Academia.eduAcademia.edu

Chemical and engineering thermodynamics, 3rd ed.,sandler

AI-generated Abstract

The third edition of "Chemical and Engineering Thermodynamics" by Sandler presents a comprehensive framework for understanding thermodynamics in chemical processes. It discusses fundamental principles, provides problem-solving techniques, and includes extensive data for practical applications, aiming to bridge the gap between theoretical concepts and real-world engineering challenges.

Preface This manual contains more or less complete solutions for every problem in the book. Should you find errors in any of the solutions, please bring them to my attention. Over the years, I have tried to enrich my lectures by including historical information on the significant developments in thermodynamics, and biographical sketches of the people involved. The multivolume Dictionary of Scientific Biography, edited by Charles C. Gillispie and published by C. Scribners, New York, has been especially useful for obtaining biographical and, to some extent, historical information. [For example, the entry on Anders Celsius points out that he chose the zero of his temperature scale to be the boiling point of water, and 100 to be the freezing point. Also, the intense rivalry between the English and German scientific communities for credit for developing thermodynamics is discussed in the biographies of J.R. Mayer, J. P. Joule, R. Clausius (who introduced the word entropy) and others.] Other sources of biographical information include various encyclopedias, Asimov’s Biographical Encyclopedia of Science and Technology by I. Asimov, published by Doubleday & Co., (N.Y., 1972), and, to a lesser extent, Nobel Prize Winners in Physics 1901-1951, by N.H. deV. Heathcote, published by H. Schuman, N.Y. Historical information is usually best gotten from reading the original literature. Many of the important papers have been reproduced, with some commentary, in a series of books entitled “Benchmark Papers on Energy” distributed by Halsted Press, a division of John Wiley and Sons, N.Y. Of particular interest are: Volume 1, Energy: Historical Development of the Concept, by R. Bruce Lindsay. Volume 2, Applications of Energy, 19th Century, by R. Bruce Lindsay. Volume 5, The Second Law of Thermodynamics, by J. Kestin and Volume 6, Irreversible Processes, also by J. Kestin. The first volume was published in 1975, the remainder in 1976. v vi Other useful sources of historical information are “The Early Development of the Concepts of Temperature and Heat: The Rise and Decline of the Caloric Theory” by D. Roller in Volume 1 of Harvard Case Histories in Experimental Science edited by J.B. Conant and published by Harvard University Press in 1957; articles in Physics Today, such as “A Sketch for a History of Early Thermodynamics” by E. Mendoza (February, 1961, p.32), “Carnot’s Contribution to Thermodynamics” by M.J. Klein (August, 1974, p. 23); articles in Scientific American; and various books on the history of science. Of special interest is the book The Second Law by P.W. Atkins published by Scientific American Books, W.H. Freeman and Company (New York, 1984) which contains a very extensive discussion of the entropy, the second law of thermodynamics, chaos and symmetry. I also use several simple classroom demonstrations in my thermodynamics courses. For example, we have used a simple constant-volume ideal gas thermometer, and an instrumented vapor compression refrigeration cycle (heat pump or air conditioner) that can brought into the classroom. To demonstrate the pressure dependence of the melting point of ice, I do a simple regelation experiment using a cylinder of ice (produced by freezing water in a test tube), and a 0.005 inch diameter wire, both ends of which are tied to the same 500 gram weight. (The wire, when placed across the supported cylinder of ice, will cut through it in about 5 minutes, though by refreezing or regelation, the ice cylinder remains intact.—This experiment also provides an opportunity to discuss the movement of glaciers.) Scientific toys, such as “Love Meters” and drinking “Happy Birds”, available at novelty shops, have been used to illustrate how one can make practical use of the temperature dependence of the vapor pressure. I also use some professionally prepared teaching aids, such as the three-dimensional phase diagrams for carbon dioxide and water, that are available from laboratory equipment distributors. Despite these diversions, the courses I teach are quite problem oriented. My objective has been to provide a clear exposition of the principles of thermodynamics, and then to reinforce these fundamentals by requiring the student to consider a great diversity of the applications. My approach to teaching thermodynamics is, perhaps, similar to the view of John Tyndall expressed in the quotation “It is thus that I should like to teach you all things; showing you the way to profitable exertion, but leaving the exertion to you—more anxious to bring out your manliness in the presence of difficulty than to make your way smooth by toning the difficulties down.” Which appeared in The Forms of Water, published by D. Appleton (New York, 1872). Solutions to Chemical and Engineering Thermodynamics, 3e vii Finally, I usually conclude a course in thermodynamics with the following quotation by Albert Einstein: “A theory is more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended its area of applicability. Therefore, the deep impression classical thermodynamics made upon me. It is the only physical theory of universal content which, within the framework of the applicability of its basic concepts, I am convinced will never by overthrown.” 1   D 7KHUPRVWDWLFEDWKLPSRVHVLWVWHPSHUDWXUH7RQWKHV\VWHP E &RQWDLQHULPSRVHVFRQVWUDLQWRIFRQVWDQWYROXPH 7KHUPDO LVRODWLRQ LPSOLHV WKDWKHDWIORZPXVWEH]HURZKLOHPHFKDQLFDOLVRODWLRQ DQGFRQVWDQWYROXPH LPSOLHV WKHUH LV QR ZRUN IORZ  &RQVHTXHQWO\ WKHUH LV QR PHFKDQLVP IRU DGGLQJRUUHPRYLQJHQHUJ\IURPWKHV\VWHP7KXVV\VWHPYROXPHDQGHQHUJ\ DUHFRQVWDQW F 7KHUPDOO\LVRODWHGŸDGLDEDWLF )ULFWLRQOHVVSLVWRQŸSUHVVXUHRIV\VWHPHTXDOVDPELHQWSUHVVXUH RUDPELHQW SUHVVXUH  ZJ$ LI SLVWRQF\OLQGHU LQ YHUWLFDO SRVLWLRQ  +HUH w = weight of piston,  $ LWVDUHDDQGJLVWKHIRUFHRIJUDYLW\ G 7KHUPRVWDWLFEDWKŸFRQVWDQWWHPSHUDWXUH7 )ULFWLRQOHVVSLVWRQŸFRQVWDQWSUHVVXUH VHHSDUWFDERYH  H 6LQFH SUHVVXUH GLIIHUHQFH LQGXFHV D PDVV IORZ SUHVVXUH HTXLOLEUDWHV UDSLGO\ 7HPSHUDWXUHHTXLOLEUDWLRQZKLFKLVDUHVXOWRIKHDWFRQGXFWLRQRFFXUVPXFK PRUH VORZO\  7KHUHIRUH LI YDOYH EHWZHHQ WDQNV LV RSHQHG IRU RQO\ D VKRUW WLPHDQGWKHQVKXWWKHSUHVVXUHLQWKHWZRWDQNVZLOOEHWKHVDPHEXWQRWWKH WHPSHUDWXUHV D :DWHULVLQDSSURSULDWHDVDWKHUPRPHWULFIOXLGEHWZHHQq&DQGq&VLQFH WKH YROXPH LV QRW D XQLTXH IXQFWLRQ RI WHPSHUDWXUH LQ WKLV UDQJH LH WZR WHPSHUDWXUHVZLOOFRUUHVSRQGWRWKHVDPHVSHFLILFYROXPH 9 7 q & ~ 9 7 q &  9 7 q & ~ 9 7 q &  HWF    9+2       7   7LQ R &DQG9LQFF  J &RQVHTXHQWO\ ZKLOH 7 XQLTXHO\ GHWHUPLQHV 9  9  GRHV QRW XQLTXHO\ GHWHUPLQH7 E $VVXPLQJ WKDW D PHUFXU\ WKHUPRPHWHU LV FDOLEUDWHG DW q& DQG q& DQG WKDW WKH VSHFLILF YROXPH RI PHUFXU\ YDULHV OLQHDUO\ EHWZHHQ WKHVH WZR WHPSHUDWXUHV\LHOGV Chapter 1 9 7 R &  9 7  2 7 9 27 7 2 9 R &  R R & 7 27   &7 V R  &   &   7V R ZKHUH 7 LV WKH DFWXDO WHPSHUDWXUH DQG 7V  LV WKH WHPSHUDWXUH UHDG RQ WKH WKHUPRPHWHU VFDOH  $W q& 9 7 q &  FF J   +RZHYHU H[S WKHVFDOHWHPSHUDWXUHIRUWKLVVSHFLILFYROXPHLVIURPHTQ 7V 9H[S 7     u       u   DERYH q & 7KXV 7  7V  DW q& q &   5HSHDWLQJ FDOFXODWLRQ DW RWKHU WHPSHUDWXUHV\LHOGVILJXUHEHORZ  '7 L         7  L 7KH WHPSHUDWXUH HUURU SORWWHG KHUH UHVXOWV IURP WKH QRQOLQHDU GHSHQGHQFH RI WKHYROXPHRIPHUFXU\RQWHPSHUDWXUH,QDUHDOWKHUPRPHWHUWKHUHZLOODOVR EHDQHUURUDVVRFLDWHGZLWKWKHLPSHUIHFWERUHRIWKHFDSLOODU\WXEH F :KHQZHXVHDIOXLGILOOHGWKHUPRPHWHUWRPHDVXUH '7 ZHUHDOO\PHDVXUH '/  ZKHUH 0 w9 w7 '7 2 '9 $ '/ 7 $ $VPDOODUHD$DQGDODUJHPDVVRIIOXLG0PDJQLILHV '/ REWDLQHGIRUDJLYHQ '7   7KXV ZH XVH D FDSLOODU\ WXEH VPDOO $  DQG EXOE ODUJH 0  WR JHW DQ DFFXUDWHWKHUPRPHWHUVLQFH w9 w7 LVVRVPDOO 2 7   D %\ DQ HQHUJ\ EDODQFH WKH ELF\FOH VWRSV ZKHQ ILQDO SRWHQWLDO HQHUJ\ HTXDOV LQLWLDONLQHWLFHQHUJ\7KHUHIRUH   NP u  P u KU   KU NP VHF     PY  PJK RUK L I Y J L I  u   P VHF RUK P E 7KHHQHUJ\EDODQFHQRZLV     PY PY  PJK RUY  Y    JK    NP  P NP  VHF    u  u P u u  Y   KU KU P VHF Y  NPKU$Q\RQHZKRKDVELF\FOHGUHDOL]HVWKDWWKLVQXPEHULVPXFK I I L     L I L L     I WRRKLJKZKLFKGHPRQVWUDWHVWKHLPSRUWDQFHRIDLUDQGZLQGUHVLVWDQFH  7KHYHORFLW\FKDQJHGXHWRWKHPIDOOLV P NP  VHF  u u u P  KU P VHF Y  NPKU1RZWKLVYHORFLW\FRPSRQHQWLVLQWKHYHUWLFDOGLUHFWLRQ7KH LQLWLDOYHORFLW\RINPKUZDVREYLRXVO\LQ WKH KRUL]RQWDO GLUHFWLRQ 6R WKH ILQDO YHORFLW\LV NP Y Y   Y    KU  2'Y 7    u    I [  D \ 6\VWHPFRQWHQWVRIWKHSLVWRQDQGF\OLQGHU FORVHGLVREDULF FRQVWDQWSUHVVXUH 0% 0  0 '0  Ÿ 0 0 0 0 0 (% 08   08 'M H 4  W s  3G9 I 3 8 7 4  I 3G9 4  3I G9 4  309  9 5  8 7 4  30 29  9 7 0 28  8 7  0 2 39  39 7 0 28  39 7  28  39 7 0 2 +  + 7 2 0 28 0 8   8 4                 Solutions to Chemical and Engineering Thermodynamics, 3e 3 Chapter 2   EDU |   03D 9   7  7  /LQHDULQWHUSRODWLRQ  7 q & )LQDOVWDWH 3   03D  9  7 q &  7 q & /LQHDULQWHUSRODWLRQ 8   +       PNJ   ,QLWLDOVWDWH   7      7 q &        +        +          4 NJ    N- NJ   N: I  3G9 0 EDU u 9  9 EDU u  5 EDU u     P NJ   3D NJ u u   u    P NJ  EDU P ˜ V ˜ 3D P ˜ V ˜ NJ   N- NJ E 6\VWHPLVFORVHGDQGFRQVWDQWYROXPH 0% 0 0 0 3 80 (% 08   08 4 2 0 8   8 'M H 4  W s 0 I 0 – PdV 7 +HUH ILQDO VWDWH LV 3  u   EDU a  03D  9 VLQFHSLVWRQF\OLQGHUYROXPHLVIL[HG 3  03D  9   7 q& 9 8                7        7 q &    P NJ 9   a    8     8    N- NJ       4 NJ u     N- NJ N F 6WHDPDVDQLGHDOJDV¥FRQVWDQWSUHVVXUH 1 39 39 Ÿ   57 57 39  EXW9  57 9   3 3 Solutions to Chemical and Engineering Thermodynamics, 3e 39 7  3 9 Ÿ7 7   u7           .  u 7 .   q& 7 7   4  Chapter 2  N J NJ u   - PRO. u     . u  J PRO 1' +  N- I  3'9  3G9 :  3  157  157   3 3   0   15 7  7   5   u  u      N- G ,GHDOJDVFRQVWDQWYROXPH 39 57  39 KHUH9 57    3 ˜9  7 7 39 7  6RDJDLQ   4     9  3   3     7  .   1'8  J NJ  u    u     u  J PRO  &  5  4 & 9 3 N-  0 8 Z 0Z Z I  0 8 Z 0 ZHLJKW 0 NJ u &3 7I  7L  V 0 ZHLJKW u J u P NJ 5 NJ u  P V u P u   - J. u NJ u  '7 : Z L J u '7 NJ  . u    P NJ V   -   u  . 0 5 0 5 )URP,OOXVWUDWLRQZH KDYH WKDW + 7 3 + 7  3  IRU D -RXOH7KRPVRQ H[SDQVLRQ2QWKH0ROOLHUGLDJUDPIRUVWHDP)LJDWKHXSVWUHDPDQG GRZQVWUHDPFRQGLWLRQVDUHFRQQHFWHGE\DKRUL]RQWDOOLQH7KXVJUDSKLFDOO\ ZHILQGWKDW 7 a .  $OWHUQDWLYHO\RQHFRXOGDOVRXVHWKH6WHDP7DEOHV RI$SSHQGL[,,, Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2 )RU WKH LGHDO JDV HQWKDOS\ LV D IXQFWLRQ RI WHPSHUDWXUH RQO\  7KXV + 7 3 + 7  3  EHFRPHV + 7 + 7  ZKLFK LPSOLHV WKDW 0 7  5 0 7 05 0 5 5 q &  6\VWHP&RQWHQWVRI'UXP RSHQV\VWHP PDVVEDODQFH 0   0  '0 W W HQHUJ\EDODQFH '0+ LQ  4  :V  3G9 08  08 W EXW 4 DQG 9 7 I I W  E\SUREOHPVWDWHPHQW :V VWHDP    u   P NJ  3G9 3'9  LV QHJOLJLEOH  1RWH 9 7 q &   u   P NJ $OVRIURPWKH6WHDP7DEOHV + LQ + 7 q & 3 EDU  q & N3D  N- NJ DQG UHFRJQL]LQJ WKDW WKH LQWHUQDO HQHUJ\ RI D OLTXLG GRHV QRW GHSHQG RQ SUHVVXUH JLYHV 8 W 8 7 q & EDU 8 VDW 7 q &  N- NJ 8 7 q & EDU 8 VDW 7 q &  N- NJ DQG 8 W 1RZXVLQJPDVVEDODQFHDQGHQHUJ\EDODQFHVZLWK 0 W NJ \LHOGV Solutions to Chemical and Engineering Thermodynamics, 3e 0 W u N-   u N- 0 W Chapter 2   u N- 7KXV 0 0  D W W    NJ DQG '0 0 W 0  u    NJ RIVWHDPDGGHG W &RQVLGHUDFKDQJHIURPDJLYHQVWDWHWRDJLYHQVWDWHLQDFORVHGV\VWHP 6LQFHLQLWLDODQGILQDOVWDWHVDUHIL[HG 8  8   9  9  3  3  HWF DUH DOO IL[HG7KHHQHUJ\EDODQFHIRUWKHFORVHGV\VWHPLV I 8   8 ZKHUH : I :V  3G9 DGLDEDWLF7KXV 8   8 4  :V  3G9 WRWDOZRUN$OVR 4 4 :  VLQFHWKHFKDQJHRIVWDWHLV : 6LQFH 8 DQG 8  DUHIL[HG WKDWLVWKHHQGVWDWHVDUHIL[HGUHJDUGOHVVRIWKH SDWK  LW IROORZV WKDW : LV WKH VDPH IRU DOO DGLDEDWLF SDWKV  7KLV LV QRW LQ FRQWUDGLFWLRQZLWK,OOXVWUDWLRQZKLFKHVWDEOLVKHGWKDWWKHVXP 4  : LV WKH VDPH IRU DOO SDWKV  ,I ZH FRQVLGHU RQO\ WKH VXEVHW RI SDWKV IRU ZKLFK 4  LWIROORZVIURPWKDWLOOXVWUDWLRQWKDW:PXVWEHSDWKLQGHSHQGHQW E &RQVLGHU WZR GLIIHUHQW DGLDEDWLF SDWKV EHWZHHQ WKH JLYHQ LQLWLDO DQG ILQDO VWDWHVDQGOHW : DQG : EHWKHZRUNREWDLQHGDORQJHDFKRIWKHVHSDWKV LH Path 1: 8   8 : ; Path 2: 8   8 : 1RZ VXSSRVH D F\FOH LV FRQVWUXFWHG LQ ZKLFK SDWK  LV IROORZHG IURP WKH LQLWLDO WR WKH ILQDO VWDWH DQG SDWK  LQ UHYHUVH IURP WKH ILQDO VWDWH VWDWH  EDFNWRVWDWH7KHHQHUJ\EDODQFHIRUWKLVF\FOHLV 0 8   8  8   8 5 : :  : : 7KXV LI WKH ZRUN DORQJ WKH WZR SDWKV LV GLIIHUHQW LH : z :  ZH KDYH FUHDWHGHQHUJ\  6\VWHP FRQWHQWVRIWDQNDWDQ\WLPH PDVVEDODQFH 0  0 '0 '0+ HQHUJ\EDODQFH 08  08 2 7 2 7   LQ Solutions to Chemical and Engineering Thermodynamics, 3e D Chapter 2 7DQNLVLQLWLDOO\HYDFXDWHG Ÿ 0  7KXV 0 '0  DQG 8  + LQ + EDU q &  N- NJ  E\ LQWHUSRODWLRQ   7KHQ 8  8 3 EDU 7 "  N- NJ   %\ LQWHUSRODWLRQXVLQJWKH6WHDP7DEOHV $SSHQGL[,,,  7 q & 9 3 q & #  P NJ P  P NJ 2 9 9 7KHUHIRUH 0 EDU 7 7  NJ  E 7DQN LV LQLWLDOO\ ILOOHG ZLWK VWHDP DW  EDU DQG q& 8  N- NJ  DQG   P NJ  Ÿ 9 9 3 EDU 7 q &   NJ 7KXV 0  0 9 9  9    '0NJ (QHUJ\EDODQFH LV 0 8     u  0   u  6ROYHE\JXHVVLQJYDOXHRI   EDU  WR ILQG 9  DQG 8   LQ WKH 6WHDP 7DEOHV $SSHQGL[ ,,,   6HH LI HQHUJ\ EDODQFH DQG 0  P 9  DUH VDWLVILHG  %\ 7  XVLQJ 7  DQG 3 WULDO DQG HUURU  7 a q &  DQG 0 #   NJ  RI ZKLFK  NJ ZDV SUHVHQWLQWDQNLQWLDOO\7KXV '0 0  0  NJ   D 8VHNLQHWLFHQHUJ\ PYWRILQGYHORFLW\ NJ u Y  P  VHF -  NJ VRY PVHF P VHF  E +HDWVXSSOLHG VSHFLILFKHDWFDSDFLW\uWHPSHUDWXUHFKDQJHVR PRO u   u '7 - VR'7 . J u J PRO ˜ .  6\VWHP UHVLVWRU (QHUJ\EDODQFH G8 GW :V  4 ZKHUH :V ( ˜ ,  DQG VLQFH ZH DUH LQWHUHVWHG RQO\ LQ VWHDG\ VWDWH G8 GW 7KXV 4 :V DPS u YROWV  u 7  q &  - V DQGZDWW YROW u DPS  - V  ZDWW u  - V ˜ ZDWW Ÿ7  q &   q&   - V ˜ .   6\VWHP JDVFRQWDLQHGLQSLVWRQDQGF\OLQGHU FORVHG 0 (QHUJ\EDODQFH 8   8  4  W s  3G9 W D I 9 FRQVWDQW 3G9 I W   4 8 W 8 W 3 18 W 8 W 8 0 1&9 7  7 5 )URPLGHDOJDVODZ 1 39 57    3D u P    3D ˜ P PRO ˜ . u .  PRO  VHHQRWHIROORZLQJ  Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2 7KXV 4 1&9 .      .  7  7 PRO u  - PRO ˜ . 6LQFH1DQG9DUHIL[HGZHKDYHIURPWKHLGHDOJDVODZWKDW 3 3 7 RU 3 7   u  N3D  7 3 7   u  3D E 3 FRQVWDQW  u  3D   &3 &9  5       - PRO ˜ . (QHUJ\EDODQFH 8 0 Ÿ 1&9 7  7 Ÿ4 5 0 W 4  3'9 VLQFH3 FRQVWDQW W 0 5 4 1&3   4  3 9  9 1&3 7  7 7 8 5 7  0 4  1 57  57 5  u    . DQG 15'7 3 '9  PRO u   3D ˜ P PRO ˜ . u .  3D 9 3DWP   EDU P       1RWH7KHLQLWLDOSUHVVXUH 3  P 3DWP  3ZW RI SLVWRQ   u  N3D NJ 1V u u  P V P NJ ˜ P   N3D 7KXVLQWLDOSUHVVXUH  N3D  3ZW SLVWRQ   1 P  3D  6\VWHP FRQWHQWVRIVWRUDJHWDQN RSHQV\VWHP 0DVVEDODQFH 0  0 '0 '0 + LQ  VLQFH 4 : (QHUJ\ EDODQFH  08  08 2 7 2 7     DQG VWHDP HQWHULQJLVRIFRQVWDQWSURSHUWLHV ,QLWLDOO\ V\VWHP FRQWDLQV  P  RI OLTXLG ZDWHU DQG    P  RI VWHDP 6LQFH YDSRU DQG OLTXLG DUH LQ HTXLOLEULXP DW q& IURP 6WHDP 7DEOHV 3  3D   $OVR IURP 6WHDP 7DEOHV 9 /   P NJ  9 9  P NJ  + 9    N- NJ  + /  N- NJ  8 /   N- NJ DQG 8 9    N- NJ  Solutions to Chemical and Engineering Thermodynamics, 3e P   P NJ 0/ (K K) 0 KK * Chapter 2 NJ 0/  09 NJ   P   NJ  P NJ  u   N8  u      09 $OVR + LQ  u      u    N- NJ 3RVVLELOLWLHVIRUILQDOVWDWH YDSRUOLTXLGPL[WXUH DOOYDSRUDQG DOOOLTXLG )LUVW SRVVLELOLW\ LV PRVW OLNHO\ VR ZH ZLOO DVVXPH 9/ PL[WXUH  6LQFH 3   EDU 7PXVWEHq&7KXVZHFDQILQGSURSHUWLHVRIVDWXUDWHGYDSRU DQG VDWXUDWHG OLTXLG LQ WKH 6WHDP 7DEOHV  9 /   P NJ  9 9   + 9    N- NJ   P NJ  8 /  N-  NJ  DQG 8 9   N-  NJ 9 [    [ P NJ ZKHUH    [     [ TXDOLW\ 8  [      [     [ N- NJ 6XEVWLWXWLQJLQWRHQHUJ\EDODQFH 0    [   00  5    ˜  ZKHUH 0 9 9 P     [ 6ROYLQJ E\ WULDO DQG HUURU \LHOGV [    TXDOLW\  0 NJ  DQG $OVRWKHILQDOVWDWHLVDYDSRUOLTXLGPL[WXUHDVDVVXPHG '0 NJ   6\VWHP WDQNDQGLWVFRQWHQWV RSHQV\VWHP D 6WHDG\VWDWHPDVVEDODQFH G0  0  0   0    GW   0  Ÿ0  0  NJ PLQ    1 0 7 0 7   6 0  7  6WHDG\VWDWHHQHUJ\EDODQFH G8  +  0  +  0  +  0       GW  Solutions to Chemical and Engineering Thermodynamics, 3e +  + H[LWVWUHDP Chapter 2 + DWWHPSHUDWXUHRIWDQNFRQWHQWV WHPSHUDWXUH RIWDQNFRQWHQWV  +  &3 7  7 DVVXPLQJ &3 LVQRWDIXQFWLRQRIWHPSHUDWXUH    +  &3 7  7   +   &3 7  7   +   &3 7  7 $OVR 7 7 0 5 0 5A < < 7  7  Ÿ7 07  7 5   1RZ +    0 5A < 0 5A q &  G0  0  0   QRXVHIXOLQIRUPDWLRQKHUH  0    GW G8  +  0  +  0  + 0 HQHUJ\EDODQFH       GW G8 G G8 G7 G7 08 0 0&9  VLQFH &3 | &9  IRU EXW a 0&3 GW GW GW GW GW G7 OLTXLGV7KXV 0&3  &37  &37  &37 DQG 0 NJ  GW E PDVVEDODQFH 2 7  G7  7 GW $W W o f  7 $W W   7 6RILQDOO\ 7     Ÿ 7 & q & $  & q & Ÿ $ q &  q &H W  2 ) ) ) ) / / 9 9 7 2  W  & W PLQXWHV PLQXWHV L L L L / / 9 9 7 ) ) / 9 0 0   + / LQ ) P / ) / ) ) 9 9 9  0 9 9 ) ) 9 9 ) 0 ) / /  9  0 9 8  0 8   2 0 8  0 8 7   9 9  0 9  0 "#  +   + $ ! 9 ) ) 9 9 ) ) ) ) L L L L / 9 9 / / 9 9 / ) ) 9 9 ) 9 ) / LQ 9 LQ /  7KHUPRG\QDPLFSURSHUWLHVRIVWHDPIURPWKH6WHDP7DEOHV ,QLWLDOFRQGLWLRQV 6SHFLILFYROXPHRIOLTXLGDQGRIYDSRU   P P  9   NJ NJ 6SHFLILFLQWHUQDOHQHUJ\RIOLTXLGDQGRIYDSRU NN  8   8  NJ NJ 9 u    L L  / 9 L L / 9   + 9 LQ 0 9  0 9 ŸHTXDWLRQVDQGXQNQRZQV  $OVRNQRZQLVWKDW9 W q & 0 )8 )  0 L8 L '0+ LQ 0 8  0 8  0 8  0 8 (% $H Solutions to Chemical and Engineering Thermodynamics, 3e I 0% 0  0 0 L L '0 Chapter 2 L L L L / 9 / 0  0  0 OLWHUV NJ 9 L /  0 P  OLWHUV NJDQGVR0L NJ 9 L 9 L 9 (% 0 8  0 8 '0+ 0 8  0 8  0 8  0 8 I I L L LQ 2 I I I I / / 9 9 7 2 L L L L / / 9 9 7 I I / 9 0 0  +  / LQ   + 9 LQ 7RWDOLQWHUQDOHQHUJ\RIVWHDPZDWHULQWKHWDQN uu uN3URSHUWLHVRIVWHDPHQWHULQJTXDOLW\ 6SHFLILFYROXPH  9  uuu PNJ 6SHFLILFHQWKDOS\  +  uu uN-NJ LQ LQ 0 9  0 9   $OVRKDYHWKDW9 P I I / / I I 9 9 I I / 9 7KLVJLYHVWZRHTXDWLRQVDQGWZRXQNQRZQV 0 DQG0   I I / 9 7KHVROXWLRQ XVLQJ0$7+&$' LV 0 NJDQG0 NJ 7KHUHIRUHWKHIUDFWLRQRIWKHWDQNFRQWHQWVWKDWLVOLTXLGE\ZHLJKWLV  6\VWHP FRQWHQWVRIERWKFKDPEHUV FORVHGDGLDEDWLFV\VWHPRIFRQVWDQWYROXPH $OVR :   (QHUJ\EDODQFH 8 W  8 W 8 W  RU 8 W D )RU WKH LGHDO JDV X LV D IXQFWLRQ RI WHPSHUDWXUH RQO\  7KXV 8 W 8 W Ÿ7 W 7W . )URPLGHDOJDVODZ V 05 05 05 05 05 05 05 05         39 1 57 EXW 1 1 VLQFHV\VWHPLVFORVHG 39 1 57 7 DQG 9 7 VHHDERYH 9 VHHSUREOHPVWDWHPHQW                3 EDU   03D Ÿ 7 . 3   03D  E )RU VWHDP WKH DQDO\VLV DERYH OHDGV WR 8 W 8 W  RU VLQFH WKH V\VWHP LV FORVHG 8 W 8 W  9 W 9 W )URPWKH6WHDP7DEOHV$SSHQGL[,,, Ÿ3     05 05  05 05 05 05 8 0W 5 8 7 . 3 03D     #   N- NJ 9 W 9 7   q & 3 05  05 05 05   8 7  q & 3  03D  03D #   P NJ 8 W 7KHUHIRUH 8 W   NJ NJ DQG   9 W 9 W  P NJ   %\ HVVHQWLDOO\ WULDO DQG HUURU ILQG WKDW 7 a q &  3 a 03D    05     Solutions to Chemical and Engineering Thermodynamics, 3e F 05 05 05 05 Chapter 2 +HUH 8 W 8 W  DV EHIRUH H[FHSW WKDW 8 W 8 , W  8 ,, W  ZKHUH VXSHUVFULSWGHQRWHVFKDPEHU $OVR 0 W 0 , W  0 ,, W ^PDVVEDODQFH`DQG 9 W 9 0 W 9 0 , W  0 ,, W 05 05 05 05  05   05   05  )RUWKHLGHDOJDVXVLQJPDVVEDODQFHZHKDYH 3 3,9 3,,9  ,, Ÿ  , 7 7 7 3, 3,,  7, 7,,  8   1&9 7  7 DQGFDQFHOWHUPVXVH 1 39 57 DQGJHW 0 5 3 9 7 (QHUJ\EDODQFH 1 8  6XEVWLWXWH 8 0 1, 8 ,  1,, 8 ,, 5  3 8VLQJ (TQV   DQG 3,   JHW  3,, 3 (2)   u  3D 03D  DQG  . q &  7 G )RUVWHDPVROXWLRQLVVLPLODUWR E 8VH6WHDP7DEOHWRJHW 0, DQG 0,, LQ WHUPVRI9 &KDPEHU 8,   N- NJ  9,  P NJ  0 , 9 9 , 9    &KDPEHU   8,, 8 7 . 3   03D ,,  ,, ,,   9    P NJ  0   9 9 9  9 9   P NJ  7KXV 9 , ,,  9 9   0 0 8 0 ,8 ,  0 ,,8 ,, 0 ,  0 ,,  N- NJ 0  2   71   5    N- NJ  6 %\WULDODQGHUURU 7 a q & . DQG 3 a 03D   6\VWHPFRQWHQWVRIWKHWXUELQH RSHQVWHDG\VWDWH D DGLDEDWLF G0  0  Ÿ0    0 0 PDVVEDODQFH     GW 0 G8  +  0  +  Q 0  :  3 dV  0 HQHUJ\EDODQFH     V dt GW  +  +     Ÿ :V  0   NNJ 0      2 7   0 u   - NJ   2 %XW :V 7  u  ZDWW  u   - V  u   - V    NJ V  u   NJ K  u   - NJ  E (QHUJ\EDODQFHLV 0 G8  +  0  +  4  :  3 dV  0     V dt GW  0  Solutions to Chemical and Engineering Thermodynamics, 3e  ZKHUH4 0   N- NJ 0  +  + q & 03D   N- NJ 7KXV :V    NJ V        N- NJ   u  ZDWW Chapter 2 5   N- V  N:  6\VWHPNJRIZDWHU FORVHGV\VWHP  :RUN RI YDSRUL]DWLRQ 3G9 3 G9 I I 3'9  VLQFH 3 LV FRQVWDQW DW EDU $OVRIURP6WHDP7DEOHV  P NJ 9 /   P NJ  9 9    P NJ  '9  (QHUJ\EDODQFHIRUFORVHGV\VWHP NJ  u  3D u   P NJ 8   8 4  3G9 4     I 4    u   - NJ 8  8    N- NJ   u   - NJ   N- NJ u   - NJ   7KXV 4 8   8  :  u    u    u     u   - NJ   u   - NJ  I :  3G9 6RKHDWQHHGHGWRYDSRUL]HOLTXLG  u   - NJ RIZKLFK   u  LV UHFRYHUHG DV ZRUN DJDLQVW WKH DWPRVSKHUH  7KH UHPDLQGHU  u   N- NJ  JRHVWRLQFUHDVHLQWHUQDOHQHUJ\  6\VWHP &RQWHQWVRIGHVXSHUKHDWHU RSHQVWHDG\VWDWH 6XSHUKHDWHG VWHDP 7 ž& 'HVXSHU 3  03D KHDWHU :DWHU 6DWXUDWHG VWHDP  03D ž&  0   0   NJ KU  +     N- NJ   " + + VDW©GOLT 7 q & 0DVV%  (QHUJ\%   N- NJ  0  0  0    0  +  0  +  0  +  Q 0 W 0  3 dV 0       s dt Solutions to Chemical and Engineering Thermodynamics, 3e  0  1 6   NJ KU  +    0   7KXV    u   0   Ÿ0  + VDW©GVWHDP 3 1 Chapter 2 03D    N- NJ 6  u      0      NJ KU  7KH SURFHVV KHUH LV LGHQWLFDO WR WKDW RI ,OOXVWUDWLRQ  VR WKDW ZH FDQ XVH WKH HTXDWLRQ 7 3 3 7  &9 &3 3  3 7LQ 0 GHYHORSHG LQ WKH LOOXVWUDWLRQ  +HUH 3 &3  - PRO.  &9   7 &\OLQGHU 3   03D  7 &\OLQGHU 3 03D  7LQ q &   .  &3  5  - PRO.  &3 7LQ .    q& &9 &\OLQGHU 3 7 5 q &   .               03D  7 q &   .  Ÿ 7   . q & .  