Academia.eduAcademia.edu

Research at Mechanical Systems

AI-generated Abstract

The research investigates the global sensitivity analysis (GSA) of Dual Mass Flywheels (DMF) in heavy-duty truck drivetrain systems. It examines the optimization of design parameters such as mass inertia, stiffness, and damping to enhance the attenuation of oscillations and energy efficiency while addressing the trade-offs between torque oscillation suppression and overall weight. The findings demonstrate the implications of optimized DMF designs for improved performance in reducing vibrations and stresses, making potential applications in practical systems more feasible.

Research at Mechanical Systems Group Viktor BERBYUK Full Professor, Chair of Mechanical Systems Division of Dynamics Department of Mechanics and Maritime Sciences Chalmers University of Technology SE-412 96, Gothenburg, SWEDEN Phone: +46-31-772 1516 E-mail: viktor.berbyuk@chalmers.se http://www.chalmers.se https://www.chalmers.se/en/staff/Pages/viktor-berbyuk.aspx ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Viktor Berbyuk Full Professor, Chair of Mechanical Systems Education: 1970-1978 Lomonosov Moscow State University MSc-1975; PhD-1978, Dr Sci; Professor – 1991 Job: 1978 – 2001 National Academy of Sciences of Ukraine Lviv, UKRAINE Senior Researcher, Professor Head of the Lab, Head of the Department Job: 2001Chalmers University of Technology Göteborg, SWEDEN Full Professor in Mechanical Systems ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics CHALMERS William Chalmers (1748–1811) was a Swedish trader. He was born in Gothenburg as the son of the Scottish trader, William Chalmers, Sr., and his Swedish wife, Inga Orre. He became a director of the Swedish East India Company. He died in Gothenburg leaving in his will the bequest for an “Industrial School”, which in 1829 became what today is named the Chalmers University of Technology. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics CHALMERS Sweden Göteborg …situated on the buatifull west coast of Sweden …with two pleasant campuses …in the center of the Göteborg (Gothenburg) ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Active mounting system High speed train bogie system Transmission systems Adaptronic suspensions Power transmission and system optimization Magnetostrictive Sensors and Actuators • DYNAMICS, CONTROL AND PARETO OPTIMIZATION OF ENGINEERING SYSTEMS •VIBRATION DYNAMICS AND CONTROL, SMART STRUCTURES •ACTIVE SUSPENSIONS, ACTIVE TECHNOLOGY • GROUND VEHICLES SAFETY, COMFORT AND ENERGY EFFICIENCY •WIND POWER SYSTEMS, OPTIMAL POWER TRANSMISSION Washing machine smart suspension •POWER HARVESTING FROM VIBRATIONS Robotics Professor Viktor Berbyuk, e-mail: viktor.berbyuk@chalmers.se ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Research Areas at Mechanical Systems Group • • • • Modelling, dynamics, control and Pareto optimization of engineering systems Multibody systems dynamics and control, multi-disciplinary modelling, vibration control, global sensitivity analysis and multi-objective design optimization with applications in vehicle dynamics, machine design, wind power systems, condition monitoring systems, robotics, biomechanics and active technology. Transport Active vibration control, adaptive and active suspensions and mounting systems imbedded into vehicles, machines and mechanisms to enhance safety, comfort and energy efficiency. Energy Energy-optimal control of dynamical systems, optimal power transmission systems, wind power systems, power harvesting from vibration for selfpowered sensor clusters and condition monitoring. Robotics and Bioengineering Parallel robots, locomotion systems, intelligent prostheses ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Systems, Methodolody, Methods and Tools at the Mechanical Systems Group ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Systems: Multibody Systems S F u A S S A S S A ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Systems: Smart Suspensions ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Systems: Smart Engine Mounts Active Engine Mounting System Semi-Active EMS ER/MR fluids dampers ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Systems: Nacelles of Wind Turbines 1 pitch drive; 2 main bearing; 3 main shaft; 4 gearbox; 5 brake disk; 6 generator; 7 nacelle enclosure; 8 bed plate; 9 coupling; 10 yaw bearing; 11 tower; 12 yaw drives; 13 rotor hub ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Systems: Vibrating hand-held machines Lindell, H., (2017), Attenuation of hand-held machine vibrations, Lic. Eng. thesis, CHALMERS, http://publications.lib.chalmers.se/records/fulltext/253449/253449.pdf Mamontov, E., and V. Berbyuk, (2017), Propagation of acoustic waves caused by the accelerations of vibrating hand-held tools in viscoelastic soft tissues of human hands and a mechanobiological picture for the related injuries, Journal of Applied Mathematics and Physics, Vol. 5, p. 1997-2043, https://doi.org/10.4236/jamp.2017.510169 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Systems: Vehicle Drivelines Power Transmission Systems Vehicle Complete Driveline Model consists of several models, representing the different components in the vehicle: engine, ECU, engine mounts, flywheel, clutch, gearbox, differential, shafts, wheels. AMESim, MSC.Software/ADAMS, SIMPACK, Matlab/Simulink, others. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methodology: Towards Adaptronic Mechanical Systems Mechanical System + A F S u S S Mechatronics + Smart, multifunctional materials S A Sensors, actuators, controller A Material mechanics + trade-off solutions A S Pareto Optimality = Minimal upgrading with maximum efficiency Adaptronic Mechanical System ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methodology: Smart Materials Technology ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methodology: Smart Materials Technology ADAPTRONICS SENSORS Vibration to Electric Energy Conversion Structural Health Monitoring ACTUATORS Active Vibration Control ΔE e f f e c t Main Battery Buffer Storage Modelling, Design, Integration, Optimization ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methodology: Models’ Validation ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methodology: Experiment High speed shaft subsystem of a drive train SKF WindCon3.0 Couplings SKF KD (left) and Lovejoy (right) Tip deflection response for different motor speed ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methods and Tools Hierarchical Multibody System Modelling Pure torsional models Flexible multibody system models Rigid multibody system models Wind turbine system simulation ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methods and Tools: MBS Dynamics Formalism • Model A(y ) y + B(y, y ) = u(t ) T • Constraints Φ(r, t ) = 0 [Φ1 (r, t ),, Φ m (r, t )] = Φ r r = −[(Φ r r ) r r + 2Φ rt r + Φ tt ] ≡ γ Mr + Φ rT λ = F A M Φ Tλ  r  F A     =   Φ r 0  λ   γ  ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methods and Tools: MBS Optimization Formalism • Model M Φ Tλ  r  F A     =   Φ r 0  λ   γ  • Boundary Conditions G (r (0),0, r (T ), T ) = 0 • Constraints Φ (r, t ) = 0 [Φ1 (r, t ),, Φ m (r, t )] = T T • Cost Function J (r (t ), F A (t )) = ∫ f (r (t ), F A (t ), t )dt 0 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methods and Tools Optimal Design of Engineering Systems Pareto Optimization Given a vector of objective functions F = [ F1 ,..., Fm ]T . It is required to determine the vectors of design parameters, d*∈D , which are the solutions of the system of variational equations: Fi (x, d* , s, u) min = i 1,..., m , d∈Ω Fi ( x, d, s, u ), subject to the differential constraints, restrictions and the boundaries conditions  x f= (t , x, d, s, u ), x(0) d ∈ Ω, s ∈ S, u ∈ U, x0 , t ∈ [0, T ] Mousavi Bideleh S.M., Berbyuk V., (2019), Pareto Optimization of a Nonlinear Tuned Mass Damper to Control Vibrations in Hand Held Impact Machines, Nonlinear Dynamics, Volume 1, pp. 27-44, Springer, Cham, ISBN: 978-3-319-74280-9, https://doi.org/10.1007/978-3-319-74280-9_4 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methods and Tools Pareto Front and Pareto Set ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methods and Tools Global Sensitivity Analysis As a preliminary stage in multi-objective optimization of the design of engineering systems, it is recommended to carry out a global sensitivity analysis, enabling appropriate scanning of the domain of design parameters by varying of all the parameters at the same time. This makes it possible to provide deep insight into design process, narrow down the number of inputs and increase the computational efficiency of optimization. Saltelli, A. et al., Sensitivity analysis practice: Strategies for model-based inference, Reliability Engineering and System Safety, 2006, 91: 1109-1125. Mousavi Bideleh, M.S. and V. Berbyuk, (2016), Global sensitivity analysis of bogie dynamics with respect to suspension components, Multibody System Dynamics, Vol. 37, No. 2, pp. 145-174, http://dx.doi.org/10.1007/s11044-015-9497-0 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Global Sensitivity Analysis Zhang, X. and Pandey, M.D., An effective approximation for variance-based global sensitivity analysis, Reliability Engineering and System Safety, 2014, 121: pp. 164-174. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Methods and Tools SAMO* SAMO stands for Sensitivity Analysis and Multiobjective Optimization – a computer code developed at the Mechanical Systems at CHALMERS to carry out a computationally efficient global sensitivity analysis and Pareto optimization problems solution for engineering systems. *Seyed Milad Mousavi Bideleh and Viktor Berbyuk: A computer code for sensitivity analysis and multiobjective optimization: SAMO Tutorial, Research Report 2017:01, Chalmers University of Technology, Mechanics and Maritime Sciences, Gothenburg, 45 pp; http://publications.lib.chalmers.se/records/fulltext/249594/local_249594.pdf . ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Selected projects at the Mechanical Systems Group ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics A generic drivetrain system (DTS) with torsional vibration absorber (TVA) Dual Mass Flywheel (DMF) ? Berbyuk, V., (2019), Vibration, 2(3), https://doi.org/10.3390/vibration2030015 Berbyuk, V., (2020), IAVSD 2019, https://doi.org/10.1007/978-3-030-38077-9_180 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Global Sensitivity Analysys of the DTS with DMF 𝒅𝒅 = ∗ ∗ ∗ ∗ 𝑻𝑻 𝒌𝒌𝟏𝟏 , 𝒄𝒄𝟏𝟏 , 𝑱𝑱𝒑𝒑 , 𝑱𝑱𝒔𝒔 F1[q(t ), d] = std (Tg [q(t ), d]), F2 [q(t ), d] = std (T f [q(t ), d]), = F3[q(t ), d] std (ϕ p [q(t ), d] − ϕ s [q(t ), d]), F4 [q(t ), d] = peak _ peak (Tg [q(t ), d]) F5 [q(t ), d] = peak _ peak (T f [q(t ), d]) = F6 [q(t ), d] peak _ peak (ϕ p [q(t ), d] − ϕ s [q(t ), d]) GSA of DTS with DMF, ne=1600 rpm ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Pareto optimization of the DTS with DMF d e ∈ Ωe , dg ∈ Ωg } [k1* , c1* , = J *p , J s* ]T ?,= q(t ) q* (t ), d* ∈ Ω OS {Te (t , d e ), d Tg (t , d g ), t ∈ [t0 , t f ],  min{std (T f [q(t ), d])} = std (T f [q (t ), d ])  d∈Ω  * * = min{ std ( T [ q ( t ), d ])} std ( T [ q ( t ), d ])  g g  d∈Ω * * ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Pareto fronts of the DTS with DMF Pareto fronts, DTS with DMF Pareto fronts-zoomed, DTS with DMF ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Drivetrain system with Pareto optimized DMF Input torques for engine speeds 800 rpm and 1400 rpm. The torques at the transmission input shaft for the nominal and Pareto optimized DMF. Nom T 2 2 T = d DMF [k= , c , J , J ] [ 12732 Nm / rad ,30 N ms / rad ,1.8 kgm , 0.9 k gm ] p s 1 1 * * * * T = d*800 rpm [k= , c , J , J [10501, p s] 1 1 51 , 3.6, 0.1]T ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Pareto optimization of the DTS with DMF having tuned mass damper (TMD) OS {Te (t , d e ), Tg (t , d g ), t ∈ [t0 , t f ], d e ∈ Ωe , dg ∈ Ωg } d [k , c , J , J , k ,= J , c ] ?,= q(t ) q (t ), * 1 * 1 * p * s * 0 * 0 * T 0 * d ∈Ω * min{std (T f [q(t ), d])} = std (T f [q* (t ), d* ])  d∈Ω  * * min{std (Tg [q(t ), d])} = std (Tg [q (t ), d ])   d∈Ω ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Pareto fronts, DTS with DMF having TMD Pareto fronts for the drivetrain system equipped with a DMF having TMD. Torques at transmission input shaft with optimized DMF and DMF having TMD. Nom T = d DMF [k= , c , J , J ] [12732, 1 1 p s d*TMD1200 rpm * * * * * * * T [k= [10876, 1 , c1 , J p , J s , k0 , J 0 , c0 ] 92, 30 , 2.8, 1.8, 0.8, 0.9]T 7941, 0.06, 0.07]T ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design Optimization in the Operating Engine Speed Range 2000 F1 (d) = ∫ std (Tg [q(t ), d, ne ])dne , F2 (d) 600 2000 ∫ std (T f [q(t ), d, ne ])dne 600 2000 2000  * * min{ std ( T [ q ( t ), d , n ]) dn } std ( T [ q ( t ), d , ne ])dne =  d∈Ω ∫ g e e g ∫  600 600  2000 2000 min{ std (T [q(t ), d, n ])dn } = * * std ( T [ q ( t ), d , ne ])dne f e e f ∫  d∈Ω ∫ 600 600  = d [k1* , c1* , = J *p , J s* ]T ?,= q(t ) q* (t ), d* ∈ Ω ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Optimized TVAs for Engine Speed Range Standard deviation of the torques at the transmission input shaft in the operating engine speed range 600rpm <ne < 2000rpm for the DMF with nominal design parameters (black curve) and with optimized parameter (red curve), as well as with optimized parameters for the DMF having TMD (blue curve). * * * * T 2 2 T = d*gDMFenergy [k= , c , J , J ] [ 10966 Nm / rad , 41 Nms / rad , 2.7 kgm , 0.4 5 k gm ] 1 1 p s ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Conclusions* • There exist a clear trade-off