Academia.eduAcademia.edu

Modern Technologies of Aluminum Production

2021, B. Berdiyarov, Sh. Khojiev, Sh. Rakhmataliev, M. Suyunova, N. Rasulova. Modern Technologies of Aluminum Production // IJEAIS, 5(5), 2021. P. 100-105.

Despite the fact that aluminum is the most widespread metal on our planet, it cannot be found in its pure form on Earth. Due to the high chemical activity, aluminum atoms easily form compounds with other substances. In this case, "winged metal" cannot be obtained by melting ore in a furnace, as happens, for example, with iron. The process of obtaining aluminum is much more complicated and is based on the use of electricity of enormous power. Therefore, aluminum smelters are always built close to large sources of electricity-most often hydroelectric power plants that do not pollute the environment. But first things first. Metal production is divided into three main stages: the extraction of bauxite-an aluminum-containing ore, their processing into alumina-aluminum oxide, and, finally, the production of pure metal using the electrolysis process-the decomposition of aluminum oxide into its constituent parts under the influence of an electric current. From 4-5 tons of bauxite, 2 tons of alumina are obtained, from which 1 ton of aluminum is produced. There are several types of aluminum ores in the world, but bauxite is the main raw material for the production of this metal. It is a rock, consisting mainly of aluminum oxide with an admixture of other minerals. Bauxite is considered good quality if it contains more than 50% aluminum oxide. The world's total proven bauxite reserves are estimated at 18.6 billion tonnes. At the current level of production, this provides the need for aluminum for more than a hundred years. Bauxites can be very different from each other. In structure, they are hard and dense or loose and crumbly. In color-as a rule, brick-red, reddish or brown due to the admixture of iron oxide. With a low iron content, bauxites are white or gray. But sometimes there are ores of yellow, dark green color and even variegated-with blue, red-violet or black veins. About 90% of the world's bauxite reserves are concentrated in the countries of the tropical and subtropical belts-of which 73% are in five countries: Guinea, Brazil, Jamaica, Australia and India. In Guinea, bauxites are the most-5.3 billion tons (28.4%), while they are of high quality, contain a minimum amount of impurities and lie almost on the surface.

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol.5 Issue 5, May – 2021, Pages: 100-105 Modern Technologies of Aluminum Production Bakhriddin Berdiyarov1, Shokhrukh Khojiev2, Shohruh Rakhmataliev3, Maftuna Syunova3, Nazokat Rasulova3 1 2 Assistant professor of the Department of Metallurgy Senior Lecturer of the Department of Metallurgy, Tashkent State Technical University, 3 Magisters of the Department of Metallurgy, Tashkent State Technical University, E-mail: shohruh.raxmataliyev@yandex.com Abstract: Despite the fact that aluminum is the most widespread metal on our planet, it cannot be found in its pure form on Earth. Due to the high chemical activity, aluminum atoms easily form compounds with other substances. In this case, "winged metal" cannot be obtained by melting ore in a furnace, as happens, for example, with iron. The process of obtaining aluminum is much more complicated and is based on the use of electricity of enormous power. Therefore, aluminum smelters are always built close to large sources of electricity - most often hydroelectric power plants that do not pollute the environment. But first things first. Metal production is divided into three main stages: the extraction of bauxite - an aluminum-containing ore, their processing into alumina - aluminum oxide, and, finally, the production