Research at Mechanical Systems Group
Viktor BERBYUK
Full Professor, Chair of Mechanical Systems
Division of Dynamics
Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE-412 96, Gothenburg, SWEDEN
Phone: +46-31-772 1516
E-mail: viktor.berbyuk@chalmers.se
http://www.chalmers.se
https://www.chalmers.se/en/staff/Pages/viktor-berbyuk.aspx
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Viktor Berbyuk
Full Professor, Chair of Mechanical Systems
Education: 1970-1978
Lomonosov Moscow State University
MSc-1975; PhD-1978, Dr Sci; Professor – 1991
Job: 1978 – 2001
National Academy of Sciences of Ukraine
Lviv, UKRAINE
Senior Researcher, Professor
Head of the Lab, Head of the Department
Job: 2001Chalmers University of Technology
Göteborg, SWEDEN
Full Professor in Mechanical Systems
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
CHALMERS
William Chalmers (1748–1811) was a Swedish trader. He was born in Gothenburg as
the son of the Scottish trader, William Chalmers, Sr., and his Swedish wife, Inga Orre. He
became a director of the Swedish East India Company. He died in Gothenburg leaving in
his will the bequest for an “Industrial School”, which in 1829 became what today is
named the Chalmers University of Technology.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
CHALMERS
Sweden
Göteborg
…situated on the buatifull west coast of Sweden
…with two pleasant campuses
…in the center of the Göteborg (Gothenburg)
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Active mounting system
High speed train bogie system
Transmission systems
Adaptronic suspensions
Power transmission and
system optimization
Magnetostrictive
Sensors and Actuators
• DYNAMICS, CONTROL AND PARETO OPTIMIZATION OF ENGINEERING SYSTEMS
•VIBRATION DYNAMICS AND CONTROL, SMART STRUCTURES
•ACTIVE SUSPENSIONS, ACTIVE TECHNOLOGY
• GROUND VEHICLES SAFETY, COMFORT AND ENERGY EFFICIENCY
•WIND POWER SYSTEMS, OPTIMAL POWER TRANSMISSION
Washing machine
smart suspension
•POWER HARVESTING FROM VIBRATIONS
Robotics
Professor Viktor Berbyuk, e-mail: viktor.berbyuk@chalmers.se
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Research Areas at Mechanical Systems Group
•
•
•
•
Modelling, dynamics, control and Pareto optimization of engineering
systems
Multibody systems dynamics and control, multi-disciplinary modelling, vibration
control, global sensitivity analysis and multi-objective design optimization with
applications in vehicle dynamics, machine design, wind power systems,
condition monitoring systems, robotics, biomechanics and active technology.
Transport
Active vibration control, adaptive and active suspensions and mounting systems
imbedded into vehicles, machines and mechanisms to enhance safety,
comfort and energy efficiency.
Energy
Energy-optimal control of dynamical systems, optimal power transmission
systems, wind power systems, power harvesting from vibration for selfpowered sensor clusters and condition monitoring.
Robotics and Bioengineering
Parallel robots, locomotion systems, intelligent prostheses
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Systems, Methodolody,
Methods and Tools
at the
Mechanical Systems Group
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Systems: Multibody Systems
S
F
u
A
S
S
A
S
S
A
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Systems: Smart Suspensions
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Systems: Smart Engine Mounts
Active Engine Mounting System
Semi-Active EMS
ER/MR fluids dampers
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Systems: Nacelles of Wind Turbines
1 pitch drive; 2 main bearing; 3 main shaft; 4 gearbox; 5 brake disk; 6 generator;
7 nacelle enclosure; 8 bed plate; 9 coupling; 10 yaw bearing; 11 tower;
12 yaw drives; 13 rotor hub
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Systems: Vibrating hand-held machines
Lindell, H., (2017), Attenuation of hand-held machine vibrations, Lic. Eng. thesis, CHALMERS,
http://publications.lib.chalmers.se/records/fulltext/253449/253449.pdf
Mamontov, E., and V. Berbyuk, (2017), Propagation of acoustic waves caused by the accelerations of vibrating hand-held tools
in viscoelastic soft tissues of human hands and a mechanobiological picture for the related injuries,
Journal of Applied Mathematics and Physics, Vol. 5, p. 1997-2043, https://doi.org/10.4236/jamp.2017.510169
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Systems: Vehicle Drivelines
Power Transmission Systems
Vehicle Complete Driveline Model consists of several models, representing the different components in the vehicle:
engine, ECU, engine mounts, flywheel, clutch, gearbox, differential, shafts, wheels.
AMESim, MSC.Software/ADAMS, SIMPACK, Matlab/Simulink, others.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methodology: Towards Adaptronic Mechanical
Systems
Mechanical System
+
A
F
S
u
S
S
Mechatronics
+
Smart, multifunctional materials
S
A
Sensors, actuators, controller
A
Material mechanics
+
trade-off solutions
A
S
Pareto Optimality
=
Minimal upgrading with
maximum efficiency
Adaptronic Mechanical System
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methodology: Smart Materials Technology
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methodology: Smart Materials Technology
ADAPTRONICS
SENSORS
Vibration to
Electric Energy
Conversion
Structural
Health
Monitoring
ACTUATORS
Active
Vibration
Control
ΔE
e
f
f
e
c
t
Main Battery Buffer Storage
Modelling, Design, Integration, Optimization
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methodology: Models’ Validation
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methodology: Experiment
High speed shaft subsystem of a drive train
SKF WindCon3.0
Couplings SKF KD (left) and Lovejoy (right)
Tip deflection response for different motor speed
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methods and Tools
Hierarchical Multibody System Modelling
Pure torsional models
Flexible multibody system models
Rigid multibody system models
Wind turbine system simulation
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methods and Tools: MBS Dynamics Formalism
• Model
A(y )
y + B(y, y ) =
u(t )
T
• Constraints Φ(r, t ) =
0
[Φ1 (r, t ),, Φ m (r, t )] =
Φ r r = −[(Φ r r ) r r + 2Φ rt r + Φ tt ] ≡ γ
Mr + Φ rT λ = F A
M Φ Tλ r F A
=
Φ r 0 λ γ
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methods and Tools: MBS Optimization Formalism
• Model
M Φ Tλ r F A
=
Φ r 0 λ γ
• Boundary Conditions
G (r (0),0, r (T ), T ) = 0
• Constraints
Φ (r, t ) =
0
[Φ1 (r, t ),, Φ m (r, t )] =
T
T
• Cost Function
J (r (t ), F A (t )) = ∫ f (r (t ), F A (t ), t )dt
0
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methods and Tools
Optimal Design of Engineering Systems
Pareto Optimization
Given a vector of objective functions
F = [ F1 ,..., Fm ]T .
It is required to determine the vectors of design parameters, d*∈D , which
are the solutions of the system of variational equations:
Fi (x, d* , s, u)
min
=
i 1,..., m ,
d∈Ω Fi ( x, d, s, u ),
subject to the differential constraints, restrictions and the boundaries conditions
x
f=
(t , x, d, s, u ),
x(0)
d ∈ Ω,
s ∈ S,
u ∈ U,
x0 ,
t ∈ [0, T ]
Mousavi Bideleh S.M., Berbyuk V., (2019), Pareto Optimization of a Nonlinear Tuned Mass Damper to Control Vibrations in
Hand Held Impact Machines, Nonlinear Dynamics, Volume 1, pp. 27-44, Springer, Cham, ISBN: 978-3-319-74280-9,
https://doi.org/10.1007/978-3-319-74280-9_4
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methods and Tools
Pareto Front and Pareto Set
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methods and Tools
Global Sensitivity Analysis
As a preliminary stage in multi-objective optimization of the design of
engineering systems, it is recommended to carry out a global sensitivity
analysis, enabling appropriate scanning of the domain of design parameters
by varying of all the parameters at the same time.