between the measure of the oscillations attenuation of the torque at the transmission input shaft and the measure of the energy efficiency in designing of torsional vibration absorbers for heavy-duty truck drivetrain systems. • The optimized mass inertia, stiffness and damping parameters of a DMF provided the best attenuation of oscillations in the operating engine speed range 600–2000 rpm do exist when the third engine order vibration harmonic is in focus. • Tuned mass damper in DMF with appropriate optimization of its design parameters can significantly enhance the performance of the combined vibration absorber (DMF+TMD). • The results obtained show evidence of the feasibility of the application of dual mass flywheels in heavy-duty truck drivetrain systems. *Berbyuk, V., (2020), IAVSD 2019, https://doi.org/10.1007/978-3-030-38077-9_180 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Weight-vibration Pareto optimization of a dual mass flywheel* Sketch of a generic drivetrain system equipped with a dual mass flywheel *Berbyuk, V., (2019), Weight-vibration Pareto optimization of a dual mass flywheel, J. Mathematical Methods and Physicomechanical Fields, National Academy of Sciences of Ukraine, Vol. 62, № 3, pp. 7-18., ISSN 0130–9420. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Global Sensitivity Analysys of the DTS with DMF 𝒅𝒅 = ∗ ∗ ∗ ∗ 𝑻𝑻 𝒌𝒌𝟏𝟏 , 𝒄𝒄𝟏𝟏 , 𝑱𝑱𝒑𝒑 , 𝑱𝑱𝒔𝒔 2000 F1 (d) = ∫ std (Tg [q(t ), d, ne ])dne , 600 F2 (d= ) J p + Js , 2000 F3 (d) = ∫ std (T f [q(t ), d, ne ])dne 600 GSA of DTS with DMF, ne=1600 rpm ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design Optimization in the Operating Engine Speed Range 2000 F1 (d= ) ∫ std (Tg [q(t ), d, ne ])dne , F2 (d= ) J p + Js 600 2000 2000  * * std ( T [ q ( t ), d , n ]) dn } std ( T [ q ( t ), d , ne ])dne = min{ g e e g ∫ ∫ d∈Ω 600 600  min{J + J } = J * + J * s p s  d∈Ω p = d [k1* , c1* , = J *p , J s* ]T ?,= q(t ) q* (t ), d* ∈ Ω ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Weight-Vibration Pareto front for DTS with DMF Pareto front for the drivetrain system equipped with weigh-vibration optimized DMF Torques at transmission input shaft with optimized DMF Nom = d DMF [= J p , J s , k1 , c1 ]T [1.8, d * DMF [= J , J , k , c ] [2.34, * p * s * 1 * T 1 0.9 , 0.1, 12732, 3938, 30]T T 30] . ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Standard deviation of the torques at the transmission input shaft Standard deviation of the torques at the transmission input shaft in the operating engine speed range for the DMF with nominal design parameters (black dashed curve) and with weight-vibration optimized parameter (black solid curve), as well as with energy-vibration optimized parameters for the DMF (green curve)*. *Berbyuk, V., (2019), Vibration, 2(3), https://doi.org/10.3390/vibration2030015 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Conclusions* • There exists a clear trade-off between the measure of oscillation attenuation of the torque at the transmission input shaft and the measure of the total weight in designing of the DMF for heavy-duty truck drivetrain systems. • For a heavy-duty truck drivetrain system equipped with a DMF there exists the weight-vibration bi-objective optimized mass inertia, stiffness and damping parameters providing the best attenuation of oscillation of the torque at the transmission input shaft in the operating engine speed range 600rpm- 2000 rpm when the third engine order vibration harmonic is in focus. • The results obtained show evidence of feasibility of application of the weightvibration optimized dual mass flywheels in heavy-duty truck drivetrain systems. *Berbyuk, V., (2019), Weight-vibration Pareto optimization of a dual mass flywheel, J. Mathematical Methods and Physicomechanical Fields, National Academy of Sciences of Ukraine, Vol. 62, № 3, pp. 7-18., ISSN 0130–9420. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Torsional vibration absorbers in heavy-duty truck powertrains* Simulation and analysis of multiple-mass flywheel concepts Lina Wramner, PhD 2020 Dual Mass Flywheel Power Split Vibration Absorber *L. Wramner, (2020), PhD thesis, https://research.chalmers.se/publication/516337/file/516337_Fulltext.pdf L. Wramner, (2020), Dual-mass flywheels with tuned vibration absorbers for application in heavy-duty truck powertrains, https://doi.org/10.1177/0954407020916940 L. Wramner, (2019), Numerical algorithms for simulation of one-dimensionalmechanical systems with clearance-type nonlinearities, https://doi.org/10.1115/1.4043087 L. Wramners, V. Berbyuk, H. Johansson, (2018), Vibration dynamics in non-linear dual mass flywheels for heavy-duty trucks, http://past.isma-isaac.be/downloads/isma2018/proceedings/Contribution_273_proceeding_3.pdf ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Modelling, failure modes prediction and optimization of gear shifting mechanism* Application to heavy vehicle transmission systems Muhammad Irfan, PhD 2019 *Irfan, M., (2019), https://research.chalmers.se/publication/508767/file/508767_Fulltext.pdf Irfan, M., Berbyuk, V., and H. Johansson, (2020), Minimizing Synchronization Time of a Gear Shifting Mechanism by Optimizing its Structural Design Parameters, https://journals.sagepub.com/doi/10.1177/0954407019860363 Irfan, M., Berbyuk, V., and H. Johansson, (2018), Performance improvement of a transmission synchronizer via sensitivity analysis and Pareto optimization, https://doi.org/10.1080/23311916.2018.1471768 Irfan, M., Berbyuk, V., Johansson, H., (2016), Dynamics and Pareto Optimization of a Generic Synchronizer Mechanism”, in Rotating Machinery, Hybrid Test Methods, Vibro-Acoustic & Laser Vibrometry, Editors James De Clerck and David S. Epp, Volume 8, pp. 417-425, 2016, Springer, ISBN: 978-3-319-30084-9, http://dx.doi.org/10.1007/978-3-319-30084-9_38 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics A Generic Synchronizer Berbyuk, V., (2015), Towards Pareto optimization of performance of a generic synchronizer of transmission systems, Proceedings of the ASME 2015 IDETC/CIE, August 2-5, 2015, Boston, Massachusetts, USA, paper DETC2015-46773, http://dx.doi.org/10.1115/DETC2015-46773 Berbyuk, V., (2015), Dynamics of synchronization of rotational motion of contacting triple-body systems, Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015, Barcelona, June 29 – July 2, 2015, Universitat Politècnica de Catalunya, Josep M. Font-Llagunes (Ed.) p. 532-541. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Wind Turbine Drive Train System Dynamics* Multibody Dynamic Modelling and Global Sensitivity Analysis Saeed Asadi, PhD 2018 *Asadi, S., PhD thesis (2018), https://research.chalmers.se/publication/503280/file/503280_Fulltext.pdf Asadi, S., Berbyuk, V., Johansson, H. (2018), Global Sensitivity Analysis of High Speed Subsystem of a Wind Turbine Drive Train, https://doi.org/10.1155/2018/9674364 Asadi,S., Johansson, H. (2019) Multibody dynamic modelling of a direct wind turbine drivetrain, http://dx.doi.org/10.1177/0309524X19849827 Asadi, S., Berbyuk, V., and H. Johansson, (2015), Vibration dynamics of a wind turbine drive train high speed subsystem: Modeling and validation”, Proceedings of the ASME 2015 IDETC/CIE, http://dx.doi.org/10.1115/DETC2015-46016 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Guided wave-based approach for health monitoring of composite structures* Application to wind turbine blades Siavash Shoja, PhD, 2018 windpowerengineeringdevelopment.com *Shoja, S., (2018), PhD thesis, https://research.chalmers.se/publication/505758/file/505758_Fulltext.pdf Shoja, S., Berbyuk, V., and A. Boström, (2018), Delamination detection in composite laminate using low frequency guided waves, Composite Structures, https://doi.org/10.1016/j.compstruct.2018.07.025 Shoja, S., Berbyuk, V., and A. Boström, (2018), Guided wave-based approach for ice detection on wind turbine blades, Wind Engineering, https://journals.sagepub.com/doi/full/10.1177/0309524X18754767 Shoja, S., Berbyuk, V., and S. Mustapha, (2020), Design optimization of transducer arrays for uniform distribution of guided wave energy in arbitrarily shaped domains, Ultrasonics, https://doi.org/10.1016/j.ultras.2020.106079 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Effect of Ice Thickness and Group Velocity Siavash Shoja, PhD, 2018 Influence of reflections on amplitude (5kHz) Influence on Group Velocity Shoja, S., Berbyuk, V., and A. Boström, (2015), Investigating the application of guided wave propagation for ice detection on composite materials, In Proc. of the International Conference on Engineering Vibration, Ljubljana, 7 - 10 September [editors Miha Boltežar, Janko Slavič, Marian Wiercigroch]. - EBook. - Ljubljana: Faculty for Mechanical Engineering, p. 152-161. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics 4 Structural Dynamics and Ice Detection  The aim of the project is to develop a method for early detection of ice using ultrasonic guided waves in the turbine blades.  The work includes mathematical and computational modeling of acoustic wave propagation in composite materials in order to be able to find the application for ice detection.  It also includes experimental work in Cold climate lab on composite objects with layers of ice. Berbyuk, V., Peterson, B, Möller, J. (2014), Towards early ice detection on wind turbine blades using acoustic waves, Proc. of SPIE 2014, San Diego, USA, March 09, 2014, 9063 pp. 90630F-1 - 90630F-11, http://dx.doi.org/10.1117/12.2046362 Mamontov, E., and V. Berbyuk, (2014), A scalar acoustic equation for gases, liquids, and solids, including viscoelastic media, Journal of Applied Mathematics and Physics, Vol. 2, p. 960-970, http://dx.doi.org/10.4236/jamp.2014.210109 Mamontov, E. and V. Berbyuk, (2015), Passive acoustic signal sensing approach to detection of ice on the rotor blades of wind turbines, In Proc. of IWAIS2015 16th International Workshop on Atmospheric Icing of Structures, Uppsala, 28 June-3 July, 2015, ISBN 978-91-637-8552-8, 6 pages. Mamontov, E., and V. Berbyuk, (2015), Identification of material parameters of thin curvilinear viscoelastic solid layers in ships and ocean structures by sensing the bulk acoustic signals, In Proc. of the VI International Conference on Computational Methods in Marine Engineering, MARINE 2015, Rome, Italy, June 15-17, 2015, p. 502-513 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Attenuation of hand-held machine vibrations* Application of non-linear tuned vibration absorbers Hans Lindell, Lic. Eng. 2017 *Lindell, H., Lic.Eng. thesis, (2017), http://publications.lib.chalmers.se/records/fulltext/253449/253449.pdf Lindell, H., Berbyuk, V., Josefsson, M., and S. L. Grétarsson, (2015), “Nonlinear dynamic absorber to reduce vibration in hand-held impact machines”, http://publications.lib.chalmers.se/records/fulltext/222325/local_222325.pdf Lindell H., Grétarsson S., Machens M., (2016), High Frequency Vibrations From Impact Tools –Measurement of Vibration and Simulating Pressure Propagation into Finger Tissue, 6:th American Conference on Human Vibration, Chicago, USA. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Multiobjective Optimisation and Active Control of Bogie Suspension* Ride Comfort Speed Seyed Milad Mousavi Bideleh, PhD 2016 Safety Bogie System Wear *Mousavi, M., (2016), PhD thesis, http://publications.lib.chalmers.se/records/fulltext/241192/241192.pdf Mousavi-Bideleh, M.S., and V. Berbyuk, (2016), Multiobjective optimisation of bogie suspension to boost speed on curves, Vehicle System Dynamics, http://dx.doi.org/10.1080/00423114.2015.1114655 Mousavi Bideleh, M.S., Mei, T. X. and V. Berbyuk, (2016), Robust control and actuator dynamics compensation for railway vehicles, Vehicle System Dynamics , https://doi.org/10.1080/00423114.2016.1234627 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Global Sensitivity Analysis Symmetric vehicle Asymmetric vehicle No. Susp. Component 1 Long. Prim. Spr. 2 Long. Prim. Damp. 3 Lat. Prim. Spr. 4 Lat. Prim. Damp. 5 Vert. Prim. Spr. 6 Vert. Prim. Damp. 7 Long. Sec. Spr. 8 Yaw. Damp. 9 Lat. Sec. Spr. 10 Lat. Sec. Damp. 11 Vert. Sec. Spr. 12 Vert. Sec. Damp. 13 Anti-roll bar 14 Traction-rod Number of simulations: 14×12= 168 Mousavi Bideleh, M.S. and V. Berbyuk, (2016), Global sensitivity analysis of bogie dynamics with respect to suspension components, Multibody System Dynamics, http://dx.doi.org/10.1007/s11044-015-9497-0 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Ride Comfort Mousavi, M. and Berbyuk, V., (2013), Multiobjective optimization of a railway vehicle dampers using genetic algorithm, Proceedings of the ASME 2013 IDETC/CIE, August 4-7, 2013, Portland, Oregon, USA, (DETC2013-12988), http://dx.doi.org/10.1115/DETC2013-12988 Mousavi, M., Berbyuk, V., (2014), Application of Semi-Active Control Strategies in Bogie Primary Suspension System Proceedings of the Second International Conference on Railway Technology, J. Pombo, (Editor), Civil-Comp Press, Stirlingshire, United Kingdom, paper 318, http://www.ctresources.info/ccp/paper.html?id=7968 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Contact Wear and Safety Mousavi, M. and Berbyuk, V., (2013), Optimization of a bogie primary suspension damping to reduce wear in railway operations. Proceedings of the ECCOMAS Thematic Conference, Multibody Dynamics 2013, 1-4 July 2013, Zagreb, Crotia, Edited by Zdravko Terze, pp. 1025-1034. ISBN/ISSN: 978-953-7738-22-8 Mousavi-Bideleh, M.S., Berbyuk, V., and R. Persson, (2016), Wear/comfort Pareto optimisation of bogie suspension, Vehicle System Dynamics, http://dx.doi.org/10.1080/00423114.2016.1180405 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Wind Turbine Drive Train Dynamics Stephan