of pure metal using the electrolysis process - the decomposition of aluminum oxide into its constituent parts under the influence of an electric current. From 4-5 tons of bauxite, 2 tons of alumina are obtained, from which 1 ton of aluminum is produced. There are several types of aluminum ores in the world, but bauxite is the main raw material for the production of this metal. It is a rock, consisting mainly of aluminum oxide with an admixture of other minerals. Bauxite is considered good quality if it contains more than 50% aluminum oxide. The world's total proven bauxite reserves are estimated at 18.6 billion tonnes. At the current level of production, this provides the need for aluminum for more than a hundred years. Bauxites can be very different from each other. In structure, they are hard and dense or loose and crumbly. In color - as a rule, brick-red, reddish or brown due to the admixture of iron oxide. With a low iron content, bauxites are white or gray. But sometimes there are ores of yellow, dark green color and even variegated - with blue, red-violet or black veins. About 90% of the world's bauxite reserves are concentrated in the countries of the tropical and subtropical belts - of which 73% are in five countries: Guinea, Brazil, Jamaica, Australia and India. In Guinea, bauxites are the most - 5.3 billion tons (28.4%), while they are of high quality, contain a minimum amount of impurities and lie almost on the surface. Keywords-- aluminum, mass fraction, metallic, alumothermy, hydroxide, separation, electrolyser, oxidation process, cathode, oxide, metallurgy, vacuum, electrolyser, anode. Aluminum is the most abundant metal in nature with a mass fraction of 7.45% in the earth's crust. Melting temperature Tm = 660 ° C; Boiling point Tboil = 2500 ° С; Density of metallic aluminum D = 2.7 g / cm3; electrode potential E ° = - 1.66 Volts, the first time in 1825 X.K. Oersted invented aluminum. Minerals: Kaolin: Al2O3* 2SiO2 *H2O Corund: Al2O3 Bauxite: Al2O3* nH2O Orthoclase: K2O *Al2O3 *2H2O (i.e. feldspar) Nepheline: Na2O *Al2O3 *2SiO2 If a mixture of metallic aluminum (Al) and iron oxides (FeO + Fe 2O3) is applied to a metal wire heated to high temperatures, a very intense exothermic reaction occurs: 8Al + 3Fe3O4 = 4Al2O3 + 9Fe + 3300 kJ As a result of the reaction, the mixture spontaneously heats up to 3500 ° C. At this temperature, the metals being welded melt. A mixture of metallic aluminum and magnetite (8Al + 3Fe3O4) is called thermite in engineering and is sometimes used in metal welding. The process of reducing metals from their oxides with aluminum in metallurgy is called alumothermy. Aluminothermy was first discovered by the Russian scientist N.N.Beketov. Aluminothermy is used in the metallurgical industry to extract metals such as Cr, Mn, V, Zr, Ti from their oxides. www.ijeais.org/ijeais 100 International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol.5 Issue 5, May – 2021, Pages: 100-105 Duralumin alloy is as strong as steel, but 3 times lighter. The German scientist F. Wöhler obtained Al in 1827 using the following method: AlCl3 + 3K = Al + 3KCl Aluminum production processes Although aluminum is the most common metal, it is difficult to separate it from its compounds. Since aluminum is an active metal, it is produced by the electrometallurgical method. To do this, you first need pure alumina (Al2O3). There are several ways to separate alumina from soil, the most effective of which is the Bayer method. According to the Bayer method, aluminum ore is first treated with strong alkalis with a concentration of 300 g / l and selectively melted in reactors (for example, in an autoclave) at a temperature of 120 oC: Al2O3 + 2NaOH + 3H2O = 2Na [Al (OH) 4] (sodium tetrahydroxoaluminate) The resulting solution is filtered, in