This makes it possible to provide deep insight into design process, narrow
down the number of inputs and increase the computational efficiency of
optimization.
Saltelli, A. et al., Sensitivity analysis practice: Strategies for model-based inference, Reliability
Engineering and System Safety, 2006, 91: 1109-1125.
Mousavi Bideleh, M.S. and V. Berbyuk, (2016), Global sensitivity analysis of bogie dynamics with
respect to suspension components, Multibody System Dynamics, Vol. 37, No. 2, pp. 145-174,
http://dx.doi.org/10.1007/s11044-015-9497-0
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Global Sensitivity Analysis
Zhang, X. and Pandey, M.D., An effective approximation for variance-based global sensitivity
analysis, Reliability Engineering and System Safety, 2014, 121: pp. 164-174.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Methods and Tools
SAMO*
SAMO stands for Sensitivity Analysis and Multiobjective Optimization
– a computer code developed at the Mechanical Systems at
CHALMERS to carry out a computationally efficient global sensitivity
analysis and Pareto optimization problems solution for engineering
systems.
*Seyed Milad Mousavi Bideleh and Viktor Berbyuk: A computer code for
sensitivity analysis and multiobjective optimization: SAMO Tutorial, Research
Report 2017:01, Chalmers University of Technology, Mechanics and Maritime
Sciences, Gothenburg, 45 pp;
http://publications.lib.chalmers.se/records/fulltext/249594/local_249594.pdf .
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Selected projects
at the
Mechanical Systems Group
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
A generic drivetrain system (DTS) with
torsional vibration absorber (TVA)
Dual Mass Flywheel (DMF)
?
Berbyuk, V., (2019), Vibration, 2(3),
https://doi.org/10.3390/vibration2030015
Berbyuk, V., (2020), IAVSD 2019,
https://doi.org/10.1007/978-3-030-38077-9_180
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Global Sensitivity Analysys of the DTS with DMF
𝒅𝒅 =
∗ ∗ ∗ ∗ 𝑻𝑻
𝒌𝒌𝟏𝟏 , 𝒄𝒄𝟏𝟏 , 𝑱𝑱𝒑𝒑 , 𝑱𝑱𝒔𝒔
F1[q(t ), d] = std (Tg [q(t ), d]),
F2 [q(t ), d] = std (T f [q(t ), d]),
=
F3[q(t ), d] std (ϕ p [q(t ), d] − ϕ s [q(t ), d]),
F4 [q(t ), d] = peak _ peak (Tg [q(t ), d])
F5 [q(t ), d] = peak _ peak (T f [q(t ), d])
=
F6 [q(t ), d] peak _ peak (ϕ p [q(t ), d] − ϕ s [q(t ), d])
GSA of DTS with DMF, ne=1600 rpm
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Pareto optimization of the DTS with DMF
d e ∈ Ωe ,
dg ∈ Ωg }
[k1* , c1* , =
J *p , J s* ]T ?,=
q(t ) q* (t ),
d* ∈ Ω
OS {Te (t , d e ),
d
Tg (t , d g ),
t ∈ [t0 , t f ],
min{std (T f [q(t ), d])} = std (T f [q (t ), d ])
d∈Ω
*
*
=
min{
std
(
T
[
q
(
t
),
d
])}
std
(
T
[
q
(
t
),
d
])
g
g
d∈Ω
*
*
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Pareto fronts of the DTS with DMF
Pareto fronts, DTS with DMF
Pareto fronts-zoomed, DTS with DMF
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Drivetrain system with Pareto optimized DMF
Input torques for engine speeds
800 rpm and 1400 rpm.
The torques at the transmission input
shaft for the nominal and Pareto optimized DMF.
Nom
T
2
2 T
=
d DMF
[k=
,
c
,
J
,
J
]
[
12732
Nm
/
rad
,30
N
ms
/
rad
,1.8
kgm
,
0.9
k
gm
]
p
s
1 1
*
*
*
* T
=
d*800 rpm [k=
,
c
,
J
,
J
[10501,
p
s]
1
1
51 ,
3.6,
0.1]T
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Pareto optimization of the DTS with DMF having
tuned mass damper (TMD)
OS {Te (t , d e ),
Tg (t , d g ),
t ∈ [t0 , t f ],
d e ∈ Ωe ,
dg ∈ Ωg }
d [k , c , J , J , k ,=
J , c ] ?,=
q(t ) q (t ),
*
1
*
1
*
p
*
s
*
0
*
0
* T
0
*
d ∈Ω
*
min{std (T f [q(t ), d])} = std (T f [q* (t ), d* ])
d∈Ω
*
*
min{std (Tg [q(t ), d])} = std (Tg [q (t ), d ])
d∈Ω
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Pareto fronts, DTS with DMF having TMD
Pareto fronts for the drivetrain system
equipped with a DMF having TMD.
Torques at transmission input shaft
with optimized DMF and DMF having TMD.
Nom
T
=
d DMF
[k=
,
c
,
J
,
J
]
[12732,
1 1
p
s
d*TMD1200 rpm
* *
*
*
*
* * T
[k=
[10876,
1 , c1 , J p , J s , k0 , J 0 , c0 ]
92,
30 ,
2.8,
1.8,
0.8,
0.9]T
7941,
0.06,
0.07]T
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design Optimization in the Operating Engine Speed Range
2000
F1 (d)
=
∫ std (Tg [q(t ), d, ne ])dne , F2 (d)
600
2000
∫
std (T f [q(t ), d, ne ])dne
600
2000
2000
*
*
min{
std
(
T
[
q
(
t
),
d
,
n
])
dn
}
std
(
T
[
q
(
t
),
d
, ne ])dne
=
d∈Ω ∫
g
e
e
g
∫
600
600
2000
2000
min{ std (T [q(t ), d, n ])dn } =
*
*
std
(
T
[
q
(
t
),
d
, ne ])dne
f
e
e
f
∫
d∈Ω ∫
600
600
=
d [k1* , c1* , =
J *p , J s* ]T ?,=
q(t ) q* (t ),
d* ∈ Ω
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Optimized TVAs for Engine Speed Range
Standard deviation of the torques at the transmission input shaft in the operating engine
speed range 600rpm <ne < 2000rpm for the DMF with nominal design parameters (black
curve) and with optimized parameter (red curve), as well as with optimized parameters
for the DMF having TMD (blue curve).
*
*
*
* T
2
2 T
=
d*gDMFenergy [k=
,
c
,
J
,
J
]
[
10966
Nm
/
rad
,
41
Nms
/
rad
,
2.7
kgm
,
0.4
5
k
gm
]
1
1
p
s
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Conclusions*
•
There exist a clear trade-off between the measure of the oscillations attenuation
of the torque at the transmission input shaft and the measure of the energy
efficiency in designing of torsional vibration absorbers for heavy-duty truck
drivetrain systems.
•
The optimized mass inertia, stiffness and damping parameters of a DMF provided
the best attenuation of oscillations in the operating engine speed range 600–2000
rpm do exist when the third engine order vibration harmonic is in focus.