Struggl, PhD student 2012 Engineering Models (EM) Mathematical Models (MM) Computational Models (CM) Struggl, S., Berbyuk, V. and H. Johansson, (2015), Review on wind turbines with focus on drive train system dynamics, Wind Energy, Vol. 18, 4, p. 567-590, http://dx.doi.org/10.1002/we.1721 Struggl, S., Berbyuk, V., Johansson, H., (2012), Wind turbine drive train vibration with focus on gear dynamics under Nondeterministic loads, Proceedings, International Conference on Noise and Vibration Engineering, ISMA2012, KU Leuven (Belgium), ISBN/ISSN: 9789073802896, http://past.isma-isaac.be/downloads/isma2012/papers/isma2012_0663.pdf ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Advances in Heavy Vehicle Dynamics with Focus on Engine Mounts and Individual Front Suspension* Hoda Yarmohamadi, PhD, 2012 Vibration control for commercial vehicles with individual front suspension for enhanced safety and comfort *Yarmohamadi H., PhD Thesis, (2012), http://publications.lib.chalmers.se/records/fulltext/166089.pdf Yarmohamadi, H., and V. Berbyuk, (2013), Kinematic and dynamic analysis of a heavy truck with individual front suspension. Vehicle System Dynamics, http://dx.doi.org/10.1080/00423114.2013.770539 Yarmohamadi, H., Berbyuk, V., (2012), Effect of Semi-Active Front Axle Suspension Design on Vehicle Comfort and Road Holding for a Heavy Truck. SAE International, http://dx.doi.org/10.4271/2012-01-1931 Yarmohamadi, H., Berbyuk, V., (2011), Comfort and Handling of a Commercial Vehicle with Individual Front Suspension, Proceedings of the ASME 2011 IDETC/CIE 2011,Washington, http://dx.doi.org/10.1115/DETC2011-47876 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Stiffness and Non-dimensional Damping rear mount, vertical direction Hoda Yarmohamadi, PhD 2012 • • Changes of stiffness up to %32 and %29 with respect to amplitude and frequency of excitation, respectively Changes of non-dimensional damping up to %87 and %88 with respect to amplitude and frequency of excitation, respectively Yarmohamadi, H. and V. Berbyuk, (2011), Computational model of conventional engine mounts for commercial vehicles: validation and application, Vehicle System Dynamics, http://dx.doi.org/10.1080/00423111003770439 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Simulation Plots for the Front Mount Hoda Yarmohamadi, PhD 2012 Stiffness and damping for the front mount (vertical) Front engine mount, x Front engine mount, x 1.5 6000 Damping [-] Stiffness [N/mm] 7000 5000 1 0.5 4000 3000 1 0 1 100 80 0.5 60 100 80 0.5 60 40 Amplitude [mm] 0 40 20 0 Frequency [Hz] Amplitude [mm] 0 20 0 Frequency [Hz] Yarmohamadi, H. and V. Berbyuk, (2011), Computational model of conventional engine mounts for commercial vehicles: validation and application, Vehicle System Dynamics, http://dx.doi.org/10.1080/00423111003770439 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics System’s Functional Components Engine Mounts - Elastomeric Hoda Yarmohamadi, PhD 2012 • • • Rubber or rubber/metal Passive Cheap Well-known behaviour Low performance Yarmohamadi, H. and V. Berbyuk, (2008), Vibration dynamics of a commercial vehicle engine suspended on adaptronic mounting system, Proc. The 9th International Conference on Motion and Vibration Control, September 15-18, 2008, Technishe Universitaet Muenchen, Munich, Germany. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Multi-objective optimization of railway bogie suspension damping* Albin Johnsson, Lic. Eng. 2011 Railway vehicle – mechanical arrangement *Johnsson, A., Lic. Eng. thesis, (2011), https://research.chalmers.se/publication/136392 Johnsson, A., Berbyuk, V., and M. Enelund, (2012), Pareto optimization of railway bogie suspension damping to enhance safety and comfort, Vehicle System Dynamics, 50:9, 1379—1407, http://dx.doi.org/10.1080/00423114.2012.659846 Johnsson, A., Berbyuk, V., Enelund, M., (2010), Vibration dynamics of high speed train with Pareto optimized damping of bogie suspension to enhance safety and comfort. Proc. ISMA2010, http://past.isma-isaac.be/downloads/isma2010/papers/isma2010_0363.pdf Johnsson, A., Berbyuk, V. and M. Enelund, (2009), Optimized Bogie System Damping with Respect to Safety and Comfort, Proc. The 21st International Symposium on Dynamics of Vehicles on Roads and Tracks, IAVSD'09, 17-21 August 2009,KTH, Stockholm. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics High Speed Train Pareto Optimization of Damping of Bogie Suspensions to Enhance Safety and Comfort Albin Johnsson, Lic.Eng. 2011 List of objectives Johnsson, A., Berbyuk, V., and M. Enelund, (2012), Pareto optimization of railway bogie suspension damping to enhance safety and comfort, Vehicle System Dynamics, 50:9, 1379—1407, http://dx.doi.org/10.1080/00423114.2012.659846 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Pareto Fronts and Pareto Sets Albin Johnsson, Lic.Eng. 2011 Johnsson, A., Berbyuk, V., and M. Enelund, (2012), Pareto optimization of railway bogie suspension damping to enhance safety and comfort, Vehicle System Dynamics, 50:9, 1379—1407, http://dx.doi.org/10.1080/00423114.2012.659846 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Washing Machine Design Optimization Based on Dynamics Modeling* Thomas Nygårds, PhD 2011 A methodology for Pareto optimization has been developed and used for suspension optimization Semi-active suspension will reduce vibrations in during spinning processes of washing machines *Nygårds, T., PhD thesis (2011), http://publications.lib.chalmers.se/records/fulltext/137995.pdf Nygårds, T. and V. Berbyuk, (2007), Dynamics of Washing Machines: MBS Modeling and Experimental Validation, in Proc. MULTIBODY DYNAMICS 2007, ECCOMAS Thematic Conference, 25–28 June 2007, Milano, Italy. Nygårds, T. and V. Berbyuk, (2012), Multibody modeling and vibration dynamics analysis of washing machines, Multibody System Dynamics, http://dx.doi.org/10.1007/s11044-011-9292-5 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Pareto Front for Washing Machine Thomas Nygårds, PhD 2011 ( ) = ℑK max max ( ∆X p (t ) − ∆X max p ) , p t = p 1,2,3...9, ∀t ∈ [0, T ] Nygårds, T., Berbyuk, V., (2010), Pareto optimization of a washing machine suspension system, Proc. of the 2nd International Conference on Engineering Optimization, September 6 - 9, 2010, Lisbon, Portugal, pp. 1-10. Nygårds, T. and V. Berbyuk, (2014), “Optimization of washing machine kinematics, dynamics, and stability during spinning using a multistep approach”, Optimization and Engineering, 15, (2), http://dx.doi.org/10.1007/s11081-012-9206-2 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Washing Machine Vibration Control Passive vs Active MR damper Passive damper Thomas Nygårds, PhD 2011 Nygårds, T., Sandgren, J., Berbyuk, V. and A. Bertilsson, (2006), Vibration Control of Washing Machine with Magnetorheological Dampers, Proc. The 8th Int. Conf. on Motion and Vibration Control (MOVIC 2006), Daejeon, Korea. Nygårds, T., Berbyuk, V. and A. Sahlén, (2008), Modeling and optimization of washing Machine Vibration Dynamics, The 9th International Conference on Motion and Vibration Control, September 15-18, 2008, Munich, Germany. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Thermomechanics of Block Brakes* Daniel Thuresson, PhD 2006 Experiments 600 Simulations 500 400 300 200 100 Unstable pressure distribution: simulation with pin model. Hot spots on block brake: full scale tests. Temperature measured with thermo camera. The principle of frictional contact plays an important role in many mechanical systems, such as brakes and clutches. One important factor is the phenomenon of thermo elastic instability (TEI). Fundamental features of this instability are that contact pressure and temperature are high and that the contact areas move in time. This may lead to material transfer, other damages due to high temperature and/or stress and increased wear. *Thuresson, D., PhD thesis, (2006), https://research.chalmers.se/publication/505995 Thuresson, D. (2006), Stability of sliding contact-Comparison of a pin and a finite element model, Wear, https://doi.org/10.1016/j.wear.2006.01.037 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Torque and Angle Controlled Tightening of Bolted Joints* Göran Toth , PhD 2006 DEFORMATIONS IN YIELD TIGHTENING OF BOLTS - Elastic ideal-plastic model The finite element analysis of the bolt head deflection Smart Fastening Technology *Toth, G., PhD thesis, (2006), https://research.chalmers.se/publication/22453 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design of Optimal Control Processes for Closed-Loop Chain SCARA-Like Robots* Mathias Lidberg, PhD, 2004 *Lidberg, M., PhD thesis (2004), https://research.chalmers.se/publication/9807 Lidberg M. and V. Berbyuk, (2002), Optimisation of controlled motion of closed-loop chain manipulator robots with different degree and type of actuation, J. Stability and Control: Theory and Application, (SACTA), Vol.4, No.2, pp.56-73. Berbyuk V. and Lidberg M., (2002),Time-optimal control of semi-passively actuated closed-loop chain robots, Proceedings of the 33rd ISR (International Symposium on Robotics), October 7-11, 2002, Stockholm, pp.221-226. Lidberg M. and Berbyuk V., (2000), Modeling of controlled motion of semi-passively actuated SCARA-like robot. In: Proceedings of the 7th Mechatronics Forum International Conference, 6-8 September 2000, Atlanta, Georgia, USA, (ISBN 0 08 043703 6), PERGAMON, 2000. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design of Optimal Control Processes for Closed-Loop Chain SCARA-Like Robots* Mathias Lidberg, PhD, 2004 The path of end-effector C for the energy-optimal control processes *Lidberg, M., PhD thesis (2004), https://research.chalmers.se/publication/9807 Lidberg M. and Berbyuk V., (2002), Energy-optimal control of semi-passively actuated SCARA-like robot. In: Proceedings of the First International Symposium on Mechatronics, (Eds: Peter Maisser and Peter Tenberge), March 21-22, 2002, Chemnitz, Germany, (ISBN 3-00-007504-6), pp.302-311. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Parallel Mechanisms and Robots •High static accuracy •High acceleration/speed •High dynamic accuracy •High Stiffness •High force/torque •Low inertia •High efficiency (low power consumption) Johannesson, L., Berbyuk V., and T. Brogårdh, (2003), Gantry-Tau – A New Three Degrees of Freedom Parallel Kinematic Robot”. In: Proceedings of the Mekatronikmöte2003, August 27-28, 2003, Göteborg, Sweden. Johannesson J., Berbyuk V. and Brogårdh T., (2004), Gantry Tau – A New Parallel Kinematic Robot, In: Proceedings of the 4th Chemnitz Parallel Kinematics Seminar, (ISBN 3-937524-05-3). ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Optimal Kinematic Design of Gantry Parallel Robot Case A A=0.175 0.26 Case B A=0.175 0.12 0.24 0.22 1 0.2 0 -0.5 0.11 0.6 0.1 0.4 0.09 0.18 0.2 0.16 0 0.08 0.14 -0.2 0.07 0.12 -0.4 Z Z 0.5 0.8 0.06 -0.6 0.1 0.05 -0.8 0.08 -1 -1.5 -1 -0.5 0 Y 0.5 1 -1 0.06 1.5 0.04 -1 -0.5 0 Y 0.5 1 0.03 Case C A=0.125 0.3 1 0.25 Z 0.5 0.2 0 0.15 -0.5 -1 -1.5 -1 -0.5 0 Y 0.5 1 1.5 0.1 Berbyuk, V., and L. Johannesson, (2005), Optimal Kinematic Design of Gantry Parallel Robot, Proc. of IDETC/CIE2005 ASME2005, 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC), September 24-28, 2005, Long Beach, California, USA, Volume 1, Paper DETC2005-84397, http://dx.doi.org/10.1115/DETC2005-84397 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Time-Optimal Robot Placement Using Response Surface Method Kamrani, B., Berbyuk, V., Wäppling, D. and X. Feng, (2007), Method for optimizing the performance of a robot, United States Patent 20070106421, Kind Code: A1, Application Number: 580239, Filing Date: 23 November 2004, Publication Date: 10 May 2007, http://www.freepatentsonline.com/20070106421.html Kamrani B., Berbyuk, B., Wäppling D., Stickelmann U. and X. Feng, (2008), Optimal robot placement using response surface method, Int. J. Advanced Manufacturing Technology, http://dx.doi.org/10.1007/s00170-008-1824-7 Kamrani, B., Berbyuk, V., Wäppling, D., Feng, X., Andersson, H., (2010), Optimal Usage of Robot Manipulators, . Publisher: INTECH, Publishing date: March 2010, pp. 1-26. ISBN/ISSN: 978-953-307-073-5 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Humanoid Robotics and Bioengineering Y, m G 30 Y 20 1.50 H 10 B 0 1.00 - 10 0.50 D 0 20 40 60 80 C - 20 O - 30 0.00 -0.75 K 100 -0.25 0.25 0.75 1.25 1.75 X, m X Z Cyclorama of Energy-Optimal Motion of BWR Berbyuk V., Demydyuk M. and B. Lytwyn, (2005), Mathematical modelling and optimization of walking of human being with prosthesis of crus, J. of Automation and Information Sciences, Vol. 37, Issue 6, pp. 46-60, http://dx.doi.org/10.1615/J Automat Inf Scien.v37.i6.60 Berbyuk V. and Nishchenko N., (2001), Mathematical design of energy-optimal femoral prostheses, J. of Mathematical Sciences, Vol. 107, No.1, 2001, pp.3647-3654, http://dx.doi.org/10.1023/A:1011966912564 Berbyuk V., Krasyuk G. and N. Nishchenko, (1999), Mathematical modeling of the dynamics of the human gait in the saggital plane”, J. of Mathematical Sciences, Vol.96, No.2, pp.3047-3056, http://dx.doi.org/10.1007/BF02169705 Berbyuk V.E. and Polovinko I.O., (1993), Effect of the deformability of structural links on the motion of a two-legged walking robot", Journal of Mathematical Sciences, Plenum Publishing Corporation, Vol.65, No.6, pp.1991-1994, http://dx.doi.org/10.1007/BF01097487 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Semi-Passively Controlled Multibody Systems Y G ψ µ1 µ0 θi c3 c1 N y c2 α1 Ai K1 β1 x O Fig. 1 µ2 c4 c6 Hi A1 H1 γ1 M1 T 1 ε1 X Mi µ3 c5 νi T i Fig. 2 Berbyuk V. and A. Boström, (2001), Optimization problems of controlled multibody systems having spring-damper actuators, International