex craters, such as Charlevoix, refraction
the sizeof velocitychange.If two materialshavethesame
porosityandbulk density,butonecontains
a largenumber seismicshave revealedlower than averageupper crustal
of smallmicrocracks
as opposedto a few largefractures, velocities (6.2 versus 6.4 km/s) coincident with the
disturbance[Lyonset al., 1980]. At Ries,
seismicparticledisplacements
are small enoughthat the impact-induced
smallerfractureswill leadto a greaterdecrease
in observed modelingof refractiondata has,basedon initial velocity
velocities [Kuster and Toksoz, 1974]. If the crater is estimates
fromreflectionvelocity-depth
spreads[Pohland
buried, then increasedlithostaticpressurewill reduce Will, 1974] that indicatedlower than averagevelocities
fractureporosity,but velocitieswill still remainbelow down to at least 3 km, suggestedthe presenceof a
their preimpactvalues[Gardneret al., 1974]. The final low-velocityzoneextendingdownto 5-6 km [Pohlet al.,
velocitydistribution
of thefractured
zoneis alsocontrolled 1977]. Velocity distributions,however, within impact
are not alwayslower thannormal.At the highly
by the type of fractureinfilling, with highervelocities structures
eroded Vredefort structure, refraction seismics have
beingproduced
by thepresence
of fluids.
revealedhigherthanaveragevelocitiesat the centerof the
structuredue to the presenceof an upliftedlower crustal
Refractionsurveysover simpleimpactstructureshave basementcore [Green and Chetty, 1990]. Structural
successfully
delineatedthe depthand horizontalextentof informationfrom refraction surveys may also provide
the low-velocityzone.Seismicstudiesof simplecratersin constraintson crater size and morphology.At Manson,
crystallinetargets,suchas Brent,Canada,showa decrease Iowa, Smithand Sendlein[1971] mappedhighly variable
(up to 50-m relief) withinthecraterin
of up to 25% in compressional
wavevelocitieswithinthe bedrocktopography
craterand a depth extentapproximatingthe baseof the contrast to smooth variations outside the crater rim.
allochthonousbreccialens [Millman et al., 1960; Sander et
al., 1963]. Shock-inducedfracturingwithin sedimentary Reflection
The most detailed geophysical information on the
target rocks at Barringer results in a 50% velocity
decrease,with the reducedvelocityzone corresponding
to subsurfacestructureof impact cratershas been gathered
sediment infill and the allochthonousbreccia lens [Acker- from reflection seismicstudies.These have, in most cases,
man et al., 1975]. The fracturedzone at Barringeralso beencarriedout over complexcratersin bothsedimentary
extendsup to onecraterdiameterbeyondthecraterrim as and crystallineenvironments.Figure 15 showsa repreevidencedby lower velocities,which increaseaway from sentativeseismicsectionand its interpretationover the
the structure.Similar velocity distributionshave been Montagnaisstructure,occurring off the coast of Nova
Refraction
IMPACT
CRATER
45Km
MONTAGNAIS
SW
1-94
?J•..
o Km5
""• SUEVITE •..,•METAMORPHIC
BASEMENT
HORIZONTAL
SCALE'•l• MELT
ROCK
HORIZON
•
•
(MEGUMA)
Figure 15. Sixtyfold reflectionseismicsectionand corresponding
interpretationacrossthe
Montagnaisstructure,
Nova Scotia,Canada[afterJansaet al., 1989].
176 ß Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
Scotia, Canada. The section delineates all the major
morphologicalfeaturesexpectedover sucha structure.It
also exemplifies the dominant seismic signature of
impact-inducedfracturingand brecciation,that is, the
reducedcoherencyof seismicenergydue to disruptionof
the reflecting horizons.The central uplift in a crater is
usuallydistinguished
by thegreatestamountof disruption,
alongwith thrustfaultingwithin the uplift anddownfaulting at its edges[Brenanet al., 1975;Jansaet al., 1989].
Within the uplift the coherencyof the seismicresponse
usuallyimprovesaway from and below the cratercenter
[Ezeji-Okoye, 1985]. Reflectors within the uplift often
show decreasingamountsof uplift with increasingdepth
[Juhlin and Pedersen, 1987]. In sectionswhere good
markerhorizonsare presentthe baseof the disruptedzone
is marked by the reappearance
of undisturbedreflectors
(Figure 16), and the amount of structuraluplift can be
determined[Brown, 1973], althoughintensebrecciationat
depthcanprecludeany estimationof how muchuplift has
takenplace [Scottand Hajnal, 1988]. In structures
wherea
clear termination
29, 1! REVIEWS
OF GEOPHYSICS
--49o45'N
STRUCTURE
CO
ONFISHSCALES
150•-•_.
CONTOUR
INTERVAL
30m
0
5kin
I
of marker horizons exists toward the
cratercenterthe point of transitionbetweencoherentand
incoherentresponses
providesan approximatemeasureof
the extent of the transientcavity [Juhlin and Pedersen,
1987; Scott and Hajnal, 1988; Andersonand Ilartung,
1991].
The peripheral zone surroundingthe central uplift is
againmarkedby somedisruptionof reflectors.Downward
displacement
of formationsis apparent(Figure 17), with
the amountof displacement
decreasingwith depth[Brenan
et al., 1975]. Knowing the amountof uplift in the crater
center and the downthrow of faults in the peripheral
depression
allowsthecalculationof theamountof material
removed from the annular ring and that added to the
central uplift [Wilson and Stearns, 1968; Juhlin and
Pedersen,1987]. In relatively unerodedstructures,
breccia
Figure 17. Structurecontourson the baseof the Fish Scalesformation at the Eagle Butte structure,Alberta, Canada [after
Sawatzky,1976]. The patternof structuralhigh (centraluplift)
and surroundinglow (ring depression)is typical of structure
mapsovercomplexcraters.
occurringin the annular depressionmay appear as a
mappableseismicallytransparent
zone[Jansaet al., 1989].