•
Tuned mass damper in DMF with appropriate optimization of its design
parameters can significantly enhance the performance of the combined
vibration absorber (DMF+TMD).
•
The results obtained show evidence of the feasibility of the application of dual
mass flywheels in heavy-duty truck drivetrain systems.
*Berbyuk, V., (2020), IAVSD 2019, https://doi.org/10.1007/978-3-030-38077-9_180
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Weight-vibration Pareto optimization of
a dual mass flywheel*
Sketch of a generic drivetrain system equipped with
a dual mass flywheel
*Berbyuk, V., (2019), Weight-vibration Pareto optimization of a dual mass flywheel,
J. Mathematical Methods and Physicomechanical Fields, National Academy of Sciences of Ukraine,
Vol. 62, № 3, pp. 7-18., ISSN 0130–9420.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Global Sensitivity Analysys of the DTS with DMF
𝒅𝒅 =
∗ ∗ ∗ ∗ 𝑻𝑻
𝒌𝒌𝟏𝟏 , 𝒄𝒄𝟏𝟏 , 𝑱𝑱𝒑𝒑 , 𝑱𝑱𝒔𝒔
2000
F1 (d) =
∫
std (Tg [q(t ), d, ne ])dne ,
600
F2 (d=
) J p + Js ,
2000
F3 (d) =
∫
std (T f [q(t ), d, ne ])dne
600
GSA of DTS with DMF, ne=1600 rpm
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design Optimization in the
Operating Engine Speed Range
2000
F1 (d=
)
∫
std (Tg [q(t ), d, ne ])dne ,
F2 (d=
) J p + Js
600
2000
2000
*
*
std
(
T
[
q
(
t
),
d
,
n
])
dn
}
std
(
T
[
q
(
t
),
d
, ne ])dne
=
min{
g
e
e
g
∫
∫
d∈Ω
600
600
min{J + J } = J * + J *
s
p
s
d∈Ω p
=
d [k1* , c1* , =
J *p , J s* ]T ?,=
q(t ) q* (t ),
d* ∈ Ω
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Weight-Vibration Pareto front for DTS with DMF
Pareto front for the drivetrain system
equipped with weigh-vibration optimized DMF
Torques at transmission input shaft
with optimized DMF
Nom
=
d DMF
[=
J p , J s , k1 , c1 ]T [1.8,
d
*
DMF
[=
J , J , k , c ] [2.34,
*
p
*
s
*
1
* T
1
0.9 ,
0.1,
12732,
3938,
30]T
T
30] .
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Standard deviation of the torques at the
transmission input shaft
Standard deviation of the torques at the transmission input shaft
in the operating engine speed range for the DMF with nominal design parameters (black dashed curve)
and with weight-vibration optimized parameter (black solid curve),
as well as with energy-vibration optimized parameters for the DMF (green curve)*.
*Berbyuk, V., (2019), Vibration, 2(3), https://doi.org/10.3390/vibration2030015
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Conclusions*
•
There exists a clear trade-off between the measure of oscillation attenuation of
the torque at the transmission input shaft and the measure of the total weight in
designing of the DMF for heavy-duty truck drivetrain systems.
•
For a heavy-duty truck drivetrain system equipped with a DMF there exists the
weight-vibration bi-objective optimized mass inertia, stiffness and damping
parameters providing the best attenuation of oscillation of the torque at the
transmission input shaft in the operating engine speed range 600rpm- 2000 rpm
when the third engine order vibration harmonic is in focus.
•
The results obtained show evidence of feasibility of application of the weightvibration optimized dual mass flywheels in heavy-duty truck drivetrain systems.
*Berbyuk, V., (2019), Weight-vibration Pareto optimization of a dual mass flywheel,
J. Mathematical Methods and Physicomechanical Fields, National Academy of Sciences of Ukraine,
Vol. 62, № 3, pp. 7-18., ISSN 0130–9420.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Torsional vibration absorbers in heavy-duty truck
powertrains*
Simulation and analysis of multiple-mass flywheel concepts
Lina Wramner, PhD 2020
Dual Mass Flywheel
Power Split Vibration Absorber
*L. Wramner, (2020), PhD thesis, https://research.chalmers.se/publication/516337/file/516337_Fulltext.pdf
L. Wramner, (2020), Dual-mass flywheels with tuned vibration absorbers for application in heavy-duty truck powertrains,
https://doi.org/10.1177/0954407020916940
L. Wramner, (2019), Numerical algorithms for simulation of one-dimensionalmechanical systems with clearance-type nonlinearities, https://doi.org/10.1115/1.4043087
L. Wramners, V. Berbyuk, H. Johansson, (2018), Vibration dynamics in non-linear dual mass flywheels for heavy-duty trucks,
http://past.isma-isaac.be/downloads/isma2018/proceedings/Contribution_273_proceeding_3.pdf
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Modelling, failure modes prediction and
optimization of gear shifting mechanism*
Application to heavy vehicle transmission systems
Muhammad Irfan, PhD 2019
*Irfan, M., (2019), https://research.chalmers.se/publication/508767/file/508767_Fulltext.pdf
Irfan, M., Berbyuk, V., and H. Johansson, (2020), Minimizing Synchronization Time of a Gear Shifting Mechanism
by Optimizing its Structural Design Parameters, https://journals.sagepub.com/doi/10.1177/0954407019860363
Irfan, M., Berbyuk, V., and H. Johansson, (2018), Performance improvement of a transmission synchronizer via
sensitivity analysis and Pareto optimization, https://doi.org/10.1080/23311916.2018.1471768
Irfan, M., Berbyuk, V., Johansson, H., (2016), Dynamics and Pareto Optimization of a Generic Synchronizer
Mechanism”, in Rotating Machinery, Hybrid Test Methods, Vibro-Acoustic & Laser Vibrometry, Editors James De
Clerck and David S. Epp, Volume 8, pp. 417-425, 2016, Springer, ISBN: 978-3-319-30084-9,
http://dx.doi.org/10.1007/978-3-319-30084-9_38
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
A Generic Synchronizer
Berbyuk, V., (2015), Towards Pareto optimization of performance of a generic synchronizer of transmission systems,
Proceedings of the ASME 2015 IDETC/CIE, August 2-5, 2015, Boston, Massachusetts, USA, paper DETC2015-46773,
http://dx.doi.org/10.1115/DETC2015-46773
Berbyuk, V., (2015), Dynamics of synchronization of rotational motion of contacting triple-body systems,
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015, Barcelona, June 29 – July 2, 2015,
Universitat Politècnica de Catalunya, Josep M. Font-Llagunes (Ed.) p. 532-541.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Wind Turbine Drive Train System Dynamics*
Multibody Dynamic Modelling and Global Sensitivity Analysis
Saeed Asadi, PhD 2018
*Asadi, S., PhD thesis (2018), https://research.chalmers.se/publication/503280/file/503280_Fulltext.pdf
Asadi, S., Berbyuk, V., Johansson, H. (2018), Global Sensitivity Analysis of High Speed Subsystem of a Wind Turbine
Drive Train, https://doi.org/10.1155/2018/9674364
Asadi,S., Johansson, H. (2019) Multibody dynamic modelling of a direct wind turbine drivetrain,
http://dx.doi.org/10.1177/0309524X19849827
Asadi, S., Berbyuk, V., and H. Johansson, (2015), Vibration dynamics of a wind turbine drive train high speed subsystem:
Modeling and validation”, Proceedings of the ASME 2015 IDETC/CIE, http://dx.doi.org/10.1115/DETC2015-46016
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Guided wave-based approach for health
monitoring of composite structures*
Application to wind turbine blades
Siavash Shoja, PhD, 2018
windpowerengineeringdevelopment.com
*Shoja, S., (2018), PhD thesis, https://research.chalmers.se/publication/505758/file/505758_Fulltext.pdf
Shoja, S., Berbyuk, V., and A. Boström, (2018), Delamination detection in composite laminate using low
frequency guided waves, Composite Structures, https://doi.org/10.1016/j.compstruct.2018.07.025
Shoja, S., Berbyuk, V., and A. Boström, (2018), Guided wave-based approach for ice detection on
wind turbine blades, Wind Engineering, https://journals.sagepub.com/doi/full/10.1177/0309524X18754767
Shoja, S., Berbyuk, V., and S. Mustapha, (2020), Design optimization of transducer arrays for uniform
distribution of guided wave energy in arbitrarily shaped domains, Ultrasonics,
https://doi.org/10.1016/j.ultras.2020.106079
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Effect of Ice Thickness and Group Velocity
Siavash Shoja, PhD, 2018
Influence of reflections on amplitude (5kHz)
Influence on Group Velocity
Shoja, S., Berbyuk, V., and A. Boström, (2015), Investigating the application of guided wave propagation for ice detection
on composite materials, In Proc. of the International Conference on Engineering Vibration, Ljubljana, 7 - 10 September
[editors Miha Boltežar, Janko Slavič, Marian Wiercigroch]. - EBook. - Ljubljana: Faculty for Mechanical Engineering, p. 152-161.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
4
Structural Dynamics and
Ice Detection
The aim of the project is to develop a method for early detection
of ice using ultrasonic guided waves in the turbine blades.