q &  6\VWHP*DVFRQWDLQHGLQWKHF\OLQGHU FORVHGV\VWHP 0 SLVWRQ J NJ  P V  u   u D 3   03D    $  NJP 1V P    u  3D   03D PROHVRI u  3D u P   39 1 JDVLQLWLDOO\ 57   3D ˜ P PRO. u   . LQV\VWHP u  PRO NPRO    E (QHUJ\EDODQFH 8   8 4  3G9 I '9 P u P )LQDOWHPSHUDWXUH 7 39 15 8   8 P  3'9 4  3'9 VLQFH3LVFRQVWDQW   u  3D u P  u  3D u    P    u  PRO u   3DP PRO. 0 1 8   8 5  0 1&9 7  7  u  -   . q & 5   u  PRO u     - PRO. u      .  u  F Solutions to Chemical and Engineering Thermodynamics, 3e 4 '8  3'9 '7 RI JDV  ZRUN  u   Chapter 2  u  ZRUN  RI HQHUJ\ DEVRUEHG '7  u     0 G 6\VWHP*DVFRQWDLQHGZLWKLQ3LVWRQ&\OLQGHU RSHQV\VWHP  >1RWH6WXGHQWVWHQGWRDVVXPH G7 GW  7KLVLVWUXHEXWQRWREYLRXV@ G1 1 PDVVEDODQFH GW G9 G 0 3 18 1 + RXW  Q HQHUJ\EDODQFH GW GW +HUH   3 LV FRQVWDQW   ,GHDO *DV /DZ 9 157 3    7 DQG 3 RI *DV /HDYLQJ&\OLQGHU 7DQG3 RIJDVLQWKHV\VWHP7KXV G 157 G1 G1 G8 8 3 + 1 GW 3 GW GW GW G7 G G1 Ÿ + 8 5 1&9 17 GW GW GW G7 G1 G7 G7 G1  15  57 Ÿ 1 &9  5  1&9 57 GW GW GW GW GW G7 Ÿ 4 (' GW 7KXV 7 7   . 1RZJRLQJEDFNWR     0 1 G8 G1 8 GW GW + G1 GW Ÿ + 8 5 G7 G8 G9 G1  3 DQGXVLQJ GW GW GW GW G1 G9 G1 3 G9 57 3 RU GW GW GW 57 GW 6LQFH3DQG7DUHFRQVWDQWV 1 1 P   P 9 9  7KXV 1   u PRO PRO  '1  PRO  NPRO  D 6\VWHP*DVFRQWDLQHGZLWKLQSLVWRQF\OLQGHU FORVHGV\VWHP >QHJOHFWLQJWKH SRWHQWLDOHQHUJ\FKDQJHRIJDV@ HQHUJ\EDODQFH G 18 GW %XW 7 39 G7 Ÿ 15 GW 1 G8 GW G9 G7 4  3  1&9 GW GW     3 G9 15 GW 3$ GK  15 GW GK 4  3$ GW Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2 7KXV 4     $&9 3 GK GK & GK 3$&3 GK  $3 3$ 9   5 GW GW 5 GW 5 GW  - PRO. u  u  3D u P u   P V    - PRO.   u   - V E 6\VWHP*DVFRQWDLQHGZLWKLQSLVWRQDQGF\OLQGHU RSHQV\VWHP 6WDUWIURP UHVXOWRI3DUW G 3UREOHP VHHHTQ LQWKDWLOOXVWUDWLRQ G1 GW 3 G9 57 GW 3$ GK ZLWK3DQG7FRQVWDQW 57 GW 6HHVROXWLRQWR3UREOHP G1 GW u  3D u P   u   P V   - PRO. u   . 0 5  PRO V  NPRO V >FKHFN   PRO VHF u VHF 3UREOHP@  PRO  FRPSDUH ZLWK SDUW G RI  6\VWHPJDVFRQWDLQHGLQWKHF\OLQGHU RSHQV\VWHP ,PSRUWDQWREVHUYDWLRQJDVOHDYLQJWKHV\VWHP 7KDWLVHQWHULQJWKHH[LWYDOYH RIWKHF\OLQGHU KDVVDPHSURSHUWLHVDVJDVLQWKHF\OLQGHU G1 1RWHWKDWWKHVHDUH 1 PDVVEDODQFH GW (TQV  G DQG H RI G 18 1 + ,OOXVWUDWLRQ  HQHUJ\EDODQFH GW 3URFHHGLQJDVLQWKDWLOOXVWUDWLRQZHJHW(TQ I (K )K *  7 W  & 7   3 5  3 W  RU 7 5W & 3 3W  3 0   5 .  ZKHUHZHKDYHXVHGDVOLJKWO\GLIIHUHQWQRWDWLRQ1RZXVLQJWKHPDVVEDODQFHZH JHW     G1 GW G 39 GW 57 0 5 9 G 37 5 GW 1 RU 0 5 G 37 GW DQG  15 9 0 5      PRO V u   3D ˜ P PRO.  P    3D . ˜ V Solutions to Chemical and Engineering Thermodynamics, 3e 3 7W 3 7W 8VLQJ W  PLQXWHV DQG  \LHOGV Chapter 2   u  W EDU . IRU3LQEDUDQGWLQVHFV   VHFV LQ(TQ  DQGVLPXOWDQHRXVO\VROYLQJ(TQV  7 PLQ .  3 PLQ  EDU &RPSXWDWLRQRIUDWHVRIFKDQJHIURPPDVVEDODQFH     G 3 GW 7    G3 3G OQ 7  7 GW GW  15 G OQ 3 G OQ 7  RU 9 GW GW    157 39  )URPHQHUJ\EDODQFH XVLQJHTQVDERYHDQGHTQ I LQ,OOXVWUDWLRQ  0 5 &9 G OQ 7 5 GW G OQ 3 7 & G OQ 7 RU 3 GW 5 GW G OQ 3 GW  1RZXVLQJ(TQ  LQ(TQ  7KXV  &9 G OQ 7 &9 G7 157 RU 5 GW 57 GW 39 G7 1 57     . VHF GW W  PLQ 39&9 W  PLQ DQG G3 GW  PLQ &3 3 G7 57 GW  EDU V  PLQ  &RQVLGHUDIL[HGPDVVRIJDVDVWKH FORVHG V\VWHPIRUWKLVSUREOHP7KHHQHUJ\ EDODQFHLV G 18 GW 1 )URPWKHLGHDOJDVODZZHKDYH 3 &9 1 G7 GW G8 GW 1&9 G7 GW 3 G9 GW 157 9 7KXV  157 G9 & G OQ 7 Ÿ 9 9 GW 5 GW G OQ 9 GW RU &9 7 OQ 5 7 RU   &   9 7  OQ  Ÿ  9 7 9 5  9  9    Solutions to Chemical and Engineering Thermodynamics, 3e 97&9 5 97&9 5 97 &9 5 Chapter 2 FRQVWDQW 6XEVWLWXWLQJ WKH LGHDO JDV ODZ JLYHV 39 &3 &9 39 J FRQVWDQW  1RWH WKDW WKH KHDWFDSDFLW\PXVWEHLQGHSHQGHQWRIWHPSHUDWXUHWRGRWKHLQWHJUDWLRQLQ(TQ DVLQGLFDWHG  6\VWHP&RQWHQWVRIWKHWDQN DWDQ\WLPH D )LQDOWHPSHUDWXUH 7 . DQGSUHVVXUH 3 2  7   u  3D DUHNQRZQ 7KXVWKHUHLVQRQHHGWRXVHEDODQFHHTXDWLRQV 1 I   u  3D u P     - PRO. ˜ . 39 57  PRO NPRO E $VVXPHDVXVXDOWKDWHQWKDOS\RIJDVOHDYLQJWKHF\OLQGHULVWKHVDPHDVJDV LQWKHF\OLQGHU6HH,OOXVWUDWLRQ)URP(TQ I RIWKDWLOOXVWUDWLRQZH KDYH 3 3 I L 7KXV 1 I u     7  & 5 RU 7  3  5 &   7 7  3   u   3 3 I I I L L L       7 I PRO  u .   NPRO    .  3 I   EDU  DQG  ([FHSWIRUWKHIDFWWKDWWKHWZRF\OLQGHUVKDYHGLIIHUHQWYROXPHVWKLVSUREOHPLV MXVWOLNH,OOXVWUDWLRQ)ROORZLQJWKDWLOOXVWUDWLRQZHREWDLQ 3 7 3 3  7 7  L  I I I  3  3 RU 3   IRU(TQ D I    3 I I L  L  3  I L   DQGDJDLQJHW(TQ I  7  & 7  I 3 5  3  3  I   L L  7KHQZHREWDLQ 3 I   EDU  7 I   )URPSUREOHPVWDWHPHQW 3 I  3 I     . DQG 7 I .   I 3 DQG 7 I  7 I  I 7  IRU(TQ F Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2 0DVVEDODQFHRQWKHFRPSRVLWHV\VWHPRIWZRF\OLQGHUV 1I  1 I 1L RU  3I 3I  I 7I 7 3 I 7I  3L 7L (QHUJ\EDODQFHRQFRPSRVLWHV\VWHP 1L8 L DQG 7 I  3L  1I 8 I  1I 8 I Ÿ 3 I 3 I L 7  3L     L 7   7L  u EDU    EDU  DVEHIRUH .   (YHQWKRXJKWKHVHFRQGF\OLQGHULVQRWLQLWLDOO\HYDFXDWHGWKLVSUREOHPVWLOOEHDUV PDQ\ VLPLODULWLHV WR ,OOXVWUDWLRQ    3URFHHGLQJ DV LQ WKDW LOOXVWUDWLRQ ZH REWDLQ  3L 3L  L 7L 7  3L  3L >7KXV 3 I &\OLQGHU  3I 3I  I LQVWHDGRI(TQ D 7I 7  3I  3I  u    u    EDU @ DQG DJDLQ UHFRYHU (TQ I  IRU  7  & 7  I  L  6ROXWLRQLV 3I  D  3 I LQVWHDGRI(TQ F 3I EDU  7I 3 5  3  3  I  L  (TQ I  .  7I   .  6\VWHP *DVFRQWDLQHGLQURRP RSHQV\VWHP G1 PDVVEDODQFH 1 GW G 18 G1  4 1 +  4 + HQHUJ\EDODQFH GW GW 7KXV 4 G 18 G1 + GW GW )RUWKHLGHDOJDV +  8 39 57  8+ G1 GW G1 G8 1 GW GW     G 39 GW 57     9 G 3 5 GW 7 Solutions to Chemical and Engineering Thermodynamics, 3e  9  G  3   1&  5  GW  7  G7 GW 4  57 4  157 G3 G7 G7  15  1&9 3 GW GW GW 6LQFH 3 9 FRQVWDQW G7 GW G3 GW   4  57 ˜ Chapter 2     G7 17 G 3  1&9 GW 3 GW 7 1&3G7 RU GW   u  : ˜   - PRO. ˜   .  u  3D ˜   - PRO. ˜    u  u  P   . V    . PLQ 4 57 &3 39 E 6\VWHP *DVFRQWDLQHGLQVHDOHGURRP FORVHGV\VWHP  1 G 18 G8 G7  1 1&Y 4 (QHUJ\EDODQFH GW GW GW G7 GW 4 1&9 VHDOHG URRP &3 G7 &9 GW XQVHDOHG URRP   u    . PLQ       . PLQ  ,QHDFKFDVHZHPXVWGRZRUNWRJHWWKHZHLJKWVRQWKHSLVWRQHLWKHUE\SXVKLQJ WKHSLVWRQGRZQWRZKHUHLWFDQDFFHSWWKHZHLJKWVRUE\OLIWLQJWKHZHLJKWVWRWKH ORFDWLRQ RI WKH SLVWRQ  :H ZLOO FRQVLGHU ERWK DOWHUQDWLYHV KHUH  )LUVW QRWH WKDW FKRRVLQJWKHJDVFRQWDLQHGZLWKLQSLVWRQDQGF\OLQGHUDVWKHV\VWHP '8 4  :  %XW '8   VLQFH WKH JDV LV LGHDO DQG 7 FRQVWDQW  $OVR :  3G9  157 OQ 9I 9L IRUWKHVDPHUHDVRQV7KXVLQHDFKFDVHZHKDYH I 0 5 WKDWWKHQHWKHDWDQGZRUNIORZVWRWKHJDVDUH : ZRUNGRQHRQJDV DQG 4 u     u  L -  UHPRYHGIURPJDV  157 OQ :  9  9  I  OQ - ,I PRUH ZRUN LV GHOLYHUHG WR WKH SLVWRQ WKH SLVWRQ ZLOO RVFLOODWH HYHQWXDOO\ GLVVLSDWLQJWKHDGGLWLRQZRUNDVKHDW7KXVPRUHKHDWZLOOEHUHPRYHGIURPWKH JDVSLVWRQDQGF\OLQGHUWKDQLIRQO\WKHPLQLPXPZRUNQHFHVVDU\KDGEHHQXVHG 1RWHWKDWLQHDFKFDVHWKHDWPRVSKHUHZLOOSURYLGH :DWP 3'9    u  N3D u    u  P  DQGWKHFKDQJHLQSRWHQWLDOHQHUJ\RISLVWRQ PJ'K NJ u  P V u u  P      u  P  - Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2 7KH UHPDLQGHU       -  PXVW EH VXSSOLHG IURP RWKHU VRXUFHVDVDPLQLPXP D 2QHNJZHLJKW $QHIILFLHQWZD\RIUHWXUQLQJWKHV\VWHPWRLWVRULJLQDOVWDWHLVWRVORZO\ LH DW]HURYHORFLW\ IRUFHWKHSLVWRQGRZQE\VXSSO\LQJ-RIHQHUJ\:KHQ WKHSLVWRQLVGRZQWRLWVRULJLQDOORFDWLRQWKHNJLVVOLGVLGHZD\VRQWRWKH SLVWRQZLWKQRHQHUJ\H[SHQGLWXUH $Q LQHIILFLHQW SURFHVV ZRXOG EH WR OLIW WKH  NJ ZHLJKW XS WR WKH SUHVHQW ORFDWLRQRIWKHSLVWRQDQGWKHQSXWWKHZHLJKWRQWKHSLVWRQ,QWKLVFDVHZH ZRXOGVXSSO\ 0J'K  u  P  '9 P  u    NJ u   u  u  P V $    NJP V - 1 0J 6 7KLVHQHUJ\ZRXOGEHWUDQVPLWWHGWRWKHJDVDVWKHSLVWRQPRYHGGRZQ7KXV : RQJDV    -  3( RI SLVWRQ DWPRVSKHUH :- 4 -   3( RI ZHLJKW :F\FOH 4F\FOH            (IILFLHQW  ,QHIILFLHQW  E 7ZRNJZHLJKWV ,QWKLVFDVHZHDOVRUHFRYHUWKHSRWHQWLDOHQHUJ\RIWKHWRSPRVWZHLJKW PJ'K NJ u      u  P P  u  P V  - 7KXVLQDQHIILFLHQWSURFHVVZHQHHGVXSSO\RQO\          $QHIILFLHQWSURFHVVZRXOGEHWRPRYHWKHORZHVWZHLJKWXSWRWKHSRVLWLRQRI WKHSLVWRQE\VXSSO\LQJ NJ u  u  P  P    u  u  P V - 6OLGHWKLVZHLJKWRQWRWKHSLVWRQDQGOHWJR7KHWRWDOZRUNGRQHLQWKLVFDVH LV    DWPRVSKHUH 7KHUHIRUH  3( RI SLVWRQ '      3( RI ZHLJKW VXSSOLHG E\ XV '  Solutions to Chemical and Engineering Thermodynamics, 3e : - 4 :F\FOH 4F\FOH      (IILFLHQW ,QHIILFLHQW  F Chapter 2  -     )RXUNJZHLJKWV ,QWKLVFDVHWKHUHFRYHUHGSRWHQWLDOHQHUJ\RIZHLJKWVLV NJ u  P V u             u         P  u    7KXVLQDQHIILFLHQWSURFHVVZHQHHGVXSSO\RQO\          $Q LQHIILFLHQW SURFHVV ZRXOG EH WR UDLVH WKH ORZHVW ZHLJKW XS WR WKH SLVWRQ H[SHQGLQJ NJ u  P V u u  P      u  P - 7KXVWKHWRWDOZRUNGRQHLV          DQG : 4 :F\FOH (IILFLHQW  ,QHIILFLHQW  4F\FOH           G *UDLQVRIVDQG 6DPH DQDO\VLV DV DERYH H[FHSW WKDW VLQFH RQH JUDLQ RI VDQG KDV HVVHQWLDOO\ ]HURZHLJKW : -  4 -  :F\FOH 4F\FOH    6\VWHP *DVFRQWDLQHGLQWKHF\OLQGHU FORVHGV\VWHP G 18 G8 G7 G9 HQHUJ\ EDODQFH  3 1 1&9 GW GW GW GW LGHDOJDVHTXDWLRQRIVWDWH` 6LQFH &9 DQG &3 DUHFRQVWDQW  157 G9   ^8VLQJ WKH 9 GW    9  5 &  /  5 &   9   /   P      u     u P  &9  G7 5 7 GW  7  G9 RU 7 9 GW 9        Ÿ7     . 9  q &DQG   Solutions to Chemical and Engineering Thermodynamics, 3e 3 3  9   7  9  7       u    u    Chapter 2 EDU )URPWKHGLIIHUHQFH FKDQJHRIVWDWH IRUPRIHQHUJ\EDODQFH '8 Q 0 0  : 1&9 7  7 5 I  3G9 EDU u PNPRO ˜ . 39  NPRO 57 . u  u  EDU ˜ P Ÿ : '8  NPRO u     N- NPRO ˜ . ˜      .   N:KHUHKDVWKLVZRUNJRQH" D 7RLQFUHDVHSRWHQWLDOHQHUJ\RISLVWRQ E 7RLQFUHDVHNLQHWLFHQHUJ\RISLVWRQ F 7RSXVKEDFNDWPRVSKHUHVRV\VWHPFDQH[SDQG G :RUNGRQHDJDLQVWIULFWLRQ DQGFRQYHUWHGWRKHDW  7RVHHWKLVZULWH1HZWRQ©VQG/DZRI0RWLRQIRUWKHSLVWRQ DQG 1 3DWP u $ f) PJ )ULFWLRQDO )RUFH 3 3UHVVXUH RI JDV I 0 0$ Ÿ 3$  3DWP $  PJ  I IU 7KXV 3 5 GY  Y GW P u f)U $ YHORFLW\RISLVWRQ P GY PJ I IU  3DWP   $ GW $ $  '8 -  3G9 I I  3DWPG9  1RZ  G9 $ GW GK GW Y K - GY  PJ P GY G9 GW G9  I IU GW  GW $ $ $ GW GW I I SLVWRQKHLJKW DQG Y 3DWP '9   :RUN DJDLQVW DWPRVSKHUH VLQFH YLQLWLDO   G  Y  GW 2 7 PJ'K  :RUN XVHG WR LQFUHDVH SRWHQWLDO HQHUJ\ RI SLVWRQ I  I IU YGW PY     I IU YGW   ,IWKHUHLVQRIULFWLRQ I IU  WKHQ 7KXV D PY    GY GW I Y   I      - u  NJ    P V Ÿ Y  P V  Solutions to Chemical and Engineering Thermodynamics, 3e E ,IZHDVVXPHRQO\VOLGLQJIULFWLRQ I IU I NY P  Y  N Y GW  I I N Y GW Ÿ      I IU YGY Chapter 2 ,Q RUGHU WR GHWHUPLQH WKH YHORFLW\ QRZ ZH QHHG WR NQRZ WKH FRHIILFLHQW RI VOLGLQJIULFWLRQNDQGWKHQZRXOGKDYHWRVROYHWKHLQWHJUDOHTXDWLRQDERYH RU LQWHJUDWHVXFFHVVLYHO\RYHUVPDOOWLPHVWHSV ,WLVFOHDUKRZHYHUWKDW Y ZLWKIULFWLRQ  Y ZLWKRXWIULFWLRQ  q&   u  3D 03D  NJ V D PDVVEDODQFH VWHDG\VWDWH  0   0     Ÿ 0  0  NJ V  P V 6\VWHP IRU SDUW D q &  u  3D 0SD  NJV (QHUJ\EDODQFH QHJOHFWLQJ3(WHUPV           +  Y  0  +  Y 0          UY$ PQY$  U PDVVGHQVLW\ Q PRODUGHQVLW\ 0 Y YHORFLW\ $ SLSHDUHD P PROHFXODUZHLJKW  0 3 Y$ P 57  u  3D  NJ V  Ÿ u Y P V u S u  P    NJ NPRO . u  u  3D ˜ P Ÿ Y  P V 0 5 PY   NJ NPRO u  P V   u   - NPRO    u  NJ ˜ P 1V %DFNWRHQHUJ\EDODQFHQRZRQDPRODUEDVLV 0 5 PY PY  &S 7  7   $VDILUVWJXHVVQHJOHFWNLQHWLFHQHUJ\WHUPV &S 7  7  Ÿ 7 7 q & 0 +  +  0   N- NPRO  5 5 1RZFKHFNWKLVDVVXPSWLRQ  QY 3Y  u  Y    P V Q 3  u  5HFDOFXODWHLQFOXGLQJWKHNLQHWLFHQHUJ\WHUPV P         - NPRO &S 7  7 Y  Y   Y 0 5 2 7 2 7 6\VWHP IRU SDUW E Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2   - NPRO 7    q&   - PRO u  PRO NPRO 7KXVWKHNLQHWLFHQHUJ\WHUPPDNHVVXFKDVPDOOFRQWULEXWLRQZHFDQVDIHO\ LJQRUHLW 7  7 E 1   1  0DVVEDODQFHRQFRPSUHVVRU VWHDG\VWDWH    7 u   3D FRPSUHVVRU q &  7 u  3D " (QHUJ\EDODQFHRQFRPSUHVVRUZKLFKLVLQVWHDG\VWDWHRSHUDWLRQ 0 :V Ÿ :V 1  +  1  +   Q  DGLDEDWLFFRPSUHVVRU 1 &S 7  7 q&  &DQFRPSXWH :V LI 7 LVNQRZQRUYLFHYHUVD+RZHYHUFDQQRWFRPSXWHERWK ZLWKRXWIXUWKHULQIRUPDWLRQ  7 u  3D *DV FRROHU " $QDO\VLVDVDERYHH[FHSWWKDW 4 z  EXW :  1   1  +HUHZHJHW  4 1 & 7  7 %K &K '  S  q &  7 u  3D q &   &DQQRWFRPSXWH 4 XQWLO 7 LVNQRZQ 6HHVROXWLRQWR3UREOHP  D 'HILQHWKHV\VWHPWREHWKHQLWURJHQJDV6LQFHD-RXOH7KRPVRQH[SDQVLRQLV LVHQWKDOSLF + 7 3 + 7  3  8VLQJ WKH SUHVVXUH HQWKDOS\ GLDJUDP IRU QLWURJHQ)LJXUHZHKDYH + .03D N-  NJDQGWKHQ7 7 3  03D + N-  NJ 0 5 0 5 2 7 )URP ZKLFK ZH ILQG WKDW 7   . ZLWK DSSUR[LPDWHO\  RI WKH QLWURJHQ DV YDSRUDQGDVOLTXLG E  $VVXPLQJ QLWURJHQ WR EH DQ LGHDO JDV SRRU DVVXPSWLRQ  WKHQ WKH HQWKDOS\ GHSHQGVRQO\RQWHPSHUDWXUH6LQFHD-RXOH7KRPVRQH[SDQVLRQLVLVHQWKDOSLFWKLV LPSOLHVWKDWWKHWHPSHUDWXUHLVXQFKDQJHGVRWKDWWKHILQDOVWDWHZLOOEHDOOYDSRU  u  NZK RIHQHUJ\SHU\HDU  3ODQWSURGXFHV  Ÿ3ODQWXVHV   u  u    u  NZK RIKHDW Solutions to Chemical and Engineering Thermodynamics, 3e NZK   u  - \HDU u   u  NZK NZK 0 ˜ &S 7I  7L Ÿ3ODQWXVHV   u  '+RIURFN WRWDO 0  u   - \HDU 5  NJ u  - J. u  J NJ u    .  u  Ÿ  u   - \HDU u [\HDUV  u  [   \HDUV Chapter 2 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H   D 6\VWHP %DOO  :DWHU   (QHUJ\EDODQFH 08  08   08  08  I Ÿ0&  9  I 27   7L  0 &  7  L 0& 7 0 & 7I  9   0&   9  9  9  7 27 I  L  7L  L L   DOVR 7 I  7 I 7KXV 7      u  u   u    u  u  u   u  u     u  u    0 &  I 9   q & >1RWH6LQFHRQO\ '7 VDUHLQYROYHG q & ZHUHXVHGLQVWHDGRI. @ G7 E )RUVROLGVDQGOLTXLGVZHKDYH HTQ 7KDW '6 0 & 7 I 0& OQ 3 3 7 IRUWKHFDVHLQ 7   ZKLFK & LVDFRQVWDQW7KXV 3  %DOO '6  u  J u   %& '     u OQ J˜.     () *   .   V   u  J u  :DWHU'6 %& '     u OQ     J˜. () *  . DQG  . . 1RWHWKDWWKHV\VWHP%DOO:DWHULVLVRODWHG7KHUHIRUH '6 6  . (QHUJ\EDODQFHRQWKHFRPELQHGV\VWHPRIFDVWLQJDQGWKHRLOEDWK '6 %DOO  :DWHU     JHQ   9 F 27 I  7FL  0R& 7 I L R 27  7 7  VLQFHWKHUHLVDFRPPRQILQDOWHPSHUDWXUH NNNJ u  7  8.  NJ u  3 37  8.  NJ ˜ . NJ ˜ . 0 F& R 9 I I 7KLVKDVWKHVROXWLRQ7  R& . 6LQFH WKH ILQDO WHPSHUDWXUH LV NQRZQ WKH FKDQJH LQ HQWURS\ RI WKLV V\VWHP FDQ EH FDOFXODWHG         N  u  u OQ  u OQ   IURP '6  u          . I      &ORVHGV\VWHPHQHUJ\DQGHQWURS\EDODQFHV G8 G9 G6 4  4  :V  3  6JHQ   GW GW GW 7 G6 7KXVLQJHQHUDO 4 7  76JHQ DQG GW     6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H G8  G9 4 3 GW GW :V 5HYHUVLEOHZRUN :V5HY D :V5HY 6JHQ 2 6\VWHPDWFRQVWDQW8 9 Ÿ 2 G6 GW G8 G6 G9 7 3 GW GW GW G9   DQG GW 7  G8 GW W s S gen E 6\VWHPDWFRQVWDQW6 3 Ÿ G8 G6 G9 7  76JHQ  3 GW GW GW 7 0 W SRev T G3 GW  DQG dS dt Ÿ 3 G9 GW G 39 GW VRWKDW 2 7 :V 6JHQ  G8 G  39 GW GW :6UHY G 8  39 GW G+ GW  EDUR&EDU7 " 6WHDG\VWDWHEDODQFHHTXDWLRQV G0  0   0   GW 0 G8  +  0  +  Q 0  W 0  3 dV  +  0  +  0 0         s dt GW RU +  +  'UDZLQJDOLQHRIFRQVWDQWHQWKDOS\RQ0ROOLHU'LDJUDPZHILQGDW 3  EDU 7 # q & $WEDUDQGq & $WEDUDQGq &   9  P NJ 9 |  P NJ +  N- NJ + |  N- NJ 6    N- NJ. 6    N- NJ. $OVR  0  6  0  6  Q  6JHQ  0     T 6 N 6  6 RU JHQ 6  6        0       0 NJ ˜ . G6 GW Ÿ 6JHQ 2  7   6\VWHP  :V (QHUJ\EDODQFH '8 28 I   8 L  8I  8L 7 2 7 Q adiabati I constan  :6   PdV volume 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 2 I L 7 2 I L 0&S 7  7  0&S 7  7 :V EXW 7 I I : 0&3 I 2 I L 7 2 I L 0&S 7  7  7  7 I V 7 Ÿ 7 7 L 7 L 7  7  7 (QWURS\EDODQFH adiabatic 26 '6 I L 7 2 I L  6  6  6  I 7 Q 0 dt Sgen T 0 for maximum wor 26 I  L 7 2 I 7 L  6  6  6  %& 7 7 ()   7 7 '77 * Ÿ 27 7 27 7 7 RU 7  RU OQ I  L I L L I  L   I I 7 7 0&3 OQ   0&3 OQ  7 7  L I  L I L I   L I 7 I 7 I L 7 7 DQG : 0&3 I V  L 7 7  EXW 7 L L 7  7  7  EDU  EDU  .  . L L L L  7 7  7  7 D (QWURS\FKDQJHSHUPROHRIJDV 7 3 '6 &3 OQ   5 OQ  HTQ  3 7     OQ OQ  7KXV '6  PRO.  PRO.  PRO. E 6\VWHP FRQWHQWVRIWXUELQH VWHDG\VWDWHV\VWHP G1 0DVVEDODQFH  1   1  Ÿ  1  1  1 GW dV 0 G8 0  :V  3  1  +  1  +   Q (QHUJ\EDODQFH dt GW   : 1 +   +  1& 7 7 3   : u    . &3 7  7  :  PRO. 1 V 0 V 0 5 0 5 PRO ,Q ,OOXVWUDWLRQ  :  - PRO  EHFDXVH RI LUUHYHUVLEOLWLWLHV '6 z   PRUH ZRUN LV GRQHRQWKHJDVKHUH:KDWKDSSHQVWRWKLVDGGLWLRQDOHQHUJ\LQSXW",WDSSHDUVDVDQLQFUHDVHRI WKHLQWHUQDOHQHUJ\ WHPSHUDWXUH RIWKHJDV   F  5 +HDWORVVIURPPHWDOEORFN G8 G7 &3 4 GW GW 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H %& ' 4 KHDWRXWRIPHWDO 7  7  4  7 4 KHDWLQWRKHDWHQJLQH : &3 0 G7 7  7 GW 7 I  : Ÿ  :GW 0 : &37    ! "# $ 0 &37   7 7 &3 7  7 &3G7   5  7   7 G7 7 5 &3 7  7  7 OQ 7 7  OQ  7 7   I  0 ! 7 7 5 &3 7  7  &3 ˜ 7 OQ I &3  : 4 7 W 5 7 7 7 7 "# $   $OWHUQDWHZD\WRVROYHWKHSUREOHP 7 6\VWHPLVWKHPHWDOEORFNKHDWHQJLQH FORVHG G8 G7 &3 4  : (% GW GW G6 4 Sgen 6% GW 7  0 for maximum wor 4 : : :  G6  &3  :  G8 &3G7  G6 G7 GW 7 7 & &3G7  7 3 G7 &3    G7 7 7 G6 G8 7  GW GW G8 G6  7 GW GW I  :GW 7 I 7 0 7     &3   5   7 G7 7 &3 7  7  7&3 OQ 7 7 7    7  7 " & 7     OQ # ! 7  7 $ &3 I    7  7 G7 7 3      7KLVSUREOHPLVQRWZHOOSRVHGVLQFHZHGRQRWNQRZH[DFWO\ZKDWLVKDSSHQLQJ7KHUHDUHVHYHUDO SRVVLELOLWLHV  :DWHU FRQWDFW LV YHU\ VKRUW VR QHLWKHU VWUHDP FKDQJHV 7 YHU\ PXFK  ,QWKLV FDVH ZH KDYH WKH &DUQRWHIILFLHQF\ K : 4 7KLJK  7ORZ 7KLJK          %RWKZDUPVXUIDFHZDWHU q& DQGFROGGHHSZDWHU q& HQWHUZRUNSURGXFLQJGHYLFHDQG WKH\OHDYHDWDFRPPRQWHPSHUDWXUH 7+ 7/ 72 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H G0  0  0  Ÿ0   0   0  0 + /   + / GW G8  +  0  +  0  +  :   0 (% + + / /   GW  +  0  +  0  0  + :  0 + + / / + /  1 0% 2 1 2 7 6  +  +  0  +  + 0 + + / /   0 0 5 7  & 7 7  0  & 7 7 0 + 3  + / 3  / 6% G6  GW  6  0 + + 5  0 0  6  0  6  0 6  Q Sgen 0   + + / / T      0 / 6/  0 +  0 / 6  1 6 2 7 2 7  Ÿ 0 & OQ 77  7  0  7  0 RU7 0 7 0 7 0 0 7  7   6  6  0  6  6 0 + +  / /   +  6  + / /  +  + + 3  + /  /   +   & OQ 7/ 0 / 3 7  / 0 1 0  0 6 0 1 0  0/ 6      7 7+ + + / 7/ / + )URPWKLVFDQFDOFXODWH 7 7KHQ  0 : 0 5  & 7 7  0  & 7 7 0 + 3  + / 3  / 5 7KLVFDQEHXVHGIRUDQ\IORZUDWHUDWLR  6XSSRVHYHU\ODUJHDPRXQWRIVXUIDFHZDWHULVFRQWDFWHGZLWKDVPDOODPRXQWRIGHHSZDWHULH  !! 0  7KHQ 7 a 7 0  + + / : 0 5 0 5 0  & 7 7  0  & 7 7 a 0  & 7 7 0 + 3 + + / 3 + / / 3 + / 5  6XSSRVHYHU\ODUJHDPRXQWRIGHHSZDWHULVFRQWDFWHGZLWKDVPDOODPRXQWRIVXUIDFHZDWHULH   0   7 a 7  0  / + /  & 7 7  0  & 7 7 a 0  & 7 7 : 0 + 3  0 / + 5 / 3 0 / / 5 + 3 0 / + 5 6\VWHP FRQWHQWVRIWKHWXUELQH7KLVLVDVWHDG\VWDWHDGLDEDWLFFRQVWDQWYROXPHV\VWHP G0  0  RU 0   0  0 D 0DVVEDODQFH     GW (QHUJ\EDODQFH constan G8  +  0  +  Q adiabati:  3 dV volume  0 V     dt GW (QWURS\EDODQFH  G6  6  0  6  Q Sgen  0     T GW 0, by problem statem 7KXV   0  NJ K 0      :6  0 +  +  (% 6 6% 2 6 7 0% 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 6WDWH  7 q & 3  EDU 6WHDP  o 7DEOHV +    N- NJ 6    N- NJ 6WDWH 3  EDU 6WHDP  o 7DEOHV 7 # q & 6 6    NNJ.     + |    N- NJ  NJ NN   u   K NJ K E 6DPHH[LWSUHVVXUH 3 EDU DQGVWLOODGLDEDWLF  +  +  Ÿ :  0 :V  0 V  2  5    N:  7 +HUHKRZHYHU :V Ÿ + N +   K 6WHDP 7 #  .  o 7DEOHV 6 |  N- NJ. 2   :V 3DUWD     u    N- NJ  2 7   EDU 3 7 N-K  7KXV NJ NN   u    K NJ. .˜K )ORZDFURVVYDOYHLVD-RXOH7KRPSVRQ LVHQWKDOSLFH[SDQVLRQ 6HH,OOXVWUDWLRQ DQGWKHLQOHWFRQGLWLRQVWRWKHWXUELQHDUH 7KXV + +  JHQ F 2  6  6 0 6 LQWR YDOYH   7  RXW RI YDOYH + + 3 EDU + RXW RI YDOYH   6WHDP  o 7DEOHV   N- NJ LQWR YDOYH 7 | q &   N- NJ. 6 |  )ORZDFURVVWXUELQHLVLVHQWURSLFDVLQSDUW D 6 3    N- NJ. 6   EDU 6WHDP  o 7DEOHV  7 #   q&  + |   N- NJ   NJ NN u     u  N: K NJ K  6LQFHFRPSUHVVLRQLVLVHQWURSLFDQGJDVLVLGHDOZLWKFRQVWDQWKHDWFDSDFLW\ZHKDYH :V    7   3  5 & 7   3 6RWKDW 7  7   3  5 & 3   3UREOHPWKDW :V 3       u     u    1& 07  7 5    3    3   . 1RZXVLQJIURPVROXWLRQWR 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H :V  NJ PRO J u u  u      .u V J PRO. NJ  u   - V 7KHORDGRQWKHJDVFRROHULVIURP3UREOHP 4 0  7 7 1& S   5  NJ V u  J NJ u  u      .  J PRO PRO.  u  - V 3.11 (a) This is a Joule-Thomson expansion . bar, T = 400° C) ≈ H$ (1 bar, T = 400° C) ⇒ H$ (70 bar, T = ?) = H$ (10133 = 3278.2 kJ kg and T = 447° C , S$ = 6.619 kJ kg K c h (b) If turbine is adiabatic and reversible S&gen = 0 , then S$out = S$in = 6.619 kJ kg K and P = 1013 . bar. This suggests that a two-phase mixture is leaving the turbine S$ V = 7.3594 kJ kg K . S$ L = 13026 kJ kg K Let x = fraction vapor ) = 6.619 kJ kg K or x = 08778 Then x(7.3594) + (1 − x)(13026 . . . fluid leaving turbine is . H$ = 08788 × . 26755 H$ V ( sat’d, 1 bar ) )× . + (1 − 08778 417.46 H$ L (sat’d, 1 bar ) = 2399.6 Therefore the enthalpy of kJ kg Energy balance dV 0 0 = M& in H$ in + M& out H$ out + Q& 0 +W&s − P dt but M& in = − M& out W& kJ ⇒ − & s = 3278.2 − 2399.6 = 8786 . M kg in (c) Saturated vapor at 1 bar S$ = 7.3594 kJ kg K ; H$ = 26755 . kJ kg W − &s M in . − 26755 . = 602.7 kJ kg = 32782 Actual Efficiency (% ) = 602.7 × 100 = 68.6% . 8786 S&gen = 7.3594 − 6.619 = 0.740 kJ Kh M& in (d) & = −M & 0 = M& 1 + M& 2 ⇒ M 2 1 W Steam 70 bar 447° C Water 1 bar 25° C Q c c h dV 0 = M& 1 H$1 − H$ 2 + W&s + Q& − P dt & Q 0 = M& 1 S$1 − S$2 + + S&gen T h Simplifications to balance equations dV S&gen = 0 (for maximum work); P = 0 (constant volume) dt Q& Q& where T0 = 25° C (all heat transfer at ambient temperature) = T T0 kJ $ kJ ; S (sat'd liq, T = 25° C) = 0.3674 H$ (sat'd liq, 25° C) = 104.89 kg kg K −W& Q& = H$1 − H$ 2 + T0 S$2 − S$1 = H$ 1 − T0 S$1 − H$ 2 − T0 S$2 = T0 S$2 − S$1 ; & s & M M c h c h c h c h max −W&s & M = 3278.2 − 29815 . × 6.619 − 104.89 − 29815 . × 0.3674 max = 1304.75 + 4.65 = 1309.4 kJ kg 3.12 Take that portion of the methane initially in the tank that is also in the tank finally to be in the system. This system is isentropic S f = Si . (a) The ideal gas solution S f = S i ⇒ Tf = Ti FG P IJ H PK f R Cp i N= F 35. I H 70 K = 300 8.314 36 . K = 1502 Pf V PV PV . mol ⇒ Ni = i = 1964.6 mol; N f = = 1962 RTf RTi RT ∆N = N f − Ni = −17684 . mol (b) Using Figure 2.4-2. 70 bar ≈ 7 MPa, T = 300 K S$i = 505 . kJ kg K = S$ f 3 m V$i = 0.0195 , so that mi = kg 35.90 kg × 1000 Ni = 0.7m3 = 3590 . kg. m3 0.0195 kg g kg = 1282 mol g mol . kJ kg K ⇒ T ≈ 138 K. Also, At 3.5 bar = 0.35 MPa and S$ f = 505 28 m3 0.7m3 kg. V$f = 0192 . . , so that m f = = 3646 kg m3 0192 . kg g . 