Beyondthe annulardepressionis the craterrim, which
is marked by inwardly directed downfaultingof blocks
towardthe cratercenter.Target materialin this regionis
only mildly deformed so that marker horizonscan be
traced accurately [Brenan et al., 1975; Anderson and
Hartung, 1991]. Interpretationof seismic sections at
Haughton
alsoshowan increase
in boththespatialdensity
and penetrationof faults toward the crater interior [Scott
Figure 16. Reflectionseismic
sectionthroughthe Red Wing
Creek structure,North Dakota.
Rim to rim distance is 9 krn.
The
Cretaceous
Greenhorn
(Kgh) and OrdovicianWinnipeg (Ow) reflectors are
locatedat depthsof-715 and
-3625 m, respectively.Be-4 Kgh
neath the disrupted zone
related to impact is the reap-
pearanceof coherentreflectors
[afterBrenanet at., 1975].
•Ow
30, 2 / REVIEWSOF GEOPHYSICS
Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
ß 177
andHajnal, 1988],reflectingtheradialdistribution
of the targets,which include near-surfacenonmagneticsedidisruptiveeffectsof impact.
mentary
environments,
butwherethecentral
uplifthasthe
potential to bring up magnetic crystallinebasement
material. Furthermore,as crater diameter increasesin both
SUMMARY
AND
DISCUSSION
Geophysicalinvestigationsat impact structuresreveal
that a variety of signaturescan result from the impactinducedphysical changesin target rocks. As a result,
attemptsat identifyinga structuresolelyon the basisof
geophysicalevidencecan be ambiguous.Nevertheless,
from the increasing amount of data that exist over
terrestrialimpactcraters,somebroadconclusions
can be
drawnbasedon the geophysicalresponse(s)
of a suspected
impactstructure.The reliabilityof any suchconclusionis
clearly dependenton the size of the data baseavailable
overprobableimpactsfor a particulargeophysical
method.
In this regard,gravity and magneticobservations
are the
primary indicators, followed by seismic and finally,
electrical methods. The characteristic geophysical
signaturesused in determiningthe likelihood of an
anomalousstructurebeing due to impact are mainly
qualitative,althoughfor the gravitycase,whereanomaly
magnitudecan be relatedto craterdiameter,somesemiquantitativecriteriacan be applied.Also, for the purposes
of identifyingandcharacterizing
possibleimpactstructures
solelyfrom geophysical
data,we will considerherein the
discussiononly buried structuresfor which no surfacebased information exists. In most cases, burial will have
sedimentary and crystalline targets, the maximum
temperatures
and pressuresreachedin the centraluplift
increase [Grieve and Cintala, 1991] such that thermal,
chemical,andshockmagnetization
effectsare morelikely
to occur.
The electricalresponseof impactcratersappearsto be
lesswell definedthan for potentialfields, althoughthe
numberof structuresstudiedis, at present,quite small
(<10). Resistivitysoundings
and profilesshowa gradual
increasein resistivityaway from thecratercenterand with
depth.Magnetotelluricresultshave proved less informative. Fracturingandbrecciation
duringthe impactprocess
lead to decreasedseismicvelocitieswithin the crater
confines,andthe form of the disruptionof targetmaterial
canbe determined
fromseismicreflectionsurveys.
On the basisof the principalgeophysical
anomaly
characteristics
it is possibleto outlinesomegeneralcriteria
whichare consistent
with thepresenceof a buriedimpact
structure. Potential field anomalies will be near-circular or
circularin shape.The gravity field will, in general,show
an anomalylow of less than 30-35 mGal. An estimateof
the crater diameter D can be made from the extent of the
low and the observedAg comparedwith Figure4. The
scatterof pointsand the logarithmicscaledoesallow for
anappreciable
variation
in Agfor a givenD andviceversa.
been rapid enoughto preservethe major morphological However, we can still reject certain combinations,for
featuresof the crater,so consideration
of the geophysical example,a 20-km crateris unlikely to have a •gravity
signaturesof heavily erodedstructures(E > 6) will be anomalyof <5 mGal. At largediameters,D > 30 km, and
avoided.
particularlyin geologicsituationswheredensityincreases
Considering,first, gravityand magneticmethods,from with depth, such as sedimentsoverlying crystalline
our previousdiscussionit is clear that no singularrule basement,there may be a central gravity high. The
existsfor relatingcratersize (throughthe diameterD) to diameterof this centralhigh is generally<0.5D and its
anomalycharacteror magnitude.Nonetheless,the depth amplitudelessthan the overallgravitylow. A magnetic
extentof the low-densityallochthonous
brecciazone can low or subduedzone will likely accompanyand coincide
be estimated,in the case of simple craters, from the with the overallgravity low. Intensemagneticanomalies
morphometricscalingrelationships(1 and 2) and of the of eithersign,however,mayoccurat thecenterof thelow,
fractured,structurallydisturbedzone for complexforms, butthediameterof thesewill be generally<0.5D andmost
by theamountof structuraluplift.Thusthereis a meansof likelymorerestricted
thananycentralgravityhigh.
predictinga gravityresponse
(Ag) basedon estimatesof D.