The work includes mathematical and computational modeling of
acoustic wave propagation in composite materials in order to be
able to find the application for ice detection.
It also includes experimental work in Cold climate lab on
composite objects with layers of ice.
Berbyuk, V., Peterson, B, Möller, J. (2014), Towards early ice detection on wind turbine blades using acoustic waves,
Proc. of SPIE 2014, San Diego, USA, March 09, 2014, 9063 pp. 90630F-1 - 90630F-11, http://dx.doi.org/10.1117/12.2046362
Mamontov, E., and V. Berbyuk, (2014), A scalar acoustic equation for gases, liquids, and solids, including viscoelastic media,
Journal of Applied Mathematics and Physics, Vol. 2, p. 960-970, http://dx.doi.org/10.4236/jamp.2014.210109
Mamontov, E. and V. Berbyuk, (2015), Passive acoustic signal sensing approach to detection of ice on the rotor blades
of wind turbines, In Proc. of IWAIS2015 16th International Workshop on Atmospheric Icing of Structures, Uppsala,
28 June-3 July, 2015, ISBN 978-91-637-8552-8, 6 pages.
Mamontov, E., and V. Berbyuk, (2015), Identification of material parameters of thin curvilinear viscoelastic solid layers
in ships and ocean structures by sensing the bulk acoustic signals, In Proc. of the VI International Conference on
Computational Methods in Marine Engineering, MARINE 2015, Rome, Italy, June 15-17, 2015, p. 502-513
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Attenuation of hand-held machine vibrations*
Application of non-linear tuned vibration absorbers
Hans Lindell, Lic. Eng. 2017
*Lindell, H., Lic.Eng. thesis, (2017), http://publications.lib.chalmers.se/records/fulltext/253449/253449.pdf
Lindell, H., Berbyuk, V., Josefsson, M., and S. L. Grétarsson, (2015), “Nonlinear dynamic absorber to reduce vibration in
hand-held impact machines”, http://publications.lib.chalmers.se/records/fulltext/222325/local_222325.pdf
Lindell H., Grétarsson S., Machens M., (2016), High Frequency Vibrations From Impact Tools –Measurement of Vibration
and Simulating Pressure Propagation into Finger Tissue, 6:th American Conference on Human Vibration, Chicago, USA.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Multiobjective Optimisation and
Active Control of Bogie Suspension*
Ride
Comfort
Speed
Seyed Milad Mousavi Bideleh, PhD 2016
Safety
Bogie
System
Wear
*Mousavi, M., (2016), PhD thesis, http://publications.lib.chalmers.se/records/fulltext/241192/241192.pdf
Mousavi-Bideleh, M.S., and V. Berbyuk, (2016), Multiobjective optimisation of bogie suspension to boost speed on curves,
Vehicle System Dynamics, http://dx.doi.org/10.1080/00423114.2015.1114655
Mousavi Bideleh, M.S., Mei, T. X. and V. Berbyuk, (2016), Robust control and actuator dynamics compensation for railway
vehicles, Vehicle System Dynamics , https://doi.org/10.1080/00423114.2016.1234627
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Global Sensitivity Analysis
Symmetric vehicle
Asymmetric vehicle
No.
Susp. Component
1
Long. Prim. Spr.
2
Long. Prim. Damp.
3
Lat. Prim. Spr.
4
Lat. Prim. Damp.
5
Vert. Prim. Spr.
6
Vert. Prim. Damp.
7
Long. Sec. Spr.
8
Yaw. Damp.
9
Lat. Sec. Spr.
10
Lat. Sec. Damp.
11
Vert. Sec. Spr.
12
Vert. Sec. Damp.