3646 kg × 1000 kg Nf = = 130.2 mol g 28 mol ∆N = N f − Ni = 130.2 − 1282 = −11518 . mol 3.13 dV dT +R eqn. (3.4-1) V T dS = C ∆S = z LNM so that (a − R) + bT + cT 2 + dT 3 + OP Q z dV e dT +R V T2 T a f a f a f c h h T2 c + b T2 − T1 + T22 − T12 2 T1 V d 3 e + T2 − T13 − T2−2 − T1−2 + R ln 2 3 2 V1 S T2 , V 2 − S T1, V 1 = (a − R ) ln c h c Now using PV = RT ⇒ a f a f V 2 T2 P1 = ⋅ ⇒ V 1 T1 P2 a f c h T2 c + b T2 − T1 + T22 − T12 T1 2 d 3 e P + T2 − T13 − T2−2 − T1−2 − R ln 2 P1 3 2 S T2 , P2 − S T1 , P1 = a ln c h c h Finally, eliminating T2 using T2 = T1 P2 V 2 PV 1 1 yields a f a f FG P V IJ + b a P V − PV f H PV K R c + a P V f − a PV f 2R d + a P V f − a PV f 3R S P2 ,V 2 − S P1,V 1 = a ln 2 2 2 1 1 2 1 1 2 2 2 2 2 3 2 2 1 1 3 − 3.14 3 1 1 eR 2 P −2 P2V 2 −2 − PV − R ln 2 1 1 2 P1 d i d i System: contents of valve (steady-state, adiabatic, constant volume system) Mass balance 0 = N& 1 + N& 2 Energy balance 0 dV 0 0 = N& 1 H 1 + N& 2 H 2 + Q& 0 + Ws − P dt ⇒ H1 = H 2 Q& 0 Entropy balance 0 = N& 1 S 1 + N& 2 S 2 + S&gen + T S&gen N& (a) Using the Mollier Diagram for steam (Fig. 2.4-1a) or the Steam Tables ⇒ ∆S = S 2 − S 1 = T1 = 600 K P2 = 7 bar T2 ≈ 293° C ⇒ $ . Jg P1 = 35 bar H$ 2 = 30453 S2 = 7.277 J g K H$1 = H$ 2 = 3045.3 J g . Thus S$1 = 65598 . J g K ; Texit = 293° C ∆S$ = S$ − S$ = 0.717 J g K 2 1 (b) For the ideal gas, H1 = H 2 ⇒ T1 = T2 = 600 K a f a f ∆ S = S T2 , P2 − S T1 , P1 = Cp ln = − R ln T2 P − R ln 2 T1 P1 P2 . J mol K ⇒ = 1338 P1 ∆S$ = 0.743 J mol K 3.15 From the Steam Tables P = 15538 MPa . V$ L = 0.001157 m3 / kg V$V = 012736 m3 / kg . U$ L = 85065 U$ V = 25953 . kJ / kg . kJ / kg At 200oC, L L $ $ H = 852.45 kJ / kg H = 27932 . kJ / kg L V S$ = 2.3309 kJ / kg ⋅ K S$ = 6.4323 kJ / kg ⋅ K ∆H$ vap = 1940.7 kJ / kg ∆S$ vap = 41014 . kJ / kg ⋅ K (a) Now assuming that there will be a vapor-liquid mixture in the tank at the end, the properties of the steam and water will be P = 0.4578 MPa V$ L = 0.001091 m3 / kg V$V = 0.3928 m3 / kg U$ L = 63168 . kJ / kg H$ L = 632.20 kJ / kg o At 150 C, U$ V = 25595 . kJ / kg H$ V = 27465 . kJ / kg V $ S = 68379 . kJ / kg ⋅ K S$ L = 18418 kJ / kg ⋅ K . vap $ ∆H = 2114.3 kJ / kg ∆S$ vap = 4.9960 kJ / kg ⋅ K (b) For simplicity of calculations, assume 1 m3 volume of tank. Then 0.8 m3 Mass steam initially = = 6.2814 kg 0.12736 m3 / kg 0.2 m3 = 172.86 kg 0.001157 m3 / kg 6.2814 Weight fraction of steam initially = = 0.03506 179.14 6.2814 Weight fraction of water initially = = 0.96494 179.14 The mass, energy and entropy balances on the liquid in the tank (open system) at any time yields dM L S$ L dM LU$ L dM L = M& L ; = M& L H$ V ; and = M& L S$V dt dt dt dU$ L $ L dM L dM L or M L +U = M& L H$ V = H$ V dt dt dt L L $ dU dM $ V $ L = ML H −U dt dt Also, in a similar fashion, from the entropy balance be obtain dS$ L dM L $V $ L dM L $ vap = ML ∆S S −S = dt dt dt Mass water initially = c c h h There are now several ways to proceed. The most correct is to use the steam tables, and to use either the energy balance or the entropy balance and do the integrals numerically (since the internal energy, enthalpy, entropy, and the changes on vaporization depend on temperature. This is the method we will use first. Then a simpler method will be considered. Using the energy balance, we have dM L dU$ L , or replacing the derivatives by finite differences = V L M H$ − U$ L MiL+1 − MiL U$iL+1 − U$iL U$iL+1 − U$iL L L or finally 1 = + = M M + i i 1 Mi L H$ iV − U$iL H$ iV − U$iL So we can start with the known initial mass of water, then using the Steam Tables and the data at every 5oC do a finite difference calculation to obtain the results below. IJ K FG H i 1 2 3 4 5 6 7 8 9 10 11 T (oC) 200 195 190 185 180 175 170 165 160 155 150 U$iL (kJ/kg K) 850.65 828.37 806.19 784.10 762.09 740.17 718.33 696.56 674.87 653.24 631.68 H$ iV (kJ/kg K) 2793.2 2790.0 2786.4 2782.4 2778.2 2773.6 2768.7 2763.5 2758.1 2752.4 2746.5 MiL (kg) 172.86 170.88 168.95 167.06 165.22 163.42 161.67 159.95 158.27 156.63 155.02 So the final total mass of water is 155.02 kg; using the specific volume of liquid water at 150oC listed at the beginning of the problem, we have that the water occupies 0.1691 m3 leaving 0.8309 m3 for the steam. Using its specific volume, the final mass of steam is found to be 2.12 kg. Using these results, we find that the final volume fraction of steam is 83.09%, the final volume fraction of water is 16.91%, and the fraction of the initial steam + water that has been withdrawn is (172.86+6.28-155.02-2.12)/(172.86+6.28) = 0.1228 or 12.28%. A total of 22.00 kg of steam has withdrawn, and 87.7% of the original mass of steam and water remain in the tank. For comparison, using the entropy balance, we have dM L dS$ L = , or replacing the derivatives by finite differences ML S$V − S$ L MiL+1 − MiL S$iL+1 − S$iL S$iL+ 1 − S$iL L L 1 M M = = + of finally i +1 i Mi L ∆S$ivap ∆S$ivap So again we can start with the known initial mass of water, then using the Steam Tables and the data at every 5oC do a finite difference calculation to obtain the results below. FG H i T (oC) 1 2 3 4 5 6 7 8 9 200 195 190 185 180 175 170 165 160 S$iL (kJ/kg K) 2.3309 2.2835 2.2359 2.1879 2.1396 2.0909 2.0419 1.9925 1.9427 IJ K S$iL (kJ/kg K) 6.4323 6.4698 6.5079 6.5465 6.5857 6.6256 6.6663 6.7078 6.7502 MiL (kg) 172.86 170.86 168.92 167.02 165.17 163.36 161.60 159.87 158.18 10 11 155 150 1.8925 1.8418 6.7935 6.8379 156.53 154.91 So the final total mass of water is 154.91 kg; using the specific volume of liquid water at 150oC listed at the beginning of the problem, we have that the water occupies 0.1690 m3 leaving 0.8310 m3 for the steam. Using its specific volume, the final mass of steam is found to be 2.12 kg. Using these results, we find that the final volume fraction of steam is 83.10%, the final volume fraction of water is 16.90%, and the fraction of the initial steam + water that has been withdrawn is (172.86+6.28-154.91-2.12)/(172.86+6.28) = 0.1234 or 12.34%. A total of 22.11 kg of steam has withdrawn, and 87.7% of the original mass of steam and water remain in the tank. These results are similar to that from the energy balance. The differences are the result of round off errors in the simple finite difference calculation scheme used here (i.e., more complicated predictor-corrector methods would yield more accurate results.). A simpler method of doing the calculation, avoiding numerical integration, is to assume that the heat capacity and change on vaporization of liquid water are independent of temperature. Since liquid water is a condensed phase and the pressure change is small, we can make the following assumptions U$ L ≈ H$ L and H$ V − H$ L = ∆H$ vap dT L dS$ L CPL dT L dU$ L dH$ L ≈ ≈ CPL ≈ ; and dt dt T dt dt dt With these substitutions and approximations, we obtain from the energy balance dU$ L dM L $ V $ L dH$ L dM L $ vap = → ML = ∆H ML H −U dt dt dt dt dT dM L $ vap = ∆H M LCPL dt dt Now using an average value of CPL and ∆H$ vap over the temperature range we obtain c h 1 dM L CPL dT = or M L dt ∆H$ vap dt M fL CPL ( ) ln 150 200 − = M iL ∆H$ vap FG IJ H K and from the entropy balance C L dT dM L $ vap dS$ L dM L $ vap ∆S ∆S ML = → ML P = T dt dt dt dt Now using an average value of CPL and ∆S$ vap over the temperature range we obtain 1 dM L CPL dT or = M L dt T∆S$ vap dt M fL 150 + 27315 CPL . = ln ln 200 + 27315 Mi L . ∆S$ vap From the Steam Table data listed above, we obtain the following estimates: F H I FG IJ K H K U$ (T = 200o C) − U$ (T = 150o C) 852.45 − 632.20 kJ = = 4.405 kg ⋅ K 200o C - 150o C 50 or using the ln mean value (more appropriate for the entropy calculation) based on CPL = FG T IJ = S$aT f − S$aT f HTK CPL ln 2 2 1 1 kJ . S$(T = 200o C) − S$(T = 150o C) 2.3309 − 18418 = 4.3793 = 200 + 27315 47315 . . ⋅K kg ln ln 150 + 27315 42315 . . Also, obtaining average values of the property changes on vaporization, yields 1 1 kJ . = 2027.5 ∆H$ vap = × ∆H$ vap T = 150o C + ∆H$ vap T = 200o C = × 2114.3 + 19407 2 2 kg kJ 1 1 = 4.5487 . ∆S$ vap = × ∆S$ vap T = 150o C + ∆S$ vap T = 200o C = × 4.9960 + 41014 kg ⋅ K 2 2 With this information, we can now use either the energy of the entropy balance to solve the problem. To compare the results, we will use both (with the linear average Cp in the energy balance and the log mean in the entropy balance. First using the energy balance M fL CPL −4.405 × 50 ( ) 150 200 . − = = = −010863 ln L vap $ M . 20275 ∆H CPL = F H F H I K b g b g I K b g b g FG IJ H K i M L f L i ) = 089706 = exp(−010863 . . M Now using the entropy balance M fL 42315 150 + 27315 4.3793 42315 CPL . . . = = = 0.9628 ln ln ln ln L vap $ 47315 200 + 27315 4.5487 47315 Mi . . . ∆S FG IJ F I H K H K M 42315 . I = 089805 =F . H 47315 M . K L f L i F H I K F H I K 0.9628 Given the approximations, the two results are in quite good agreement. For what follows, the energy balance result will be used. Therefore, the mass of water finally present (per m3) is × M L (initial) = 15506 M L (final) = 0897 . . kg L L o $ occupying V = M ( final) × V 150 C = 15506 m3 . × 0.001091 = 01692 . b g Therefore, the steam occupies 0.8308 m3 , corresponding to 0.8308 m3 0.8308 m3 . kg = = 2115 m3 V$ V 150o C 0.3928 kg So the fraction of liquid in the tank by mass at the end is 155.06/(155.06+2.12) = 0.9865, though the fraction by volume is 0.1692. Similarly the fraction of the tank volume that is steam is 0.8308, though steam is only 2.12/(155.06+2.12) = 0.0135 of the mass in the tank. M V (final) = b g (c) Initially there was 6.28 + 172.86 = 179.14 kg of combined steam and water, and finally from the simpler calculation above there is 155.06 + 2.12 = 157.18 kg. Therefore, 87.7% of the total amount of steam + water initially in the tank are there finally, or 12.3% has been withdrawn. This corresponds to 21.96 kg being withdrawn. This is in excellent agreement with the more rigorous finite difference calculations done above. dN = 0 = N& 1 + N& 2 ; dt 3.16 (a) or N& 2 = − N& 1 dU dV W& = 0 = N& 1 H 1 + N& 2 H 2 + W&S + Q& − P = W&S + N& 1 H1 − N& 1 H 2 or S = H 2 - H1 dt dt N& 1 dS Q& = 0 = N& 1 S 1 − N& 1 S 2 + + S&gen dt T0 z S&gen = S 2 − S1 N& 1 Tf W&S . K = H 2 - H1 = CPdT = CP ⋅ Tf − 29815 N& 1 298.15K temperature. First consider the reversible case, z Tf S 2 − S 1 = 0 gives Ti CP = 37151 . c h z 10 dP CP dT = R P T 1 if the heat capacity is independent of The J W&Srev = CP ⋅ (49914 . . − 29815 . K) = 7467 & mol N1 J = CP ⋅ Tf − 29815 . WSrev = 9334 . K Wact = 125 mol The solultion is Tf = 549.39K c J mol ⋅ K solution The actual is work 499.14K. is 25% Then greater h (b) Repeat the calculation with a temperature-dependent heat capacity CP (T ) = 22.243 + 5977 . ⋅ 10−2 T − 3499 . ⋅ 10−5 T 2 + 7.464 ⋅ 10−9 T 3 Assuming reversibility Tf = 479.44K. Repeating the calculations above with the temperaturedependent heat capacity we find Wact = 9191 J, and Tf =520.92K. So there is a significant difference between the results for the constant heat capacity and variable heat capacity cases. 3.17 Ti = 300 K, Tf = 800 K, and Pi = 1.0 bar CP (T ) = 29.088 - 0.192 × 10-2 T + 0.4 × 10-5 T 2 - 0.870 × 10-9 T 3 T f = 800 K z z Pf dP CP (T ) dT = P P T T = 300 K P =1 i i Calculated final pressure Pf = 3.092 × 106 Pa. T f = 800K Wrev = z × 104 . CP (T )dT = 1458 Ti = 300K 3.18 J mol Stage 1 is as in the previous problem. Stage 2 Following the same calculation as above. Stage 2 allowed pressure Pf ,2 = 9.563 × 107 Pa Wrev = 1.458 × 10-4 J = Stage 2 work mol J mol ⋅ K Stage 3 Following the same calculation method Pf ,3 = 2.957 × 10-9 Pa = Stage 3 allowed pressure. J = Stage 3 work mol Question for the student: Why is the calculated work the same for each stage? Wrev = 1.458 × 104 3.19 The mass, energy and entropy balances are dM & +M & = 0, M& = − M& =M 1 2 2 1 dt dU & H$ + M & H$ + Q& + W& ; M & H$ − H$ + W& = 0; =0= M 1 1 2 2 s 1 1 2 s dt & H$ − H$ W&s = + M 1 2 1 c c h h dS Q& = 0 = M& 1S$1 + M& 2 S$2 + + S&gen = M& 1 S$1 − S$2 + S&gen = 0 dt T $ $ & & Sgen = M1 S2 − S1 c c h h 300° C, 5 bar = 05 . MPa H$1 = 3064.2 kJ kg S$ = 7.4599 kJ kg K 100° C, 1 bar = 01 . MPa H$ 2 = 26762 . kJ kg $ S = 7.3614 kJ kg K 1 2 W&s = 2676.2 − 3064.2 = 388 kJ kg satisfied the energy balance. M& 1 S&gen $ = S2 − S$1 = 7.3614 − 7.4599 = −0.0985 kJ kg K can not be. Therefore the process is impossible. M& 1 3.20 Steam 20 bar = 2 MPa and 300° C H$ = 30235 . kJ kg $ S = 6.7664 kJ kg (from Steam Tables) U$ = 2772.6 kJ kg Final pressure = 1 bar. For reference saturation conditions are P = 01 . MPa, T = 99.63 L $ H$ L = 417.46 S$ L = 13026 . U = 417.36 V V H$ = 26755 . S$ V = 7.3594 U$ = 25061 . (a) Adiabatic expansion valve W& = 0 and Q& = 0 dM & +M & = 0 ; M& 2 = − M& 1 ; =M 1 2 dt dU & H$ + M & H$ = 0 ; H$ = H$ E.B.: =M 1 1 2 2 2 1 dt From Steam Tables T = 250° C ⇒ H2 = 30235 . H$ = 2974.3 kJ kg S$ = 8.0333 kJ kg K T = 300° C H$ = 3074.3 kJ/kg S$ = 8.2158 kJ/kg K P = 01 . MPa By interpolation T = 275° C gives H$ = 3023.5 kJ / kg ⇒ all vapor M.B.: S$ = 81245 . kJ kg K dS & $ + M& S$ + S& = 0 = MS 1 2 2 gen dt S&gen kJ kg K . = S$2 − S$1 = 8.1254 − 6.7664 = 1359 M& gen (b) Well designed, adiabatic turbine c E.B.: M& 1H$ 1 + M& 2 H$ 2 + W& = 0 ; W& = H$ 2 − H$1 h & S$ = 0 ; S$ = S$ ; S$ = 6.7664 kJ kg K S.B.: M& 1S$1 + M 2 2 2 2 1 ⇒ Two-phase mixture. Solve for fraction of liquid using entropy balance. x ⋅ (7.3594) + (1 − x )⋅ 13026 = 6.7664 . x = 0.902 (not good for turbine!) . + 0.098 × 417.46 = 2454.2 kJ kg H$ 2 = 0.902 × 26755 & W = (2454.2 − 30235 . ) = −569.3 kJ kg M& W& − = 569.3 kJ kg M& (c) Isorthermal turbine ⇒ superheated vapor T = 300° C H$ = 3074.3 kJ kg final state P = 01 . MPa S$ = 8.2158 kJ kg K E.B.: M& H$ + M& H$ + Q& + W& = 0 OP Q 1 1 2 2 s 0 Q& S.B.: M& 1S$1 + M& 2 S$2 + +Sgen =0 T Q& = − M& 1S$1 − M& 2 S$2 = M& 1 S$2 − S$1 T Q& . )(8.2158 − 6.7664) kJ kg K = T S$2 − S$1 = (300 + 27315 M& = 830.7 kJ kg & W Q& . − 3074.3) = 779.9 kJ kg − &s = & + H$ 1 − H$ 2 = 830.7 + (30235 M M ⇒ get more work out than in adiabatic case, but have to put in heat. c c h c h h  6\VWHP FRQWHQWVRIWKHFRPSUHVVRU VWHDG\VWDWHFRQVWDQWYROXPH $OVRJDVLVLGHDO D 0DVVEDODQFH  1   1  o 1   1  dV 0 0 :V  3 (QHUJ\EDODQFH  1  +  1  +   Q dt adiabatic (QWURS\EDODQFH reversibl  Q 0 1  6   1  6   T )URPWKHHQHUJ\EDODQFH compressor Sgen 0 Ÿ 6 :V  1& 3 7  7 RU  1 0 :V 0 5 6  Ÿ 7 )URPWKHHQWURS\EDODQFH 6  7 6 &3 7  7  3  5 & 3  5 3  7KXV :V 1 &37  3  5 &  "#   #$ ! 3  3   E 7ZRVWDJHFRPSUHVVLRQZLWKLQWHUFRROLQJVRWKDWJDVLVUHWXUQHGWRLQLWLDOWHPSHUDWXUHEHIRUH HQWHULQJQGFRPSUHVVRU  3  5 &  "# ZKHUH 3   #$ ! 3   3 5 &  "# 1& 7   ! 3  $ 5&  " 3 5&  7  3     # 1& ! 3   3  #$ 3 ZRUNLQVWDJH :V, 1&37 ZRUNLQVWDJH :V,, 3  3  7RWDOZRUN :V,  :V,, 3 3  1 6  2 7 5& Ÿ 3  3  0 5 &3 5 %K  &K   ' 0 3 3 55 &  7 5 3 1& 3  &3 3   3   7RILQG 3 IRUPLQLPXPZRUNVHW G :V G3 G  :V G3 SUHVVXUHDIWHUVWFRPSUHVVRU  :V    0 5 & 5  3  (K)    3  K*  5 3  3 &3 3 3    3 RU 3 3 3 6WXGHQWVVKRXOGFKHFNWKDWWKLVUHVXOWVLQPLQLPXPDQGQRWPD[LPXPZRUN  6\VWHPQLWURJHQFRQWDLQHGLQERWKWDQNV FORVHGDGLDEDWLFFRQVWDQWYROXPH  0DVVEDODQFH 0L 0I  0I I I I I     (QHUJ\EDODQFH 0 8 0 8 0 8        )LQDOSUHVVXUHFRQGLWLRQ 3 I 3I )RUWKHHQWURS\EDODQFHWKHQLWURJHQLQWKHILUVWWDQNWKDWUHPDLQVLQWKHWDQNZLOOEHWDNHQDV WKHV\VWHP7KHQ 6L 6I  (TXDWLRQ  ¤  WRJHWKHUZLWKHTQRIVWDWHLQIRUPDWLRQRIWKHIRUP 6 6 7  3  8 8 7  3 DQG 9 9 7  3 ZKLFKZHFDQJHWIURP)LJSURYLGHVHTQVIRUWKHXQNQRZQV I I I I 7  3  7 DQG 3 3URFHGXUHWREHIROORZHGLQVROXWLRQ I L LL *XHVVDILQDOSUHVVXUH 3 8VHHTQ  )LJWRFRPSXWH 7 FDOXFXODWH 8 LLL 8VH)LJWRJHW 9 FRPSXWH 0 LY 0  0 DQG 9 9 0 8VH 3 DQG 9 WRJHW 7 DQG 8  I I I I Y I I 0 9 I I 9 I I I I I I YL 6HHLIHQHUJ\EDODQFH(TQ  LVVDWLVILHG,ILWLVJXHVVHG 3 LVFRUUHFW,ILWLVQRW JXHVVQHZ S JREDFNWR LL DQGUHSHDWFDOFXODWLRQ 6RPHSUHOLPLQDULHV )LJXUH 7 . +   N- NJ   o    3 EDU 9 |   P NJ I L L L L P    P NJ 9  9 L L 7KXV 0 NJ $VDILUVWJXHVVXVHLGHDOJDVVROXWLRQIRUSUHVVXUH $OVRWU\VRPHQHLJKERULQJSUHVVXUHV 0\ VROXWLRQLV 3  D I 7 I 7 I 3 I  EDU VDPHDVLGHDOJDVVROXWLRQ  2 .2LGHDOJDVVROXWLRQ7 . LGHDOJDVVROXWLRQ 7  I I 7 .7 . 6HWXSMXVWDVLQ3UREOHPDERYH6ROXWLRQDIWHUDQXPEHURILWHUDWLRQVLV 3 7 I   q & DQG 7 I 3 | EDU  I q &  I I I E 6LQFHQRZWKHUHLVKHDWH[FKDQJHEHWZHHQWKHWZRFKDPEHUVZHKDYH 7 7 7KLVHTXDWLRQ LV XVHG LQVWHDG RI HQWURS\ EDODQFH  6ROXWLRQ SURFHGXUH LV WR JXHVV D ILQDO SUHVVXUH DQG WKHQ FRPSXWHILQDOWHPSHUDWXUHXVLQJILUVWWKHPDVVEDODQFH 0  0  Ÿ L I 0 I 9 9 9  9 Ÿ 9 9 9 9  9 9 L I I I I 9  9  9 9 L I  I 7KDWLVFKRRVH 7 XQWLOHTQ  LVVDWLVILHG7KHQFRPSXWH 7 IURPHQHUJ\EDODQFHLH 08 L 0 8  0 8  L I I I I I 20 I   0 8  Ÿ 8 I 7 I L 8 I I  :KHQJXHVVHG 3 LVFRUUHFW 7 FRPSXWHGIURPHTQV  DQG  XVLQJWKH6WHDP7DEOHVZLOO EDU DQG 7 # q &  EHLGHQWLFDO0\VROXWLRQLV 3 I  I 6\VWHP FRQWHQWVRIWXUELQH RSHQFRQVWUDQWYROXPHVWHDG\VWDWH G1 0DVVEDODQFH  1   1  Ÿ 1   1  GW constant volume (QHUJ\EDODQFH G1 GW  1  +  1  +   dV 0 0 :V  3 Q dt adiabatic 0 Ÿ :V (QWURS\EDODQFH G1 GW  1  +   +  0 Ÿ 6JHQ 7 7 0 5  1 &3 7  7 IRUWKHLGHDOJDV Q 0   6JHQ 1  6   1  6   T 7 3  1  6   6  1  &3 OQ   5 OQ  7 3  RU 5 5   ()  * %&   '    3  5 & H[S 6JHQ "# 3 ! 1 & $  3   3 D )RU 7 WREHDPLQLPXPVLQFH 6JHQ t  DQG 1  !   6JHQ PXVWEH]HUR7KXVWKHPLQLPXP E RXWOHWWHPSHUDWXUHRFFXUVLQUHYHUVLEOHRSHUDWLRQ :  1 &3 7  7 6LQFH 7 ! 7 WKHPD[LPXPZRUNRFFXUVZKHQ 7 LVDPLQLPXP7KXV : LVDPD[LPXP LQPDJQLWXGH IRUDUHYHUVLEOHSURFHVV V 0 5 V  D )RUDQ\V\VWHP  0 6  4  6 "# 7 $ ! G6 GW L JHQ L  6 t  RU ¦ 0  6 d  $OVR 6 GHSHQGLQJQWKHSURFHVV 4 t  RU 4 d  DQG ¦ 0 JHQ L L L L  RU 6JHQ !  GHSHQGLQJRQZKHWKHURUQRWWKHSURFHVVLVUHYHUVLEOH7KXV G6 GW IRUDV\VWHPFDQ EHJUHDWHUWKDQOHVVWKDQRUHTXDOWR]HUR 6LQFH E\ GHILQLWLRQ WKH XQLYHUVH FRQWDLQV HYHU\WKLQJ LW PXVW EH D FORVHG V\VWHP DQG DGLDEDWLFVLQFHWKHUHLVQRWKLQJIRUWKHXQLYHUVHWRH[FKDQJHPDVVRUKHDWZLWK7KHUHIRUH G6 GW G6     6JHQ Ÿ GW 6JHQ t  7KXVWKHHQWURS\RIWKHXQLYHUVHFDQQRWGHFUHDVHDQGWKHVWDWHPHQWLVWUXH E &RQVLGHUWKHFKDQJHIURPDQ\VWDWHWRDQ\VWDWHLQDFORVHGV\VWHP7KHHQHUJ\DQGHQWURS\ EDODQFHVIRUWKLVWUDQVIRUPDWLRQDUH   8  8 6  6 4 : 6JHQ %& ' : 6LQFHWKHSURFHVVLVDGLDEDWLF ,IWKHWUDQVIRUPDWLRQLVSRVVLEOHWKHQ 6JHQ t  QRZFRQVLGHUWKHWUDQVIRUPDWLRQIURPVWDWHWR VWDWH+HUH  8  8  6  6 : 6JHQ &RPSDULQJHTQV  DQG  ZHKDYH : :  7KLVLVRN  &RPSDULQJHTQV  DQG  ZHKDYH 6JHQ  6JHQ  6HSDUDWHO\ZHKDYHLIWKHSURFHVVHVDUHSRVVLEOHWKDW 6JHQ t  DQG 6JHQ t  7KHRQO\ZD\WKDW DOO WKHVH WKUHH HTXDWLRQV IRU 6JHQ  DQG 6JHQ  FDQ EH VDWLVILHG LV LI 6JHQ 6JHQ   WKDW LV ERWK SURFHVVHV DUH UHYHUVLEOH  *HQHUDOO\ SURFHVVHV DUH QRW UHYHUVLEOH  +RZHYHU HTQ   UHTXLUHV WKDWRQO\RQHRI 6JHQ DQG 6JHQ FDQEHJUHDWHUWKDQ]HUR7KXV ,I 6JHQ !    o  LVSRVVLEOHEXW  o  LVQRWSRVVLEOH ,I 6JHQ !    o  LVSRVVLEOHEXW  o  LVQRWSRVVLEOH  7KLVLVOLNH,OOXVWUDWLRQH[FHSWWKDWWKH5DQNLQHUDWKHUWKDQYDSRUFRPSUHVVLRQUHIULJHUDWLRQ F\FOHLVXVHG2QO\SURSHUWLHVRISRLQWDQGSDWKIURPoFKDQJHV 3RLQWLVHQWURSLF 6   N- NJ.  +  N- NJ q &  7 q & / 6 q &    [ IUDFWLRQYDSRU 6 9 q &   ˜ [       [   [  + / q &   + [      [   9   +  + q &   /    4% +  +          : +  +     &23  ,IWKHWXUELQHGULYHVFRPSUHVVRU : +   +   +   +         2 7 2    &23 7    9DSRUFRPSUHVVLRQF\FOHZLWKFKDQJHRI 7ORZ DQG 7KLJK  /RFDWLRQ 6WDWH 3DWK  6DW©GOLT 7 q& 3 N3D   + N- NJ           p  n    0 5 60N- NJ5  LVHQWKDOS  9/PL[ 3  FRQVW 6DW©GYDS LVHQWURSH  VXSHUKHDWHG YDSRU  6DW©GOLT 3 FRQVW  ,QWHUSRODWLRQ 3 N3D 3 N3D q & q & q & q & q & DWN3D 6 DWN3D 6 Ÿ DWN3D 7 6 6 6 6 6 + + + + +             DWq&DQG +   DWq&DQG + q&DQG +                   4& +   +   : +   +           &23   *HQHUDODQDO\VLVRIDKHDWHQJLQH 4   4 7 G6 GW 4  I 7G6 7 G6  4   GW 0 7 6  6 5 7 I 7G6 DUHD D          E  D 7 DUHD D      E  D ,QWHJUDWLRQDURXQGDF\FOH  4    4   :QHW :QHW 4    4  DUHD D          E  D  DUHD D      E  D K DUHD          DUHD          :QHW :QHW 4LQ 4   DUHD D          E  D 2ULJLQDOF\FOH,QFUHDVLQJHYDSRUDWRU7EXWQRWSUHVVXUH  2ULJLQDOF\FOH  ,QFUHDVLQJHYDSRUDWRU 7DQG3  (LWKHUZD\PRUHZRUNLVREWDLQHGZLWKRQO\DVOLJKWLQFUHDVHLQKHDWUHMHFWHG ŸDOPRVWDOOWKHDGGLWLRQDOKHDWLQSXWLVFRQYHUWHGWRZRUN ŸHIILFLHQF\LPSURYHV 'HFUHDVLQJHYDSRUDWRU7 1RWHPD\JHWLQWRSKDVHUHJLRQ $JDLQHIILFLHQF\ZLOOLQFUHDVHGXHWRPRUHZRUNEHLQJSURGXFHGDQGOHVVKHDWUHMHFWHG  D      c  c  Ec  D ZLWKRXWVXSHUKHDW D       E  D ZLWKVXSHUKHDWLQJ  &OHDUO\JUHDWHUZRUNRXWSXWDQGKLJKHUHIILFLHQF\ZLWKVXSHUKHDW D       E  D ZLWKRXWVXEFRROLQJ D c  c  c      E  D c ZLWKVXEFRROLQJ 3UREDEO\LVJUHDWHUHIILFLHQF\ZLWKVXEFRROLQJEXWLVQRWDVHYLGHQWDVZLWKVXSHUKHDWLQJFDVH   7 3 6 + ƒ& N3D   03D   LVHQWURSLF    03D         ƒ&  DW 3 03D a  7   +   6  9  7   +    6    N- NJ Ÿ 7  +  :RUNo I  9G3  P NJ u    N3D   P NJ u  3D   N- NJ K :QHW :QHW 4LQ  u   P NJ u - P         4LQ      K  Ÿ    7XUELQHLVRQO\EXWDGLDEDWLF LGHDO Ÿ :WXUELQH      DFW  :WXUELQH   u     Ÿ +     N- NJ 6RVWDWHŸ 3   +  7 q &  +   6   7 q &  +   6  Ÿ 7 q &  6  N- NJ. K        P 7 + 6   N3D     03D  03D ƒ&    N3D a    ,IWXUELQHLVRQO\HIILFLHQW :       LQSUHYLRXVFDVH :   Ÿ +       K a   u    8 /    N- NJ  6 /  N- NJ.  8 /    N- NJ  6 /   VDW/    4LQ : K 3N3D 7 + N3D   03D ƒ&    aƒ&      +   +  +   +      +  +    : 4          9    03D VXSHUKHDWHG YDSRU VXSHUKHDWHG YDSRU 6  (QHUJ\EDODQFHDURXQGZKROHF\FOH 6%  4 +  4 /  4 0  4 0 4 +  4 / 4 + 4 / 4 0    7+ 7/ 70 4 / 4 4 4 4  + 0  + 0 7/ 7+ 70 7+ 70  4 4 4 / 7/ +  0 7+ 70  4+ 4 / 4 4    + / 7+ 7/ 70 70                   4       4  7 7  7 7       4      4  7 7  7 7  4 0 7 5  0 7 5  7  7  7 7   4 0 7 5  0 7 5  7 7  7  7  7  7  ˜ 7  7  7  ˜ 7   7 7  7  7 7  7 + + + / 0 + / / / / 0 0 / + 0 + / 0 0 + 0 / 0 + 0 0 + / + 0 / 0 / + 0 / + / )LUVWZULWHEDODQFHHTXDWLRQVIRUWKHFRQWHQWVRIWKHWXUELQH7KLVLVDVWHDG\VWDWHFRQVWDQWYROXPH DGLDEDWLFV\VWHP  0  Ÿ0   0 0%  0   (%      +  0  +  : Ÿ : 0     V V 0 1  +  +  5  0  6  0  6  Q  6JHQ  0     T 0D[LPXPZRUNŸUHYHUVLEOHSURFHVVŸ 6JHQ 6%   VHH6HF  Ÿ 6 H[LWWXUELQHFRQGLWLRQVDUHFRQQHFWHGE\DYHUWLFDOOLQHRQWKH0ROOLHUGLDJUDP 9HUWLFDOOLQH +   - J +   - J  7 q &  o 6DWXUDWLRQ7 FRQQHFWLQJ. 