Accompanyingthe potential field lows will be a
If the targetrocksare sedimentary,
then it is more likely low-velocityzone that will approximatethe craterarea,as
the gravity anomalymay fall below that predictedby the definedby the gravity and magneticanomalies.This zone
morphometric scaling relations. Considering crater will be characterizedby incoherentseismicreflections,
morphology,the currentdata basesuggeststhat for both with thedegreeof coherency
of thereflections
increasing
gravity and magnetic fields, the dominant effect of a away from and below the anomalousarea. If there arle
simple crater is a simple concentricanomaly low. For sufficient high-quality reflectors to resolve subsurface
complex craters the transitionfrom only a low to the structure,
suchasa centralareaof upliftedlithologies,
then
possiblepresenceof centralanomaliestakesplace in the the structuralelementsshouldconformto generalmor10-30 km diameterrangefor both typesof potentialfield phometricelementsof terrestrialcraters.For example,
data, with cratersof diameters> 30 km tendingto have anomalies with D > 4 km should show evidence of an area
central anomalies.Gravity central highs tend to rel'lect of uplift in the center,with the amountof uplift a known
denser rocks brought nearer the surface during the functionof D. Finally, a low-resistivityzone coincident
crateringprocess.This is alsoalmostcertainlythecasefor with the aboveanomaliesis expected.If theserequiremagneticdata observedover complexcratersin mixed mentsare satisfiedby the geophysicalobservations,
then
178 ß Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
29, 1 /REVIEWS OF GEOPHYSICS
the presenceof an impact structuremay be indicated. cumulatively,they will provide importantdata for the
Confirmationof an impactorigin for the structureproduc- recordof cratering.
ing the geophysicalanomalies,however,can only be
ACKNOWLEDGMENTS.
The authors thank Alan Goodacre
achieved through additional observationswhich are
and
Pierre
Keating
for
helpful
commentson an earlier versionof
geologicalin nature.
the
manuscript.
L.
Jansa
kindly
providedthe originalfigureof the
Fifty percentof theknowncratersin Commonwealth
of
Montagnaisstructure.Formalreviewsby S. Honjo, W. McKinIndependentStates are buried and were presumably
non, M. Neugebauer,and R. Phillipsare appreciated.
This work
detected
by geophysical
methods
andsubsequently
drilled.
is contribution
of theGeologicalSurveyof Canada28891.
Unfortunately,details of the geophysicaldata are not
H. J. Melosh was editor for this paper. He thankstechnical
available and could not be used here. Geophysical reviewersW. B. McKinnonandR. J. Phillips,andan anonymous
exploration
anddrillingfor economic
reasons
alsoleadsto crossdisciplinereviewerfor their assistance.
restricteddata.However,with a greaterappreciation
of the
REFERENCES
relevanceof impactin creatingstructures
with economic
potential,moreinformation
andinterpretation
is forthcomAaloe, A., A. Dabizha, B. Kamaukh, and V. Starobdubtsev,
ing. For example,Sawatzky[1977]listedsix structures
in
Geophysicalinvestigationson the main Kaali crater (in
the Williston basin,North America (Dumas,Eagle Butte,
Russian),Eesti NSV Tea& Akad. Tolim. Keem. Geol., 25,
Elbow Lake, Hartney,Red Wing, and Viewfield), which
58-65, 1976.
he considersto have geophysical(seismic) signatures Ackermann, H. D., R. H. Godson, and J. S. Watkins, A seismic
refraction techniqueused for subsurfaceinvestigationsat
consistent
with an impactorigin.Red Wing andViewfield
MeteorCrater,Arizona,J. Geophys.Res.,80, 765-775, 1975.
are activeoil producers,
while Red Wing andEagleButte Alvarez, L. W., W. Alvarez, F. Asaro, and H. V. Michel,
havebeenconfirmedas impactstructures
on the basisof
Extraterrestrial
causefor the Cretaceous/tertiary
extinction,
geologicaldata [Brenanet al., 1975;Ezeji-Okoye,1985].
Science, 208, 1095-1108, 1980.
Recently,threegeophysical
anomalies
potentiallyrelated Anderson,R. R., andJ. B. Hartung,The structuralconfiguration
of the Manson impact structure,Iowa, as interpretedfrom
to impactstructures
havebeenidentifiedthroughhydrocarseismicdata and confirmedby drill samples (abstract),in
bon explorationin the Cooper and EromangaBasins,
Australia [O'Neil, 1989].
The Pretoria Salt Pan, South Africa, was a well-known
Lunar PlanetScienceXXII, pp. 25-26, Lunarand Planetary
Institute, Houston, Tex., 1991.
Angenheister,G., and J. Pohl, Remanent magnetizationof
sueritefrom the Ries area(southernGermany),Z. Geophys.,
geophysical
anomaly,with a-5-mGal gravity anomaly
30, 258-259, 1964.
over a -1-km-diameter area, of suggestedimpact origin
Barlow,
B.C., Gravityinvestigations
of the GossesBluff impact
[Fudali et al., 1973], that hasrecentlybeenconfirmedby
structure, central Australia, Bur. Min. Res. J. Aust. Geol.
drilling[Reimoldet al., 1991]. Mostrecently,a ~ 180-kmGeophys.,4,323-339, 1979.
diametergeophysicalanomalyon the Yucatanpeninsula Basilevsky,A. T., B. A. Iranov, K. P. Florensky,O. I. Yakovlev,
V. I. Feldman,L. V. Granovsky,and M. A. Sandovsky,
[Penfieldand Camargo, 1981] has been identifiedas a
Impact Craters on the Moon and Planets (in Russian),200
buried impact crater [tlildebrand et al., 1991]. This
pp., Nauk, Moscow,1983.
structure,known as Chicxulub, is currently the most
Beals,C. S., A probable
meteoritecraterof Precambrian
ageat
promisingcandidatefor the site of the putativemajor
Holleford,Ontario,Publ. Dom. Obs.Ottawa,24, 117-142, 1960.
impacteventat the Cretaceous-Tertiary
boundarythat is Beals, C. S., M. J. S. Innes, and J. A. Rottenberg,Fossil
believedto haveresultedin a globalmassextinctionevent
meteoritecraters,in The Moon, Meteorites and Cornets,edited
by B. M. Middlehurst and G. P. Kuiper, pp. 235-284,
Universityof ChicagoPress,Chicago,II1., 1963.