which the solid residue containing iron, after separation of the aluminum solution, is called red mud. The resulting filtrate is precipitated from the solution by hydrolysis of aluminum hydroxide, bringing the hydrogen content in the solution to a neutral medium (pH = 7): Na [Al (OH) 4] = Al (OH) 3 ↓ + NaOH The obtained aluminum hydroxide is heated in a rotary kiln (at 200 - 400 oC) for drying (dehydration process): Al (OH) 3 = AlOOH + H2O (aluminum metahydroxide) 2AlOOH = Al2O3 + H2O The material obtained by this method contains 90-95% alumina (Al2O3), which is also technically called alumina (if it is 100% alumina, it is called corundum). The resulting alumina is electrolyzed by adding rapidly dissolving fluxes (Na3 [AlF6], AlF3, NaCl, NaF, KCl). The scheme of obtaining alumina (clay) by the Bayer method Electrolysis process: Al is produced by electrothermal method. In this case, aluminum oxide, Al 2O3, dissolves in molten cryolite (Na3AlF6). A small amount of AlF3 is added to this melt. This electrolyte conducts electricity well. www.ijeais.org/ijeais 101 International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol.5 Issue 5, May – 2021, Pages: 100-105 Loading alumina into the electrolyzer The electrolysis is carried out at a temperature of 950 °C. A direct current with a voltage of 5-8 volts and with a current of up to 80,000 A (amperes) is passed through the melt. Al is reduced at the cathode and oxygen (O 2) is released at the anode, and the resulting O2 interacts with the carbon based anode (the furnace wall acts like a cathode and this is made of carbon): At the cathode: Al⁺³ + 3ē = Al ° (reduction process) At the anode: 2O⁻² -4ē = O2; O2 + C = CO2 ↑ (oxidation process) The electrolyser used in industry is made of steel, the inside of which is covered with charcoal, a layer of charcoal connected to the negative pole and acts as a cathode. Thick carbon plates (or electrodes) that are lowered into the melt from above act as anodes. During electrolysis, the electrodes are oxidized and destroyed by oxygen. Therefore, the graphite electrodes are periodically replaced. The electrolyser runs continuously. Al2O3 is also continuously fed into the electrolyzer. Every 2-3 days, the formed metallic liquid Al is evacuated in vacuum equipment. The resulting aluminum metal contains accompanying elements such as iron and silicon. In the next step, it is purified by repeated melting and electrolysis. During the production of aluminum, fluorine (F 2) and its compounds are emitted into the atmosphere as a toxic gas. This pollutes the environment with toxic fluorine compounds. The production of aluminum requires a lot of electricity: for example, to produce 1 ton of aluminum ingots (in the form of ingots), 1920 kg of alumina, 65 kg of cryolite, 35 kg of aluminum fluoride, 600 kg of graphite anodes and 2000 kWh of electricity are required. Therefore, today the development of a cheaper and environmentally friendly technology for the production of aluminum remains one of the urgent problems of metallurgy. www.ijeais.org/ijeais 102 International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol.5 Issue 5, May – 2021, Pages: 100-105 Diagram of electrometallurgical separation of aluminum Liquid aluminum obtained after the electrolysis process is re-purified in a vacuum furnace and poured into special molds to obtain various castings. Ingot in the form of aluminum casting 1. REFERENCES [1] Yusupxodjayev A.A., Hojiyev Sh.T., Ochildiyev Q.T. Gidrometallurgiya jarayonlari nazariyasi: amaliy mashg‘ulotlar uchun uslubiy ko‘rsatmalar. –Toshkent: ToshDTU, 2020. -132 b. [2] Yusupxodjayev A.A., Hojiyev Sh.T., Ochildiyev Q.T. Gidrometallurgiya jarayonlari nazariyasi: laboratoriya ishlari uchun uslubiy ko‘rsatmalar. –Toshkent: ToshDTU, 2020. -36 b. [3] Abjalova Kh.T., Khojiev Sh.T. Intensification of the process of depletion the converter slag // Texnika yulduzlari, № 4, Toshkent: “ToshDTU”, Dekabr, 2019. 