3 EDU IRU3 EDU EDUDQGEDU  :  +   +      - J  - J  0 E 7ZRVWDJHWXUELQH8VHEDODQFHHTXDWLRQVDERYHIRUHDFKVWDJH D   V 6WDJH 7 3 +  6  . +   q& EDU 7  - J 3 6   - J. $IWHUUHKHDWLQJLQWKHUHDFWRU  o L  - J q &    EDU  - J.   6 7KXVWKHLQOHWDQG 6WDJH 3 7   EDU + q & 7  - J 3 6   + 6  - J   o  - J q &   EDU   1RWH7KHUHLVQRZRUNGRQHLQUHKHDWLQJVWHS QRVKDIWZRUNDQGQRFKDQJHRIUHKHDWHUERXQGDULHV       - J 2QO\HQHUJ\WUDQVIHUVWHSLVKHDWLQJ 4 0 :  V  0 7RWDOZRUNRXWJ F  - J 0 - J DGGLWLRQDOZRUN5 6LPLODUWRSDUW E DERYHH[FHSWWKDWLQWHUPHGLDWHSUHVVXUHLVEDU 4  : V          0  0  - J 0 - J DGGLWLRQDOZRUN5  - J 6\VWHPFRQWHQWVRIWKHWDQNDWDQ\WLPH RSHQDGLDEDWLFFRQVWDQWYROXPHV\VWHP  G1  1 D 0DVVEDODQFH GW 39 39  1 ZKHUH 9 YROXPHWULFIORZUDWH LGHDOJDVODZ 1 57 57 G 3 3 G 39 39  Ÿ9  9 VLQFH9DQG 9 DUHERWKFRQVWDQW 7KXV GW 7 7 GW 57 57   EDU G 3 9 3 3 9W u   RU RU OQ H[S    . GW 7 9 7 7 9              PLQ 3 PLQ G8 GW     u  7 PLQ ^ 3  EDU 7 G 18 GW G1 G8  1 + Ÿ 8 1 GW GW G1 G1 G7 +  8 Ÿ 57 1& GW GW GW (QHUJ\EDODQFH RU 1     + .`  G1 GW 9   5 &   3 3 G3 3 G7 & RU 7 7 XVLQJ 1 39 57 \LHOGV 5 3 GW 7 GW >1RWHFRXOGKDYHJRWWHQWKLVUHVXOWIURPWKHHQWURS\EDODQFHDOVR@  3    Ÿ 7 PLQ  3 PLQ   EDU      VLPXOWDQHRXVO\VROYLQJHTXDWLRQV  DQG  \LHOGV 3 PLQ  EDUDQG 7 PLQ  . 6 RXW  RU 7 E 6LQFH SXPS LV DGLDEDWLF DQG UHYHUVLEOH 6 LQ LPSOLHVWKDW 7     3  VLQFH 3 3   7KLV HTXDWLRQ .  7 1XPEHURIPROHVRIJDVLQWDQNLQLWLDOO\ 1  5& 3  7  3 1  1 EDU u  P u   - P EDU  .  - PRO. u    3 9 57  PRO G1 1  PRO PLQ Ÿ 1 W   WPRO W PLQ GW D (QWURS\EDODQFHRQDQHOHPHQWRIJDVWKDWUHPDLQVLQWKHWDQN VHH,OOXVWUDWLRQ \LHOGV 6 W 6  Ÿ  3 W  5 & 3  7W 7 3W     3    Ÿ7 W  )URPWKHLGHDOJDVHTXDWLRQRIVWDWH 3W9 1 W 57 W Ÿ 7W 1 W 3W 71  3 9 5 7KXV 7W 3W   .  u EDU   W    W  1RZXVLQJHTQ  LQHTQ  WRVROYHIRU 3 W DQG 7 W \LHOGV  3W  u   W 7W   u   W  %XW 7 W  LV WHPSHUDWXUH LQ WKH WDQN :KDW DERXW WHPSHUDWXUH RI JDV OHDYLQJ WKH WKURWWOLQJ YDOYH"  *DV JRLQJWKUXYDOYHXQGHUJRHVD-RXOH7KRPVRQH[SDQVLRQ Ÿ +   u   W 7 7 7KXV 7 W E ,IWDQNLVLVRWKHUPDOWKHQLQVWHDGRIHTQ  ZHKDYH LQ RXW +  RXW RI YDOYH 3W 1 W DQG 7 W LQ FRQVWDQW 3 Ÿ3W 1  57 9    W EDU   . 6XPPDU\ 7 . $GLDEDWLF     W ,VRWKHUPDO   3 EDU     W    W  RXW 6LQFHJDVLVLGHDOWKLVLPSOLHV  7KLVLVDWRXJKSUREOHP 6XEVFULSWGHQRWHVSURSHUWLHVLQLQLWDOO\ILOOHGWDQN 6XEVFULSWGHQRWHVSURSHUWLHVLQLQLWLDOO\HYDFXDWHGWDQN :HZLOOXVHLDQGI VXSHUVFULSWV WRGHQRWHLQLWLDODQGILQDOSURSHUWLHVDQGZHZLOODVVXPHQHJOLJLEOHPDVV KROGXSLQHQJLQH  0DVVEDODQFHRQFORVHGV\VWHPFRQVLVWLQJRIERWKWDQNV L L L I 1  1  L I 3 9 39  7 7 I 1  1  Ÿ L I 3 9 3 9 7 7 L I I EXW 3 I 3 I I 3 Ÿ3 I     7 7   EDUP u    .   I  I  u   u         (QWURS\EDODQFHRQJDVFRQWDLQHGLQ WDQN LQLWLDOO\ DQG ILQDOO\  7KLV LV D FORVHG DGLDEDWLF UHYHUVLEOH V\VWHP G6 GW  3 I   3L   7 I   7L   Ÿ 6L 6I Ÿ &3 OQ  5 OQ     7KXV 7 I 7L  3 I  5 &  3L    3 I    3       (TXDWLRQ  LPSOLHVWKDW 7 DQG 3 DUHUHODWHGDVIROORZV G OQ 7 GW  5 G OQ 3 &3 GW  0DVVDQGHQHUJ\EDODQFHVRQWDQN RU 1&9 G1 GW G 1  {  1  GW 01 8 5 G7 GW G1 +  8  GW 57 0 5   G1 GW  1 + 8 G8  G1  1 GW GW  57 1 XVLQJHTQ  JLYHV 1  &9 G OQ 3 &3 GW  1 G1 GW  EDODQFHV RQ WKH HQJLQH  DGLDEDWLF UHYHUVLEOH IRU PD[LPXP ZRUN  DQG VLQFH QR KROGXS RI PDVV G1 GW  6XEVFULSWHQJUHIHUVWRJDVOHDYLQJHQJLQHDQGJRLQJLQWRWDQN 3+  + 8 1  :V 36  6 8 1     HQJ HQJ Ÿ 6 6 HQJ  $OVR 3 3HQJ 2 Ÿ 7HQJ 7 3HQJ 3 75 & 7 3 3 5 &3 0 3 5  1RWHWKDW 7HQJ z 7 DQG 2 :V   1& 3 7  7HQJ 7  EDODQFHVRQWDQN>1RWHLUUHYHUVLEOHPL[LQJRFFXUVXQOHVVIRUWXLWRXVO\ 7HQJ RFFXU" 7KXV 6JHQ !  DQGHQWURS\EDODQFHJLYHVQRXVHIXOLQIRUPDWLRQ@ 1 0DVVEDODQFH G1 GW (QHUJ\EDODQFH + 8 0 G 1 8  GW 0 5 & 07  7 5  57 &3 7  7 9  Ÿ G1 + HQJ  8  GW RU 3  8 5 8 G8  G1  1 GW GW () ZKHUH 7 & 7 & 7 * 9  3  1 + HQJ UHIHUHQFHWHPSHUDWXUH G1 &37HQJ  &37  &97  &37 GW < < 1 &37HQJ  &97 A G1 + HQJ %XW GW 1 &9 A 1 &9 G7 GW G7 GW  DQG 1 G 1 GW 0 5 Ÿ   G 39   GW 57 G7 GW     39 9 G3   G7    57 GW 57 GW 57 1 7 G3  39 3 GW   XVLQJHTQV  DQG  LQHTQ  K%&   5 & K'   3 1 &37  3 3  &97 K() K*  1&9 ˜ 57  7 G3 1  1 &9   39 3 GW   39 7 G3 &97 1    ˜ &9   57 3 GW   5 &    7 3 1& 3  3 DQGXVLQJHTQ  3 &99 G3 5 GW  7 DWDOOWLPHV FDQWKLV   5 &   3 &  1 9 &37  3 &3 3 G OQ 3 GW &9 9 G3 5 GW RUILQDOO\ 5& 3  9   3 3 G3 GW  G3 9 3  5 &3  GW   9 G3 GW 9 3 5 &3 G3 GW RU 3 3 I I G3 9 5 &3 3 3  9  L  I I G3 5 &3 3 3  L   Ÿ J2 7&  3 I Ÿ 3 I &3 9   &9 &3 L J2 3 I 7&   EDUXVLQJ(TQ   7 I 9 &3   &9 &3 L .   1RZXVLQJHTQ   7 I   . )LQDOO\ WR JHW WKH WRWDO ZRUN ZH GR DQ RYHUDOO HQHUJ\ EDODQFH V\VWHP  WZR WDQNV DGLDEDWLF FORVHG FRQVWDQWYROXPH  1 I 8 I  1 I 8 I  1 L 8 L  1 L 8 L :V     :V     & 3 I 9  9  3L9  3L9 5  ^      u    u `    EDUP    u  -  N9 < 0   5   D  A     aVDWYDSRU OLTXLGSURGXFHG :RUNLQVWDJH     N- NJ :RUNLQVWDJH N- NJ OLTXLG1       N- NJ  N- NJ    N- NJ 1 SURGXFHG     0 0 0  +  +  0  + 0 0 c           [ ˜     [  [          [      Ÿ   IUDFWLRQRIOLTXLG IUDFWLRQYDSRU (QWKDOS\RIVWUHDPEHIRUHFRPSUHVVRU 6WDJH      N- NJ1 6WDJH  DVEHIRUH  +   03D.    +   03D.  u    N- NJ  u     6WDJH     6WDJH  DVEHIRUH     N- NJ    N- NJ/1     1RWHEHFDUHIXODERXWFRRUGLQDWHV\VWHP$PDVVIORZLQWKHQHJDWLYHuGLUHFWLVQHJDWLYH / +HDW H[FKDQJHU LV LQ VWHDG\VWDWH RSHUDWLRQ [ '/ &DVH,&RQFXUUHQWIORZ 0DVVEDODQFHRQVKDGHGYROXPH PDVVLQ PDVVLQ HOHPHQWDW WLPHW  'W PDVVLQ  HOHPHQW DWWLPHW PDVVRXW DWIDFH DW/LQ'W 1  DWIDFHDW /  '/LQ'W 6  0  0  / /  '/ 'W VWHDG\  VWDWH  0   0 0 / / '/ (QHUJ\EDODQFHRQWKHVKDGHGYROXPH HQHUJ\LQ HOHPHQW DWW  'W HQHUJ\LQ HQHUJ\IORZLQ  HOHPHQW DWW HQHUJ\IORZRXW E\PDVVIORZ DW/LQ'W  E\PDVVIORZDW /  '/LQ'W HQHUJ\IORZLQ   E\KHDWIORZ LQWLPH'W VWHDG\VWDWH  + 'W  0    0 / / /  '/ + /  '/ 'W  4'/'W  +  0 0& 7/  '/  7/ 4 '/ /  '/  + / 0 5 3 0 5 GLYLGLQJE\ '/ WDNLQJOLPLWDV '/ o  DQGXVLQJVXEVFULSWWRGHQRWHIOXLG  & 0  3  G7 G&  0 4 N 7  7   5 4 KHDWIORZUDWHSHUXQLWOHQJWKRIH[FKDQJHU 6LPLODUO\IRUIOXLG RWKHUSDUWRIH[FKDQJHU  & 0 G7 G/ 0 4  3   N 7  7   5  DQG 0  DUHERWKIRUFRQFXUUHQWIORZ 0 $GGLQJWKHHTXDWLRQV   G7  & G7  0 G/ G/  )URPSUREOHPVWDWHPHQW 0  & 0    3   3   DQG & 0   G7 G7 G  7 7  RU 7  7 G/ G/ G/ DQG 7 &  7  7 &  7 QRZJRLQJEDFNWR Ÿ  0       5 & 3  3  FRQVWDQW  &  G7 G/ 0 N 7 7  0&    3  7 5 5 N 0&0&   3 DQGLQWHJUDWLQJ  &  7   &  7  I OQ  L   I q &  7 L I q &  7 q &  7 L L   I L      0& N /  / / 3   3  7 N/  0& q &  I $OVR & 7  7 7  7 q & > L LQLWLDOFRQGLWLRQVFRQGLWLRQVDW / H[FKDQJHU@ 8VLQJWKLVLQHTXDWLRQDERYHJLYHV   / / OQ    I         ILQDOFRQGLWLRQVFRQGLWLRQVDW / ZKHUH / OQ    $QGPRUHJHQHUDOO\DWDQ\SRLQWLQWKHH[FKDQJHU  /  Ÿ 7  /  /    H[S   q &  / &  7 / &  7  L H[S    7 /  /   7 /  &7 /     /  q &  /    H[S   1RZZULWLQJDQHQWURS\EDODQFH     7 H[S  /   /   & /   H[S  /   L   OHQJWKRI 4 '/'W 7 N  H[S  / /    H[S  / /      6 'W  0  0 / / /  '/ 6 /  '/ 'W    G6 Ÿ0 G/ G6 0 4 7 N 7  7 7 5 0 0 5 5 QHHG DEVROXWH 7 KHUH 0 5   0 5    H[S0 / / 5  / G  &     H[S0 / / 5  /     H[S0 / / 5 (  Ÿ 6 / 6 /   & OQ%& )*   ' N/ H[S  / / / G   0    H[S  / / /  S    S &DVH,,&RXQWHUFXUUHQWIORZ   0  0  G7   & N 7  7  0  3 G/  q & G7   &  N 7  7 0&3  q G/  & G7 N 7  7  0  3   G/   6XEWUDFWLQJHTQ  IURPHTQ  JLYHV 0 (TQ  FRPHVIURPHTQ  XVLQJ 0   0 5 0 0 5 5 G 7  7  Ÿ 7  7 G/ 7 7  q & 0 5 FRQVWDQW & q & 7KXV  & G7 N 7  7 0 N  3   G/ N/  7 7   0& 3 / / N/ 7          / 0& / 3  0 5 L ZKHUH /  0& 3 DQGWKHHQWURS\EDODQFH N   G6 0 G/ G6  G/ 4 7 N  7 N      0   N/ 0&  3 DEVROXWH WHPSHUDWXUH QHHGHG KHUH       6  N/ / G     N/ 0&3 0  / G6 1  &3 G[  [    / 6   &3 OQ    / Ÿ 6 / &3 / G    / /  /   6XPPDU\ &RQFXUUHQWIORZ 7 7 6 /  /   /  /    H[S    /    H[S    6 /   &3 OQ    H[S0 / / 5 ( %&  )*   '  &RXQWHUFXUUHQWIORZ 7    7    6 / / / / /   / 6   &3 OQ    /   a f dU dV dV dV = W&S + Q& − P = W&S + Q& − P0 − P − P0 dt dt dt dt 3.37 (a) and dS Q& = + S&gen dt T0 Now let a f dV dV W& = W& S − P0 − P − P0 dt dt and a f dV dV dU dV W&u = W& + P0 = W&S − P − P0 ⇒ = W&u + Q& − P0 dt dt dt dt or a U 2 − U1 = Wu + Q − P0 V2 − V1 S2 − S1 = f Q + S gen ⇒ Q = T0 S2 − T0 S1 − T0 Sgen T0 and a U 2 − U 1 = Wu + T0 S 2 − T0 S1 − T0 S gen − P0 V2 − V1 a f a f f Wu = U 2 + PV 0 2 − T0 S 2 − U 1 + PV 0 1 − T0 S1 + T0 S gen since T0 Sgen ≥ 0 Wumax = A2 − A 1, where A = U + PV 0 − T0 S (b) & H + Q& + W& 0 = M& H 1 − M S 2 & Q 0 = M& S 1 − M& S 2 + + Sgen T0 Here W&S = W&u & H − M& H − Q& = M& H − M & H + MT & S − MT & S +TS ⇒ W&u = M 0 1 0 2 0 gen 2 1 2 1 a f a f & H −T S − M & H −T S +T S ⇒ W&u = M 0 2 0 1 0 gen 2 1 Since T0 S gen ≥ 0 b g & B − B where B = H − T S W&umax = M 0 2 1 (c) Using the Steam Tables we find i) at 30 bar = 3 MPa and 600°C U$ = 32850 . kJ kg , S$ = 7.5085 kJ kg K , V$ = 013243 . m3 kg $ 1 = U$ + P0V$ − T0 S$ A = 32850 . + 1.013 bar + 0.13243 m3 kg × 102 kJ bar ⋅ m3 − 298.15 × 7.5085 = 105976 . kJ kg ii) at 5 bar = 05 . MPa and 300°C $ U = 2802.9 kJ kg , S$ = 7.4599 kJ kg K, V$ = 05226 . m3 kg $ 2 = 2802.9 + 1013 A . × 05226 . × 102 − 29815 . × 7.4599 = 63167 . kJ kg $ 2 − A$ 1 = (63167 W$u = A . − 1059.76) kJ kg = −428.09 kJ kg This is the maximum useful work that can be obtained in the transformation with the environment at 25°C and 1.013 bar. It is now a problem of clever engineering design to develop a device which will extract this work from the steam in a nonflow process. (d) Since the inlet and exit streams are at 25°C and P = 1013 . bar, any component which passes through the power plant unchanged (i.e., the organic matter, nitrogen and excess oxygen in the air, etc.) does not contribute to the change in availability, or produce any useful work. Therefore, for each kilogram of coal the net change is: 0.7 kg of carbon = 58.33 mol of C +58.33 mol of O 2 to produce 58.33 mol CO 2 also 0.15 kg of water = 8.33 mol of H2 O undergoes a phase change from liquid to vapor Therefore b &B $ in = ∑ N& i B M i i g in = 58.33 × 0+ 58.33 × 0 + 8.33 × (− 68.317 + 298.15 × 0.039 ) (carbon) (oxygen ) (liquid water ) = −1976 kJ kg coal & $ out = ∑ N& i B MB = 58.33 × (− 94.052 )+ 8.33 × ( −57.8 + 298.15 × 0.0106) i out b i g (carbon dioxide) ( water vapo r ) = −24858 kJ kg coal Wumax = −24858 − (1976) kJ kg coal = 22882 kJ kg coal = −2.2 kW - hr kg coal = 7920 kJ kg coal 7920 × 100 Efficiency in % = = 34.6% 22882 Wuactual Thus a coal-fired electrical power generation plants converts slightly more than 1/3 of the useful work obtainable from the coal it consumes. This suggests that it would be useful to look for another method of generating electrical power from coal . . . for example, using an electrochemical fuel cell. Considering the amount of coal consumed each year in power generation, and the consequences (strip mining, acid rain, greenhouse effect, etc.) the potential economic savings and environmental impact of using only 1/3 as much coal is enormous.  $VVXPSWLRQV  7XUELQHDQGSXPSRSHUDWHUHYHUVLEO\ DQGDGLDEDWLFDOO\  1RSUHVVXUHGURSDFURVVFRQGHQVHUDQG ERLOHU  2QO\KHDWWUDQVIHURFFXUVDWFRQGHQVHU DQGERLOHU  3DWK 6WDWH  '6  3 EDU 7 q&  : 3XPS  /RFDWLRQ %RLOHU &RQGHQVHU  N- NJ +  N- NJ. 6 VXSHUKHDWHG YDSRU     VXSHUKHDWHG YDSRU     VDW© G OLT     FRPSOLT         7XUELQH  9P  NJ   3 FRQVWDQW   '6     3 FRQVWDQW   >$WHDFKVWDWHWKHSURSHUWLHVLQER[HVZHUHNQRZQDQGXVHGZLWKWKHVWHDPVWDEOHVWRILQGWKHUHPDLQLQJ SURSHUWLHV@1RZUHDG\WRDQVZHUTXHVWLRQV D 1HWZRUNRXWSXWSHUNLORJUDP  +   +   +   +  2 7 2 7              N- NJ E +HDWGLVFDUGHGE\FRQGHQVHU +   +  F        N- NJ )UDFWLRQRIZRUNXVHGE\SXPS       u       G +HDWDEVRUEHGLQERLOHU H 7KHUPDOHIILFLHQF\       1HWZRUNRXW u  +HDWLQ    N- NJ  u     Carnot efficiency (1100°C and 15°C) = T1 − T2 (1100 + 27315 . ) − (15 + 273.15) = × 100 = 79.02% T1 (1100 + 27315 . ) For comparison, Carnot efficiency (700°C and 60.1°C) which are the temperature levels of working fluid (steam) in the closed-loop power cycle = ( 700 + 273.15) − ( 601 . + 27315 . ) × 100 = 6576% . 700 + 27315 . which is almost twice as high as the actual efficiency. 3.39 Three subsystems: unknowns T1 f , P1 f , T2 f , P2 f , T3 f , P3 f (6 unknowns) After process P1 f = P2 f = P3f (2 equations) Subsystem 1 has undergone a reversible adiabatic expansion ⇒ S 1f = S 1i , or T1 f = T1i FG P IJ HPK f R CP 1 (1 equation) i 1 (#1) Subsystem 3 has undergone a reversible adiabatic compression ⇒ S 3f = S 3i , or T3 f = T3i FG P IJ HP K f 3 i 3 R CP = T3i FG P IJ HPK f R CP (1 equation) i 3 (#2) Mass balance subsystems 1 + 2 N1f + N 2f = N1i + N 2i ⇒ or Pf P1 f V1 T1 f + P2 f V2 T2 f = P1iV1 T1i + P2iV2i T2i FG 0.5 + V IJ = 10 × 0.5 + 1× 0.25 = 0.017909 (1 equation) H T T K 29315 . 29315 . f 1 f 2 f 2 (#3) Energy balance on subsystems 1 + 2 + 3 N1f U 1f + N2f U 2f + N 3f U 3f = N1i U 1i + N2i U 2i + N 3i U i3 P1 f V1 P fV P fV PiV PiV PiV CV T1 f + 2 f2 CV T2f + 3 f3 CV T3 f = 1 i1 CV T1i + 2 i2 CV T2i + 3 i3 CV T3i f RT1 RT2 RT3 RT1 RT2 RT3 c h P f V1 + V2 f + V3 f = P1iV1 + P2iV2 + P3iV3 but V1 + V2 f + V3 f = V1 +V2i +V3i = (05 . + 025 . + 025 . ) = 1 m3 Pf = using this result 10 × 0.5 + 1 × 0.25 + 1 × 0.25 = 5.5 bar 1 in eqn. (1) → T1 f = 252.45 K in eqn. (2) → T3 f = 448.93 K V3 f = V3i P3i T3f 1 448.93 ⋅ = 0.25 × × = 0.06961 m 3 P3 f T3i 55 . 293.15 V2 f = 0.25 × 2 − 0.06961 = 0.4304 m3 Now using Eqn. (#3) FG 0.5 + V IJ = 55. FG 0.5 + 0.4304 IJ = 0.017909 ⇒ T H T T K H 252.45 T K Pf f 2 f 2 f 1 f 2 f = 337.41 K 2 Thus the state of the system is as follows T1 Initial 293.15 K Final 252.45 K P1 10 bar 5.5 bar T2 293.15 K 337.41 K P2 1 bar 5.5 bar V2 3 0.25 m 0.4304 m3 T3 293.15 K 448.93 K P3 1 5.5 bar 3 0.0696 m3 CV T3i = P3 f V3 f CV C − P3iV3i V = W R R V3 0.25 m Work done on subsystem 3 Energy balance f z i N 3f U 3 − N3i U 3 = W = − PdV P3f V3f RT3 f CV T3 f − P3iV3i RT3i CP − R f f P3 V3 − P3iV3i = 3(55 . × 0.0696 − 1 × 0.25) R = 0.3984 bar ⋅ m3 = 39.84 kJ W= c h 3.40 For the mass and energy balances, consider the composite system of can + tire as the system. Also gas is ideal for this system Q = 0 and W = 0 mass balance: N1f + N2f = N1i + N 2i ⇒ P1 f V1 T1 f + P2 f V2 T2 f = P1iV1 T1i + P2iV2 T2i (1) energy balance N1f U 1f + N2f U 2f = N1i U 1i + N 2 U 2i ⇒ P1 f V1 + P2f V2 = P1iV1 + P2iV2 (see derivation of eqn. (c) of Illustration 2.5-5) Also P1 f = P2 f = 2.6 bar(← 3) ; using eqn. (3) in eqn. (2) yields P1i = c h −2 −2 P1 f V1 + P2 f V2 − P2iV2 2.6 × 4.06 × 10 − 1 × 4 × 10 = = 109 .27 bar V1 6 × 10− 4 (2) To use eqn. (1) to get final temperatures, need another independent equation relating T1 f and T2 f . Could do an energy balance around tank 1, as in derivation of eqn. (f) of Illustration 2.5-5. A more direct way is to do an entropy balance around a small fluid element, as in Illustration 3.5-2 and immediately obtain Eqn. (e) of that illustration FG T IJ HT K f CP R = 1 i 1 FG P IJ HPK f 1 i 1 Thus T1 = f T1i FG P IJ HPK f 1 i 1 R CP FH 2.6 IK 109.27 = 295 8.314 30 = 104.69 K (very cold!) Using this result in eqn. (1) gives T2 f = 30326 . K. 3.41 (a) System: Gas in the tank — system boundary is just before exit to the tank. System is open, adiabatic, and of constant volume. dN M.B.: = N& dt d ( N S) S. B.: = N& S dt dN dS dN dS ⇒S +N = N& S = S⇒N = 0 or S = constant (since N ≠ 0) dt dt dt dt Note: Gas just leaving system has the same thermodynamic properties as gas in the system by the “wellmixed” assumption. For the ideal gas this implies T2 = T1 FG P IJ HPK R CP 2 1 F 1 bar I H 17.5 bar K (b) T2 = (22 + 27315 . ) 8.314 30 = 133.52 K (c) System: Gas in the tank + engine (open, constant-volume, adiabatic) M.B.: N f − Ni = ∆N ∆N = amount of mass (moles) that left the system E.B.: N f U f − Ni U i = ∆N H out + WS Note: H out = constant, since gas leaving engine is of constant properties. Thus +WS = N f U f − Ni U i − ∆N H out = N f U f − Ni U i − N f H out + Ni H out = N f CV − Ni CV Ti − N f CPTout + Ni CPTout ; but Tout = Ti = N f CV T f − CPTi + Ni RTi B reference temperature H = C aT − T f UV see Eqn. (2.4 - 8) U = C aT − T f − RT W Now PV = NRT ⇒ N = Ni = P 0 V 0 0 PV RT 17.5 bar × 0.5 m 3 = 0.3566 kmol 295.15 K × 8.314 × 10− 2 bar ⋅ m3 kmol K 1 bar × 0.5 m 3 = 0.04504 kmol 13352 . K × 8.314 × 10 −2 Ws = 0.04504 ( 30 − 8.314 ) × 133.52 − 30 × 295.15 + 0.3566 × 8.314 × 29515 . Nf = = 606.6 kJ Since WS > 0 , work must be put into the engine if the outlet temperature is to be maintained at 22°C. (Alternatively, heat could be added and work extracted.) We should check to see if the process considered above is indeed possible. Can do this by using the entropy balance and ascertaining whether Sgen ≥ 0 . Entropy balance c h N f S f − Ni S i = N f − Ni S out + S gen ⇒ N f CP ln Tf Tout − N f R ln Pf Pout − Ni CP ln Ti P + Ni R ln i = Sgen Tout Pout But Tout = Ti = 295.15 K , and Pout = Pf = 1 bar so N f CP ln Tf Ti + Ni R ln Pi = Sgen Pf or Sgen = 0.04505 × 30 ln 133.52 17.5 + 0.3566 × 8.314 ln = 7.414 kJ K 29515 . 1 Thus, Sgen > 0 , and the process is possible! (d) Similar process, but now isothermal: system = gas in tank and engine. M.B.: N f − Ni = ∆N c = cN h − N hS E.B.: N f U f − Ni U i = ∆N H out + Q + Ws = N f − Ni H out + Q + Ws Q Q + S gen + S gen f i out + T T = 0 , since we want maximum work (see Sec. 3.2). Thus S.B.: N f S f − Ni S i = ∆N S out + Set Sgen d i c h Q = T N f S f − N i S i − N f − Ni T S out d i a = TN f S f − S out − TN i S i − S out = − N f TR ln Pf Pout + Ni RT ln f Pi Pout But Pf = Pout = 1 bar and F 17.5I = 2504.6 kJ H 1K Q = 0.3566 × 8.314 × 295.15 ln Ws = N f U f − N i U i − N f H out + Ni H out − Q c h = − N f RT + Ni RT − Q = Ni − N f RT − Q PV 1 × 0.5 = = 2.038 × 10 −2 kmol and RT 29515 . × 8.314 × 10−2 Ws = (0.3566 − 0.0204) × 8.314 × 29515 . − 2504.6 = −1679.6 kJ . In this case we obtain work! but N f = 3.42 a) For each stage of the compressor, assuming steady-state operation and reversible adiabatic operation we have from the mass, energy and entropy balances, respectively & & 0 = M& in + M or M& out = − M& in = − M out 0 = M& H$ + M& H$ + W& or W& = M& ( H$ − H$ ) in in out out out in and & S$ 0 = M& inS$in + M or S$out = S$in out out So through each compressor (but not intercooler) stage, one follows a line on constant entropy in Fig. 2.4-2 Therefore, for first compressor stage we have H$ in (T = 200 K, P = 1 bar ) = 767 kJ / kg and S$in ( T = 200 K, P = 1 bar ) = 6.5 kJ / kg K H$ ( S$ = 6.5 kJ / kg K, P = 5 bar ) = 963 kJ / kg and T = 295 K out out Therefore the first stage work per kg. of methane flowing through the compressor is W& ( first stage) = 963 − 767 kJ / kg = 196 kJ / kg After cooling, the temperature of the methane stream is 200 K, so that for the second compressor stage we have H$ in (T = 200 K, P = 5 bar ) = 760 kJ / kg and S$in (T = 200 K, P = 5 bar ) = 5.65 kJ / kg K H$ ( S$ = 5.65 kJ / kg K, P = 25 bar ) = 960 kJ / kg and T = 300 K out out Therefore the second stage work per kg. of methane flowing through the compressor is W& (sec ond stage) = 960 − 760 kJ / kg = 200 kJ / kg Similarly, after intercooling, the third stage compressor work is found from H$ in (T = 200 K, P = 25 bar ) = 718 kJ / kg and S$in ( T = 200 K, P = 25 bar ) = 4.65 kJ / kg K H$ ( S$ = 4.65 kJ / kg K, P = 100 bar) = 855 kJ / kg and T = 288 K out out Therefore the third stage work per kg. of methane flowing through the compressor is W& ( third stage) = 855 − 718 kJ / kg = 137 kJ / kg Consequently the total compressor work through all three stages is W& = 196 + 200 + 137 = 533 kJ / kg b) The liquefaction process is a Joule-Thomson expansion, and therefore occurs at constant enthalpy. The enthalpy of the methane leaving the cooler at 100 bar and 200 K is 423 kJ/kg. At 1 bar the enthalpy of the saturate vapor is 582 kJ/kg, and that of the liquid is 71 kJ/kg. Therefore from the energy balance on the throttling valve and flash drum we have H$ in = H$ out or H$ (200 K, 100 bar) = (1 − x) H$ (sat' d. vapor, 1 bar) + xH$ ( sat'd. liquid, 1 bar) 423 kJ kJ kJ = (1 − x ) ⋅ 71 + x ⋅ 582 kg kg kg where x = 0.689 is the fraction of vapor leaving the flash drum, and (1-x) = 0.311 is the fraction of the methane that has been liquefied. Therefore, for each kilogram of methane that enters the simple liquefaction unit, 689 grams of methane are lost as vapor, and only 311 grams of LNG are produced. Further, since 533 kJ of work are required in the compressor to produce 311 grams of LNG, approximately 1713 kJ of compressor work are required for each kg. of LNG produced. c) As in the illustration, we choose the system for writing balance equations to be the subsystem consisting of the heat exchanger, throttle valve and flash drum (though other choices could be made). The mass and energy balances for this subsystem (since there are no heat losses to the outside or any work flows) are & = M & +M & or taking M & = 1 and letting x be the fraction of vapor M 3 5' 6 3 1 = (1 − x) + x & H$ = M& H$ + M& H$ M 3 3 5 ' 5' 6 6 1 ⋅ H$ (T = 200 K, P = 100 bar) = x ⋅ H$ (T = 200 K, P = 1 bar) + (1 − x) ⋅ H$ ( sat'd.liquid, P = 1 bar) 423 kJ kJ kJ = x ⋅ 718 + (1 − x) ⋅ 71 kg kg kg The solution to this equation is x = 0.544 as the fraction of vapor which is recycled, and 0.456 as the fraction of liquid. The mass and energy balances for the mixing of the streams immediately before the compressor are & +M & = M & ; then basing the calculation of 1 kg of flow into the compressor M 5' 1 1' & & & = 0.456 M = 1, M = 0.544 and M 1' 5' 1 However, since both the recycle vapor and the inlet vapor are at 200 K and 1 bar, the gas leaving the mixing tee must also be at these conditions, so that the inlet conditions to the first compressor are the kJ same as in the simple liquefaction process, and H$ 1' = 718 . Also, all other compressor stages kg operate as in the simple liquefaction process. Therefore, the total compressor work per kg of methane passed through the compressor is W& = 196 + 200 + 137 = 533 kJ / kg of methane through the compressor. However, each kg. of methane through the compressor results in only 0.456 kg. of LNG (the remainder of the methane is recycled). Consequently the compressor work required per kg. of LNG produced is (533 kJ/kg)/0.456 kg = 1168 kJ/kg of LNG produced. This is to be compared to 1713 kJ/kg of LNG produced in the simple liquefaction process. 