Brenan,R. L., B. L. Peterson,andH. J. Smith,The originof Red
States,havegeophysical
(potentialfield) signatures
similar
Wing Creek structure:McKenzie County, North Dakota,
[Alvarez et al., 1980]. Other structures, such as the
~100-km-diameter Can-Am structure, Canada-United
to knowncraters[Forsythet al., 1990] but lack seismicor
drilling information. Some magnetic anomalies, as
detectedby Magsat, have been suggestedto be the
remnantsof Precambrianimpactbasinsin the 1000-kmsize range, for example, the Bangui anomaly, Africa
[Girdler et al., 1991], the SimpsonDesert, Australia
[ReimoldandDuane, 1991]. Althoughthesegeophysically
anomalousareas of the Earth's upper crust may have
associatedgeological anomalies, there is no direct
evidencethat theselargegeophysicalanomaliesare due to
impact. Nevertheless,many impact craters remain
undiscovered.
For example,it is estimatedthat only 20%
of the Phanerozoic-aged
impactcratersin Australiahave
been discovered[Shoemakerand Shoemaker,1988]. While
most individual discoveries of a new crater will not have
thepotentialsignificance
of a structuresuchas Chicxulub,
Earth Sci. Bull., 8, 1-41, 1975.
Brown, A. R., A detailedseismicstudyof GossesBluff, Northern
Territory, Rep. Bur. Miner. Res. Geol. Geophys.Aust., 163,
1-42, 1973.
Buschbach,
T. C., andR. Ryan,Ordovicianexplosionstructureat
Glasford,Illinois, Bull. Am. Assoc.Pet. Geol., 47, 2015-2022,
1963.
Bylund,G., Palaeomagnetism
of a probablemeteoriteimpact,the
Dellen structure, Geol. Fo. Stockholm Foh, 96, 275-278,
1974.
Chao, E. C. T., Pressureand temperaturehistoriesof impact
metamorphosed
rocks--based on petrographicobservations,
in ShockMetamorphism
of NaturalMaterials,editedby B. M.
French and N.M. Short, pp. 135-158, Mono Book, Baltimore, Md., 1968.
Cisowski, S. M., Paleomagnetismof Manson structurecores
inconsistentwith a K/T link (abstract), in Lunar Planet
ScienceXIX, pp. 188-189, Lunar and PlanetaryInstitute,
Houston,Tex., 1988.
30, 2 / REVIEWSOF GEOPHYSICS
Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
ß 179
Cisowski, S. M., and M. Fuller, The effect of shock on the
magnetism of terrestrial rocks, J. Geophys. Res., 83,
3441-3458, 1978.
Ernstson,
K., The structure
of the Ries craterfrom geoelectric
depthsoundings,
Z. Geophys.,
40, 639-659, 1974.
Ernstson,
K., A gravity-derived
modelfor the Steinheimimpact
crater, Geol Rundsch.,73, 483-498, 1984.
Clark, J. F., Geomagnetic
surveysat WestHawk Lake,Manitoba,
Canada, Can. Dep. Energy, Min. Resourc.Set., 20, 1-11,
Ernstson,K., and J. Pohl, Somecommentson the geophysical
1980.
logging measurementsin the Nordlingen 1973 research
borehole(in German),Geol. Bavarica, 72, 81-90, 1974.
Clark, J. F., Geomagneticsurveysat four Canadiancraters,Can.
Dep. Energy,Min. Resour.Geomagn.Rep.,81-1, 1-41, 1981. Ernstson,K., H. Feld, and J. Fiebag,Impacthypothesis
for the
Clark, J. F., Magneticsurveydata at meteoriticimpactsitesin
Azuara structure(Spain) strengthened
(abstract),Meteoritics,
22, 373, 1987.
North America, Geomagn.Serv. Can. Open File Rep., 83-5,
1-30, 1983.
Coles, R. L., and J. F. Clark, The centralmagneticanomaly,
Manicouagan structure, Quebec, J. Geophys. Res., 83,
2805-2808, 1978.
Ezeji-Okoye,S., The originof the EagleButtestructure,
Eagle
Butte, Alberta Canada, report, 75 pp., Pan Can. Petrol.,
Calgary,1985.
Feldman,V. I., A. I. Dabizha,andL. B. Granovsky,The Shunak
meteoritecrater(in Russian),Meteoritika, 38, 99-103, 1979.
Coles,R. L., and J. F. Clark, Lake St. Martin impactstructure,
Manitoba,Canada:Magneticanomaliesandmagnetizations,
J. Feldman, V. I., L. V. Sazonova, Yu. V. Mironov, I. 13.
Geophys.
Res.,87, 7087-7095, 1982.
Kapustkina,B. A. Ivanov, and O. Yu. Schmidt, Circular
Comer,B., R. J. Durrheim,and L. O. Nicolaysen,Relationships
structureLoganchaas possiblemeteoritecraterin basaltsof
between the Vredefort structure and the Witwatersrand basin
the Tunguskasyneclise(abstract),in Lunar Planet Science
within the tectonic frameworkof the Kaapvaal craton as
XIV, pp. 191-192, Lunar and PlanetaryInstitute,Houston,
Tex., 1983.
interpretedfrom regional gravity and aeromagneticdata,
Florenskii,P. V., A. I. Dabizha, A. O. Aaloe, E. S. 13orshkov,
Tectonophysics,
171, 49-61, 1990.
Currie,K. L., Geologicalnoteson the Carswellcircularstructure,
and V. I. Miklyayev,Geologic-geophysical
characteristics
of
Saskatchewan
(74K), Pap. Geol. Surv. Can., 67-32, 60 pp.,
the Zhamanshin meteoritecrater (in Russian),Meteoritika,
1969.
38, 86-97, 1979.