59 – 63 b. [4] Абжалова Х.Т., Хожиев Ш.Т. Обеднение шлаков кислородно-факельной печи Алмалыкского медного завода // Texnika yulduzlari, № 4, Toshkent: “ToshDTU”, Dekabr, 2019. 53 – 58 b. [5] Юсупходжаев А.А., Хожиев Ш.Т., Сайназаров А.М., Курбанов Б.Т. Современное состояние и перспективы развития автогенных процессов переработки сульфидных медных концентратов // Инновационное развитие науки и образования: сборник статей Х Международной научно-практической конференции, Состоявшейся 10 марта 2020 г. в г. Пенза. – Пенза: МЦНС “Наука и Просвещение”. – 2020. С. 20 – 24. [6] S.T. Matkarimov, A.A. Yusupkhodjaev, Sh.T. Khojiev, B.T. Berdiyarov, Z.T. Matkarimov. Technology for the Complex Recycling Slags of Copper Production // Journal of Critical Reviews, Volume 7, Issue 5, April 2020. P. 214 – 220. [7] Юсупходжаев А.А., Хожиев Ш.Т., Мирзажонова С.Б. Анализ состояния системы в металлургии. Монография. – Beau Bassin (Mauritius): LAP LAMBERT Academic Publishing, 2020. P. 189. ISBN 978-620-2-52763-7 [8] Modern Scientific Researches in Metallurgy: from Theory to Practice: monograph / Shokhrukh Khojiev (Ed.). - Beau Bassin (Mauritius): LAP LAMBERT Academic Publishing, 2020. P. 154. ISBN 978-613-9-47121-8 www.ijeais.org/ijeais 103 International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol.5 Issue 5, May – 2021, Pages: 100-105 [9] Hojiyev Sh.T., Mirsaotov S.U. Oltin ishlab chiqarishda eritmani zararli unsurlardan tozalash usullari // “Ilm-fan taraqqiyotida zamonaviy metodlarning qo‘llanilishi” mavzusidagi ilmiy onlayn konferensiya to‘plami, Toshkent, 27-iyun, 2020. 442 – 446 b. [10] Khojiev Sh.T., Kadirov N.A., Obidov B.M. Development of Alternative Fuel Production Technology by Recycling Polyethylene Bags up to 40 Microns Thick // Proceedings of an international scientific and technical online conference on “Challenges and Prospects Innovative Technics and Technologies in the Security Sphere Environment”, Tashkent, September 17-19, 2020. P. 274 – 276. [11] Khojiev Sh.T. Improving Environmental Protection as a Result of Non-ferrous Metallurgy Industry Waste Recycling // Proceedings of an international scientific and technical online conference on “Challenges and Prospects Innovative Technics and Technologies in the Security Sphere Environment”, Tashkent, September 17-19, 2020. P. 278 – 280. [12] Хожиев Ш.Т. Разработка эффективной технологии извлечения меди из конверторных шлаков// Journal of Advances in Engineering Technology, Vol.1(1), Sept, 2020. P. 50 – 56. [13] Sh.T. Khojiev, A.A. Yusupkhodjaev, M. Rakhmonaliev, O.O’. Imomnazarov. Research for Reduction of Magnetite after Converting // Kompozitsion materiallar, Toshkent, 2019, №4. P. 54 – 55. [14] Hojiyev Sh.T., Mirsaotov S.U. Tarkibida yaroqli uglerod saqlagan maishiy chiqindilarni metallurgiya sanoatiga maqsadli yo‘naltirish// “Ishlab chiqarishga innovatsion texnologiyalarni joriy etish va qayta tiklanadigan energiya manbalaridan foydalanish muammolari” mavzusidagi Respublika miqyosidagi ilmiy-texnik anjumanining materiallari to‘plami, Jizzax, 18oktabr, 2020. 21 – 27 b. [15] Hojiyev Sh.T., Mirsaotov S.U. Innovatsion texnologiya orqali metallurgiya sanoati chiqindisini qayta ishlash// “Ishlab chiqarishga innovatsion texnologiyalarni joriy etish va qayta tiklanadigan energiya manbalaridan foydalanish muammolari” mavzusidagi Respublika miqyosidagi ilmiy-texnik anjumanining materiallari to‘plami, Jizzax, 18oktabr, 2020. 329 – 336 b. [16] Хожиев Ш.