3.43 (also available as a Mathcad worksheet) Problem 3.43 with MATHCAD bar 101300 . Pa mol Heat capacity 1 8.314 . RE joule mol. K RG 0.00008314 . bar . m mol. K 3 2.5 . RE Cp Initial Conditions (Vt=total volume, m^3): Find initial molar volume and number of moles Start with initial guess for volume, m^3/mol Initial molar volume and number of moles 298 . K Ti Vi = 6.194 10 5 Vi Pi RG. Ti Vi = 6.194 10 Pi 3 m N Vt Vi 400 . bar Vt 5 0.045 . m 3 3 m N = 726.518 mol Final pressure is 1.013 bar, and final temperature is unknown; will be found by equating the initial and final entropies. Guess final temperature is 200 K Pf 1.013 . bar T 50 . K Vf RG. T Pf Solve for final temperature using S(final) - S(initial) = 0 Given 0 Cp . ln T Ti Pf RG. ln Pi Tf FIND( T ) Tf = 26.432 K Final temperature W 3. RE. ( Tf Ti) . N 6 W = 2.461 10 2 TNTeq W 4600000 . joule kg joule TNTeq = 0.535 kg 3.44 (also available as a Mathcad worksheet) 3.44 N2 R 8.314 8.314 . 10 RR 5 Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave unreasonable answers when this problem was revisited with the Peng-Robinson eqn. of state, as both the initial and final states were found to be in the liquid state. Therefore from the 3rd printing on, the fluid has been changed to nitrogen. Heat capacity constants for nitrogen Cp 0 Ti 28.883 0.157 . 10 Cp 1 298.15 2 Tf 0.808 . 10 Cp 2 5 Cp 3 2.871 . 10 9 100 Given Tf Cp 0 Cp 1 . T Cp 2 . T 2 Cp 3 . T 3 d T R. ln 1.013 T 140 Ti Tf Tf = 72.054 find( Tf ) Number of moles = N = PV/RT N. W Tf Cp 1 . T Cp 0 2 140 . 3.1416 . ( .01 ) . .06 RR. 298.15 N Cp 2 . T N = 0.106 moles Cp 3 . T d T 2 3 Ti W = 695.114 4600 J = 1 gram TNT joules W Grams of TNT = G G = 0.151 4600 3.44CO2 R 8.314 RR 8.314 . 10 grams of TNT 5 Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave unreasonable answers when this problem was revisited with the Peng-Robinson eqn. of state, as both the initial and final states were found to be in the liquid state. Therefore from the 3rd printing on, the fluid has been changed to nitrogen. Heat capacity constants Cp0 Ti 22.243 Cp1 298.15 Tf 5.977 . 10 2 3.499 . 10 Cp2 5 Cp3 200 Given Tf Cp0 Cp1. T Cp2. T T Ti 2 Cp3. T 3 d T R. ln 1.013 140 7.464 . 10 9 Tf Tf = 79.836 find ( Tf ) Number of moles = N = PV/RT 2 140 . 3.1416 . ( .01 ) . .06 RR. 298.15 N N = 0.106 moles To calculate work done (energy released), we need the internal energy change. Therefore need Cv = Cp - R W N. Tf Cp0 8.314 Cp1. T Cp2. T 2 Cp3. T d T 3 Ti W = 555.558 4600 J = 1 gram TNT joules Grams of TNT = G W G = 0.121 4600 3.45 25 bar = 2.5 MPa; 600°C H$ = 36863 . kJ kg ; S$ = 7.5960 kJ kg K 1 bar ∆ = 027 . S$ = 7.3614 S$ = 7.6314 100°C 150 ⇒ T = 143.44° C 1311 H$ = 27764 . − 131 . = 27633 . kJ kg W = −3686.3 + 27633 . = −923 kJ kg − 16614 kJ mol a f ideal gas = −16830 kJ mol Actual work 784.55 dU dV = 0 = M& 1 H$ 1 − H$ 2 + Q& − P + W&s dt dt W& H$ 2 = H$ 1 + s = 36863 . − 784 .55 = 290175 . M& 1 c h Final state P = 1 bar ; H$ = 290175 . ∆T 50 H$ (1 bar, 200° C) = 28753 . = 99.6 ∆H$ 99.6 H$ (1 bar, 250° C) = 2974.9 UV W 290175 . − H$ (1 bar, 200° C) = 26.45 50 26.45 = 213.28 99.6 S$ (1 bar, 250) = 8.0333 S$ (1 bar, 200) = 7.8343 T = 200 + S$ (1 bar, 213.28 ) = 7.8872 grams of TNT c h dS = 0 = M& S$1 − S$2 + S& gen ; dt S&gen = − S$2 − S$1 = 7.8872 − 7.5960 = 0.2912 kJ kg K & M 5.2416 kJ kg K (ideal gas = 5.468 ) PR: T = 600° C ; P = 25 bar H = 216064 . × 104 S = 14.74377 Now P = 1 bar , S = 14.74377 . Guess T = 213° C . T 213 150 S 19.67116 14.74399 H 727195 . 503486 . W& = 503486 . − 21606.4 = −1657154 . J mol M& Actual work ⇒ H f = 752059 . T 213 230 220 219.9 219.92 S 19.67116 20.90787 20.18472 20.17742 20.17888 H 7271.95 7883.64 7523.41 7519.80 7520.53 S = 2017888 . − 1474377 . = 543511 . 3.46 From simple statics the change in atmospheric pressure dP accompanying a change in height dh is dP = −ρgdh where ρ is the local mass density and g is the gravitational constant. Assuming a packet of air undergoes an altitude change relatively rapidly (compared to heat transfer), the entropy change for this process is C R d S = P dT − dP = 0 since both Q& and S&gen equal zero. T P Combining the two equations above we have CP R R R N M dT = dP = − ρgdh = − Mgdh = − gdh T P P PV T dT Mg or =− dh CP dT K dT ≅ − 9.7 . Note that is referred to as the adiabat ic lapse rate. dh km dh Also, its value will be less than that above as the humidity increases. In fact, if the humidity is 100%, so water will condense as the pressure decreases, the adiabatic lapse rate will be almost zero. For dry air Solutions to Chemical and Engineering Thermodynamics, 3e 4 4.1 Using the Mollier diagram µ= (510 − 490)° C F ∂T I = F ∆T I = H ∂P K H ∆P K c1.241 × 10 − 7.929 × 10 hPa H 7 H 6 = 4.463 × 10 −6 ° C Pa = 4.463 ° C MPa κS = (510 − 490)° C F ∂T I ≈ F ∆T I = H ∂P K H ∆P K c1.069 × 10 − 9.515 × 10 hPa S 7 S 6 = 1.702 × 10− 5 ° C Pa = 17.02 ° C MPa a∂H ∂S f a∂H ∂Sf T P a f a f a f a f a f a f a f a f ∂a T , H f ∂a P , S f µ = × = = 0.262 ( unitless) ∂ a P , H f ∂a T , S f κ = ∂ H, T ∂ S,P ∂ H, T ∂ S, P × = × ∂ S ,T ∂ H, P ∂ H, P ∂ S ,T S 4.2 (a) Start from eqn. 4.4-27 z LMN FH V H ( T , P) − H IG (T , P ) = RT ( Z − 1) + T V =∞ P= F ∂P I H ∂T K RT a( T ) − 2 ; V − b V + 2bV − b 2 = V z LMN RST V V =∞ F H OP Q − P dV V UV W OP Q R da dt RT a( T ) − 2 − + 2 dV 2 V − b V + 2bV − b V − b V + 2bV − b 2 T = RT ( Z − 1) + a + T I K R da dt − 2 so V − b V + 2 bV − b 2 H ( T , P) − H IG (T , P ) = RT ( Z − 1) + dP dT da dT I K z V dV V =∞ V 2 + 2bV − b2 From integral tables we have z dx a ′x2 + b ′x + c′ In our case = 1 b ′2 − 4 a ′c′ a′ = 1, ln b ′ = 2b , (b′)2 − 4a ′c′ = 8b2 = 2 2b . 2a ′x + b ′ − b ′2 − 4 a ′c′ 2a ′x + b ′ + b ′2 − 4 a ′c′ for 4a′c′ − b′ 2 < 0 c h c = −b2 ; so 4 a ′c′ − b ′ 2 = 4 ⋅ 1 ⋅ −b 2 − ( 2b )2 = − 8b2 and Solutions to Chemical and Engineering Thermodynamics, 3e H ( T , P) − H IG (T , P ) aa − Tda dTf LMln 2V + 2b − 2 2b 2 2b MN 2V + 2b + 2 2b aa − Tda dTf ln V + d1 − 2 ib = RT ( Z − 1) + 2 2b V + d1 + 2 ib = RT ( Z − 1) + − ln V 2V + 2b − 2 2b 2V + 2b + 2 2b V = ∞ OP PQ or finally H ( T , P) − H IG (T , P ) = RT ( Z − 1) + aTda dT − af lnLM Z + d1 + 2 iB OP 2 2b MN Z + d1 − 2 iB PQ (b) This part is similar except that we start from eqn. (4.4-28) S (T , P) − S IG ( T , P) = R ln Z + z LMNFH z LMN V V =∞ V = R ln Z + V =∞ dP dT I K − V OP Q R dv V OP Q R da dT R − 2 − dV 2 V − b V + 2 bV − b V d i d i da dT F Z + d1 + 2 i B I = R ln( Z − B) + lnG J 2 2 b H Z + d1 − 2 i B K L F ∂ P IJ − P OPdV . Start with eqn. (4.2-21): dU = C dT + MT G MN H ∂ T K PQ FG ∂U IJ = C + LMTFG ∂ P IJ − POP FG ∂V IJ and H ∂T K MN H ∂ T K PQ H ∂T K FG ∂U IJ − FG ∂U IJ = LMTFG ∂ P IJ − POPFG ∂V IJ . H ∂ T K H ∂ T K MN H ∂T K PQH ∂T K (a) Ideal gas PV = RT F ∂ P IJ − P = 0 ⇒ FG ∂U IJ = FG ∂U IJ TG H ∂T K H ∂ T K H ∂T K (b) van der Waals gas L F ∂ P I − POP = a RT a F∂ PI R P= − ; G = ; ⇒ MT G J V −b V H ∂ T K V − b MN H ∂T JK PQ V V V −b da dT V + 1 + 2 b = R ln Z + R ln + ln V V = ∞ 2 2b V + 1 − 2 b 4.3 V V V P V P P V V V P P V 2 2 V Also: dP = RdT RT 2a − dV + 3 dV 2 V − b (V − b) V V V V =∞ Thus FG ∂U IJ H ∂T K = CV ; V Solutions to Chemical and Engineering Thermodynamics, 3e F ∂V IJ = R (V − b) = LM T − 2a(V − b) OP ⇒G H ∂T K RT (V − b) − 2a V N (V − b) RV Q F ∂ u IJ − FG ∂u IJ = a ⇒G H ∂ T K H ∂ T K V T (V − b) − 2a(V − b) RV −1 2 3 3 P 2 P V aRV (V − b ) = RTV 3 − 2 a (V − b) 2 (c) The Virial Equation of State PV B C B = 1 + + 2 + L = 1 + ∑ ii RT V V i =1 V RT B RT + ∑ i i +1 V i =1 V or P = Note: This is a total FG ∂ P IJ = R + ∑ B R + ∑ RT F dB I ← derivative, since B is H ∂T K V V V H dT K a function of only temperature F ∂ P IJ − P = ∑ RT dB ⇒ TG H∂T K V d ln T Also need a∂V ∂ T f , but this is harder to evaluate alternatively. Since FG ∂V IJ FG ∂ P IJ FG ∂T IJ = −1 ⇒ FG ∂V IJ = − a∂ P ∂T f H ∂T K H ∂V K H ∂ P K H ∂ T K a∂ P ∂V f FG ∂ P IJ is given above. H ∂T K i i+1 i=1 V i i +1 i i =1 i i+1 i=1 V P V P T V P T V FG ∂ P IJ H ∂V K ⇒ Using =− T FG ∂V IJ H ∂T K RT V = 2 FG H −∑ V i+ 2 i =1 ia d V RT V + ∑ Bi RT V i +1 + ∑ RT V i + 1 dBi d ln T i =1 FG H i+ 1 T RT V + ∑ (i + 1) Bi RT V P i =1 RT B RT = P − ∑ i i +1 , we get V i =1 V FG ∂V IJ H ∂T K and (i + 1) Bi RT = P iadB d ln Tf T P + ∑ aiB RT f V d V P + ∑ RT V i +1 i i +1 i IJ K fIJK Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂U IJ − FG ∂U IJ H ∂T K H ∂T K P 4.4 LM MN d ia dBi d ln T R dBi P + ∑ RT V =∑ i V d ln T P + ∑ iBi RT V i + 1 V i +1 f OP PQ (a) Start from LM N FG IJ OP ⇒ C = − 1 LMV − TFG ∂V IJ OP H KQ H∂TK Q µN L F ∂V IJ OP = −T FG ∂aV TfIJ and C = T FG ∂ aV T fIJ . but MV − T G µ H ∂T K N H ∂ T K Q H ∂T K FG ∂ aV T fIJ = µC ; integrate F V I − F V I = z µC dT . H TK H T K H ∂T K T T 1 ∂V V −T CP ∂T µ= − P P P 2 2 P P P P T2 , P (b) T2 , P P 2 2 1 P= z T2 , P a f a f TT + T Thus V T2 , P = V T1 , P 4.5 P 2 P 2 µCP T2 T1 , P T1 , P T1 , P dT . RT a − 2 V −b V FG ∂ P IJ = − RT + 2a H ∂V K (V − b) V FG ∂ P IJ = 2RT − 6a H ∂V K (V − b) V 2 (1) 3 T 2 2 3 (2) 4 T at the critical point P → PC , T → TC and V → VC FG ∂ P IJ H ∂V K FG ∂ P IJ H ∂V K =0⇒ T 2 = 0⇒ 2 Dividing (1') by (2') ⇒ a= Also a T RTC aV C −b f 2 RTC aV C −b 2 f 3 = = 2a (1') V 3C 6a V 4C (2') f 1 1 V V −b = VC ⇒b = from (1') 2 C 3 3 V 3C RTC a 2 V C −b f 2 = (3b )3 RTC 27bRTC 9VC RTC = = 8 8 2(3b − b )2 PV V a 8a a a = − ; and PC = − 2 = RT V − b RTV 27b( 2b ) 9b 27b 2 ⇒ ZC = = PC V C RTC = VC VC − b − 3 9 3 − = = 0.375 2 8 8 a f VC 9 8 V C RTC a = − RTCVC 2 3VC V C RTC a f Solutions to Chemical and Engineering Thermodynamics, 3e 4.6 dS = For FG IJ H K CP ∂V dT − T ∂T the dP [eqn. (4.2-20)] P ideal dS gas IG = i LMN RP − FGH ∂∂VT IJK OPQdP and d CP* R dT − dP . T P Thus, at constant temperature d S − S IG = P S (T , P ) − S IG (T , P ) − S (T , P = 0) − S IG( T , P = 0 ) = z RST P P= 0 However, a FG IJ UVdP H KW R ∂V − P ∂T P S(T , P = 0) − S IG (T, P = 0) = 0 , since all fluids are ideal at f PV = Z Tr , Pr RT . Thus FG ∂V IJ H ∂T K RS a T FG a H 1 ∂ Z Tr , Pr RZ Tr , Pr + RT P ∂T = P f fIJ UV KW P and FG IJ H K FG IJ H K L Z − 1 + T FG ∂ Z IJ OP dP ⇒ S (T , P) − S ( T , P) = − R z M N P P H ∂T K Q L ZaT , P f − 1 + T F ∂ Z I OPdP = −R z M G J P H ∂ T K PQ MN P R ∂V − P ∂T =− P R RT ∂ Z Z Tr , Pr − 1 − P P ∂T ka f p P T, P IG T , P =0 P Tr , Pr r r r r Tr , Pr = 0 4.7 r r r Pr (a) Ideal gas PV = NRT N = c (50 bar ) 100 m 3 −2 ( 27315 . + 150) K × 8.314 × 10 h bar ⋅ m3 kmol K = 142.1 kmol Energy balance, closed nonflow system z ∆U = Q − PdV = Q + W . However, for ideal gas ∆U = 0 since T is constant (isothermal). Thus z z W = − Q = − PdV = − NRT V P dV = − NRT ln 2 = − NRT ln 1 V V1 P2 F 50 I H 300 K = −142 .1 kmol × 8.314 J mol K × (27315 . + 150 ) × ln = 895.9 × 10 3 kJ = 895.9 MJ Q = −895.9 MJ Also, by Ideal Gas Law at fixed T and N P= 0. Also Solutions to Chemical and Engineering Thermodynamics, 3e PV 1 1 = PV 2 2 ⇒ V2 = V1 P1 50 = 100 m 3 × = 16.67 m3 P2 300 (b) Corresponding states Tr Pr initial state 150 + 27315 . = 1.391 304 .2 final state 1.391 50 = 0.679 7376 . 300 = 4.067 73.76 Number of moles of gas = N = Final volume = V f = Z H IG − H TC S IG − S 0.94 0.7 0.4 0.765 4.5 2.4 cal mol K cal mol K PV 142.1 PV = = 151.2 kmol ( 142 .1 = from above) ZRT 0.94 RT ZNRT Pf 0.765 × 151.2 × 8.314 × 10−2 × (273.15 + 150 ) =1356 . m3 300 Energy balance on gas: ∆U = Q + W = Q + S gen ⇒ S gen = 0 . Therefore T Entropy balance on gas processes in gas are reversible: ∆S = ∆S = Q or Q = T∆ S T c h mc h c ∆S = S f − Si = N S f − S i = N S f − S f + S f − S i IG IG IG P RS U − ( −0.4 × 4.184 )V P T W 300 U R = N S−8.368 − 8.314 ln V = −23.26N J K 50 W T = N −2.4 × 4.184 − 8.314 ln h − cS − S hr IG i i f i Q = T ∆S = ( 27315 . + 150 ) × 151.2 kmol × (− 2326 . ) = −14885 . MJ W = ∆U − Q = N U f − U i − Q = N H f − H i − N Pf V f − PV i i −Q LM d H MN = N TC IG f −Hf TC i+ c IG H f −H IG i 0 h −TC dH − H i − Z RT IG i i TC f f OP PQ + Zi RTi − Q Since process is isothermal. L304 .2(−4.5 − (−0.7)) × 4.184 − 8.314 OP + 14885. MJ = 151.2 kmolM N ×(273.15 + 150) × (0.765 − 0.94) Q = 151.2 × 103 −48365 . + 615.7 J + 14885 . MJ = − 638.2 + 14885 . MJ = 850.3 MJ (c) Peng-Robinson E.O.S. Using the program PR1 with T = 27315 . , P = 1 bar as the reference state, we obtain T = 150° C , P = 50 bar Z = 0.9202 ; V = 06475 . ×10−3 m3 mol ; H = 470248 . J mol ; S = −17.57 J mol K . T = 150° C , P = 300 bar Solutions to Chemical and Engineering Thermodynamics, 3e Z = 0.7842 ; V = 0.9197 × 10−4 m3 mol ; H = −60.09 J mol ; S = −4124 . J mol . N= V 100 m 3 = = 154 .44 kmol V 0.6475 × 10 −3 m 3 mol Q = TN ∆ S = (273.15 + 150 ) × 154 .44 × (− 4124 . − ( −17.57)) = −1546.9 MJ W = ∆U − Q = ( H − PV ) f − ( H − PV )i − Q = N ( H − PV ) f − ( H − PV )i − Q LM−60.09 − 300 × 0.9197 × 10 = 154.44 M×10 J bar ⋅ m − 4702.48 MMN+50 × 0.6475 × 10 × 10 −4 5 3 −3 5 OP PP × 10 + 1546.9 × 10 PQ 3 6 = 885.25 MJ {Note that N, Q and W are close to values obtained from corresponding states.} 4.8 FG ∂ T IJ H∂ PK = ∂ (T , S ) ∂ (T , S ) ∂ ( P , T ) ∂ ( S , T ) ∂ ( P, T ) = ⋅ =− ∂ ( P, S ) ∂ ( P , T ) ∂ P, S ∂ ( S , P ) ∂ ( T , P) a f −a∂ S ∂ Pf a∂V ∂ Tf V αT = a∂ S ∂ Tf = C T = C S T P P P P and a fa a fa 1 V ∂V dP κS = κT 1 V ∂ V dP f f S = T ∂ (V , S ) ∂ ( P, S ) ∂ (V , S ) ∂ ( P, T ) = ⋅ ∂ (V , T ) ∂ ( P, T ) ∂ (V , T ) ∂ ( P, S ) FG IJ ⋅ FG ∂ T IJ H K H∂S K ∂ ( S ,V ) ∂ (T , P ) ∂S = ⋅ = ∂ (T , V ) ∂ ( S , P ) ∂T 4.9 (a) V = P CV T C ⋅ = V T CP CP FG ∂ H IJ = ∂( H, T) = ∂(H ,T ) ⋅ ∂ (P ,T ) = FG ∂ H IJ FG ∂ P IJ H ∂V K ∂ (V ,T ) ∂ (P ,T ) ∂(V , T) H ∂ P K H ∂V K F ∂ P IJ ≠ 0 (except at the critical point) Since G H ∂V K T T T T FG ∂ H IJ H ∂V K (b) FG ∂ H IJ = 0 H ∂PK FG ∂ S IJ = ∂(S, P ) = ∂(S, P) ⋅ ∂(T , P) = FG ∂ S IJ ⋅ FG ∂ T IJ H ∂V K ∂ (V , P) ∂ (T, P ) ∂(V , P) H ∂T K H ∂V K C 1 F dT I C TV C F ∂S IJ = ⋅ ⋅V G = = ⇒G J H K T V dV a1 V fa∂V ∂ Tf TV α H ∂V K = 0 if T T P P P P P P ~ α−1 P P P 4.10 (a) We start by using the method of Jacobians to reduce the derivatives Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂T IJ H ∂V K a f ∂ (T , H ) ∂ (T , H ) ∂ (T , P ) ∂ T ,V = ⋅ ⋅ ∂ (V , H ) ∂ (T , P ) ∂ (T ,V ) ∂ (V , H ) = H =− =− FG IJ a∂ P ∂V f H K a∂ H ∂T f ∂ ( H , T ) ∂ ( P, T ) ∂ (V , T ) ∂H =− ∂ ( P, T ) ∂ ( H ,V ) ∂ (T ,V ) ∂P a∂ H ∂V f ad H ∂Tf T T V T V Now from Table 4.1 we have that FG ∂ H IJ H ∂PK =V −T T FG ∂V IJ H ∂T K FG ∂ H IJ H ∂T K and P LM N = CP + V − T V FG ∂V IJ H ∂T K P OP FG ∂ P IJ QH ∂ T K V alternatively, since H = U + PV FG ∂ H IJ = FG ∂U IJ + FG ∂( PV )IJ H ∂T K H ∂T K H ∂T K V V = CV + V V F dP I H dT K V Thus FG ∂T IJ H ∂V K = a f a − ∂ P ∂V T V − T ∂V ∂ T CV + V ∂ P ∂ T V f = P a f F ∂ P IJ FG ∂V IJ = − FG ∂ P IJ Note: I have used G H ∂V K H ∂ T K H ∂T K H T FG ∂T IJ H ∂V K P a f + Ta∂ P ∂Tf + V a∂ P ∂ T f − V ∂ P ∂V CV T V V . V ∂(T , S ) ∂( T , S ) ∂(V , T ) ∂( S , T ) ∂(T ,V ) = ⋅ =− ⋅ ∂(V , S ) ∂(V , T ) ∂(V , S ) ∂(V , T ) ∂( S ,V ) = S FG ∂ S IJ FG ∂T IJ H ∂V K H ∂ S K = T =− V FG IJ H K T ∂P CV ∂ T V (b) For the van der Waals fluid FG ∂ P IJ H ∂T K = V FG IJ H K R ∂P , V −b ∂V = T − RT 2a + (V − b )2 V 3 Thus FG ∂T IJ H ∂V K = n s 2 2 − − RTV (V − b ) + 2 a V + RT (V − b ) CV + V R V − b H after simplification we obtain FG ∂T IJ H ∂V K − 2 a(V − b ) − RTV b 2 = H 2 CC (V − b )2 V 2 + R(V − b )V 3 Solutions to Chemical and Engineering Thermodynamics, 3e and FG ∂T IJ H ∂V K =− S RT CV (V − b ) 4.11 There are a number of ways to solve this problem. The method I use is a little unusual, but the simplest that I know of. At the critical point all three roots of V are equal, and equal to V C . a Mathematically this can be expressed as V − V C f 3 = 0 which, on expansion, becomes V 3 − 3V C V 2 + 3V 2CV − V 3C = 0 (1) compare this with P= RT a RT a − = − 2 V − b V (V + b ) + b (V − b) V − b V + 2 bV − b 2 which multiplying through by the denominators can be written as 3 V +V 2 F b − RT I + F −3b H PK H 2 − I FG K H IJ K 2bRT a RTb 2 ab + V + b3 + − =0 P P P P (2) Comparing the coefficients of V in Eqns. (1) and (2) gives TC , PC 2 V : b− (3) 2bRTC a 2 + = 3V C PC PC (4) RTC 2 ab 3 b − = −V C PC PC (5) V : − 3b 2 − V 0: b3 + RTC = − 3V C PC From Eqn. (3) PCb −3 PCVC −1= = −3 ZC RTC RTC For convenience, let y = 1 − 3ZC or ZC = PCb = 1 − 3ZC RTC 1− y . Then 3 PCb =y RTC From Eqn. (4) or (6) Solutions to Chemical and Engineering Thermodynamics, 3e FG P b IJ − 2FG P b IJ + aP H RT K H RT K aRT f 2 −3 C C = 3 ZC2 C 2 C C ⇒ −3 y 2 + 2 y + C aPC = aRT f 2 C 3(1 − y)2 9 or expanding and rearranging aPC a RT f 2 = C c h 1 10 y 2 + 4 y + 1 3 (7) Finally from eqn. (5) FG P b IJ + FG bP IJ − FG P b IJ FG aP IJ = − Z H RT K H RT K H RT K H aRT f K 1 1 (1 − y) y + y − y ⋅ c10 y + 4 y + 1h = − 3 27 3 C 2 C C C 2 C 3 C C 2 3 C C 3 2 or 64 y3 + 6y 2 + 12y − 1 = 0 (8) This equation has the solution y = 0077796074 . ⇒ b = 0.077796074 a = 0.457235529 RTC (from Eqn. (6)) PC aRT f 2 C (from Eqn. (7)) PC 1− y = 0.307401309 . 3 Note that we have equated a and b to TC and PC only at the critical point. Therefore these functions Also ZC = could have other values away from the critical point. However, as we have equated functions of V , we have assumed a and b would only be functions of T. Therefore, to be completely general we could have aRT f αFG T IJ HT K P RT F T I b = 0.077796074 βG J HT K P T T FTI F TI with αG J → 1 as → 1 and βG J → 1 as →1. HT K T HT K T 2 a = 0.457235529 C C C C C C C C C C In fact, Peng and Robinson (and others) have set β = 1 at all temperatures and adjusted α a s a function of temperature to give the correct vapor pressure (see chapter 5). 