Currie, K. L., and A. Larochelie,A palcomagneticstudy of
Forsyth,D. A., M. Pilkington,R. A. F. Grieve,andD. Abinett,A
volcanic rocks from Mistastin Lake, Labrador, Canada, Earth
major circular structurebeneathsouthernLake Huron from
Planet. Sci. Lett., 6, 309-315, 1969.
potentialfield data,Geology,18, 773-777, 1990.
Dabizha,A. I., and V. V. Fedynsky,The Earth's"star wounds" Fox, J. H., Geophysicalinvestigationof the Crooked Creek,
and their diagnosisby geophysicalmethods(in Russian),
Missouri, cryptoexplosionstructure (abstract), Eos Trans.
AGU, 51,770, 1970.
ZamlyaVselennaya,
3, 56-64, 1975.
Dabizha,A. I., andV. V. Fedynsky,Featuresof thegravitational Fudali, R. F., Roter Kamm: Evidencefor an impactorigin,
field of astroblemes(in Russian), Meteoritika, 36, 113-120,
1977.
Dabizha,A. I., and V. I. Feldman,The geophysical
propertiesof
some astroblemesin the USSR (in Russian),Meteoritika, 40,
91-101, 1982.
Meteoritics, 8, 245-257, 1973.
Fudali, R. F., Gravity investigationof Wolf Creek crater,
Western Australia,J. Geol. 87, 55-67, 1979.
Fudali,R. F., andW. A. Cassidy,Gravityreconnaissance
at three
Mauritaniancratersof explosiveorigin,Meteoritics,7, 51-70,
1972.
Dence,M. R., The natureand significanceof terrestrialimpact
structures,
24thInt. Geol.Congr.,77-89, 1972.
Fudali,R. F., D. P. Gold, andJ. J. Gumey,The PretoriaSaltPan:
Astroblemeor cryptovolcano?,
J. Geol., 81,495-507, 1973.
Dence,M. R., and J. Popelar,Evidencefor an impactoriginfor
Lake Wanapitei, Ontario, New Developmentsin Sudbury Fudali, R. F., D. J. Milton, K. Fredericksson,and A. Dube,
Geology,editedby J. V. Guy-Bray,Geol.Assoc.,Spec.Pap.,
Morphology of Lonar crater, India: Comparisonsand
I0, 117-124, 1972.
implications,Moon Planets,23,493-515, 1980.
Dence,M. R., M. Innes,and P. B. Robertson,Recentgeological Gardner,G. H. F., L. W. Gardner,andA. R. Gregory,Formation
and geophysical studies of Canadian craters, in Shock
velocityanddensityraThediagnostic
basesfor stratigraphic
Metamorphismof Natural Materials, editedby B. M. French
traps,Geophysics,
39, 770-780, 1974.
and N.M. Short,pp. 339-362, Mono Book, Baltimore,Md., Girdler,R. W., P.T. Taylor,andJ. J. Frawley,Continental
satellite
1968.
magnetic anomaliesand large impacts (abstract),paper
Dent,B. E., Studiesof largeimpactcraters,Ph.D.thesis,109 pp.,
presented
atIUGG 20thGeneralAssembly,
Vienna,1991.
Stanford Univ., Stanford,Calif., 1973.
Grant, F. S., Aeromagnetics,
geologyand ore environments,
1,
Dyrelius, D., The gravity field of the Siljan ring structure,in
Magnetitein igneous,
sedimentary
andmetamorphic
rocks:An
Deep Drilling in CrystallineBedrock,vol. 1, The Deep Gas
overview,Geoexploration,
23, 303-333, 1985.
Drilling in the Siljan Impact Structure, Sweden and Green,R. W., and P. Chetty,Seismicrefractionstudiesin the
Astroblemes,edited by A. Boden and K. G. Eriksson,pp.
basementof the Vredefortstructure,Tectonophysics,
171,
105-113, 1990.
85-94, Springer-Verlag,
New York, 1988.
Elming, S.-A., and G. Bylund, Palaeomagnetism
and the Siljan Grieve, R. A. F., The formationof large impactstructures
and
impact structure,central Sweden, Geophys.J. Int., 105,
constraints
on the nature of Siljan, in Deep Drilling in
757-770, 1991.
CrystallineBedrock,vol. 1, The Deep Gas Drilling in the
Elo, S., A study of the gravity anomalyassociatedwith Lake
SiljanImpactStructure,Swedenand Astroblemes,
editedby
Lappaj'firvi,Finland,Rep. Geol. Surv. Finland, Q20/21/1976/
A. BodenandK. G. Eriksson,
pp. 328-348, Springer-Verlag,
New York, 1988.
2, 20 pp., 1976.
Elo, S., T. Jokinen,and H. Soininen,Geophysicalinvestigations Grieve, R. A. F., Terrestrialimpact:The record in the rocks,
Meteoritics, 26, 175-194, 1991.
of Lake Lappaj'firvi impact structure, western Finland
(abstract), Prog. Abstracts Geol. Surv. Finland, Fennos- Grieve,R. A. F., andM. J. Cintala,Differentialscalingof crater
candianImpactStructures,
21, 1990a.
parameters:
Implicationsfor the observedterrestrialrecord,in
Elo, S., L. Kivekas,H. Kujala,S. I. Lahti, andP. Pihlaja,Recent
LunarPlanetScience
XXll, pp.493-494, LunarandPlanetary
Institute, Houston, Tex., 1991.
studiesof Lake S•i'fi_ksj:,irvi
meteoriteimpact crater, southwestern Finland (abstract), Prog. Abstracts Geol. Surv. Grieve,R. A. F., and L. J. Pesonen,
The terrestrialimpact
Finland,Fennoscandian
ImpactStructure,44, 1990b.
crateringrecord,Tectonophysics,
in press,1992.