13
Anti-roll bar
14
Traction-rod
Number of simulations: 14×12= 168
Mousavi Bideleh, M.S. and V. Berbyuk, (2016), Global sensitivity analysis of bogie dynamics with respect to suspension
components, Multibody System Dynamics, http://dx.doi.org/10.1007/s11044-015-9497-0
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Ride Comfort
Mousavi, M. and Berbyuk, V., (2013), Multiobjective optimization of a railway vehicle dampers using genetic algorithm,
Proceedings of the ASME 2013 IDETC/CIE, August 4-7, 2013, Portland, Oregon, USA, (DETC2013-12988),
http://dx.doi.org/10.1115/DETC2013-12988
Mousavi, M., Berbyuk, V., (2014), Application of Semi-Active Control Strategies in Bogie Primary Suspension System
Proceedings of the Second International Conference on Railway Technology, J. Pombo, (Editor),
Civil-Comp Press, Stirlingshire, United Kingdom, paper 318, http://www.ctresources.info/ccp/paper.html?id=7968
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Contact Wear and Safety
Mousavi, M. and Berbyuk, V., (2013), Optimization of a bogie primary suspension damping to reduce wear
in railway operations. Proceedings of the ECCOMAS Thematic Conference, Multibody Dynamics 2013, 1-4 July 2013, Zagreb,
Crotia, Edited by Zdravko Terze, pp. 1025-1034. ISBN/ISSN: 978-953-7738-22-8
Mousavi-Bideleh, M.S., Berbyuk, V., and R. Persson, (2016), Wear/comfort Pareto optimisation of bogie suspension,
Vehicle System Dynamics, http://dx.doi.org/10.1080/00423114.2016.1180405
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Wind Turbine Drive Train Dynamics
Stephan Struggl, PhD student 2012
Engineering Models (EM)
Mathematical Models (MM)
Computational Models (CM)
Struggl, S., Berbyuk, V. and H. Johansson, (2015), Review on wind turbines with focus on drive train system dynamics,
Wind Energy, Vol. 18, 4, p. 567-590, http://dx.doi.org/10.1002/we.1721
Struggl, S., Berbyuk, V., Johansson, H., (2012), Wind turbine drive train vibration with focus on gear dynamics under
Nondeterministic loads, Proceedings, International Conference on Noise and Vibration Engineering, ISMA2012,
KU Leuven (Belgium), ISBN/ISSN: 9789073802896, http://past.isma-isaac.be/downloads/isma2012/papers/isma2012_0663.pdf
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Advances in Heavy Vehicle Dynamics with Focus on
Engine Mounts and Individual Front Suspension*
Hoda Yarmohamadi, PhD, 2012
Vibration control for commercial vehicles with individual front suspension for enhanced safety and comfort
*Yarmohamadi H., PhD Thesis, (2012), http://publications.lib.chalmers.se/records/fulltext/166089.pdf
Yarmohamadi, H., and V. Berbyuk, (2013), Kinematic and dynamic analysis of a heavy truck with individual front
suspension. Vehicle System Dynamics, http://dx.doi.org/10.1080/00423114.2013.770539
Yarmohamadi, H., Berbyuk, V., (2012), Effect of Semi-Active Front Axle Suspension Design on Vehicle Comfort and
Road Holding for a Heavy Truck. SAE International, http://dx.doi.org/10.4271/2012-01-1931
Yarmohamadi, H., Berbyuk, V., (2011), Comfort and Handling of a Commercial Vehicle with Individual Front Suspension,
Proceedings of the ASME 2011 IDETC/CIE 2011,Washington, http://dx.doi.org/10.1115/DETC2011-47876
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Stiffness and Non-dimensional Damping
rear mount, vertical direction
Hoda Yarmohamadi, PhD 2012
•
•
Changes of stiffness up to %32 and %29 with respect to amplitude and frequency of
excitation, respectively
Changes of non-dimensional damping up to %87 and %88 with respect to amplitude
and frequency of excitation, respectively
Yarmohamadi, H. and V. Berbyuk, (2011), Computational model of conventional engine mounts for commercial
vehicles: validation and application, Vehicle System Dynamics, http://dx.doi.org/10.1080/00423111003770439
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Simulation Plots for the Front Mount
Hoda Yarmohamadi, PhD 2012
Stiffness and damping for the front mount (vertical)
Front engine mount, x
Front engine mount, x
1.5
6000
Damping [-]
Stiffness [N/mm]
7000
5000
1
0.5
4000
3000
1
0
1
100
80
0.5
60
100
80
0.5
60
40
Amplitude [mm]
0
40
20
0
Frequency [Hz]
Amplitude [mm]
0
20
0
Frequency [Hz]
Yarmohamadi, H. and V. Berbyuk, (2011), Computational model of conventional engine mounts for commercial
vehicles: validation and application, Vehicle System Dynamics, http://dx.doi.org/10.1080/00423111003770439
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
System’s Functional Components
Engine Mounts - Elastomeric
Hoda Yarmohamadi, PhD 2012
•
•
•
Rubber or rubber/metal
Passive
Cheap
Well-known behaviour
Low performance
Yarmohamadi, H. and V. Berbyuk, (2008), Vibration dynamics of a commercial vehicle engine suspended on adaptronic
mounting system, Proc. The 9th International Conference on Motion and Vibration Control, September 15-18, 2008,
Technishe Universitaet Muenchen, Munich, Germany.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Multi-objective optimization of railway bogie
suspension damping*
Albin Johnsson, Lic. Eng. 2011
Railway vehicle – mechanical arrangement
*Johnsson, A., Lic. Eng. thesis, (2011), https://research.chalmers.se/publication/136392
Johnsson, A., Berbyuk, V., and M. Enelund, (2012), Pareto optimization of railway bogie suspension damping to enhance safety
and comfort, Vehicle System Dynamics, 50:9, 1379—1407, http://dx.doi.org/10.1080/00423114.2012.659846
Johnsson, A., Berbyuk, V., Enelund, M., (2010), Vibration dynamics of high speed train with Pareto optimized damping of bogie
suspension to enhance safety and comfort. Proc. ISMA2010, http://past.isma-isaac.be/downloads/isma2010/papers/isma2010_0363.pdf
Johnsson, A., Berbyuk, V. and M. Enelund, (2009), Optimized Bogie System Damping with Respect to Safety and Comfort, Proc.
The 21st International Symposium on Dynamics of Vehicles on Roads and Tracks, IAVSD'09, 17-21 August 2009,KTH, Stockholm.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
High Speed Train
Pareto Optimization of Damping of Bogie
Suspensions to Enhance Safety and Comfort
Albin Johnsson, Lic.Eng. 2011
List of objectives
Johnsson, A., Berbyuk, V., and M. Enelund, (2012), Pareto optimization of railway bogie suspension damping to enhance safety
and comfort, Vehicle System Dynamics, 50:9, 1379—1407, http://dx.doi.org/10.1080/00423114.2012.659846
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Pareto Fronts and Pareto Sets
Albin Johnsson, Lic.Eng. 2011
Johnsson, A., Berbyuk, V., and M. Enelund, (2012), Pareto optimization of railway bogie suspension damping to enhance safety
and comfort, Vehicle System Dynamics, 50:9, 1379—1407, http://dx.doi.org/10.1080/00423114.2012.659846
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Washing Machine Design Optimization Based
on Dynamics Modeling*
Thomas Nygårds, PhD 2011
A methodology for Pareto optimization has been developed and
used for suspension optimization
Semi-active suspension will reduce vibrations in during
spinning processes of washing machines
*Nygårds, T., PhD thesis (2011), http://publications.lib.chalmers.se/records/fulltext/137995.pdf
Nygårds, T. and V. Berbyuk, (2007), Dynamics of Washing Machines: MBS Modeling and Experimental Validation, in
Proc. MULTIBODY DYNAMICS 2007, ECCOMAS Thematic Conference, 25–28 June 2007, Milano, Italy.
Nygårds, T. and V. Berbyuk, (2012), Multibody modeling and vibration dynamics analysis of washing machines,
Multibody System Dynamics, http://dx.doi.org/10.1007/s11044-011-9292-5
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Pareto Front for Washing Machine
Thomas Nygårds, PhD 2011
(
)
=
ℑK max max ( ∆X p (t ) − ∆X max
p ) ,
p
t
=
p 1,2,3...9, ∀t ∈ [0, T ]
Nygårds, T., Berbyuk, V., (2010), Pareto optimization of a washing machine suspension system,
Proc. of the 2nd International Conference on Engineering Optimization, September 6 - 9, 2010, Lisbon, Portugal, pp. 1-10.
Nygårds, T. and V. Berbyuk, (2014), “Optimization of washing machine kinematics, dynamics, and stability during spinning
using a multistep approach”, Optimization and Engineering, 15, (2), http://dx.doi.org/10.1007/s11081-012-9206-2
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Washing Machine Vibration Control
Passive vs Active
MR damper
Passive damper
Thomas Nygårds, PhD 2011
Nygårds, T., Sandgren, J., Berbyuk, V. and A. Bertilsson, (2006), Vibration Control of Washing Machine with
Magnetorheological Dampers, Proc. The 8th Int. Conf. on Motion and Vibration Control (MOVIC 2006), Daejeon, Korea.