4.12 (also available as a Mathcad worksheet) Solutions to Chemical and Engineering Thermodynamics, 3e . . N1 dN = N& 1 + N& 2 = 0 ⇒ N& 2 = − N& 1 dt dU Q& = N& 1 H 1 + N& 2 H 2 + Q& = 0 ⇒ = H 2 − H1 dt N1 M.B. N2 . E.B. Q Also, now using the program PR1 with T = 27315 . , P = 1 bar reference state we obtain T = 100° C P = 30 bar Z = 0.9032 V = 09340 . × 10−3 m3 mol T = 150° C P = 20 bar Z = 0.9583 V = 01686 . × 10−2 m3 mol H = 3609.72 J mol H = 679606 . J mol S = −1584 . J mol K S = −4.68 J mol Q& = 679606 . − 3609.72 = 318634 . J mol N& 4.13 (also available as a Mathcad worksheet) Since process is adiabatic and reversible ∆S = 0 or Si = S f , i.e., S (310 K, 14 bar ) = S (T = ?, 345 bar) . Using the program PR1 with the T = 27315 . K and P = 1 bar reference state we obtain T = 310 K , P = 14 bar , Z = 0.9733 , V = 01792 . ×10−2 m3 mol , H = 10908.3 J mol and S = 1575 . J mol K . By trial and error (knowing P and S , guessing T) we obtain T = 34191 . K , P = 345 bar , Z = 0.9717 , V = 08007 . × 10−4 m3 mol , ⇒ Tf = 34191 . K. H = 188609 . J mol , System = contents of compressor dN M.B.: = 0 = N& 1 + N& 2 ⇒ N& 2 = − N& 1 dt volume of compressor constant adiabatic 0 dU dV = 0 = N& 1 H 1 + N& 2 H 2 + Q& 0 +W&s − P E.B.: dt dt W& W&S = − N& 1 H1 + N& 2 H 2 or &S = H 2 − H 1 = 188609 . − 109083 . = 7952.6 J mol N 4.14 (a) FG P + a IJ (V − b) = RT ⇒ PV = V − a H VK RT V − b RTV PV F V − a IJ = 1 i) lim = lim G RT H V − b RTV K PV RV a U I ii) B = lim V F H RT − 1K = lim V STV − b − RTV − 1VW RV − (V − b) − a UV = lim RS bV − a UV = b − a = lim V S T (V − b) RTV W T (V − b) RT W RT 2 P→ 0 V →∞ V →∞ P →0 V →∞ V →∞ V →∞ V →∞ S = 1575 . J mol K Solutions to Chemical and Engineering Thermodynamics, 3e iii) C = lim V 2 P →0 V →∞ FG PV − 1 − B IJ = lim V RSbV − b(V − b) UV = lim b V = b H RT V K T V −b W V −b 2 V →∞ ⇒ C = b2 (b) At the Boyle temperature: lim V P→ 0 0 =b− TB = 2 V →∞ F PV − 1I = 0 ⇒ B = 0 H RT K a a 9V c RTc V , TB = but a = , b = c (Eqns. 4.6-3a) RTB Rb 8 3 9 8V c RTc 27 = Tc = 3.375Tc RVc 3 8 a f 4.15 (a) From table: TB ~ 320 K , i.e., B TB = B(320 K ) = 0 The inversion temperature is the temperature at which FG ∂ T IJ H ∂P K FG ∂ T IJ H∂P K F ∂V IJ V − TG H ∂T K = 0= − H = P P ∂ ∂T P LM N FG IJ OP H KQ 1 ∂V V −T CP ∂T P LM RT + BOP = R + dB N P Q P dT RT RT dB dB = +B− −T = B− T P P dT dT dB = 0. dt Plot up B vs. T, obtain dB dT either graphically, or numerically from the tabular data. I find Thus, T inv is the temperature at which B − T T inv ~ 600 K . Also, dB dT decreases 3 with increasing temperature (i.e., 3 dB dT ~ 456 . cm mol K at 87.5 K and 0.027 cm mol K at 650 K. Presumably it is negative at even higher temperature!) (b) Generally µ= FG ∂T IJ H ∂ PK =− H RS T FG IJ UV = − 1 RSB − T dB UV H K W C T dT W 1 ∂V V −T CP ∂T P P Using the data in the table it is easy to show that for T < T inv , B − T dB < 0 ⇒ µ > 0 , while for dT dB > 0⇒ µ< 0 . dT (c) Since Fig. 2.4-3 for nitrogen is an H-P plot is easiest to proceed as follows T > T inv , B − T −1 −a∂ H ∂ P f FG ∂T IJ = = H ∂ P K a∂ H ∂ Tf a∂ P ∂ Hf a∂ H ∂ Tf Since a∂ H ∂ T f = C is > 0 and less than ∞ [Except at a phase transition—see Chap. 5 and Problem 5.1—however, µ has no meaning in the two-phase region], if adT dPf is to be zero, then ad H dPf must equal zero. That is, an inversion point occurs when isotherms are parallel T H P P T P P H T to lines of constant H (vertical line). This occurs at low pressures (ideal gas region) and at high Solutions to Chemical and Engineering Thermodynamics, 3e pressures (nonideal gas region). See, for example, T = −200° C isotherm near 30 MPa (which is off the figure). To identify the inversion temperatures of nitrogen we can use Fig. 2.4-2b, a temperatureentropy diagram. From part a of this problem we note that at T inv V = T inv FG ∂V IJ H∂TK ⇒ P = − T inv P FG ∂ P IJ H ∂T K P Thus at each inversion temperatures T inv we can find a density (or pressure) for which this equation is satisfied. Unfortunately, it is difficult to read the figure. Solutions to Chemical and Engineering Thermodynamics, 3e 4.16 0.03 m3 18 kg ; V$ = = 1.667 × 10 −3 m 3 kg . Using Fig. 2.4-2 we find P ≈ 91 bar 18 kg Using the program PR1, with T = 42315 . K and V$ = 1667 . × 10−3 m3 kg , we find, by trial-and-error that P = 108.0 bar . 4.17 Using the program PR1 we find at 300°C and 35 bar; Z = 0.6853 ; V = 09330 . × 10−3 m3 mol ; H = 21,033 J mol = 21033 . kJ mol and S = 7 .06 J mol K . To use the principle of corresponding states we will assume the state of T = 16° C and P = 01 . bar is an ideal gas state (i.e., don’t need corrections for nonideality at this condition). At 300°C and 35 bar we have Tr = d 300 + 273.15 = 1.0302 . 283.2 + 27315 35 Pr = = 0.76754 45.6 i We find Z = 0.71; H IG − H TC = 8.37 J mol ; SIG − S = 7113 . J mol K . From Appendix II CP* = 22.243 + 0.05977T − 3.499 × 10 −5 T 2 + 7.464 × 10 −9 T 3 ∆ H IG = ∆S IG = z z 573.15 CP* dT = 11910 J mol 289 .15 . 57315 CP* 289 .15 T F 35 bar I = −20.386 J mol K H 0.1 bar K dT − R ln Thus H (T = 300° C, 35 bar ) = H (16° C, 0.1 bar) + ∆ H IG + TC FG H − H IJ H T K IG C 300 ° C, 35 bar = 0 + 11910 − (283.2 + 273.15)(8.37 ) = 7253 J mol S (T = 300° C, 35 bar) = 0 − 20.386 − 7.113 = 27.499 J mol K Finally PV = ZRT ; V = 0.71 × 8.314 × 10−5 × 573.15 = 0.9666 × 10 −3 m 3 mol . 35 4.18 Equation of state P (V − b ) = RT (a) FG ∂ P IJ H ∂T K = V FG IJ H K R P ∂V = ; V −b T ∂T = P FG IJ H K R V −b ∂P = ; and P T ∂V =− T P V −b Thus CP = CV + T FG ∂V IJ FG ∂ P IJ H ∂ T K H ∂T K P = CV + T V for CP ( P, T ) = C*P (T ) , we must have that R P ⋅ = CV + R P T Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂ C IJ H ∂P K FG ∂ V IJ H ∂T K FG ∂ V IJ = 0 H∂T K ∂ F ∂V I = G J = ∂∂T ∂T H ∂ T K 2 = −T P T 2 2 P 2 P P P R = 0 ⇒ CP ( T , P) = CP* ( T ) P P Similarly, for CV (V , T ) = CV* (T ) , we must have that FG ∂ P IJ H ∂T K 2 = 2 V FG IJ H K ∂ ∂P ∂T V ∂T = V FG ∂ C IJ H ∂V K =T V T FG ∂ P IJ H∂T K 2 = 0. 2 V ∂ R = 0 ⇒ CV T , V = CV* (T ) ∂T V V −b a f (b) First case is clearly a Joule-Thomson expansion ⇒ H = constant FG ∂T IJ H ∂ PK =− H FG IJ OP = − 1 L RT + b − RT O = − b P QP C H K Q C NM P LM N 1 ∂V V −T CP ∂T P P P Since CP is independent of P, integration can be done easily z T2 a CP (T )dT = −b P2 − P1 f T1 to proceed, we need to know how C p depends on T. If C p is independent of T we have T2 = T1 − a b P2 − P1 CP f (1) Eqn. (1) also holds if CP is a function of T, but then it is the average heat capacity over the temperature interval which appears in Eqn. (1). The second expansion is at constant entropy (key words are reversible and adiabatic) FG ∂ T IJ H∂ PK =− S a∂ S ∂ Pf a∂ S ∂ Tf T =+ P a∂V ∂ Tf P CP T = T R ⇒ CP P z T2 T1 z P CP 2 dP dT =R P T P 1 If CP is independent of T, then T2 = T1 FG P IJ HPK 2 R CP ; (2) 1 more complicated expression arises if CP = CP (T ) . 4.19 (also available as a Mathcad worksheet) General: mass balance: N1i = N1f + N 2f energy balance: N1i U 1i = N1f U 1f + N2f U 2f (1) (2) Solutions to Chemical and Engineering Thermodynamics, 3e state variable constraints: T1 f = T2 f = T f ; P1 f = P2 f = P f ; V1 = V2 ⇒ U 1f = U 2f (a) Ideal gas solution Eqns. of state: PV = NRT ; U = CV T − CP TR P1i 2 P f = T1i T ff From M.B. get: From E.B. get: T1i = T f ⇒ T1i = T f = 20°C ; P f = 1 i P1 = 250 bar . 2 (b) Corresponding states solution PV = ZNRT or PV = ZRT d i d (T ) + d H − H i + (1 − Z )( PV ) (T ) + d H − H i + (1 − Z ) RT IG IG IG U ( T ) = U (T ) + U − U ( T ) = U (T ) + H − H IG = U IG = U IG IG i − PV + ( PV ) IG T IG IG From the mass balance P1i 500 × 107 Pf Pf 5 = . × = × ; or = 1398 10 2 = 6.990 × 104 . ) × 1.22 Z i T1i ( 20 + 27315 ZfT f ZfTf where we have used FG H Z i = Z Tr = IJ K . 5 × 107 20 + 27315 . , Pr = = 10.77 = 1.22 = 1538 190.7 4.64 × 106 From energy balance c h N1i U 1i = N1f U 1f + N2f U 2f = N1f + N 2f U f c h = N1f + N 2f U i ⇒ U f = U i where we have used the fact that U 1f = U 2f . Since T1 f = T2 f and P1 f = P2f . But U 1 −U1 = 0 = U f i IG bT g − U bT g + c H − H h IG f IG i T f ,Pf +(1 − Z ) RT T f ,P f c − H−H IG h Ti , Pi − (1 − Z ) RT T i , Pi and cT h − U cT h = C cT − T h = 27.25 J mol K cT dH − H i = −18.0 × 190.7 = −3432.6 J mol U IG f IG i f i f v − 29315 . K h IG T i , Pi (1 − Z ) RT T i , P i = − 0.22 × 8.314 × 293.15 = −536.2 J mol d IG ⇒ 0 = 27.25Tf + 293.15{−27.25 + 0.22 × 8.314} + 18.0 × 190.7 + H − H + (1 − Z )RT i T f ,P f T f ,Pf d 27.25T f + H − H IG i T f ,P f + (1 − Z )RT T f ,Pf = 4,021 (1) Solutions to Chemical and Engineering Thermodynamics, 3e To be solved along with Pf = 6.99 × 104 TfZf (2) I found the solution by making a guess for T f , using eqn. (2) and Fig. 4.6-3 to find P f , by trial and error. Then, guessed T f and computed P f were tested in eqn. (1). Solution found: T f ~ 237 K = −3615 . ° C ; P f ~ 1011 . × 107 Pa = 1011 . bar . (c) The van der Waals gas 1 f i We know that: U i = U f and V = V . To evaluate the final temperature we start from 2 F ∂T IJ dT = G H ∂V K U F ∂ T IJ dV + G H ∂U K z FGH V dU ⇒ T − f V T i along path of const. U = f Vi ∂T ∂V IJ K dV U but FG ∂T IJ H ∂V K a∂U ∂V f a∂U ∂T f =− =− T U a T ∂ P ∂T f V +P CV V =− a CV V 2 Now, by Eqn. (4.2-36) FG ∂ C IJ = TFG ∂ P IJ for vdW eos P = RT − a H ∂V K H ∂T K V −b V FG ∂ P IJ = R ; FG ∂ P IJ = 0 ⇒ C is independent of volume ⇒ C H ∂T K V − b H ∂T K 2 V 2 T 2 V 2 V 2 V V V but C*V = CP* − R = 35565 . − 8.314 = 2725 . J mol K z Vf ⇒T −T = − f i V i a dV = − 2 CV CVV =− a a 2CVV Thus the first step is to find V i . i z V V f i dV V since V i = 2 =+ 1 f V . 2 FG H 1 1 a − i f CV V V IJ K = CV* Solutions to Chemical and Engineering Thermodynamics, 3e F a I GG P + JJ dV − bi = RT H dV i K i i i 2 ⇒ V i = 6.678 × 10 −5 m 3 mol ; V = 1336 × 10−4 m 3 mol . . f − 0.2283 Pa ⋅ m6 mol2 = −62.73 K 2 × 27.25 J mol K × 6.678 × 10 −5 m3 mol T f − Ti = a f c h . − 62.73 = 230.42 K = −42.73° C ⇒ T f = 29315 Pf = RT dV f f −b − a = i cV h f 2 8.314 × 230 .42 0.2283 − −4 −5 1.336 × 10 − 4.269 × 10 × 10 −4 . 1336 c h 2 Pf = 8.286 × 106 Pa = 82.86 bar (d) Here we will use the program PR1. Using the 273.15 K and 1 bar reference state we find that at . × 10− 4 m3 mol , H i = −328185 . J mol and the initial conditions Z = 11005 . , V i = 05365 Si = −5912 . J mol K . Therefore U i = Hi − Pi V i = −328185 . − 500 × 05365 . ×10−4 × 105 = −5964.35 J mol Now since U f = U i = −5964.35 J mol and V f = 2V i = 1073 . × 10−4 m3 mol . We must, by trial-and-error, find the temperature and pressure of the state having these properties. I find the following as the solution Tf = 230.9 K ; P ~ 99 bar (for which V = 01075 . m3 mol and U = −5968.4 J mol ). To summarize, we have the following answers for the different parts of the problem: Ideal gas Corresponding states van der Waals Peng-Robinson Pf Tf 250 bar 101.1 bar 82.86 bar 99 bar 293.15 K 237 K 230.42 K 230.9 K Once again, the ideal gas solution is seriously in error. 4.20 Mass balance (system = both tanks): N1i = N1f + N 2f energy balance (system = both tanks): N1i U 1i = N1f U 1f + N2f U 2f entropy balance (system = portion of initial contents of tank 1, also in there finally): S i1 = S 1f Also, P1 f = P2 f = P f ; N1i = V1 i V1 (a) Ideal gas solution: obtain ; N1f = P1i T1i = P1 f T1 f V1 f V1 + and N2f = P2f T2 f V2 f V2 from mass balance and P1i = P1 f + P2 f = 2 P f ⇒ P f = 250 bar = 25 . × 107 Pa from energy balance Solutions to Chemical and Engineering Thermodynamics, 3e T1 = f FG P IJ HPK FH 1IK 2 R CP f T1i ⇒ T1 f = (20 + 273.15) 1 i 1 8.314 35.565 = 249 .3 K = −23.9° C from entropy balance and 1 T2 = f 2 T1i − 1 T1 f ⇒ T2 f = 355.9 K = 82.7° C Also N1f P1 f V1 RT1i 2.5 × 10 7 293.15 = ⋅ = ⋅ = 0.588 N1i RT1 f P1iV1 249 .3 5.00 × 107 and FG IJ = 0.412 H K N2f N1f = 1 − N1i N1i (b) Corresponding States Solution: Initial Tr = conditions . 29315 . ; = 1538 190 .7 Pr = 5 × 107 = 10.77 ; 4.64 × 106 H IG − H = 18.0 J mol K ; SIG − S = 96 . J mol K . TC Mass balance: RS T P1i 1 1 = Pf + f f i i f f Z1 T1 Z1 T1 Z2 T2 UV = 5.0 × 10 = 1.398 × 10 . × 293.15 W 122 7 5 (1) Entropy balance: d S 1f − S 1i = 0 = S 1 − S 1IG i + dS f IG, f 1 i d i − S IG, − S 1 − S IG 1 1 i i or dS − S i 1 IG f 1 + CP ln T1 f Pf − R ln = −9 .6 29315 5.0 × 10 7 . (2) Energy balance: d i d i N1i U 1i = N1f U 1f + N2f U 2f but N1i = N1f + N 2f ⇒ N1f U 1f − U 1i + N2f U 2f − U i2 = 0 or ⇒ Z = 1.22 ; Solutions to Chemical and Engineering Thermodynamics, 3e P1 f V1 Z1f RT1 f f 2 ndH − P V i − dH − P V is + ZP RTV ndH − P V i − dH − P V is = 0 1 ndH − H i + dH − H i − dH − H i − Z RT + Z RT s Z T 1 + ndH − H i + d H − H i − d H − H i − Z RT + Z RT s = 0 Z T f 1 f 1 f f 1 1 1 i 1 f , IG 1 i 1 i 1 f , IG 1 f , IG 2 f 2 f f 2 2 f 1 f 2 f 2 i , IG 1 f , IG 2 f f 2 f 2 f 2 i 1 i 1 i 1 2 i 1 i , IG 1 i , IG 1 i 1 i , IG 1 f 1 f i 1 1 f 2 f 2 i 1 i 1 i 1 Substituting in the known values gives . cT − 29315 . h − 8.314 Z T + 6,406.5s ndH − H i + 35565 1 + . cT − 29315 . h − 8.314 Z T + 6 ,406 .5s = 0 (3) ndH − H i + 35565 Z T 1 Z1f T1 f f f 2 2 f , IG 1 f 1 f 2 f f f 1 1 1 f , IG 2 f 2 f f 2 2 Eqns. (1-3) now must be solved. One possible procedure is i) Guess P f ii) Use Eqn. (2) to find T1 f iii) Use Eqn. (1) to find T2 f iv) Use Eqn. (3), together with T1 f and T2 f to see if guessed P f is correct. If not, go back to step i. After many iterations, I found the following solution P f = 9787 . bar ; T1 f = 2216 . K; T2 f = 259.4 K ; N1f N1i = 0.645 ; N 2f N1i = 0.355 . (c) Peng-Robinson equation of state Here we use the equations N1i = N1f + N 2f N1i U 1i = + N1f U 1f with U = H − PV N2f U 2f S i1 =S f (4) (5) (6) P1 f = P2 f = P f and N1i = V1 V 1i ; N1f = V1 V 1f ; N2f = V2 V 2f = V1 V 2f since V1 = V2 (value of V1 cancels out of problem, so any convenient value may be used). Procedure I used to solve problem was as follows. From PR1 we know V i1 ⇒ N1i and S i1 given initial conditions. Then c h 1. Guess value of T1 , find P1 = P that satisfies S 1f = S 1i 2. Use T1 f , P f and V 1f to get N1f ; then N 2f = N1i − N1f so V 2f is known. 3. From P f and V 2f find (trial-and-error with PR1) T2 f f f f 4. See if eqn. (5) energy balance is satisfied; if not go back to step 1. After a number of iterations I find Pf =103.6 bar ; T1 f = 222.3 K ; T2 f = 2555 . K ; N1f N1i = 0.619 ; N2f N1i = 0381 . . Solutions to Chemical and Engineering Thermodynamics, 3e Summary Pf T1 f ideal gas (part a) 250 bar 249.3 K Corresponding states (part b) 97.87 221.6 K P-R E.O.S. (part c) 103.6 222.3 K T2 f 355.9 K 259.4 K 255.5 K N1f N1i 0.588 0.645 0.619 N2f N1i 0.412 0.355 0.381 Clearly, the ideal gas assumption is seriously in error! 4.21 System = contents of compressor. This is a steady-state, open constant volume system. dN = 0 = N& 1 + N& 2 mass balance: dt 0 dU dV = 0 = N& 1 H 1 + N& 2 H 2 + Q& + W& s − P energy balance: dt dt a f ⇒ 0 = N& 1 H1 − H2 + Q& + W&s entropy balance: Q& dS = 0 = N& 1 S 1 + N& 2 S 2 + + T dt Q& = N& 1 S 1 − S 2 + T a . S gen f 0 Thus, a Q& = −TN&1 S 1 − S 2 f Q& = Q = T S 2 − S1 N& 1 a f and W& S + Q& = W + Q = H 2 − H1 N& 1 (a) Corresponding states solution a f nd R = T SdS − S i − dS T i d i d i − R ln PP UVW IG Q = T S 2 − S 1 = T S 2 − S IG + S IG − S 1 − S 1IG 2 2 − S1 2 Now Tr = IG 2 1 − S 1IG is 2 1 . 37315 1 50 = 0.92 ; Pr , 1 = = 0.443 . Thus ~ 0.009 ; Pr , 2 = 405.6 112 .8 112.8 Q = − RT ln RSd T 50 IG + T S2 − S 2 1 i Pr ,2 = 0.444 Tr = 0.92 d IG − S 1 − S1 i Pr ,1 =0 .009 Tr = 0.92 UV W = − 8.314 × 37315 . × ln 50 + 37315 . ( −5.23 − 0) = −14,088.1 J mol and W + Q = H 2 − H 1 = ( H 2 − H 2IG ) + ( H 2IG − H 1IG ) − ( H 1 − H 1IG ) 0 since T = constant Solutions to Chemical and Engineering Thermodynamics, 3e Thus W + Q = TC R|dH S| T 2 − H 2IG TC i − dH 1 − H 1IG TC . J mol = − 25472 i U|V = 405.6 × (−6.28 + 0) |W . = 11,540.9 J mol W = − Q − 25472 (b) Clausius gas P (V − b ) = RT ; V = FG IJ H K RT ∂V +b ; P ∂T = P R P Thus z FGH ∂∂ SP IJK dP = − z FGH ∂∂VT IJK dP = − R z 1P dP = − R ln PP F 50I = −12,136.5 J mol Q = T∆S = − RT ln H 1K F ∂ H IJ dP = z LMV − TFG ∂V IJ OPdP = z L RT + b − RT OdP ∆H = z G P PQ H ∂PK N H ∂T K Q MN P = z bdP = b a P − P f = 182.8 J mol P2 P2 ∆S = P2 2 T P1 P P1 P2 P2 T P1 1 P1 P2 P P1 P1 P2 2 1 P1 So W + Q = 182 .8 J mol and W = −Q + 182 .8 = 12,136.5 + 182.8 = 12,319 .3 J mol (c) Peng-Robinson equation of state Using the program PR1 we find (for T = 27315 . and P = 1 bar ideal gas reference state) that 100°C, 1 bar −1 0.3089 × 10 V 100°C, 50 bar m mol 0.4598 × 10−3 3 H 3619.67 J/mol 1139.65 S 11.32 J/mol K –25.94 Note, from PR1, the vapor pressure of NH 3 at 100°C is 62.58 bar. Therefore, use vapor solution to P-R equation. . J mol Then Q = T S 2 − S1 = −13,9036 a f W + Q = H 2 − H 1 = 1139.65 − 3619.67 = −24800 . J mol and W = −Q − 24800 . = 11,423.6 J mol . Solutions to Chemical and Engineering Thermodynamics, 3e 4.22 (also available as a Mathcad) Considering the gas that is in the tank finally as the system, this is a closed system undergoing a reversible, adiabatic expansion. Therefore Si = S f . FG IJ dP but with P (V − b) = RT or V = RT + b . Then FG ∂V IJ P H ∂T K H K FG ∂ C IJ = −T FG ∂ V IJ = − T ∂ R = 0 ⇒ C is independent of pressure. H ∂ P K H∂T K ∂T P (a) d S = CP ∂V dT − T ∂T P = P R ; also P 2 P P 2 T Therefore P P CP = CP* . Thus z Tf 0 = ∆S = Ti z Pf CP* 1 dT − R dP T P P i (1) This has the solution Pf = 1310 . bar . Now to find the initial and final molar volumes we use V = RT +b P V i = 0.000709 m3 mol V So that Nf Ni = f = 0.00197 m 3 mol Vi = 0.3595 (or 35.95%) Vf (b) Corresponding states d i d i d IG IG 0 = S f − S i = S f − S IG − S i − S iIG f + S f − Si i Initial state 400 = 1.3149 S IG − S = 0.49 304.2 ⇒ 50 = 0.67787 Z = 0.906 Pr = 73.76 Pf IG = −12.4009 − 8.314 ln S IG f − Si 50 Tr = d i (As given by eqn. (1) above. Why?) Guess for final state (use P from part a), then iterate. Final solution is Pf =1152 . bar for which . and Z f = 0.939 . Pr = 0156 . , SIG − S ≅ 029 Nf Ni = cP Z RT h = P a P Z RT f Z T f f i i f i f f ⋅ f . 400 0.906 Zi Ti 1152 = × × = 0.2964 (or 29.64% ) 50 300 0.939 Pi (c) Peng-Robinson equation of state Use program PR1 with given heat capacity constants to find a pressure at 300 K which has the same entropy as the state T = 400 K , P = 50 bar . By trial-and-error we find that P = 1337 . bar (somewhat higher than the previous cases). Also, V i = 0.5982 × 10−3 m3 mol and Solutions to Chemical and Engineering Thermodynamics, 3e V f Nf = 0.175 × 10− 2 m3 mol ⇒ Ni = Vi = 0.3416 (or 34.16%) Vf 4.23 There are two obvious ways to proceed. 1) retain T and P as the independent variables since we have a program, PR1 that calculates V (T , P) , H ( T , P) and S (T , P) . We can then use U ( T , P) = H (T , P) − PV = H ( T , P) − ZRT (where Z = Z (T , P ) ) (1) G (T , P) = H (T , P) − T S ( T , P) (2) and A(T , P ) = G − PV = U − T S = H − PV − T S Now we will write T da H ( T , P) = H IG (T ) + RT ( Z − 1) + 2 and T S (T , P ) = S IG (T , P) + R ln( Z − B ) + a = H − ZRT − TS f dT − a (3) X (4) ada dTf X (5) 2b 2 2b where for convenience, I have used X = ln LM Z + d1 + 2 iB OP MN Z + d1 − 2 iB PQ Then we find U ( T , P) = U IG ( T ) + a f T da dT − a 2 2b X where U IG = HIG − RT G (T , P) = G IG ( T , P) + RT ( Z − 1) − ln( Z − B ) − a X (6) (7) 2 2b and a X (8) 2 2b Thus we can either use eqns. (1 to 3) and previously calculated values Z, H and S , or modify PR1 to use Eqns. (6-8) instead of Eqns. (4 and 5). The second alternative is to take T and V as the independent variables and start from A(T , P ) = A IG( T , P) − RT ln( Z − B) − 2) LM FG ∂ P IJ MN H ∂ T K OP PQ − P dV and d S = dU = CV dT + T V to get z T, V S−S IG = T, V =∞ and z T,V U −U IG = T, V =∞ LMF ∂ P I − R OPdV MNGH ∂T JK V PQ LMTF ∂ P I − P OPdV MN GH ∂ T JK PQ V V FG IJ H K CV ∂P dT + T ∂T dV V Solutions to Chemical and Engineering Thermodynamics, 3e Then put in the Peng-Robinson equation of state and from build up a procedure to calculate S , H , U , P, A and G with T and V as the independent variables. We will not follow this alternative further. 4.24 We will do these calculations using G = H − TS and A = G − PV = H − PV − TS As an example, consider the T = 0° C isotherm P = 1 bar , H = −742 .14 J mol G = −742 .14 − 27315 . × ( −2 .59) = − 34.68 J mol , S = −2.59 J mol K V = 22.6800 m3 kmol A = −3468 . − 1 bar × 0.02268 m3 mol × 105 J = −2302.7 J mol P = 5 bar H = −786.05 J mol S = −16.09 J mol K ⇒ . J mol G = 36089 V = 0.004513 m3 mol P = 10 bar . J mol A = 13524 H = −840.75 J mol . J mol K S = − 2199 ⇒ V = 0.002242 m 3 mol P = 20 bar H = − 949.56 J mol S = −28.06 J mol K ⇒ V = 0.001107 m3 mol P = 40 bar . J mol H = − 116397 S = −34.40 J mol K ⇒ V = 0.0005409 m3 mol P = 60 bar . J mol H = − 137264 S = −38.34 J mol K ⇒ V = 0.0003532 m3 mol P = 80 bar . J mol H = −157376 . J mol K S = −4129 ⇒ V = 0.0002602 m 3 mol P = 100 bar H = −176561 . J mol S = −43.69 J mol K V = 0.0002052 m3 mol ⇒ . J mol G = 51658 . J mol A = 29238 . J mol G = 67150 . J mol A = 45010 G = 8232.4 J mol . J mol A = 60688 G = 9099.9 J mol . J mol A = 69789 G = 9704.6 J mol . J mol A = 76230 G = 10,168 .3 J mol A = 8116.3 J mol Solutions to Chemical and Engineering Thermodynamics, 3e Similarly, G and A at other points could be computed, though this will not be done here. ρ= 4.25 (a) 1 V FG 1 IJ = −V HV K ∂ρ= ∂ −2 FG ∂ P IJ H ∂ ρK ∂V ⇒ = −V 2 S FG ∂ P IJ H ∂V K =+ S a f V 2 ∂ S ∂V P ∂S ∂ P V a f by eqn. (4.1-6a) Now FG IJ dV ⇒ FG ∂ S IJ = C FG ∂ T IJ H K H∂ PK T H∂ PK C F ∂V IJ dP ⇒ FG ∂ S IJ = C FG ∂T IJ dT + G dS = H∂TK H ∂V K T H ∂V K T F ∂ P IJ = V C FG ∂ T IJ ⋅ T FG ∂ P IJ = V γ FG ∂ T IJ FG ∂ P IJ ⇒G H ∂ ρK H ∂V K H ∂T K T H ∂V K C H ∂ T K dS = CV ∂P dT + T ∂T V V V V P P P 2 P P 2 P S P V V P = −γV 2 V FG ∂ P IJ H ∂V K ( by eqn. ( 4.1- 6a)) Thus vS = −γV 2 FG ∂ P IJ H ∂V K = γV 2 T FG ∂ T IJ FG ∂ P IJ H ∂V K H ∂T K P . V CP C +R R = 1+ for the ideal gas CP = CV + R ⇒ γ = V CV CV CV For the Clausius Gas (b) γ = γ= a f a∂ P ∂T f CP CV + T ∂ V ∂ T = CV CV with P (V − b ) = RT P V = 1+ FG IJ FG ∂ P IJ H K H ∂T K T ∂V CV ∂ T P V T Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂V IJ H ∂T K = P FG IJ H K ∂P R V −b = and ∂T P T = V R V −b Thus γ = 1+ T V −b R R ⋅ ⋅ = 1+ CV T V −b CV To show that Cv ≠ Cv (V ) we start from eqn. (4.2-35) FG ∂ C IJ H ∂V K FG ∂ P IJ but FG ∂ P IJ = R ; FG ∂ P IJ = 0 for ideal gas H ∂T K H ∂ T K V H ∂T K F ∂ P IJ = R ; FG ∂ P IJ = 0 for Clausius gas] and G H ∂ T K V − b H ∂T K F ∂ C IJ = 0 for the ideal and Clausius Gases ⇒G H ∂V K 2 =T V T 2 2 2 V V V 2 2 V V V T (c) vS ( ideal gas ) = γV 2 T P = γPV = γRT V T T R V γRT = V −b V − b V −b vS ( Clausius gas) = γV 2 = V vS (ideal gas ) V −b at same T and V 4.26 Preliminaries Pressure = outward force per unit area exerted by gas Force = tensile force exerted on fiber — at mechanical equilibrium fiber exerts an equal and opposite inward force ⇒ In all thermodynamic relations replace P by − F A and V by LA, and they will be applicable to fiber. In particular, in place of S = S (T ,V ) and dS = and dS = FG ∂ S IJ H ∂T K dT + L FG ∂ S IJ H ∂T K dT + V FG ∂ S IJ H ∂V K FG ∂S IJ dL . Also H ∂ LK FG ∂ S IJ = C ⇒ FG ∂ S IJ = C H ∂T K T H ∂T K T FG ∂ S IJ = FG ∂ P IJ ⇒ FG ∂ S IJ = −FG ∂ F IJ H ∂ T K H ∂T K H ∂ L K H ∂ T K T V V T L L V T L F P 1 1 dS = dU + dV ⇒ dS = dU = dL T T T T a f dV . We will use S = S T , L T Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂ S IJ H ∂T K (a) From the above dS = FG ∂ S IJ H ∂ LK dT + L dL = T FG IJ dL H K CL ∂S dT + T ∂L and the analog of the T Maxwell relation FG ∂ S IJ = FG ∂ P IJ H ∂V K H ∂ T K T FG IJ H K 1 ∂S A ∂L ⇒ V =− T FG IJ H K 1 ∂F A ∂T L we get dS = FG IJ H K CL ∂F dT − T ∂T dL = L a f CL dT − γ L − L0 dL T (b) dU = TdS − PdV ⇒ dU = TdS + FdL = CL dT − γT L − L0 dL + γT L − L0 dL = CL dT a f a f (Note: This is analog of ideal gas expression U = U (T ) or dU = Cv dT ) a f RC U ⇒ S ( L, T ) − S a L , T f = z S dT − γ a L − L fdLV TT W Choosing the path a L , T f → a L , T f → ( L, T ) yields (c) dS = CL dT − γ L − L0 dL T L, T L 0 0 0 L0 ,T0 0 0 a 0 f S ( L, T ) − S L0 , T0 = z T , L0 T0 , L0 = αln za T ,L α + βT dT − γ L − L0 dL T T ,L f 0 T γ L − L0 + β T − T0 − T0 2 a f a f 2 h a f c (d) A reversible (slow), adiabatic expansion ⇒ S L f , Tf − S Li , Ti = 0 h a fr k a f a fp γ FT I = αln G J + βcT − T h − c L − L h − a L − L f 2 HT K mc 0 = S L f , T f − S L0 , T0 − S Li , Ti − S L0 , T0 2 f f i f 0 2 i 0 i Need to solve this transcendental equation to find Tf . (e) dU = CL dT ⇒ FS = −T FG ∂ S IJ H ∂LK FG ∂U IJ H ∂ LK = 0 ⇒ FU = 0 T k a = − T −γ L − L0 T fp = γTaL − L f = −T FGH ∂∂FT IJK 0 L Solutions to Chemical and Engineering Thermodynamics, 3e 4.27 (a) dU = TdS − PdV + GdN ⇒ FG ∂U IJ H ∂S K =T ; V,N FG ∂U IJ H ∂V K = − P ; and S ,N FG ∂U IJ H∂ NK =G S ,V Now equating mixed second derivatives ∂ ∂V ∂ ∂N S ,N S ,V FG ∂U IJ H ∂S K FG ∂U IJ H ∂S K = V ,N = V,N ∂ ∂ S V ,N FG IJ H K FG ∂U IJ H∂ N K ∂ ∂V FG ∂U IJ H∂ NK ∂ ∂U ∂ S V , N ∂V FG ∂T IJ H ∂V K F ∂T IJ ⇒G H∂ NK ⇒ S, N S ,V FG ∂ P IJ H ∂S K F ∂G IJ = −G H ∂S K =− S, N S ,V (1) V, N (2) V,N and ∂ ∂N S ,V FG ∂U IJ H ∂V K = S ,N S, N ⇒− S ,V FG ∂ P IJ H∂ NK = S ,V F ∂G I H ∂V K (3) S ,N (b), (c), and (d) are derived in similar fashion. 