180 ß Pilkington
andGrieve:SIGNATURE
OF TERRESTRIAL
IMPACTCRATERS
29, 1! REVIEWS
OF GEOPHYSICS
Grieve, R. A. F., and P. B. Robertson,The terrestrialcratering Langan,R. T., Structuralanalysisof theregionnearDes Plaines,
record, 1, Current statusof observations,Icarus, 38, 212-229,
Illinois using geophysicalmethods,M.S. thesis,54 pp.,
NorthwesternUniv., Evanston,I11.,1974.
1979.
Grieve, R. A. F., P. B. Robertson,and M. R. Dence, Constraints
Larochelie,A., andK. L. Curtie,Paleomagnetic
studyof igneous
on the formationof ring impactstructures,
basedon terrestrial
rocksfrom the Manicouagan
structure,Quebec,J. Geophys.
Res., 72, 4163-4169, 1967.
data, in Multi-Ring Basins,Proceedingsof the Lunar Planet
Science,vol. 12A, editedby P. H. Schultzand R. B. Merrill, Lauren,L., J. Lehtovaara,R. Bostrom,and R. Tynni, On the
geologyof the circulardepression
at S6derfj'•xden,
western
pp. 37-57, Pergamon,New York, 1981.
Finland, Bull. Geol. Surv. Fin., 297, 1-38, 1978.
Grieve,R. A. F., J. B. Garyin,J. M. Coderre,andJ. Rupert,Test
of a geometricmodel for the modificationstageof simple Lyons,J. A., D. A. Forsyth,andJ. A. Mair, Crustalstudiesin the
La Malbaie region,Quebec,Can. J. Earth Sci., 17, 478-490,
impactcraterdevelopment,
Meteoritics,24, 83-88, 1989.
1980.
Gupta,V. K., F. S. Grant,andK. D. Card,Gravityandmagnetic
characteristics
of theSudburystructure,
The GeologyandOre Mareschal,M., andM. Chouteau,A magnetotelluric
investiga-
Depositsof the SudburyStructure,editedby E.G. Pye et al.,
Geol. Surv. Ont., 1,381-410,
1984.
Gurov, E. P., and E. P. Gutova, Someregularitiesof the area
spreading
of fracturesaroundEl'gygytgyncrater(abstract),in
Lunar and Planetary ScienceXIII, pp. 291-292, Lunar and
PlanetaryInstitute,Houston,Tex., 1982.
Halliday, I., and A. A. Griffin, Evidence in supportof a
meteoriticorigin for West Hawk Lake, Manitoba,Canada,J.
Geophys.Res.,68, 5297-5305, 1963.
Halls, H. C., The SlateIslandsmeteoriteimpactsite:A studyof
shockremanentmagnetization,Geophys.J. R. Astron.Soc.,
59, 553-591, 1979.
Hargraves,R. B., andW. E. Perkins,Investigations
of the effect
of shockon naturalreinanentmagnetism,J. Geophys.Res.,
74, 2576-2589, 1969.
tion of the structuralgeology beneath Charlevoix Crater,
Quebec,Phys.Earth.Planet.lnt., 60, 120-131, 1990.
Masaitis,V. L., M. V. Mikhailov,andT. V. Selivanovskaya,
The
PopigayMeteorite Crater (in Russian),124 pp., Nauka,
Moscow, 1975.
Maslov, M. A., On the origin of the Kara depression(in
Russian),Meteoritika, 36, 123-130, 1977.
Melosh,H. J., ImpactCratering:A GeologicProcess,245 pp.,
OxfordUniversityPress,New York, 1989.
Millman,P.M., B. A. Liberty,J. F. Clark, P. Willmore,andM. J.
S. Innes, The Brent crater,Publ. Dom. Obs. Ottawa, 24, 1-43,
1960.
Offield, T. W., and H. A. Pohn, Geologyof the Decaturville
impactstructure,
Missouri,U.S. Geol.Surv.Prof. Pap., 1042,
1-48, 1979.
Hartung, J. B., M. J. Kunk, and R. R. Anderson,Geology, O'Neil, B. J., (Ed.), The Cooper and Eromanga Basins,
geophysics,and geochronologyof the Manson impact
Australia,Proceedings
of PetrologyExplorationSocietyof
structure,Global Catastrophes
in Earth History, editedby V.
Australia,Soc.of PetrologyEngineers,AustralianSocietyof
ExplorationGeophysics,
Adelaide,1989.
L. Sharptonand P. D. Ward, Geol. Soc.Am. Spec.Pap., 247,
207-221, 1990.
Pedersen,
L. B., T. M. Rasmussen,
andD. Dyrelius,Construction
Henkel, H., The Lake Mien structure,Sver. Geol. Unders., Ser.
of component
mapsfrom aeromagnetic
total field anomaly
maps,Geophys.Prospect.,38, 795-804, 1990.
C, NFR 2638-3, 7 pp., 1982.
Henkel, H., andM. Guzman,Magneticfeaturesof fracturezones, Penfield,G. T., and A. CamargoZ., Definitionof a major
Geoexploration,15, 173-181, 1977.
igneouszonein the centralYucUtanplatformwith aeromagHildebrand,A. R., G. T. Penfield,D. A. Kring,M. Pilkington,A.
netics and gravity (abstrac0,paper presentedat Technical
CamargoZ., S. B. Jacobsen,and W. V. Boynton,Chicxulub
Program,AbstractsandBibliographies
51st AnnualMeeting
Soc.Explor.Geophys.1981.
crater:A possibleCretaceous-Tertiary
boundaryimpactcrater
on the Yucutan peninsula,Mexico, Geology, 19, 867-871,
Perrier,R. and J. Quiblier,Thicknesschangesin sedimentary
1991.
layersduringcompactionhistory:Methodsfor quantitative
Innes, M. J. S., Recent advances in meteorite crater research at
the Dominion Observatory,Ottawa, Canada,Meteoritics,2,
219-241, 1964.