Applied Mechanics, Vol. 37, No. 7, pp.935-940, http://dx.doi.org/10.1023/A:1012536111041 Berbyuk V., (2003), Control and optimization of semi-passively actuated multibody systems, in Virtual Nonlinear Multibody Systems, Eds.: Werner Schiehlen and Michael Valasek, Kluwer Academic Publishers, pp.279-295 Berbyuk, V., Lytwyn B., and M. Demydyuk, (2005), Energy-Optimal Control of Underactuated Bipedal Locomotion Systems, Proc. The ECCOMAS Thematic Conference Multibody Dynamics 2005 on Advances in Computational Multibody Dynamics, Madrid, June 21-24, 2005, Eds. J.M. Goicolea, J. Cuardrado and J.C. Garcia Orden, Universidad Politécnica de Madrid, ISBN 84-7493-353-6, pp.1-15 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Cyclorama of Energy-Optimal Motion of BWR Y, m 1 .5 0 1 .0 0 0 .5 0 0 .0 0 - 0 .7 5 - 0 .2 5 0 .2 5 0 .7 5 1 .2 5 1 .7 5 X, m Berbyuk V., Boström A., Lytwyn B., and B. Peterson, (2002), Energy-optimal control of bipedal locomotion systems, J. Stability and Control: Theory and Application, (SACTA), Vol.4, No.2, pp.74-89. Berbyuk V. and Lytwyn B., (2001), Mathematical modeling of the human walking on the basis of optimization of controlled processes in biodynamical systems, J. of Mathematical Sciences, Vol. 104, No.5, pp.1575-1586, http://dx.doi.org/10.1023/A:1011352207020 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Power Harvesting from Vibration Villari Effect ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Specific Targeted Research Project The Thematic Priority of Aeronautics and Space The 6th Framework Programme of the European Commission Active Vibration and Noise Control Structural Health Monitoring Vibration-to-Electrical Energy Conversion ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Magnetostriction: Joule Effect Δl / l H l λs l+Δl -H H H The study of magnetostriction began in 1842 by James P. Joule ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Magneto-Elastic Electro-Mechanical MBS with Magnetostrictive Transducer A(y ) y + B(y , y ) = u(t ) σ ( y , y ) = σ g ( y , y , C, t ) ε = ε g ( y , y , C, t ) ε = ε (σ , H ) Faraday-Lent law: U (t ) = − N coil Acoil B = B (σ , H ) dB dt Ampèré’s law: H r = N coli I lcoil Berbyuk V., (2007), Towards dynamics of controlled multibody systems with magnetostrictive transducers, J. of Multibody System Dynamics, Vol. 18, pp. 203-216, http://dx.doi.org/10.1007/s11044-007-9078-y Berbyuk V., and J. Sodhani, (2008), Towards modeling and design of magnetostrictive electric generators, J. Computers and Structures, Vol. 86, pp.307-313, http://dx.doi.org/10.1016/j.compstruc.2007.01.030 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Solution of Inverse Dynamics Problems for Force Driven MEG = σ σ g (t ), t ∈ [t0 , t1 ] dB ( t ) fσ ( t ) + aσ ( t ) B ( t ) = dt fσ ( t ) = aσ ( t )  d 33σ g ( t ) + µ σ H 0  , B(t ) = e − Aσ ( t ) b aσ ( t ) =σ µ t ( B0 + ∫ fσ (τ )e A(τ ) dτ ) t0 t Aσ ( t ) = aσ (τ )dτ , B(t ) ∫= 0 B0 t0 Berbyuk, V., (2007), TERFENOL-D Transducer for Power Harvesting from Vibration, In Proceedings of ASME 2007 IDETC/CIE, September 4-7, 2007, Las Vegas, Nevada, USA, paper DETC2007-34788, http://dx.doi.org/10.1115/DETC2007-34788 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Validation of Systems Vibration-to-Electrical Energy Conversion Taget: Self-Powered Vibration Control Systems Self-Powered Condition Monitoring Systems Magnetostrictive Generator High Frequency Excitations Test Rig Low Frequency Excitations Test Rig ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Modelling and Experimental Study of CHALMERS Magnetostrictive Electric Generators (MEG) Solution of inverse dynamics problem for the MEG Experimental set up for the MEG Berbyuk, V., (2005), Controlled Multibody Systems with Magnetostrictive Electric Generators, in Proc. The ECCOMAS Thematic Conference Multibody Dynamics 2005 on Advances in Computational Multibody Dynamics, Madrid, June 21-24, 2005, ISBN 84-7493-353-6, pp.1-14. Berbyuk, V., and J. Sodhani, (2005), Towards Modelling and Design of Magnetostrictive Electric Generators, in Proc. of II ECCOMAS Thematic Conference on Smart Structures and Material, Lisbon, July 18-21, 2005, Eds. C. A. Mota Soares et al., Lisbon, pp.1-16. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Experimental Study of CHALMERS Magnetostrictive Electric Generators Berbyuk, V., J. Sodhani, and J. Möller, (2005), Experimental Study of Power Harvesting from Vibration using Giant Magnetostrictive Materials, in Proc. of 1st International Conference on Experiments, Process, System Modelling, Simulation and Optimization, Athens, 6-9 July, 2005, pp.1-8 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics CHALMERS MEG Model Validation Output Voltage - Simulation vs Experiments σ 0 = 10,18MPa Time histories of measured and calculated voltages for f = 500Hz electrical load = 1 Ohm, and Berbyuk, V. and T. Nygårds, (2006), Power Harvesting from Vibration Using Magnetostrictive Materials, in Proc. Joint Baltic-Nordic Acoustics Meeting 2006, 8-10 November 2006, Gothenburg, Sweden, pp. 1-18. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Power output versus frequency for Chalmers MEG 1 Z eq , Z eq0 1 Power output versus frequency for two load configurations,Z eq ,Z 0 and two excitation levels for Model 1 eq Berbyuk, V. and T. Nygårds, (2006), Power Harvesting from Vibration Using Magnetostrictive Materials, in Proc. Joint Baltic-Nordic Acoustics Meeting 2006, 8-10 November 2006, Gothenburg, Sweden, pp. 1-18. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Optimal Design of Magnetostrictive Transducers MEG Berbyuk, V., (2011), Optimal Design of Magnetostrictive Transducers for Power Harvesting from Vibrations, Structural Dynamics and Renewable Energy, Volume 1, Book Edited by Tom Proulx, Publisher: Springer New York, pp. 199-210, ISBN 978-1-4419-9715-9 (Print), 978-1-4419-9716-6 (online), http://dx.doi.org/10.1007/978-1-4419-9716-6_18 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Vibration in Helicopter Vibration-to-Electric Energy Conversion Aeronautics & Space Programme EU ”MESEMA” Project ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics PYLON-AIRFRAME Assembly and MEG Pylon ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Selected master of sciences projects at the Mechanical Systems Group ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Investigation of Dynamic Friction Properties of a Dual Mass Flywheel for Commercial Vehicles Johan Karlsson, MSc 2018 In cooperation with Volvo GTT The test set up with the large flywheel and electric motor in the background and the DMF inside the flywheel and clutch housing in the foreground. ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Investigation of feasibility of Auto Tuning Vibration Absorber Andreas Näkne, MSc 2018 In cooperation with Swerea IVF ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Simulation models of dual mass flywheels Daniel Johansson and Kim Karlsson, MSc 2017 In cooperation with Volvo GTT ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Dual mass flywheel for torsional vibrations damping Parametric study for application in heavy vehicle Gérémy Bourgois, MSc 2016 Matlab Model EasyDyn Model ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Engine dynamics and torsion vibration reduction Investigation of various flywheel models Anoop Suryanarayana, MSc 2015 In cooperation with Volvo GTT/ATR Power Split Flywheel Triple Mass Flywheel ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Optimisation of a non-linear tuned vibration absorber in a hand-held impact machine Mattias Josefsson and Snævar Leó Grétarsson , MSc 2015 In cooperation with Swerea IVF • • • 3 degrees of freedom Machine operator Machine operator (no inertia) Housing • Viscous damping assumed, no friction for simplification • Non-linear auxiliary spring force 𝐹𝐹𝑘𝑘 Equation of motion – No analytical solution Auxiliary mass Main mass 𝑚𝑚m 𝑥𝑥̈ 1 + 𝑐𝑐m + 𝑐𝑐h 𝑥𝑥̇ 1 − 𝑐𝑐h 𝑥𝑥̇ 3 + 𝑘𝑘m + 𝑘𝑘h 𝑥𝑥1 − 𝑘𝑘h 𝑥𝑥3 = 𝐹𝐹e 𝑡𝑡, 𝑓𝑓 + 𝐹𝐹𝑘𝑘 𝐱𝐱 + 𝐹𝐹𝑐𝑐 𝐱𝐱, 𝐱𝐱̇ − 𝑚𝑚m 𝑔𝑔 𝑚𝑚a 𝑥𝑥̈ 2 = −𝐹𝐹𝑘𝑘 𝐱𝐱 − 𝐹𝐹𝑐𝑐 𝐱𝐱, 𝐱𝐱̇ − 𝑚𝑚a 𝑔𝑔 𝑚𝑚h 𝑥𝑥̈ 3 − 𝑐𝑐h 𝑥𝑥̇ 1 + 𝑐𝑐h + 𝑐𝑐p 𝑥𝑥̇ 3 − 𝑘𝑘h 𝑥𝑥1 + 𝑘𝑘h + 𝑘𝑘p 𝑥𝑥3 = −𝑚𝑚h 𝑔𝑔 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design and simulation of active and semi-active cab suspensions with focus to improve ride comfort of a heavy truck Christine Ekberg and Erik Hansson, MSc 2015 In cooperation with Volvo GTT Three degree of freedom cab model Transfer of control signals between the cab subsystems and the control subsystem ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Measurement system design and experimental study of drive train test rig Joshua Christopher Squires, MSc 2014 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Simulation of Vibrations in Electrical Machines for Hybrid-Electrical Vehicles Xin Ge, MSc 2014 In cooperation with Volvo GTT/ATR Mode shape Resonance frequency(Hz) 1st 272.5 2nd 701.5 3rd 1205.5 4th 1711.5 5th 2149 6th 2478.5 7th 2677 8th 4175.5 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Off-road shift scheduling Sebastian Krause, MSc 2013 In cooperation with AVL Powertrain Scandinavia Gearshift process Cruise simulation model of the Volvo A40F ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Towards optimization of a high speed train bogie primary suspension Adrián Herrero, MSc 2013 Pareto-front for Straight Track scenario ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Wet clutch modelling techniques - Design optimization of clutches in an automatic transmission Manoj Kumar Kodaganti Venu, MSc 2013 In cooperation with AVL Powertrain Scandinavia Clutch Disengagement event ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Synchronization processes and synchronizer mechanisms in manual transmissions Anna Pastor Bedmar, MSc 2013 Free body diagram of synchro ring 1 Free body diagram of strut detent ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Wind turbine database: Modelling and analysis with focus on upscaling Juan Pablo Sánchez de Lara García, MSc 2013 Wind turbine upscaling model: Overview Fit parameters Core of the model (Matlab) Database (Excel) Data Interface (Excel) Inputs: Rotor diameter, air density and wind speed Outputs: WT characteristics ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Semi-active vibration dynamics control of multicart systems using a magnetorheological damper Geoffrey Geldhof, MSc 2013 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design of experiments and analysis for drive train test rig Gabriel Stephen McCann, MSc 2013 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Modeling of load interfaces for a drive train of a wind turbine Fabio Baldo, MSc 2012 Rotor interface Generator interface Tower interface ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics System simulation of mechatronic clutch in automatic transmission drivelines Muddassar Piracha and Umer Sohail, MSc 2011 In cooperation with SAAB Automobile Powertrain AB ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Optimization of load distribution in washing machines using bio-inspired computational methods Edgar Cuellar Mondragon and Apple Mahmud, MSc 2010 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Optimization of stiffness and damping properties of below-knee prosthesis Gil Serrancoli Masferrer, MSc 2010 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Modeling of Dynamics of Driveline of Wind Stations: Implementation in LMS Imagine AMESim Software Bincheng Jiang, MSc 2010 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Modeling of Dehydration Processes in Controlled Spinning of Washing Machines Motor Control System Alberto Merediz, MSc 2009 Virtual Instrument (VI) Measurement System ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design and Analysis of Novel Low-Cost Damper: Application for suspension system of washing machines Pablo Rojo Guerra, MSc 2009 ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Comparative Study of Numerical Methods for Optimal Control of a Biomechanical System Andreas Draganis and Carl Sandström, MSc 2009 Schematic sketch of the considered model of a human leg The motion of the ankle corresponding to the chosen optimal solution for all three methods ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Stability of High Speed Train under Aerodynamic Excitations Erik Bjerklund and Mikael Öhman, MSc 2009 Aerodynamic effects influencing the train Optimization of lateral spring and damper ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics A computational model of a ground vehicle with engine mounted on rigid chassis Felix Gömel, MSc 2009 Mount deflections in z-direction ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Semi-Active Suspension for Combat Vehicle 90 Andreas Eriksson and Arvid Tideström, MSc 2006 Z Zs X Zsi c k Zu s kt Zg ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Mounting System Design for Drive Trains of Hybrid Electric Vehicles Amit Kataria, MSc 2006 In cooperation with Volkswagen, Germany Passive and Active Powertrain Vibration Compensation in Automobiles ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Modelling of Vacuum Holding Force in Pick-andPlce Machine Marjan Anastasovski, MSc 2006 Z X Y ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Design and modelling of an active balancing device for washing machines Magnus Ermund and Fredrik Ermund, MSc 2006 Electrical motors Worm gears Shafts Spur gear Bearings ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics Acknowledgements Mechanical Systems Partners ____________________________________________________________________________________________________ Mechanics and Maritime Sciences Division of Dynamics