4.28 (also available as a Mathcad worksheet) (a) The procedure that will be used is to first identify the temperature at which µ = 0 , and then show that µ < 0 at larger temperatures, and µ > 0 at lower temperatures. The starting point is, from Sec. 4.2 µ= FG ∂T IJ H ∂ PK =− H V (1 − Tα) CP where, from Illustration 4.2-4, for the van der Waals gas, α−1 = R| S| a T TV 2a V 1 (V − b ) and µ= − − 1− V − b RV 2 CP V V − b − 2a (V − b ) RTV 2 f U| V| W Simplifying yields µ= − a a f f 2 V b V − b − 2a (V − b ) RTV CP V V − b − 2a (V − b ) RTV 2 2 V RTb (V − b ) − 2 a (V − b) V =− CP RTV (V − b ) − 2 a (V − b) V 2 (1) Now for µ to be zero, either the numerator must be zero, or the denominator infinity. Only the former is possible. Thus, T inv = 2 a (V − b) (V − b ) 2 a(V − b )2 ⋅ = the desired expression b RV 2 RV 2b to determine the sign of the Joule-Thomson coefficient in the vicinty of the inversion temperature, we will replace T in eqn. (1) by T inv + δ , where δ may be either positive or negative. The result is Solutions to Chemical and Engineering Thermodynamics, 3e µ= − V Rb (V − b) δ CP RV (V − b ) δ + 2a (V − b )2 bV 2 It is easily shown that the denominator is always positive. Thus, µ is proportional to − δ ⇒ if T > T inv , so that δ > 0 , µ < 0 . Alternatively, if T < T inv , δ < 0 and µ > 0 . 9 V (b) Using a = V C RTC and b = C 8 3 a d f F I a3V − 1f H K V i 9 F V I a 3V − 1f 3a 3V − 1f = ⋅3 = =T 4H 3 K V V 4V 2 V −VC 3 V 9 27 T inv = 2 ⋅ V C RTC = TC C 2 8 4 3 RV V C 3 T inv ⇒ TC r 2 r 2 r 2 2 2 C 2 (2) 2 inv r r 2 C 2 r a f (c) Expression above gives Trinv = Trinv Vr ; what we want is Trinv as a function of Pr . Thus look at FG P + 3 IJ a3V − 1f = 8T ⇒ P = 8T − 3 H VK 3V − 1 V r 2 r r r r r (3) 2 r r Choose Vr as independent variable; use Eqn. (2) to get Trinv , and use Eqn. (3) to get Pr . Results are tabulated and plotted below. Vr Trinv T inv (K) Pr P (bar) T inv (° C) 0.5 0.625 0.75 1.0 1.25 1.50 1.75 2.0 0.75 1.455 2.048 3.0 3.63 4.083 4.422 4.688 94.65 183.62 262.5 378.6 458.1 515.3 558.1 591.6 0 5.622 7.977 9.0 8.64 8.0 7.344 6.751 0 190.8 270.7 305.5 293.2 271.5 249.3 229.1 –178.55 –89.6 –10.7 105.4 184.9 242.1 284.9 318.4 Solutions to Chemical and Engineering Thermodynamics, 3e 4.29 (also available as a Mathcad worksheet) 4.29 Take the gas to be nitrogen Enter constants 8.314 . R 3 Pa .m . mole K Ti 273.15 .K System is the gas to be compressed. System is closed and isothermal (constant temperature). Energy balance is U(final) - U(initial) = Q + W = Q - PdV Initial conditions are 0 C and 1 bar, final conditions are 0 C and 100 bar a) Ideal gas R .T P1( V , T ) Vi Vf d T. P1( V , T ) dT V R .T i 100000 .Pa Vi = R .T i 10000000 .Pa Vf = 0 3 1 0.0227 m mole 2.271 10 4 Vf P1( V , T i )d V W P1( V , T ) Consequently, as we already knew, the internal energy of an ideal gas is not a function of pressure or volume, only temperature. Initial and final volumes 3 1 m mole W= 4 1 1.0458 10 mole Q= 4 1 1.0458 10 mole joule U(final)-U(initial)=0, so Q = -W Vi Q W b) Virial equation of state B 10.3 .10 6 . m3 mole C 1.517 .10 9 . m6 2 mole joule Solutions to Chemical and Engineering Thermodynamics, 3e R .T . P2( V , T ) 1 V T. d P2( V , T ) B C V 2 V P2( V , T ) Consequently, the internal energy of this gas is also not a function of pressure or volume, only temperature.However, if the virial coefficient were a function of temperature (which is the actual case) then the internal energy of this gas would be a function of temperature. 0 dT Guesses for Initial and final volumes Given 100000 .Pa Given 10000000 .Pa Vi R .T i 1000000 .Pa find( Vi ) Vi = 3 1 0.0227 m mole Vf find( Vf) Vf = 2.2353 10 P2( Vf, T i ) P2( V , T i )d V Vf 10000 .Pa Vi P2( Vi , T i ) Vf W R .T i W= 4 1 1.0424 10 mole 4 3 1 m mole joule Vi U(final)-U(initial)=0, so Q = -W Q Q= W 4 1 1.0424 10 mole joule c) The van der Waals gas 0.1368 . a d 6 b 2 mole R .T P3( V , T ) T. Pa .m V 5 . m3 mole a b P3( V , T ) 3.864 .10 2 V P3( V , T ) .1368 .Pa . dT m 6 =a/V^2 Guesses for Initial and final volumes Given 100000 .Pa Given 10000000 .Pa P3( Vi , T i ) P3( Vf, T i ) Vf P3( V , T i )d V W In this case the internal energy is a function of volume (or pressure) 2 2 mole .V W= Vi R .T i Vf 10000 .Pa find( Vi ) Vi = 3 1 0.0227 m mole Vf find( Vf) Vf = 2.132 10 4 1 1.0414 10 mole Vf a 2 V dV ∆U = joule 635.618 mole 1 joule Vi Q ∆U W Q= 1000000 .Pa Vi Vi ∆U R .T i 4 1 1.0424 10 mole joule 4 3 1 m mole Solutions to Chemical and Engineering Thermodynamics, 3e d) The Peng-Robinson fluid 0.04 w b 126.2 .K 0.07780 .R . b= 5. Pa 33.94 .10 alf 5. Pa 33.94 .10 1 1.54226 .w ( 0.37464 alf = ac .alf a T. d a= R .T P4( V , T ) 5 2 2 R .( 126.2 .K ) 0.45724 . ac 2.4051 10 V 0.26992 .w .w ) . 273.15 124.6 b .( V b) Pa P4( V , T ) float , 4 b) m .09268 .Pa . dT 2 mole . V . V 2.405 .10 5 . m3 6 5 . m3 . V mole 2.405 .10 mole 2.405 .10 Which shows that the internal energy is a function of volume (or pressure) Guesses for Initial and final volumes Given 100000 .Pa Given 10000000 .Pa P4( Vi , T i ) P4( Vf, T i ) Vf P4( V , T i )d V W= Vi R .T i Vf 10000 .Pa R .T i 1000000 .Pa Vi find( Vi ) Vi = 0.0227 Vf find( Vf) Vf = 2.2006 10 4 1.041 10 mole 1 3 1 m mole 4 3 1 m mole joule Vi 273.15 .K T Vf T. ∆U d P4( V , T ) P4( V , T ) d V ∆U = dT 378.0606 Vi Q ∆U W 2 a V .( V b P4( V , T ) W 0.5 0.6249 6 2 m mole 0.0927 1 3 1 m mole Q= 4 1.0788 10 mole 1 joule mole 1 joule 5 . m3 mole Solutions to Chemical and Engineering Thermodynamics, 3e 4.30 For an isothermal process involving a fluid described by the Redlich-Kwong equation of state develop expressions for the changes in (a) internal energy, (b) enthalpy, and (c) entropy in terms of the initial temperature and the initial and final volumes. For your information, the Redlich-Kwong equation of state is P= RT a − V −b T ⋅ V ⋅ (V + b ) and z F H dx 1 x = ln x( x + c) c x+c I K LM F ∂ P I − P OPdV MN GH ∂ T JK PQ L R + a1 2fat − RT − = MT ⋅ N V − b T V (V + b) V − b T dU = T V 32 = 12 OP Q a dV V (V + b ) −adV 2 TV (V + b ) a f a f 2 T z V (VdV+ b) = − 2 aTb lnLMNV V + b V V+ b OPQ H a T ,V f − H a T ,V f = U aT ,V f − U a T ,V f + P V − PV a LV aV + bf OP + RT LM V − V OP =− ln M ⋅ 2 T b N V aV + b f Q NV − b V − b Q a L 1 1 O − − M V + b V + b PQ T N F ∂ P IJ dV = LM R + a OPdV dS =G H ∂ T K NV − b 2T V (V + b)Q V −b a LV aV + bf OP S aT ,V f − S aT ,V f = R ln + ln M ⋅ V − b 2 T b N V aV + b f Q G aT ,V f − G aT , V f = H aT ,V f − T S aT ,V f − H aT ,V f − TS aT , V f a L V aV + bf OP + RT LM V − V OP =− lnM ⋅ 2 Tb N V aV + b f Q NV − b V − b Q a L 1 − M − 1 OP T NV + b V + b Q V −b a LV aV + bf OP − RT ln − ln M ⋅ V − b 2 T b N V aV + b f Q LV aV + bf OP + RT LM V − V OP a =− ln M ⋅ Tb NV aV + bf Q NV − b V − b Q a L 1 1 O F V + b IJ − − − RT lnG M P HV +b K T NV + b V + b Q U T ,V 2 − U T ,V 1 = − V2 a 2 2 V1 2 1 1 2 2 1 2 1 1 2 2 1 1 1 2 2 1 2 1 1 32 V 2 2 1 1 2 1 2 1 1 2 32 2 2 2 1 1 2 2 1 1 2 1 1 2 2 1 1 1 2 2 1 1 2 2 2 1 1 1 2 2 1 2 1 Solutions to Chemical and Engineering Thermodynamics, 3e 4.31 X Joule-Thomson Expansion P1 = 25 bar , T1 = 300 ° C , P2 = 1 bar , T2 = ? (a) Ideal gas-enthalpy is independent of pressure ⇒ T2 = 300° C (b) van der Waals gas IG H 2 = H 1 ⇒ H2 − H IG + H IG − H 1 − H 1IG = 0 2 2 − H1 c h c h c h a fL ⇒ 0 = RT a Z − 1f + MMNTFGH ∂∂ PT IJK − P OPPQdV + C dT − RT aZ − 1f a fL − MMNTFGH ∂∂TP IJK − POPPQ dV = 0 RT a F ∂ PI R F ∂ P IJ − P = RT − RT + a P= − ; G = ; TG J V − b V H ∂T K V −b H ∂T K V −b V −b V z z V T2 , P1 2 2 T2 V= ∞ z V * p 1 1 T1 V T1 , P1 V =∞ V 2 2 V a f V ⇒ 0 = RT2 Z2 − 1 + a a f z z V2 dV V =∞ V V2 0 = RT2 Z2 − 1 + a + z z C Vp dT − a f a f RT1 Z1 − 1 − a T1 dV V =∞ V 0 = P2V 2 − RT2 − a 2 T2 2 T2 = a V 2 z V1 dV V2 V =∞ + C Vp dT − RT1 Z1 − 1 T1 FG 1 − 1 IJ + ca + bT + cT HV V K z T2 2 1 2 h + dT 3 dT T1 − PV 1 1 + RT1 FG 1 − 1 IJ + aaT − T f + b cT 2 HV V K c d + c T − T h + cT − T h − PV + RT 3 4 0 = P2V 2 − RT2 − a 2 2 3 2 3 1 2 2 1 − T12 h 1 4 2 4 1 1 1 1 Solved together with vdW EOS T = 575.07 K , ≈ 3019 . °C (T increases?) (c) Peng Robinson EOS Thermodynamic properties relative to an ideal gas at 273.15 K and 1 bar. H$ (300° C, 25 bar ) = 9.4363 × 103 J mol After some trial and error H$ ( 274.1° C, 1 bar) = 9.4362 × 103 J / mol Close enough So the solution is T=274.1o C (d) Steam tables H$ ( 300° C, 25 bar) = 30088 . kJ kg H$ ( T = ?, 1 bar ) = 30088 . kJ kg H$ ( T = 250 ° C, 1 bar ) = 2974.3 H$ ( T = 300 ° C, 1 bar ) = 3074.3 ⇒ T ≅ 267 ° C = 540 K 4.32 Note error in first printing. The problem statement should refer to Solutions to Chemical and Engineering Thermodynamics, 3e Problem 4.13, not the previous problem. The solution is available only as a Mathcad worksheet. 4.33 LM f (T ) V Za N V , Tf OP N! N Q N = − NRT ln f (T ) − NkT lnV − NkT ln Z F , T I + kT ln N ! HV K Stirling’s approximation ln N ! = N ln N − N N A( N ,V , T ) = − NkT ln f (T ) − NkT lnV − kT ln Z F , T I + NkT ln N − NkT HV K FG ∂ A IJ = − P = − NkT − NkT ∂ln Za N V ,T f ∂a N V f H ∂V K V ∂a N V f ∂V NkT N kT ∂ ln Z a N V , T f P= − V V ∂a N V f FG ∂A IJ = −S = − Nk ln f (T) − NkT d ln f (T ) − Nk lnV − k ln ZF N , TI HV K H∂TK dT ∂ ln Z a N V , T f − NkT + Nk ln N − kT N A( N ,V , T ) = −kT ln Q ( N ,V , T ) = − kT ln T ,N N N T T 2 2 T V ,N ∂T N ,V F I H K F H d ln f (T ) N N − Nk ln + k ln Z ,T dT V V ∂ ln Z N V , T + NkT − kT ∂T N ,V S = Nk ln f ( T ) + NkT a G molecule = FG ∂ A IJ H∂ NK G = N ⋅ G molecule f = − kT ln f ( T ) − kT ln V − kT T ,V a f I K a f ∂a N V f a f ∂N ∂ ln Z N V , T ∂ NV V − NkT ln Z N V , T + kT ln N + kT − kT NkT ∂ ln Z N V , T = − NkT ln f ( T ) − NkT ln V − V ∂ NV + NkT ln N − NkT ln Z a f a f F N ,TI HV K As a check F N , TI + NkT ln N HV K L NkT − NkT ∂ ln Za N V , Tf OPV − NkT + M N V V ∂a N V f Q N = − NkT ln f (T ) − NkT ln V − NkT ln Z F , T I + NkT ln N HV K a f ∂ − + − ∂a f N = − NkT ln f ( T ) − NkT ln V − NkT ln Z F , T I + NkT ln N HV K NkT ∂ ln Z a N V , T f − V ∂a N V f G = A + PV = − NkT ln f (T ) − NkT ln V − NkT ln Z 2 T NkT NkT ln z N V , T NkT V N V T V Solutions to Chemical and Engineering Thermodynamics, 3e which checks! ∂ A U =− 2 ∂T V, N T T F I H K ∂ LM− Nk ln f (T) − Nk lnV − Nk ln Z F N , TI + Nk ln N − Nk OP = HV K ∂T N Q L d ln f (T) − Nk F ∂ ln Za N V , TfI OP = M− Nk GH ∂ T JK P dT MN Q d ln f ( T ) F ∂ ln Za N V ,T fIJ U = NkT + NkT G dT H ∂T K dU I d ln f (T ) d ln f (T ) C =F H dT K = 2 NkT dT + NkT dT F ∂ ln Za N V , TfIJ + NkT FG ∂ ln Za N V ,T fIJ + 2 NkT G H ∂T K H ∂T K V, N N,V 2 2 N, V 2 2 V 2 N, V 2 2 N, V H = U + PV = NkT 2 + FG H a d ln f ( T ) ∂ ln Z N V , T + NkT 2 dT ∂T a f a f NkT NkT ∂ ln Z N V , T − V V ∂N V N,V fIJ K N ,V T etc. 4.34 LM FG ∂V IJ OP dP − C dT N H ∂T K Q L F ∂V IJ OPdP = c C − C hdT + MV − T G N H ∂T K Q L F ∂ P IJ − P OPdV dU = c C − C hdT + MT G N H∂T K Q C F ∂ P IJ dV ⇒ d S = C − C dT + LMFG ∂ P IJ − P OPdV dS = dT + G H ∂T K T T MNH ∂T K T PQ LF ∂V IJ − V OP dP C −C or d S = − MG T NH ∂ T K T Q d G = d H − d c TS h = d H − Td S − S dT L F ∂V IJ OPdP − cC − C hdT − LMTFG ∂V IJ − V OPdP = c C − C hdT + MV − T G N H∂TK Q N H ∂T K Q d H res = d H − d H IG = CPdT + V − T * P P * P P P res * V V V res V V * V V res V * V V P res res P res res res * p P P − S resdT dG res = S resdT res * P P Solutions to Chemical and Engineering Thermodynamics, 3e z LMMN FGH V H ( T , P) − H IG (T , P ) = RT ( Z − 1) + T V =∞ P= ∂P ∂T IJ K OP PQ − P dV V RT a − 2 V −b V FG ∂ P IJ = R H ∂T K V − b F ∂ P IJ − P = RT − RT + a TG H∂T K V −b V −b V V = 2 V IG H ( T , P) − H (T , P ) = RT ( Z − 1) + = RT ( Z − 1) − a V2 z V a V =∞ V 2 dV = RT ( Z − 1) − a LM 1 − 1 OP NV ∞ Q a RT a P = RT ( Z − 1) − ⋅ V P V RT aP ZRT aP IG res H ( T , P) − H (T ) = RT ( Z − 1) − =H ZRT = RT ( Z − 1) − a f d U res = U ( T , P) − U IG (T ) = H T , P − PV − H IG − PV IG i a f PV PV IG + RT = H res T , P + RT (1 − Z ) RT RT aP = H res(T , P) − RT ( Z − 1) = ZRT = H res(T , P) − RT S res IG = S (T , P ) − S (T , P) = − z LMN V =− V =∞ S res(T , P) = R ln z LMMNFGH V V =∞ OP Q ∂P ∂T IJ K − V OP PQ R dV V R R (V − b ) V − dV = − R ln + R ln (V → ∞ ) − b (V → ∞ ) V −b V V Z Pb = R ln ; B= V −b Z− B RT 4.35 a) The Soave-Redlich-Kwong equation of state is P= RT a (T ) − V −b V V −b a f Rewrite this in the power series of V V3 − FH IK RT 2 RT a (T ) a (T )b V + − b2 − b− V− =0 P P P P Notice that the three roots of volume at the critical point are identical so we can write bV − V g 3 C =0 or V 3 − 3V C V 2 + 3V 2C V − V 3C = 0 Solutions to Chemical and Engineering Thermodynamics, 3e At critical point, the second and fourth equations must be satisfied simultaneously. Consequently, the coefficients of each power of V must be the same. Thus, RTC PC 3V C = 3V 2C = - b 2 V 3C = a f a f RTC a TC b− PC PC and a TC b PC Solving the above three equations together for a(T), b and Vc, we get VC = b= c 3 RTC 3 PC h 2 − 1 V C = 0.08664 a f a TC = PC V 3C b = 0 .42748 RTC PC a RT f PC aRT f α(T ) 2 a f a (T ) = a TC α( T ) = 0.42748 ZC = 2 C Also b) and C PC PCV C PCV C RTC 1 = = RTC RTC 3 PC 3 4.36 (also available as a Mathcad worksheet) RT a( T ) P= − V − b V (V + b ) z LMMN FGH V H ( T , P) − H IG (T , P ) = RT ( Z − 1) + T V =∞ ∂P ∂T IJ K OP PQ − P dV V FG ∂ P IJ = R − 1 da(T) H ∂ T K V − b V (V + b) dT F ∂ P IJ − P = RT − T da(T) − RT + a TG H ∂T K V − b V (V + b) dT V − b V (V + b) 1 La − T da(T )OP = V (V + b) MN dT Q V V So the integral to be done is z V z V LM N 1 dV 1 1⋅ V + b dV = = ln V ( V + b ) V ( V + b ) ( − b ) V V =∞ V =∞ LM N OP Q LM N 1 V +b 1 V +b = − ln + ln b V b V So OP Q V =∞ OP Q V V =∞ LM N 1 V +b = − ln b V OP Q Solutions to Chemical and Engineering Thermodynamics, 3e z LMMN FGH V H ( T , P) − H ( T , P) = RT (Z − 1) + IG T V =∞ ∂P ∂T IJ K V f FG IJ H K T a da dT f − a L Z + a Pb RT f O = RT (Z − 1) + ln b NM Z QP T a da dT f − a L Z + B O = RT (Z − 1) + ln M b N Z QP (T , P) = R ln Z + z LMMNFGH ∂∂ PT IJK − VR OPPQdV = RT (Z − 1) − a OP PQ − P dV a − T da dT V +b ln b V V = ZRT P S (T , P ) − S IG FG ∂ P IJ H ∂T K z V =∞ − V V = ZRT P V =∞ = R ln V R R 1 da R = − − V V − b V (V + b ) dT V LM R − 1 da − R OPdV NV − b V (V + b) dT V Q V −b V da 1 V + b − R ln + ln V − b V →∞ V V →∞ dT b V LM a fOP N Q Z − B da 1 Z + B F I + lnLM OP = R ln H Z K dT b N Z Q Z − B I da 1 L Z + B O S (T , P ) − S (T , P ) = R ln Z + R ln F H Z K + dT b lnMN Z PQ da 1 L Z + B O = R ln( Z − B ) + ln dT b MN Z PQ = R ln V − b da 1 Z + Pb RT + ln V dT b Z IG G res =H res − TS res = RT (Z − 1) − aP Z − RT ln zRT Z− B Redlich-Kwong P= RT a − V −b TV (V + b ) FG ∂ P IJ = R + a1 2fa H ∂ T K V − b T V (V + b) F ∂ P IJ − P = RT + a1 2fa − RT + TG H ∂T K V −b TV (V + b ) V − b a3 2fa = 3a = 32 V V TV (V + b ) 2 TV (V + b ) a T V (V + b ) Solutions to Chemical and Engineering Thermodynamics, 3e z V H ( T , P) − H IG (T , P ) = RT ( Z − 1) + 3a dV ( V V + b) V =∞ 2 T 3a = RT ( Z − 1) + ln V V +b 2b T 3a Z = RT ( Z − 1) + ln Z + bP RT 2b T 3a Z = RT ( Z − 1) + ln 2b T Z + B 3a Z U ( T , P) − U IG (T , P ) = ln Z+ B 2b T a z LMMNFGH z LMN V S (T , P) − S IG (T , P ) = − V =∞ V =− V =∞ ∂P ∂T IJ K − V OP PQ f R dV V a f OP Q R 12a R + − dV V − b T 3 2V (V + b ) V a f = R ln V 12a V − ln V − b T 3 2b V + b = R ln Z a Z ln − 32 Z − B 2T b Z + B Solutions to Chemical and Engineering Thermodynamics, 3e 4.37 (also available as a Mathcad worksheet) Problem 4.37 Critical properties and heat capacity for oxygen: 154.6 . K Tc Pc 25.460 . Cp ( T ) 6 5.046 . 10 . Pa joule mole . K ω 2 1.519 . 10 . T . 0.021 joule Tref 298.15 . K 5 2 0.715 . 10 . T . mole . K 2 5 10 . Pa Pref joule 9 3 1.311 . 10 . T . mole . K 3 joule mole . K 4 Soave-Redlich-Kwong Constants: R joule 8.31451 . K . mole a( T ) 2 2 2 R . Tc 0.42748 . Pc a1 a1. α ( T ) b α ( T) R. Tc 0.08664 . Pc 1 1.574 . ω 0.480 b = 2.207 10 5 2 0.176 . ω . 1 3 1 m mole (Initial guess for solver) Temperature and Pressure: 173.15 . K T P 5 1 . 10 . Pa 4 3 10 . m . mole V 1 Solve block for Volume: Given R. T P a( T ) . V (V b) V b V Find( V) Calculation of Compressibility: P .V R. T Z Calculation of Enthalpy and Entropy: d a( T ) . T dT . ln V b V b a( T ) HDEP SDEP R. T . ( Z R. ln 1) Z .( V b ) d a( T ) dT . V b T HIG Cp ( T ) d T Tref T ln V Cp ( T ) SIG V b T Tref H HIG HDEP S Final Results: T = 173.15 K 5 P = 1 10 Pa Z = 0.9952 3 1 m mole V = 0.014327 3 H = 3.60273 10 S = 15.62 1 mole joule 1 1 K mole joule SIG SDEP dT R. ln P Pref T Tc Solutions to Chemical and Engineering Thermodynamics, 3e 4.38 (also available as a Mathcad worksheet) 4.38 with the SRK equation Property Data (T in K, P in bar): Tc R 126.2 Pc 33.94 0.00008314 kap om 0.04 Cp 1 Initial Conditions (Vt = total volume, m^3): Ti 0.08664 . b 170 Pi R. Tc 100 Vt 0.42748 . ac 0.15 T 2. R Tc Pc Initial temperature 4.2 . 10 Cp 2 1.574 . om 0.176 . om. om 0.480 SRK Constants: 27.2 Pc Ti Note that these are being defined as a function of temperature since we will need to interate on temperature later to obtain the final state of the system 2 alf( T ) 1. 1 T kap . 1 R. Ti V Pi Given R. T Pi a( T ) V. ( V b ) V b Vi = 1.02 10 Initial molar volume and number of moles Entropy departure at the initial conditions d a( T ) dT Da ( T ) Start with initial guess for volume, m3 /mol Solve SRK EOS for initial volume ac . alf( T ) a( T ) Tc Find initial molar volume and number of moles DELSi R. ln ( Vi 4 Vi Vt Ni b). Pi R. T Da ( T ) . ln Vi b Nf Ni Find( V) 3 Ni = 1.471 10 Vi Now consider final state b . 105 Vi 0.15 10 . 50 Vf V Vf Nf Type out final number of moles and specific volume Nf = 971.269 Final pressure, will change in course of solving for the final temperature Entropy departure at final conditions T Type out solution Pf( T ) R. T V b DELS( T ) Solve for final temperature using S(final) - S(initial) = 0 2 R. ln ( V b ) . Pf( T ) R. T Da ( T ) . b Vf = 1.544 10 4 a( T ) V. ( V b ) ln V b . 105 V GIVEN 0 Cp 1 . ln T Cp 2 . ( T Ti Ti) Pf( T ) 5 R. 10 . ln Pi DELS( T ) DELSi FIND( T ) V = 1.544 10 4 T = 131.34 Pf( T ) = 37.076 3 Solutions to Chemical and Engineering Thermodynamics, 3e 4.39 (also available as a Mathcad worksheet) Problem 4.39 Critical properties for carbon dioxide: Tc 304.2 K 7.376 . 10 6 Pc ω Pa 0.225 Soave-Redlich-Kwong Equation of State and Constants: R 3 joule Pa . m or K . mol ( K . mol) 8.31451 0.42748 . a1 2 2 R . Tc b 0.08664 . Pc R. Tc Pc 2 α ( T) 1 1.574 . ω 0.480 R. T P( V, T ) 0.176 . ω 2 . 1 50 . 10 Pa T a( T ) Tc a1. α ( T ) a( T ) . V (V b) V b Data given in the problem: T ( 150 273.15 ) K R. V T 5 P1 P2 300 . 