Innes,M. J. S., W. J. Pearson,and J. W. Geuer,The Deep Bay
crater, Publ. Dom. Obs. Ottawa, 31, 19-52, 1964.
evaluation,Am. Assoc.Pet. Geol. Bull., 58,507-528,
1974.
Pesonen,L. J., and N. Marcos,Palaeomagnetism
of the Lake
Lappaj},irvi
impactstructure,central-westFinland (abstract),
Prog.AbstractsGeol.Surv.Finland, Fennoscandian
Impact
Structures,26, 1990.
Iseri, D. A., J. W. Geissman,H. E. Newsom, and G. Graup, Pike, R. J., Controlof cratermorphology
by gravityandtarget
Paleomagneticand rock magneticexaminationof the natural
type:Mars,Earth,Moon,Proc.Lunar Planet.Sci. Conf.11th,
2159-2189, 1980.
remanentmagnetizationof suerite depositsat Ries crater,
West Germany(abstract),Meteoritics,24, 280, 1989.
Pilon,J. A., R. A. F. Grieve,andV. L. Sharpton,The subsurface
Jansa,L. F., G. Pe-Piper,P. B. Robertson,and O. Freidenreich,
character
of MeteorCrater,Arizona,asdetermined
by ground
probingradar,J. Geophys.Res.,96, 15,563-15,576, 1991.
Montagnais:A submarineimpact structureon the Scotian
Shell eastern Canada, Geol. Soc. Am. Bull., 101, 450-463,
1989.
Plante,L., M.-K. Seguin,andJ. Rondot,Etudegravimetrique
des
astroblemesdu Lac a l'Eau Claire, Nouveau-Quebec(in
French),Geoexploration,
26, 303-323, 1990.
Joesting,H. R., and D. Plouff, Geophysicalstudiesof the
Upheaval Dome area, San Juan County, Utah, lnt. Assoc. Pohl,J., On theoriginof themagnetization
of impactbrecciason
Petrol. Geol.Annu.Field Conf.Guideb.,9, 86-92, 1958.
Earth,Z. Geophys.,
37, 549-555, 1971.
Jones, W. B., M. Bacon, and D. A. Hastings,The Lake Pohl, J., and H. Soffel,Paleomagnetic
age determination
of the
Bosumtwi impact crater, Ghana, Geol. Soc. Am. Bull., 92,
Rochechouart
impact structure(France), Z. Geophys.,37,
342-349, 1981.
857-866, 1971.
Juhlin,C., and L. B. Pedersen,Reflectionseismicinvestigations Pohl, J., and M. Will, Comparisonbetweenvelocitymeasureof the Siljan impactstructure,Sweden,J. Geophys.Res.,92,
mentsfrom researchboreholdN6rdlingen1973 with seismic
14,113-14,122, 1987.
depths inside and outside of Ries (in German), Geol.
Bavarica, 72, 75-80, 1974.
Kumar, A., andJ. H. Ward, The effectof explosiveshockon the
susceptibilityof magnetitegrout mixture, Rep. Mr-63-10, 8 Pohl,J., U. Bleil, andU. Homemann,Shockmagnetization
and
pp., Univ. of Calif., 1963.
demagnetization
of basaltby transientstressup to 10 kbar,J.
Kuster, G. T., and M. N. Toksoz, Velocity and attenuationof
Geophys.,
41, 23-41, 1975.
seismic waves in two-phasemedia, Part II, Experimental Pohl,J., D. Stoffier,H. Gall, andK. Emston,The Riesimpact
results,Geophysics,
39, 607-618, 1974.
crater,in Impactand ExplosionCratering,editedby D. J.
30, 2 / REVIEWS
OF GEOPHYSICS
Pilkington
andGrieve:SIGNATUREOF TERRESTRIAL
IMPACTCRATERS
ß 181
Short,N.M., A comparison
of featurescharacteristic
of nuclear
Roddyet at.,pp. 343-404, Pergamon,
New York, 1977.
explosioncratersand astroblemes,
Ann. N.Y. Acad. Sci., 123,
Pohl, J., K. Ernstson,and P. Lambert,Gravity measurements
in
573-616, 1965.
the Rochechouart impact structure (France) (abstract),
Meteoritics, 13, 601-604, 1978.
Slawson,W. F., Vredefortcore: A cross-section
of the upper
crust?,Geochim. Cosmochim.Acta, 40, 117-121, 1976.
Pohl, J., A. Eckstaller, and P. B. Robertson, Gravity and
magneticinvestigations
in the Haughtonimpact structure, Smith,T. A., and L. V. A. Sendlein,Geophysicalstudyof the
Devon Island, Canada,Meteoritics, 23, 235-238, 1988.
Manson impact crater (abstract), Eos Trans. AGU, 52,
264-265, 1971.
Popelar,J., Gravity interpretationof the Sudburyarea, New
formation
developments
in Sudburygeology,editedby J. V. Guy-Bray, Stanfors,R., The Mien stmcture--A cryptoexplosion
Geol.Assoc.Can., Spec.Pap., 10, 103-111, 1972.
in the Fennoscandian
basement,Ph.D. thesis,144 pp., Lunds
Univ. Geol. Inst. Lund, Sweden, 1973.
Regan,R. D. and W. J. Hinze, Gravity andmagneticinvestigations of Meteor crater, Arizona, J. Geophys.Res., 80, Stearns,R. G., C. W. Wilson, Jr., H. A. Tiedemann, J. T. Wilcox,
776-788, 1975.
Reimold, W. U., and M. J. Duane, Discussionfor the criteria for
and P.S. Marsh, The Wells Creek structure,Tennessee,in
ShockMetamorphismof Natural Materials, editedby B. M.