Nygårds, T., Berbyuk, V. and A. Sahlén, (2008), Modeling and optimization of washing Machine Vibration Dynamics,
The 9th International Conference on Motion and Vibration Control, September 15-18, 2008, Munich, Germany.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Thermomechanics of Block Brakes*
Daniel Thuresson, PhD 2006
Experiments
600
Simulations
500
400
300
200
100
Unstable pressure distribution:
simulation with pin model.
Hot spots on block brake:
full scale tests. Temperature
measured with thermo camera.
The principle of frictional
contact plays an
important role in many
mechanical systems,
such as brakes and
clutches. One important
factor is the
phenomenon of thermo
elastic instability (TEI).
Fundamental features of
this instability are that
contact pressure and
temperature are high
and that the contact
areas move in time. This
may lead to material
transfer, other damages
due to high temperature
and/or stress and
increased wear.
*Thuresson, D., PhD thesis, (2006), https://research.chalmers.se/publication/505995
Thuresson, D. (2006), Stability of sliding contact-Comparison of a pin and a finite element model, Wear,
https://doi.org/10.1016/j.wear.2006.01.037
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Torque and Angle Controlled Tightening
of Bolted Joints*
Göran Toth , PhD 2006
DEFORMATIONS IN YIELD TIGHTENING OF BOLTS
- Elastic ideal-plastic model
The finite element analysis of the bolt head deflection
Smart
Fastening Technology
*Toth, G., PhD thesis, (2006), https://research.chalmers.se/publication/22453
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design of Optimal Control Processes for
Closed-Loop Chain SCARA-Like Robots*
Mathias Lidberg, PhD, 2004
*Lidberg, M., PhD thesis (2004), https://research.chalmers.se/publication/9807
Lidberg M. and V. Berbyuk, (2002), Optimisation of controlled motion of closed-loop chain manipulator robots with
different degree and type of actuation, J. Stability and Control: Theory and Application, (SACTA), Vol.4, No.2, pp.56-73.
Berbyuk V. and Lidberg M., (2002),Time-optimal control of semi-passively actuated closed-loop chain robots,
Proceedings of the 33rd ISR (International Symposium on Robotics), October 7-11, 2002, Stockholm, pp.221-226.
Lidberg M. and Berbyuk V., (2000), Modeling of controlled motion of semi-passively actuated SCARA-like robot. In:
Proceedings of the 7th Mechatronics Forum International Conference, 6-8 September 2000, Atlanta, Georgia, USA, (ISBN 0
08 043703 6), PERGAMON, 2000.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design of Optimal Control Processes for
Closed-Loop Chain SCARA-Like Robots*
Mathias Lidberg, PhD, 2004
The path of end-effector C for the energy-optimal control processes
*Lidberg, M., PhD thesis (2004), https://research.chalmers.se/publication/9807
Lidberg M. and Berbyuk V., (2002), Energy-optimal control of semi-passively actuated SCARA-like robot. In:
Proceedings of the First International Symposium on Mechatronics, (Eds: Peter Maisser and Peter Tenberge), March 21-22,
2002, Chemnitz, Germany, (ISBN 3-00-007504-6), pp.302-311.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Parallel Mechanisms and Robots
•High static accuracy
•High acceleration/speed
•High dynamic accuracy
•High Stiffness
•High force/torque
•Low inertia
•High efficiency (low power
consumption)
Johannesson, L., Berbyuk V., and T. Brogårdh, (2003), Gantry-Tau – A New Three Degrees of Freedom Parallel Kinematic
Robot”. In: Proceedings of the Mekatronikmöte2003, August 27-28, 2003, Göteborg, Sweden.
Johannesson J., Berbyuk V. and Brogårdh T., (2004), Gantry Tau – A New Parallel Kinematic Robot,
In: Proceedings of the 4th Chemnitz Parallel Kinematics Seminar, (ISBN 3-937524-05-3).
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Optimal Kinematic Design of Gantry Parallel Robot
Case A
A=0.175
0.26
Case B
A=0.175
0.12
0.24
0.22
1
0.2
0
-0.5
0.11
0.6
0.1
0.4
0.09
0.18
0.2
0.16
0
0.08
0.14
-0.2
0.07
0.12
-0.4
Z
Z
0.5
0.8
0.06
-0.6
0.1
0.05
-0.8
0.08
-1
-1.5
-1
-0.5
0
Y
0.5
1
-1
0.06
1.5
0.04
-1
-0.5
0
Y
0.5
1
0.03
Case C
A=0.125
0.3
1
0.25
Z
0.5
0.2
0
0.15
-0.5
-1
-1.5
-1
-0.5
0
Y
0.5
1
1.5
0.1
Berbyuk, V., and L. Johannesson, (2005), Optimal Kinematic Design of Gantry Parallel Robot,
Proc. of IDETC/CIE2005 ASME2005, 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
(MSNDC), September 24-28, 2005, Long Beach, California, USA, Volume 1, Paper DETC2005-84397,
http://dx.doi.org/10.1115/DETC2005-84397
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Time-Optimal Robot Placement Using
Response Surface Method
Kamrani, B., Berbyuk, V., Wäppling, D. and X. Feng, (2007), Method for optimizing the performance of a robot, United
States Patent 20070106421, Kind Code: A1, Application Number: 580239, Filing Date: 23 November 2004, Publication Date:
10 May 2007, http://www.freepatentsonline.com/20070106421.html
Kamrani B., Berbyuk, B., Wäppling D., Stickelmann U. and X. Feng, (2008), Optimal robot placement using response
surface method, Int. J. Advanced Manufacturing Technology, http://dx.doi.org/10.1007/s00170-008-1824-7
Kamrani, B., Berbyuk, V., Wäppling, D., Feng, X., Andersson, H., (2010), Optimal Usage of Robot Manipulators,
.
Publisher: INTECH, Publishing date: March 2010, pp. 1-26. ISBN/ISSN: 978-953-307-073-5
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Humanoid Robotics and Bioengineering
Y, m
G
30
Y
20
1.50
H
10
B
0
1.00
- 10
0.50
D
0
20
40
60
80
C
- 20
O
- 30
0.00
-0.75
K
100
-0.25
0.25
0.75
1.25
1.75
X, m
X
Z
Cyclorama of Energy-Optimal Motion of BWR
Berbyuk V., Demydyuk M. and B. Lytwyn, (2005), Mathematical modelling and optimization of walking of human being
with prosthesis of crus, J. of Automation and Information Sciences, Vol. 37, Issue 6, pp. 46-60,
http://dx.doi.org/10.1615/J Automat Inf Scien.v37.i6.60
Berbyuk V. and Nishchenko N., (2001), Mathematical design of energy-optimal femoral prostheses,
J. of Mathematical Sciences, Vol. 107, No.1, 2001, pp.3647-3654, http://dx.doi.org/10.1023/A:1011966912564
Berbyuk V., Krasyuk G. and N. Nishchenko, (1999), Mathematical modeling of the dynamics of the human gait in the
saggital plane”, J. of Mathematical Sciences, Vol.96, No.2, pp.3047-3056, http://dx.doi.org/10.1007/BF02169705
Berbyuk V.E. and Polovinko I.O., (1993), Effect of the deformability of structural links on the motion of
a two-legged walking robot", Journal of Mathematical Sciences, Plenum Publishing Corporation, Vol.65, No.6, pp.1991-1994,
http://dx.doi.org/10.1007/BF01097487
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Semi-Passively Controlled Multibody Systems
Y
G
ψ
µ1
µ0
θi
c3
c1
N
y
c2
α1
Ai
K1
β1
x
O
Fig. 1
µ2
c4
c6
Hi
A1
H1 γ1
M1 T
1
ε1 X
Mi
µ3
c5
νi T i
Fig. 2
Berbyuk V. and A. Boström, (2001), Optimization problems of controlled multibody systems having spring-damper actuators,
International Applied Mechanics, Vol. 37, No. 7, pp.935-940, http://dx.doi.org/10.1023/A:1012536111041
Berbyuk V., (2003), Control and optimization of semi-passively actuated multibody systems,
in Virtual Nonlinear Multibody Systems, Eds.: Werner Schiehlen and Michael Valasek, Kluwer Academic Publishers, pp.279-295
Berbyuk, V., Lytwyn B., and M. Demydyuk, (2005), Energy-Optimal Control of Underactuated Bipedal Locomotion Systems,
Proc. The ECCOMAS Thematic Conference Multibody Dynamics 2005 on Advances in Computational Multibody Dynamics,
Madrid, June 21-24, 2005, Eds. J.M. Goicolea, J. Cuardrado and J.C. Garcia Orden, Universidad Politécnica de Madrid,
ISBN 84-7493-353-6, pp.1-15
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Cyclorama of Energy-Optimal Motion of BWR
Y, m
1 .5 0
1 .0 0
0 .5 0
0 .0 0
- 0 .7 5
- 0 .2 5
0 .2 5
0 .7 5
1 .2 5
1 .7 5
X, m
Berbyuk V., Boström A., Lytwyn B., and B. Peterson, (2002), Energy-optimal control of bipedal locomotion systems,