Т. Экономическая эффективность использования местных и альтернативных энергетических ресурсов для снижения расхода природного газа на металлургических предприятиях // Материалы республиканской научнотехнической конференции «Инновационные разработки в сфере науки, образования и производства – основа инвестиционной привликательности нефтегазовой отрасли» в г. Ташкент, 3 ноября 2020 г. С. 413 – 416. [17] Khojiev Sh.T., Matkarimov S.T., Narkulova E.T., Matkarimov Z.T., Yuldasheva N.S. The Technology for the Reduction of Metal Oxides Using Waste Polyethylene Materials // Conference proceedings of “Metal 2020 29 th International Conference on Metallurgy and Materials”, May 20 – 22, 2020, Brno, Czech Republic, EU. P. 971-978. [18] Hojiyev Sh.T., Berdiyarov B.T., Mirsaotov S.U. Mis ishlab chiqarishning chiqindisiz texnologiyasini ishlab chiqish muammolari // “Zamonaviy kimyoning dolzarb muammolari” mavzusidagi Respublika miqyosidagi xorijiy olimlar ishtirokidagi onlayn ilmiy-amaliy anjumani to‘plami, Buxoro, 4-5 dekabr, 2020. 26 – 28 b. [19] Berdiyarov B.T., Hojiyev Sh.T., Mirsaotov S.U. Rangli metallurgiya chiqindilarini qayta ishlashning dolzarbligi // “Zamonaviy kimyoning dolzarb muammolari” mavzusidagi Respublika miqyosidagi xorijiy olimlar ishtirokidagi onlayn ilmiy-amaliy anjumani to‘plami, Buxoro, 4-5 dekabr, 2020. 61 – 62 b. [20] Obidov B.M., Hojiyev Sh.T., Mirsaotov S.U. Polietilen paketlari chiqindisi ikkilamchi uglevodorod manbai sifatida // “Zamonaviy kimyoning dolzarb muammolari” mavzusidagi Respublika miqyosidagi xorijiy olimlar ishtirokidagi onlayn ilmiy-amaliy anjumani to‘plami, Buxoro, 4-5 dekabr, 2020. 63 – 64 b. [21] Каримжонов Б.Р., Бердияров Б.Т., Маткаримов С.Т., Хожиев Ш.Т. Анализ современного состояния переработки цинксодержащих сталеплавильных пылей // “Zamonaviy kimyoning dolzarb muammolari” mavzusidagi Respublika miqyosidagi xorijiy olimlar ishtirokidagi onlayn ilmiy-amaliy anjumani to‘plami, Buxoro, 4-5 dekabr, 2020. 65 – 66 b. [22] Khojiev Shokhrukh, Berdiyarov Bakhriddin, Mirsaotov Suxrob. Reduction of Copper and Iron Oxide Mixture with Local Reducing Gases. Acta of Turin Polytechnic University in Tashkent, 2020, Vol.10, Iss.4. P. 7-17. [23] Мирзараимов З.А., Хожиев Ш.Т., Муносибов Ш.М., Муносибов Ш.М., Ирсалииева Д.Б. Восстановление зубьев вала шестерни мельницы МШР 2700×3600 в условиях АО «АГМК» цеха ЦРМЗ // Образование и наука в XXI веке, 10 (4), 2021. С. 347 – 363. [24] Alamova G.Kh., Khojiev Sh.T., Okhunova R.Kh. Current State Of Copper Smelting Slags And Their Processing: A Review. Central Asian Journal of Literature, Philosophy and Culture, 2021, 02(02). P. 49-55. [25] Alamova G.Kh., Khojiev Sh.T., Okhunova R.Kh. Comparative Estimation of the Efficiency of Various Materials in the Reduction of Magnetite in Slag Melt. International Journal for Innovative Engineering and Management Research, 2021, 10(03). P. 191-196. www.ijeais.org/ijeais 104 International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol.5 Issue 5, May – 2021, Pages: 100-105 [26] Хожиев Ш.Т., Эргашева М.С. Изучение гарнисажа образовавшегося на внутренней кладке кислородно-факельной печи при плавке сульфидных медных концентратов. ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ, 2021, 11(2). С. 67-73. [27] Аламова Г.Х., Хожиев Ш.Т., Охунова Р.Х. Термодинамический анализ процесса восстановления феррита меди в присутствии паров аммиака. ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ, 2021, 11(2). С. 317-322. [28] Аламова Г.Х., Хожиев Ш.Т., Охунова Р.Х. Некоторые термодинамические аспекты восстановления оксидов меди и железа парами аммиака. ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ, 2021, 11(2). С. 323-327. [29] Аламова Г.Х., Хожиев Ш.Т., Охунова Р.Х. Изучение первопричины потери меди со шлаками. ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ, 2021, 11(2). С. 328-332. [30] Аламова Г.Х., Хожиев Ш.Т., Охунова Р.Х. Исследование формы нахождения цветных металлов в промышленных шлаках. ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ, 2021, 11(2). С. 333-340. [31] Аламова Г.Х., Хожиев Ш.Т., Охунова Р.Х. Изучение диаграммы состояния многокомпонентной шлаковой системы. ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ, 2021, 11(2). С. 341-350. [32] Alamova G.Kh., Jo’raev Sh.Sh., Rakhimov N.S., Khojiev Sh.T. Kinetics of Carbon-Thermal Reduction of Magnetite. Студенческий вестник: электрон. научн. журн., Часть 3, 2021, 8(153). С. 60-62. [33] Alamova G.Kh., Rakhimov N.S., Jo’raev Sh.Sh., Khojiev Sh.T. Use of Waste Automobile Tires as a Reducing Agent in Metallurgy. Студенческий вестник: электрон. научн. журн., Часть 3, 2021, 8(153). С. 63-65. [34] Alamova G.Kh., Rakhimov N.S., Jo’raev Sh.Sh., Khojiev Sh.T. Reduction of Volatile Metal Oxides. Студенческий вестник: электрон. научн. журн., Часть 3, 2021, 8(153). С. 69-71. [35] Alamova G.Kh., Nazarova Z.S., Khojiev Sh.T., Okhunova R.Kh. Advantages of the Sulfide Concentrate Smelting Process in a Liquid Bath. Студенческий вестник: электрон. научн. журн., Часть 3, 2021, 8(153). С. 66-68. [36] Rakhmataliev Sh.A., Kadirov N.A., Khojiev Sh.T. Lead Smelting Slag Processing. “Ilm-fan va ta’limda innovatsion yondashuvlar, muammolar, taklif va yechimlar” mavzusidagi 9-sonli respublika ilmiy-onlayn konferensiyasi materiallari to‘plami. Farg’ona, 28-fevral, 2021-yil, 2-qism. 23-26 b. [37] Hojiyev Sh.T., Mirsaotov S.U., Ergasheva M.S. Metall oksidlarini amminotermik tiklashning ba’zi termodinamik jihatlari // UzACADEMIA: scientific-methodical journal, Vol. 2, Issue 1(12), 2021. P. 6-16. [38] Khojiev S.T., Nuraliev O.U., Berdiyarov B.T., Matkarimov S.T., Akramov O‘.A. Some thermodynamic aspects of the reduction of magnetite in the presence of carbon // Universum: технические науки: электрон. научн. журн., Часть 3, 2021. 3(84). P. 60-64. DOI - 10.32743/UniTech.2021.84.3-4 [39] Khojiev Sh.T., Berdiyarov B.T., Alamova G.X., Abjalova H.T. Application of Energy-Saving Technology in The Smelting of Copper Sulfide Concentrates in Autogenous Processes // International Journal of Academic and Applied Research, 5(3), 2021. P. 30-33. [40] Shokhrukh Khojiev, Bakhriddin Berdiyarov, Dilfuza Yavkochiva, Jahongir Abduraimov. Study of the Factors Influencing the Decoppering Process of Non-Ferrous Metallurgy Slags: A Review // International Journal of Academic and Applied Research, 5(3), 2021.P. 84-93. [41] Ergasheva M.S., Mirsaotov S.U., Khojiev Sh.T. Use of Zinc Plant Clinker as a Reducing Agent in The Processing of Copper Slags // European Scholar Journal, Vol. 2, Issue 3, 2021. P. 218-222. [42] Yusupkhodjaev A.A., Khojiev Sh.T., Valiev X.R., Saidova M.S., Omonkhonov O.X. Application of Physical and Chemical Methods for Processing Slags of Copper Production // International Journal of Advanced Research in Science, Engineering and Technology. Vol. 6, Issue 1, January 2019. pp. 7957 – 7963. [43] Khojiev Sh.T. Pyrometallurgical Processing of Copper Slags into the Metallurgical Ladle // International Journal of Advanced Research in Science, Engineering and Technology. Vol. 6, Issue 2, February 2019. pp. 8094 – 8099. [44] M.M. Yakubov, A.A. Yusupxodjayev, Sh.T. Hojiyev. Eritish jarayonida misning shlak bilan isrofini kamaytirish yo’llari // Kompozitsion materiallar. Toshkent, 2017, №1. 18 – 19 b. [45] A.A. Yusupkhodjayev, Sh.T. Khojiyev. Methods of decreasing of Copper loss with Slag in Smelting Processes// International Academy Journal Web of Scholar. Kiev, March 2017, № 2(11), Vol. 1, PP. 5 – 8. [46] A.A. Yusupkhodjaev, Sh.T. Khojiev, B.T. Berdiyarov, D.O. Yavkochiva, J.B. Ismailov. Technology of Processing Slags of Copper Production using Local Secondary Technogenic Formations// International Journal of Innovative Technology and Exploring Engineering, Volume-9, Issue-1, November 2019. P. 5461 – 5472. www.ijeais.org/ijeais 105