French and N.M. Short, pp. 323-337, Mono Book, Bal-
recognition
of multiringimpactbasins--withreferenceto the
timore, Md., 1968.
Simpsondesertdepression
andthe Vredefortdome(abstract),
in Lunar and PlanetaryScienceXXII, pp. 1115-1116, Lunar Steinemann,
C. F., A gravitystudyof the MiddlesborocrypandPlanetaryInstitute,Houston,Tex., 1991.
toexplosivestructure,M. S. thesis,41 pp., Univ. of Ky,
Lexington,1980.
Reimold,W. U., C. Koeberl,S. J. Kerr, andT. C. Partridge,The
PretoriaSalt Pan--The first firm evidencefor an origin by Sweeney,J. F., Gravitystudyof greatimpact,J. Geophys.
Res.,
83, 2809-2815, 1978.
impact(abstract),in Lunar and PlanetaryScienceXXII, pp.
1117-1118, Lunar and Planetary Institute, Houston, Tex., Thomas,M.D., and M. J. S. Innes,The Gow Lake impact
structure, northern Saskatchewan, Can. J. Earth Sci., 14,
1991.
1788-1795, 1977.
Robertson,P. B., and J. L. Roy, Shock-diminishing
paleomagnetic remanenceat the Charlevoiximpactstructure,Quebec, Thomas,M.D., D. H. Halliday, and R. Stephenson,
Gravity
Can. J. Earth Sci., 16, 1842-1856, 1979.
anomaliesand geologicalstructurein northernLabradorand
Robertson,W. A., Manicouagan,Quebec,paleomagnetic
results,
northeastern
Quebec,EarthPhys.Branch,Can.,GravityMap
Can. J. Earth Sci., 4, 641-649, 1967.
Ser., 157-161, 1-38, 1978.
Roddy, D. J., Pre-impactconditionsand crateringprocesses
at Tudor, D. S., A geophysicalstudyof the Kentlanddisturbedarea,
the Flynn Creek crater,Tennessee,in Impact and Explosion
Ph.D.thesis,111pp.,IndianaUniv., Bloomington,1971.
Cratering, edited by D. J. Roddy et at., pp. 277-308,
Van Lopik, J. R., and R. A. Geyer, Gravity and magnetic
anomaliesof the Sierra Madera, Texas, "Dome," Science, 142,
Pergamon,New York, 1977.
Sander, G. W., A. Overton, and R. Bataille, Seismic and
magneticinvestigationof the Deep Bay crater,J. R. Astron.
Soc. Can., 58, 16-30, 1963.
45-47, 1963.
Vishevsky, S. A., and V. N. Lagutenko,The Ragozinka
astrobleme:
An Eocenecraterin the centralUrals (in Russian),
Akad. Nauk, SSœ,14, 1-42, 1986.
Sappenfield,L. W., A magneticsurveyof the AdamsCounty
cryptovolcanicstructure,M.S. thesis, 27 pp., Univ. of Wasilewski, P. J., Shock remagnetizationassociatedwith
Cincinnati, Cincinnati, Ohio, 1950.
meteoriteimpact at planetarysurfaces,Moon, 6, 264-291,
1973.
Sawatzky,H. B., Two probablelate Cretaceousastroblemesin
western Canada--Eagle Butte, Alberta and Dumas, Sas- Wickman,F. E., Possibleimpactstructures
in Sweden,in Deep
katchewan,Geophysics,
41, 1261-1271, 1976.
Drilling in CrystallineBedrock,vol. 1, TheDeepGasDrilling
Sawatzky,H. B., Buried impactcratersin the Williston Basin
in the Siljan Impact Structure, Sweden and Astroblemes,
and adjacentareas,in Impactand ExplosionCratering,edited
edited by A. Boden and K. G. Eriksson,pp. 298-327,
Springer-Verlag,New York, 1988.
by D. J. Roddy et al., pp. 461-480, Pergamon,New York,
1977.
Williams,G. E., The Acramanimpactstructure,SouthAustralia
Schultz,P. H., and R. B. Merrill, (Eds.), Multi-Ring Basins,295
(abstract),InternationalWorkshopMeteoriteImpacton Early
Earth, Perth, Australia, Lunar Planet Inst. Contrib., 746,
pp., Pergamon,New York, 1981.
Scott, D., and Z. Hajnal, Seismic signatureof the Haughton
structure, Meteoritics, 23,239-247,
1988.
Shoemaker,E. M., Why study impact craters?,in Impact and
ExplosionCratering,editedby D. J. Roddyet al., pp. 1-10,
Pergamon,New York, 1977.
Shoemaker,E. M., and C. S. Shoemaker,Impact structuresof
Australia, (abstract), in Lunar Planet Science XIX, pp.
1079-1080, Lunar and PlanetaryInstitute, Houston,Tex.,
1988.
Shoemaker,E. M., C. S. Shoemaker,and J. B. Plescia,Gravity
investigationof the Connollybasinimpactstructure,Western
Australia (abstract), in Lunar Planet Science XX, pp.
1010-1011, Lunar and PlanetaryInstitute, Houston,Tex.,
1989.
60-61, 1990.
Wilson, C. W., Jr., and R. G. Stearns,Geologyof the Wells
Creek structure,Tennessee,Bull. Tenn. Div. Geol. 68, 1-236,
1968.
Young,G. A., Gosses
Bluff airbornemagneticsurvey,Geophys.
Prospect.,20, 83-91, 1972.
Zhang, P., T. M. Rasmussen,and L. B. Pedersen,Electric
resistivitystructure
of the Siljan impactregion,J. Geophys.
Res., 93, 6485-6501, 1988.
R. A. F. Grieveand M. Pilkington,
Geophysics
Division,
GeologicalSurveyof Canada,Ottawa,Canada,K1A0Y3.