J. Stability and Control: Theory and Application, (SACTA), Vol.4, No.2, pp.74-89.
Berbyuk V. and Lytwyn B., (2001), Mathematical modeling of the human walking on the basis of optimization of controlled
processes in biodynamical systems, J. of Mathematical Sciences, Vol. 104, No.5, pp.1575-1586,
http://dx.doi.org/10.1023/A:1011352207020
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Power Harvesting from Vibration
Villari Effect
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Specific Targeted Research Project
The Thematic Priority of Aeronautics and Space
The 6th Framework Programme of the European Commission
Active Vibration and Noise Control
Structural Health Monitoring
Vibration-to-Electrical Energy Conversion
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Magnetostriction: Joule Effect
Δl / l
H
l
λs
l+Δl
-H
H
H
The study of magnetostriction began in 1842 by James P. Joule
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Magneto-Elastic Electro-Mechanical MBS with
Magnetostrictive Transducer
A(y )
y + B(y , y ) =
u(t )
σ ( y , y ) = σ g ( y , y , C, t ) ε = ε g ( y , y , C, t )
ε = ε (σ , H )
Faraday-Lent law:
U (t ) = − N coil Acoil
B = B (σ , H )
dB
dt
Ampèré’s law: H r =
N coli I
lcoil
Berbyuk V., (2007), Towards dynamics of controlled multibody systems with magnetostrictive transducers,
J. of Multibody System Dynamics, Vol. 18, pp. 203-216, http://dx.doi.org/10.1007/s11044-007-9078-y
Berbyuk V., and J. Sodhani, (2008), Towards modeling and design of magnetostrictive electric generators,
J. Computers and Structures, Vol. 86, pp.307-313, http://dx.doi.org/10.1016/j.compstruc.2007.01.030
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Solution of Inverse Dynamics Problems for
Force Driven MEG
=
σ σ g (t ),
t ∈ [t0 , t1 ]
dB ( t )
fσ ( t )
+ aσ ( t ) B ( t ) =
dt
fσ ( t ) =
aσ ( t ) d 33σ g ( t ) + µ σ H 0 ,
B(t )
=
e
− Aσ ( t )
b
aσ ( t ) =σ
µ
t
( B0 + ∫ fσ (τ )e A(τ ) dτ )
t0
t
Aσ ( t )
=
aσ (τ )dτ ,
B(t )
∫=
0
B0
t0
Berbyuk, V., (2007), TERFENOL-D Transducer for Power Harvesting from Vibration,
In Proceedings of ASME 2007 IDETC/CIE, September 4-7, 2007, Las Vegas, Nevada, USA, paper DETC2007-34788,
http://dx.doi.org/10.1115/DETC2007-34788
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Validation of Systems
Vibration-to-Electrical Energy Conversion
Taget:
Self-Powered Vibration Control Systems
Self-Powered Condition Monitoring Systems
Magnetostrictive Generator
High Frequency Excitations Test Rig
Low Frequency Excitations Test Rig
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Modelling and Experimental Study of
CHALMERS Magnetostrictive Electric
Generators (MEG)
Solution of inverse dynamics problem for the MEG
Experimental set up for the MEG
Berbyuk, V., (2005), Controlled Multibody Systems with Magnetostrictive Electric Generators, in Proc. The ECCOMAS Thematic
Conference Multibody Dynamics 2005 on Advances in Computational Multibody Dynamics, Madrid, June 21-24, 2005,
ISBN 84-7493-353-6, pp.1-14.
Berbyuk, V., and J. Sodhani, (2005), Towards Modelling and Design of Magnetostrictive Electric Generators,
in Proc. of II ECCOMAS Thematic Conference on Smart Structures and Material, Lisbon, July 18-21, 2005,
Eds. C. A. Mota Soares et al., Lisbon, pp.1-16.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Experimental Study of CHALMERS
Magnetostrictive Electric Generators
Berbyuk, V., J. Sodhani, and J. Möller, (2005), Experimental Study of Power Harvesting from Vibration using Giant
Magnetostrictive Materials, in Proc. of 1st International Conference on Experiments, Process, System Modelling,
Simulation and Optimization, Athens, 6-9 July, 2005, pp.1-8
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
CHALMERS MEG Model Validation
Output Voltage - Simulation vs Experiments
σ 0 = 10,18MPa
Time histories of measured and calculated voltages for f = 500Hz
electrical load = 1 Ohm, and
Berbyuk, V. and T. Nygårds, (2006), Power Harvesting from Vibration Using Magnetostrictive Materials,
in Proc. Joint Baltic-Nordic Acoustics Meeting 2006, 8-10 November 2006, Gothenburg, Sweden, pp. 1-18.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Power output versus frequency for Chalmers MEG
1
Z eq
, Z eq0
1
Power output versus frequency for two load configurations,Z eq ,Z 0 and two excitation levels for Model 1
eq
Berbyuk, V. and T. Nygårds, (2006), Power Harvesting from Vibration Using Magnetostrictive Materials,
in Proc. Joint Baltic-Nordic Acoustics Meeting 2006, 8-10 November 2006, Gothenburg, Sweden, pp. 1-18.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Optimal Design of Magnetostrictive Transducers
MEG
Berbyuk, V., (2011), Optimal Design of Magnetostrictive Transducers for Power Harvesting from Vibrations,
Structural Dynamics and Renewable Energy, Volume 1, Book Edited by Tom Proulx, Publisher: Springer New York, pp. 199-210,
ISBN 978-1-4419-9715-9 (Print), 978-1-4419-9716-6 (online), http://dx.doi.org/10.1007/978-1-4419-9716-6_18
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Vibration in Helicopter
Vibration-to-Electric Energy Conversion
Aeronautics & Space Programme
EU ”MESEMA” Project
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
PYLON-AIRFRAME Assembly and MEG
Pylon
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Selected master of sciences
projects at the
Mechanical Systems Group
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Investigation of Dynamic Friction Properties of a
Dual Mass Flywheel for Commercial Vehicles
Johan Karlsson, MSc 2018
In cooperation with Volvo GTT
The test set up with the large flywheel and electric motor in the background and the DMF inside the
flywheel and clutch housing in the foreground.
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Investigation of feasibility of Auto Tuning
Vibration Absorber
Andreas Näkne, MSc 2018
In cooperation with Swerea IVF
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Simulation models of dual mass flywheels
Daniel Johansson and Kim Karlsson, MSc 2017
In cooperation with Volvo GTT
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Dual mass flywheel for torsional vibrations
damping
Parametric study for application in heavy vehicle
Gérémy Bourgois, MSc 2016
Matlab Model
EasyDyn Model
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Engine dynamics and torsion vibration reduction
Investigation of various flywheel models
Anoop Suryanarayana, MSc 2015
In cooperation with Volvo GTT/ATR
Power Split Flywheel
Triple Mass Flywheel
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Optimisation of a non-linear tuned vibration
absorber in a hand-held impact machine
Mattias Josefsson and Snævar Leó Grétarsson , MSc 2015
In cooperation with Swerea IVF
•
•
•
3 degrees of freedom
Machine operator
Machine operator (no inertia)
Housing
•
Viscous damping assumed,
no friction for simplification
•
Non-linear auxiliary spring force 𝐹𝐹𝑘𝑘
Equation of motion
– No analytical solution
Auxiliary
mass
Main mass
𝑚𝑚m 𝑥𝑥̈ 1 + 𝑐𝑐m + 𝑐𝑐h 𝑥𝑥̇ 1 − 𝑐𝑐h 𝑥𝑥̇ 3 + 𝑘𝑘m + 𝑘𝑘h 𝑥𝑥1 − 𝑘𝑘h 𝑥𝑥3 = 𝐹𝐹e 𝑡𝑡, 𝑓𝑓 + 𝐹𝐹𝑘𝑘 𝐱𝐱 + 𝐹𝐹𝑐𝑐 𝐱𝐱, 𝐱𝐱̇ − 𝑚𝑚m 𝑔𝑔
𝑚𝑚a 𝑥𝑥̈ 2 = −𝐹𝐹𝑘𝑘 𝐱𝐱 − 𝐹𝐹𝑐𝑐 𝐱𝐱, 𝐱𝐱̇ − 𝑚𝑚a 𝑔𝑔
𝑚𝑚h 𝑥𝑥̈ 3 − 𝑐𝑐h 𝑥𝑥̇ 1 + 𝑐𝑐h + 𝑐𝑐p 𝑥𝑥̇ 3 − 𝑘𝑘h 𝑥𝑥1 + 𝑘𝑘h + 𝑘𝑘p 𝑥𝑥3 = −𝑚𝑚h 𝑔𝑔
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design and simulation of active and semi-active
cab suspensions with focus to improve ride
comfort of a heavy truck
Christine Ekberg and Erik Hansson, MSc 2015
In cooperation with Volvo GTT
Three degree of freedom cab model
Transfer of control signals between the cab subsystems
and the control subsystem
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Measurement system design and experimental
study of drive train test rig
Joshua Christopher Squires, MSc 2014
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Simulation of Vibrations in Electrical Machines
for Hybrid-Electrical Vehicles
Xin Ge, MSc 2014
In cooperation with Volvo GTT/ATR
Mode shape
Resonance frequency(Hz)
1st
272.5
2nd
701.5
3rd
1205.5
4th
1711.5
5th
2149
6th
2478.5
7th
2677
8th
4175.5
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Off-road shift scheduling
Sebastian Krause, MSc 2013
In cooperation with AVL Powertrain Scandinavia
Gearshift process
Cruise simulation model of the Volvo A40F
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Towards optimization of a high speed train bogie
primary suspension
Adrián Herrero, MSc 2013
Pareto-front for Straight Track scenario
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Wet clutch modelling techniques - Design
optimization of clutches in an automatic
transmission
Manoj Kumar Kodaganti Venu, MSc 2013
In cooperation with AVL Powertrain Scandinavia
Clutch Disengagement event
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Synchronization processes and synchronizer
mechanisms in manual transmissions
Anna Pastor Bedmar, MSc 2013
Free body diagram of synchro ring 1
Free body diagram of strut detent
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Wind turbine database: Modelling and analysis
with focus on upscaling
Juan Pablo Sánchez de Lara García, MSc 2013
Wind turbine upscaling model: Overview
Fit parameters
Core of the
model (Matlab)
Database
(Excel)
Data
Interface
(Excel)
Inputs: Rotor
diameter, air
density and
wind speed
Outputs: WT
characteristics
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Semi-active vibration dynamics control of multicart systems using a magnetorheological damper
Geoffrey Geldhof, MSc 2013
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design of experiments and analysis for drive train
test rig
Gabriel Stephen McCann, MSc 2013
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Modeling of load interfaces for a drive train of a
wind turbine
Fabio Baldo, MSc 2012
Rotor interface
Generator interface
Tower interface
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
System simulation of mechatronic clutch in
automatic transmission drivelines
Muddassar Piracha and Umer Sohail, MSc 2011
In cooperation with SAAB Automobile Powertrain AB
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Optimization of load distribution in washing
machines using bio-inspired computational
methods
Edgar Cuellar Mondragon and Apple Mahmud, MSc 2010
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Optimization of stiffness and damping properties
of below-knee prosthesis
Gil Serrancoli Masferrer, MSc 2010
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Modeling of Dynamics of Driveline of Wind
Stations: Implementation in LMS Imagine
AMESim Software
Bincheng Jiang, MSc 2010
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Modeling of Dehydration Processes in Controlled
Spinning of Washing Machines
Motor Control System
Alberto Merediz, MSc 2009
Virtual Instrument (VI)
Measurement System
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design and Analysis of Novel Low-Cost Damper:
Application for suspension system of washing
machines
Pablo Rojo Guerra, MSc 2009
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Comparative Study of Numerical Methods for
Optimal Control of a Biomechanical System
Andreas Draganis and Carl Sandström, MSc 2009
Schematic sketch of the considered model of a human leg
The motion of the ankle corresponding to the chosen
optimal solution for all three methods
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Stability of High Speed Train under Aerodynamic
Excitations
Erik Bjerklund and Mikael Öhman, MSc 2009
Aerodynamic effects influencing the train
Optimization of lateral spring and damper
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
A computational model of a ground vehicle with
engine mounted on rigid chassis
Felix Gömel, MSc 2009
Mount deflections in z-direction
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Semi-Active Suspension for Combat Vehicle 90
Andreas Eriksson and Arvid Tideström, MSc 2006
Z
Zs
X
Zsi
c
k
Zu
s
kt
Zg
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Mounting System Design for Drive Trains of
Hybrid Electric Vehicles
Amit Kataria, MSc 2006
In cooperation with Volkswagen, Germany
Passive and Active Powertrain Vibration Compensation
in Automobiles
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Modelling of Vacuum Holding Force in Pick-andPlce Machine
Marjan Anastasovski, MSc 2006
Z
X
Y
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Design and modelling of an active balancing
device for washing machines
Magnus Ermund and Fredrik Ermund, MSc 2006
Electrical motors
Worm gears
Shafts
Spur gear
Bearings
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics
Acknowledgements
Mechanical Systems Partners
____________________________________________________________________________________________________
Mechanics and Maritime Sciences
Division of Dynamics