10 5 Pa V1total 3 100 m (Initial guess needed for solver) P1 Solving for the initial molar volume and the number of moles of carbon dioxide: P1 P( V, T ) Given V1molar Find( V) V1total N 5 N = 1.518 10 V1molar V1molar = 6.587 10 Solving for the final molar volume and the final total volume: ( R. T ) V P2 P2 P( V, T ) Given V2molar Find( V) V2total V2molar. N V2molar = 9.805 10 (i) V2total = 14.885 Calculating the amount of work done to compress the gas: Work N. V2molar 8 ( ii) Work = 8.823 10 P( V, T ) d V joule V1molar Since the temperature is constant, the change in enthalpy, H(T, P2) - H(T,P1), is just equal to Hdep(T,P2) - Hdep(T,P1) : Hdep( T , P ) H( T , P ) Q P .V R. T . R. T a( T ) 1 8 Q = 3.837 10 d a( T ) dT . ln b V V b 3 H( T , P2 ) = 4.382 10 Hdep( T , P ) N . ( ( H( T , P2 ) T. H( T , P1 ) ) joule ( P2 . V2molar P1 . V1molar) ) 3 H( T , P1 ) = 7.314 10 Work 5 4 Solutions to Chemical and Engineering Thermodynamics, 3e 4.40 (also available as a Mathcad worksheet) Problem 4.40 Critical properties and heat capacity for ethylene: Tc 282.4 K Ca 3.950 Cb 5.036 . 10 6 Pc 15.628 . 10 2 ω Pa Cc 0.085 8.339 . 10 5 17.657 . 10 Cd 9 Soave-Redlich-Kwong Equation of State and Constants: J R T2 a1 a1. α ( T ) a( T ) T1 mol. K 8.31451 ( 100 b 0.08664 . α ( T) 1 R. Tc K 273.15 ) K P1 30 . 10 P2 20 . 10 5 5 Pa ( R. T1) V Pa 0.480 P( V, T ) Pc 273.15 ) ( 150 2 2 2 R . Tc 0.42748 . Pc 1.574 . ω R. T V b 0.176 . ω 2 . 1 a( T ) . V (V b) (Initial guess for solver) P1 Solving for the initial and final molar volume (Only one root is possible for each volume because both temperatures are above the critical temperature): Given V1 V1 = 9.501 10 Find( V) Given V2 P1 P( V, T1) 4 3 m P2 P( V, T1) V2 = 1.467 10 Find( V) 3 3 m Defining the reference state as P=1 bar, and T=300 K : T Hig ( T ) Ca Cb . TT Cc . TT 2 Cd . TT d TT a( T ) T. 3 300 Hdep( T , P , V) H( T , P , V) Q R. T . R. T Hdep( T , P , V) H( T2, P2 , V2 ) 3 Q = 2.64 10 P .V 1 b Hig ( T ) H( T1, P1 , V1 ) joule d a( T ) dT . ln V V b T Tc Solutions to Chemical and Engineering Thermodynamics, 3e 4.41 (also available as a Mathcad worksheet) Problem 4.41 Soave-Redlich Kwong EOS with MATHCAD mol 1 101300 . Pa bar Property Data (T in K, P in bar): Tc 8.314 . RE 304.2 . K Pc 73.76 . bar joule mol. K om 0.225 kap 0.480 Initial Conditions: Ti 400 . K SRK Constants: b 0.08664 . RG 0.00008314 . T 50 . bar Pi RG. Tc ac 0.42748 . 2 2 RG . Tc Pc Ti Note that these are being defined as a function of temperature since we will need to interate on temperature later to obtain the final state of the system joule Heat capacity Cp1 22.243 . Cp2 mol. K constants 2 alf( T ) 1. 1 kap . 1 Da ( T ) Cp4 Given Pi a( T ) 2 joule 5.977 . 10 . mol. K Find initial molar volume and number of moles Start with initial guess for volume, m^3/mol Solve SRK EOS for initial volume T Tc 5 joule 3.499 . 10 . mol. K Cp3 V RG. Ti V = 6.6512 10 Pi RG. T a( T ) V b V. ( V b ) Vi Entropy departure at the initial conditions DelHi RE. T . ( Zi 1 DELSi Zi T. a( T ) d a( T ) dT Pi RG. T d a( T ) dT 4 3 m Find( V) Da ( T ) . Vi b ln b . RG Vi 4 3 m . RE Zi = 0.91653 Zi . ln b b). Pi . Vi RG. T joule 1) 3 DelHi = 1.24253 10 ln ( Vi ac . alf( T ) 9 joule 7.464 . 10 . mol. K Vi = 6.09602 10 DELSi = 2.37467 K 3 1.574 . om 0.176 . om. om Pc Initial temperature bar . m mol. K b . Pi RG. T Zi joule Final temperature is 300 K, and final pressure is unknown; will be found by equating the initial and final entropies. Guess final temperature is 10 bar Pf 10 . bar T 300 . K V RG. T Pf V = 2.4942 10 3 3 m Solutions to Chemical and Engineering Thermodynamics, 3e Temperature part of ideal gas entropy change ti tf Cp1. ln DSidealT 400 Cp2. ( tf tf Cp3 . ti) ti DSidealT = 11.24332 K 300 2 Cp4 . 2 tf ti 2 1 3 3 tf ti 3 joule Note: To use the given and find commands for variable with different dimensions such as P and V, will have to convert to dimensionless variables so as not to have a units conflict. Define x=V/b and y=P/Pc initial guess V x x = 83.95847 b Given y . Pc RG. 300 . K x. b b RE. ln 0 DSidealT y . Pc FIND( x, y ) Y= ln ( x. b b). y . Pc RG. 300 . K Da ( 300 . K ) . x 1 ln b . RG x Vf = 1.59393 10 Pf Y1 . Pc 6 Pf = 1.46849 10 Pa bar DELSi 0.19654 Y0 . b = 14.49643 . RE 53.6541 Vf Pf 0.5 a( 300 . K ) . x b . ( x. b b ) Pi Y y 3 3 m Vi Fraction mass remaining in tank = Vf = 0.38245 4.42 (also available as a Mathcad worksheet. In fact, this file contain graphs and other information.) ∂ CV ∂2 P ∂ CP ∂2V Easier to work with =T than with = −T . 2 ∂V T ∂T V ∂P T ∂ T2 P FG H IJ K FG H IJ K FG H V =∞ = 0.75 a T3 2 V V +b ln V V =∞ FG IJ H K FG ∂ P IJ dV H∂T K a F V + bIJ = 0.75 ln G HV K T z V CV (V , T ) − CV (V = ∞ , T ) = CV (V , T ) − CV* (T ) = IJ K 2 T 2 32 Solutions to Chemical and Engineering Thermodynamics, 3e So CV (V , T ) = CV* (T ) + 0.75 a 32 T b FG V + b IJ . HV K Clearly as V → ∞ (ideal gas) we ln recover CV = C*V . Procedure: Choose collection of V ’s Calculate CV − CV* for given V and T Calculate P from RK EOS get CV − CV* vs. P Next use CP = CV − T FG ∂V IJ FG ∂ P IJ H ∂ P K H ∂T K T 2 = CV − T V a∂ P ∂T f a∂ P ∂V f 2 V T to convert from CV to CP . Have done both parts using MATHCAD. See the MATHCAD F file. 4.43 (also available as a Mathcad worksheet) a) P = Z= RT a PV B C − ; = 1 + + 2 + L= Z V −b V V T V (V + b ) RT PV V V = − RT V − b RT a T V (V + b ) = V a − 32 V − b RT (V + b) 1 aV 1 a /V − = − 1 − b / V RT 3 2 (1 + b / V ) 1 − b / V RT 3 2 (1 + b / V ) Now expanding in a power series in 1V = Z = 1+ b /V − B =b− a RT 3 2 F H I K a /V a 1 3 2 = 1+ b − 32 RT RT V a ; B = 0; b = RTB3 2 F I H K a a 23 ⇒ TB = = 876.5 K bR bR b) Using the Redlich-Kwong parameters TB3 2 = TB = FaI H bR K 23 = 876.5 K 4.44 (also available as a Mathcad worksheet) Z= V a − V − b RT 3 2 (V + b ) Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂ Z IJ H∂ PK = T FG IJ H K 1 ∂V V −b ∂ P − T RT a P= − V −b T V 2 + bV c V (V − b ) 2 FG ∂V IJ H ∂ PK + T a RT 32 (V + b) 2 2 2 2 T P→ ∞ V →∞ T T 2 P →0 V→∞ T h FG ∂ P IJ = − RT + a (2V + b) H ∂V K (V − b) T dV + bV i F ∂ P IJ = 0 ; lim FG ∂ P IJ = ∞ lim G H ∂V K H ∂V K F ∂ Z IJ = 0 = LM 1 − V + a OPFG ∂V IJ lim G H ∂P K NV − b (V − b) RT (V + b) QH ∂ P K FG ∂ Z IJ = 1 (V − b) − mV (V − b) r + ma RT (V + b) r H ∂ P K m− RT (V − b) r + {a T cV + bV h }(2V + b) F ∂Z IJ = V − b − V (V − b) = b lim G H ∂ P K − RT (V − b) RT F ∂ Z IJ = 1 V − 1 V + a cRT V h lim G H ∂ P K − RT (V ) + a d T V i ⋅ 2V a d RT V i aV a = =− =− P→ 0 V →∞ FG ∂V IJ H ∂P K 2 32 T 2 32 2 T T 2 2 2 2 P →∞ V →b 2 T 32 P→ 0 V →∞ 2 4 T 2 32 2 − RT V 2 RT 3 2V 2 RT 3 2 4.45 a) The Redlich-Kwong equation of state is RT a − V −b T V (V + b ) P= which we rewrite as follows PV V a = − RT V − b RT 1.5(V + b ) so that PV V a b a −1= −1− = − RT V −b RT 1.5 (V + b) V − b RT 1.5 (V + b) PV V a V V −1 = b − 15 . RT V − b RT V + b F H Lim P→0 I K PV I VF H RT − 1K = Lim V→∞ V and F PV − 1I = Lim LMb V − a H RT K N V − b RT V →∞ 1.5 OP Q V a = b− = B( T ) V +b RT 1.5 Solutions to Chemical and Engineering Thermodynamics, 3e To proceed further, we now need to have expressions for a and b in terms of the critical properties. To obtain these we proceed as in Problem 4.35 and rewrite this in the power series of V V3 − F H I K RT 2 RT a ab V + −b 2 − b− V− =0 P P TP TP Notice that the three roots of volume at the critical point are identical so we can write bV − V g 3 C =0 or V 3 − 3V C V 2 + 3V 2C V − V 3C = 0 At critical point, the second and fourth equations must be satisfied simultaneously. Consequently, the coefficients of each power of V must be the same. Thus, 3V C = RTC PC 2 3V C = -b 2 - RTC a b− PC TC PC a VC = 3 TC PC and b Solving the above three equations together for a(T), b and Vc, we get VC = b= d 3 RTC 3 PC i 2 − 1 V C = 0.08664 a = 0.42748 So B( T ) = b − RTC PC and R2 TC2.5 PC a RTC RTC2.5 = 0 . 08664 − 0 . 42748 RT 1.5 PC PC T 1.5 For n-pentane, TC=469.6 K and PC = 33.74 bar The resulting virial coefficient as a function of temperature is shown below. Solutions to Chemical and Engineering Thermodynamics, 3e 0 .0 B( T ) 0.001 0.002 200 200 4.46 400 600 800 1000 1200 1400 FG ∂ T IJ = − V 1 − Tα ⇒ αT = 1 H ∂P K C 1 F ∂V I F ∂V IJ FG ∂ P IJ FG ∂T IJ = −1 by triple product rule. α= G but G J H ∂T K H ∂V K H ∂ P K V H ∂T K a∂ P ∂T f FG ∂V IJ = −1 =− H ∂T K a∂ P ∂V f a∂ T ∂ Pf a∂ P ∂V f Inversion temperature µ = 0 = P H P P T V V P (a) vdW EOS; P = T FG IJ H K RT a ∂P − ; V −b V2 ∂T V = V R V −b FG ∂ P IJ = − RT + 2a H ∂V K (V − b) V − R (V − b) FG ∂V IJ = H ∂T K n(− RT ) (V − b) s + 2a V 1 F ∂V I k− R V (V − b) p α= G = J V H ∂T K n− RT (V − b) s + 2a V 2 3 T 2 3 P 2 P Tα = 1 ; n− RT − RT V (V − b ) s (V − b) 2 + 2 a V 3 =1 3 1600 3 1.5 .10 T T Solutions to Chemical and Engineering Thermodynamics, 3e RT RT 2a = − 3 2 V (V − b ) (V − b ) V TR LM 1 − 1 OP = − 2a N V (V − b) (V − b) Q V 2 3 TR 2a V −b −V = − 3 2 ( ) V V −b V bRT 2a = V (V − b )2 V 3 FG H IJ K 2 2 a (V − b) 2 2a b = 1− 2 bR V bR V RT a also P = − V −b V2 Choose V Calculate Tinv from Eqn. (1) Calculate P from Eqn. (2) Solution done with MATHCAD (see MATHCAD worksheet). T= (1) (2) (b) RK EOS RT a P= − V −b TV (V + b ) FG ∂ P IJ H ∂V K FG ∂ P IJ H ∂T K α= =− T = V RT a a + + 2 2 2 (V − b) T V (V + b ) TV (V + b ) a f R 12 a + 32 V − b T V (V + b ) FG IJ H K 1 ∂V V ∂T =− P a a 1 ∂ P ∂T V ∂ P ∂V l f f V T a f q − R (V − b ) + 1 2 a T 3 2V (V + b ) 1 = V − RT (V − b )2 + a TV 2 (V + b ) + a T V (V + b) 2 m r n s n s Tα = 1 − RT 12a RT a a − =− + + V (V − b ) T 1 2V 2 (V + b ) (V − b) 2 T V 2 (V + b ) TV (V + b )2 a f LM OP a LM 1 + 1 + 1 2 OP N Q TV (V + b) NV V + b V Q RT LV − b − V O RTb a LM a3 2f(V + b) + V OP − = = M P V − b N V (V − b ) Q V (V − b) TV (V + b ) N V (V + b) Q − RT 1 1 − = V − b V V −b 2 Solutions to Chemical and Engineering Thermodynamics, 3e RTb V (V − b ) 2 RTb (V − b ) 2 T3 2 = T= = = 5V + 3b 2 TV (V + b ) V (V + b) a a(5V + 3b) 2 T V (V + b )2 a (5V + 3b ) (V − b )2 2 Rb 2V (V + b ) RS a L5 + 3 b O (V − b) UV T 2Rb MN V PQ (V + b) W 2 23 2 Sorry, in the first printing this problem was misplaced. It is Problem 5.47, and the solution appears in Chapter 5 of the solution manual. 4.47 The replacement problem is “Repeat the calculation of Problem 4.31 with the Soave version of the RedlichKwong equation.” The solution is as follows: Using a Mathcad program for the Soave-Redlich-Kwong EOS we find H ( 300° C, 25 bar ) = 9 .45596 × 103 J mol (relative to ideal gas at 273.15 K and 1 bar). Now by trial and error until enthalpies match H ( 274.5° C, 1 bar ) = 9.45127 × 103 ⇒ T = 274.6o C H ( 274.6° C, 1 bar ) = 9 .45486 × 103 Close enough Note that this solution is only very slightly different from that obtained with the Peng-Robinson equation (274.1oC compared to 274.6oC obtained here). (also available as a Mathcad worksheet) 4.48 Problem 4.48 Peng-Robinson EOS with MATHCAD mol 1 bar Property Data (T in K, P in bar): 101300 . Pa Tc 5.19 . K RE Pc 2.27 . bar om 8.314 . joule mol. K RG 0.387 kap Initial Conditions and total volume Vt: Ti 298 . K Peng-Robinson Constants: b 0.07780 . Cp 0.37464 Pi RG. Tc 0.00008314 . T 3 2.5 . RE 1.54226 . om 0.26992 . om. om 400 . bar ac 0.045 . m 3 Vt 0.45724 . Pc Initial temperature bar . m mol. K 2 2 RG . Tc Pc Ti Note that these are being defined as a function of temperature since we will need to interate on temperature later to obtain the final state of the system 2 alf( T ) 1. 1 kap . 1 T Tc a( T ) Da ( T ) ac . alf( T ) d a( T ) dT Solutions to Chemical and Engineering Thermodynamics, 3e Find initial molar volume and number of moles Start with initial guess for volume, m^3/mol Solve P-R EOS for initial volume RG . Ti V Given Pi RG. T Pi a( T ) . V ( V b ) b .( V b ) V b Initial molar volume and number of moles Vi = 7.10667 10 Entropy departure at the initial conditions DELSi = 0.0151 K RE. T . ( Zi DelHi 1 DELSi joule Zi T. a( T ) 1) d a( T ) dT ln ( Vi b). Pi . Vi RG. T 3 m N Vt Da ( T ) 2 . 2 . b . RG 5 3 m Vi Find( V) N = 633.20762 Vi Pi RG. T . ln Vi 1 2 .b Vi 1 2 .b . RE Zi = 1.14736 Zi 1 b . Pi 2 . RG. T Zi 1 b . Pi 2 . RG. T . ln 2. 2 .b 5 V = 6.19393 10 DelHi = 274.27781 joule Final pressure is 1.013 bar, and final temperature is unknown; will be found by equating the initial and final entropies. Guess final temperature is 30 K Pf 1.013 . bar 25.7 . K T V RG. T V = 2.10928 10 Pf 3 3 m Note: To use the given and find command for variables with different dimensions such as T and V, will have to convert to dimensionless variables so as not to get a units conflict. Define x=V/b, y=T/Tc initial guess x Given RG. y . Tc x. b b Pf 0 Cp . ln y . Tc RE. ln Ti Y V 10 Pf y 5 a( y . Tc ) x. b . ( x. b b ) b . ( x. b RE. ln ( x. b Pi FIND( x, y ) Y0 . b Y= Pf . V RG. T Pf RG. y . Tc Da ( y . Tc ) . RE . 2 . 2 . b . RG ln x. b x. b 1 2 .b 1 2 .b 150.89161 5.27265 V = 2.2315 10 Zf b). b) 3 3 m Tf Zf = 1.05794 Y1 . Tc Tf = 27.36506 K Final temperature DELSi Solutions to Chemical and Engineering Thermodynamics, 3e Tf . RE. Tf . ( Zf DelHf 1) d a( Tf ) d Tf a( Tf ) Zf 1 Zf 1 b . Pf 2 . RG. Tf b . Pf 2 . RG. Tf . ln 2. 2 .b DelHf = 11.61232 joule Uf - Ui = (Hf - Zf*R*Tf) - (Hi - Zi*R*Ti) = Hf - Hi - Zf*R*Tf + Zi*R*Ti = (Hf-HfIG) + HfIG -(Hi - HiIG) -HiIG - Zf*R*Tf + Zi*R*Ti = DelHf - DelHi + Cp*(Tf-Ti) - Zf*R*Tf + Zi*R*Ti DelU ( DelHf Cp . ( Tf DelHi 6 DelU = 2.08062 10 Zi. RE. Ti) . N joule DelU TNTeq Zf . RE. Tf Ti) TNTeq = 0.45231 kg joule 4600000 . kg (also available as a Mathcad worksheet) 4.49 PENG-ROBINSON EQUATION OF STATE CALCULATION Nitrogen The Property Data should be as follows Tc (in K), Pc (in bar), omega, Tb (in K) Cp1, Cp2, Cp3, Cp4 (In eqn Cp=Cp0+Cp1*T+Cp2*T^2+Cp3*T^3) Tref (in K), Pref (in bar) (reference conditions) Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave unreasonable answers when this problem was revisited with the Peng-Robinson eqn. of state, as both the initial and final states were found to be in the liquid state. Therefore from the 3rd printing on, the fluid has been changed to nitrogen. i 0 , 1 .. 3 Cp 0 Tc Trs R 28.883 126.2 273.15 0.00008314 0.157 . 10 Cp 1 Pc 33.94 Prs om 1.0 Peng-Robinson Constants: 2 Cp 2 0.808 . 10 5 Cp 3 2.871 . 10 9 0.04 kap b 0.37464 0.07780 . 1.54226 . om 0.26992 . om. om R. Tc Pc ac 0.45724 . 2 2 R . Tc Pc Solutions to Chemical and Engineering Thermodynamics, 3e Input temperature and pressure of calculation T 2 alf( T ) 1. 1 T kap . 1 ac . alf( T ) a( T ) Tc A CA ( T , P ) B CB( T , P ) A .B P .b R. T CB( T , P ) B Vector of coefficients in the PR equation in the form 0=-(A*B-B^2-B^3)+(A-3*B^2-2*B)*Z-(1-B)*Z^2+Z^3 2.B 2 (1 2 ( R. T ) bar 3 B 3.B A V 2 a( T ) . P CA ( T , P ) 140 d a( T ) dT Da ( T ) Z( T , P ) K, P 298.15 B) 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ2 Im ZZi 0 ZZ0 < 10 5 ZZ2 < 10 5 ZZ0 if Set any imaginary roots to zero Sort the roots Set the value of any imaginary roots to value of the real root ZZ Calculate molar volumes Z( T , P ) 0 . R . T VL( T , P ) . 103 P VV( T , P ) Z( T , P ) 2 . R . T . 103 P Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) fv ( T , P ) phil( T , P ) fugl( T , P ) Z( T , P ) 0 Z( T , P ) 2 1 1 exp ( fl( T , P ) ) P . phil( T , P ) ln Z( T , P ) 0 ln Z( T , P ) 2 CB( T , P ) CB( T , P ) phiv ( T , P ) fugv( T , P ) CA ( T , P ) . ln 2 . 2 . CB( T , P ) CA ( T , P ) 2 . 2 . CB( T , P ) exp ( fv ( T , P ) ) P . phiv ( T , P ) . ln Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Solutions to Chemical and Engineering Thermodynamics, 3e Residual entropy for liquid (DELSL) and vapor (DELSV) phases R. ln Z ( T , P ) DELSL( T , P ) R. ln Z( T , P ) 2 0 DELSV( T , P ) Da ( T ) . CB( T , P ) ln 2. 2 .b Da ( T ) . CB( T , P ) ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases R . T . Z( T , P ) 0 DELHL( T , P ) 1 a( T ) . ln 2. 2 .b R . T . Z( T , P ) 2 DELHV( T , P ) T . Da ( T ) 1 T . Da ( T ) a( T ) . ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Ideal gas properties changes relative to the reference state Cp 0 . ( T DELHIG( T ) Cp 0 . ln DELSIG( T , P ) Trs ) Cp 1 . T 2 Trs 2 Cp 2 . T 2 T Trs Cp 1 . ( T 3 Trs 3 Cp 3 . T 3 Trs ) Cp 2 . T 2 4 Trs 4 4 Trs 2 Cp 3 . T 2 3 3 Trs 3 P 5 R. 10 . ln Prs Total entropy and enthalpy relative to ideal gas reference state SL( T , P ) HL( T , P ) DELSIG( T , P ) DELHIG( T ) DELSL( T , P ) DELHL( T , P ) SV( T , P ) HV( T , P ) SUMMARY OF RESULTS T = 298.15 K Pressure, bar P = 140 DELSIG( T , P ) DELSV( T , P ) DELHIG( T ) DELHV( T , P ) Solutions to Chemical and Engineering Thermodynamics, 3e LIQUID VAPOR Compressibility Z( T , P ) 0 = 0.99907 Z( T , P ) 2 = 0.99907 Enthalpy, J/mol HL( T , P ) = 96.20674 HV( T , P ) = 96.20674 Entropy, J/mol K SL( T , P ) = 41.04818 SV( T , P ) = 41.04818 Fugacity coefficient phil( T , P ) = 0.97024 phiv ( T , P ) = 0.97024 Fugacity, bar fugl( T , P ) = 135.83299 fugv( T , P ) = 135.83299 Volume, m^3/kmol VL( T , P ) = 0.17689 VV( T , P ) = 0.17689 Number of moles initially N Tf 100 Pf 2 3.1416 . ( .01 ) . .06 . 1000 VV( T , P ) N = 0.10656 1.103 Given SV( Tf , Pf ) 41.04818 Tf = 69.36841K Tf Pressure, bar find( Tf ) Tf = 69.36841 Pf = 1.103 LIQUID VAPOR 3 Compressibility Z( Tf , Pf ) 0 = 5.61855 10 Enthalpy, J/mol 4 HL( Tf , Pf ) = 1.16967 10 3 HV( Tf , Pf ) = 5.96312 10 Entropy, J/mol K SL( Tf , Pf ) = 114.62977 SV( Tf , Pf ) = 41.04818 Fugacity coefficient phil( Tf , Pf ) = 0.31698 phiv ( Tf , Pf ) = 0.94395 Fugacity, bar fugl( Tf , Pf ) = 0.34963 fugv( Tf , Pf ) = 1.04117 Volume, m^3/kmol VL( Tf , Pf ) = 0.02938 VV( Tf , Pf ) = 4.91926 U( T , P ) HV( T , P ) U( Tf , Pf ) W G 140 . 100 HV( Tf , Pf ) N . ( U( Tf , Pf ) 0.17689 1.013 . 4.91926 100 U( T , P ) ) U( T , P ) = 96.45439 3 U( Tf , Pf ) = 5.96317 10 W = 625.17152 W 4600 G = 0.13591 grams of TNT Z( Tf , Pf ) 2 = 0.94081 Solutions to Chemical and Engineering Thermodynamics, 3e PENG-ROBINSON EQUATION OF STATE CALCULATION Carbon dioxide The Property Data should be as follows Tc (in K), Pc (in bar), omega, Tb (in K) Cp1, Cp2, Cp3, Cp4 (In eqn Cp=Cp0+Cp1*T+Cp2*T^2+Cp3*T^3) Tref (in K), Pref (in bar) (reference conditions) Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave unreasonable answers when this problem was revisited with the Peng-Robinson eqn. of state, as both the initial and final states were found to be in the liquid state. Therefore from the 3rd printing on, the fluid has been changed to nitrogen. i 0 , 1 .. 3 Cp 0 Tc Trs R 22.243 0.00008314 5.977 . 10 304.2 Cp 1 Pc 273.15 73.76 Prs om 2 Cp 2 3.499 . 10 5 Cp 3 7.464 . 10 0.225 1.0 kap Peng-Robinson Constants: b 1.54226 . om 0.26992 . om. om 0.37464 0.07780 . R. Tc ac 0.45724 . Pc Input temperature and pressure of calculation T 1. 1 T kap . 1 a( T ) ac . alf( T ) Tc Da ( T ) Z( T , P ) A CA ( T , P ) B CB( T , P ) A .B 298.15 a( T ) . P ( R. T ) 2 140 bar CB( T , P ) P .b R. T d a( T ) dT B Vector of coefficients in the PR equation in the form 0=-(A*B-B^2-B^3)+(A-3*B^2-2*B)*Z-(1-B)*Z^2+Z^3 2.B 2 (1 CA ( T , P ) K, P 3 B 3.B A V 2 2 2 R . Tc Pc 2 alf( T ) 9 B) 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ2 Im ZZi 0 ZZ0 < 10 5 ZZ2 < 10 5 ZZ0 if Set any imaginary roots to zero Sort the roots Set the value of any imaginary roots to value of the real root ZZ Calculate molar volumes VL( T , P ) Z( T , P ) 0 . R . T P . 103 VV( T , P ) Z( T , P ) 2 . R . T P . 103 Solutions to Chemical and Engineering Thermodynamics, 3e Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl ( T , P ) fv ( T , P ) phil( T , P ) Z( T , P ) 0 Z( T , P ) 2 ln Z( T , P ) 0 1 ln Z( T , P ) 2 1 exp ( fl( T , P ) ) fugl( T , P ) . ln 2 . 2 . CB( T , P ) CA ( T , P ) CB( T , P ) phiv ( T , P ) P . phil( T , P ) CA ( T , P ) CB( T , P ) . ln 2 . 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) exp ( fv ( T , P ) ) P . phiv ( T , P ) fugv( T , P ) Residual entropy for liquid (DELSL) and vapor (DELSV) phases DELSL( T , P ) DELSV( T , P ) R. ln Z( T , P ) 0 Da ( T ) . R. ln Z( T , P ) 2 CB( T , P ) ln 2. 2 .b Da ( T ) . CB( T , P ) ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases DELHL( T , P ) DELHV( T , P ) R . T . Z( T , P ) 0 1 T . Da ( T ) a( T ) . ln R . T . Z( T , P ) 2 2. 2 .b 1 T . Da ( T ) a( T ) . ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Ideal gas properties changes relative to the reference state DELHIG( T ) DELSIG( T , P ) Cp 0 . ( T Cp 0 . ln Trs ) Cp 1 . T 2 Trs 2 Cp 2 . T 2 T Trs Cp 1 . ( T 3 Trs 3 Cp 3 . T 3 Trs ) Cp 2 . T 2 2 Trs 4 Trs 4 4 2 Cp 3 . T 3 3 Trs 3 P 5 R. 10 . ln Prs Solutions to Chemical and Engineering Thermodynamics, 3e Total entropy and enthalpy relative to ideal gas reference state SL( T , P ) HL( T , P ) DELSIG( T , P ) DELHIG( T ) DELSL( T , P ) SV( T , P ) DELHL( T , P ) DELSIG( T , P ) DELSV( T , P ) DELHIG( T ) DELHV( T , P ) HV( T , P ) SUMMARY OF RESULTS T = 298.15 K P = 140 Pressure, bar LIQUID VAPOR Compressibility Z( T , P ) 0 = 0.29126 Z( T , P ) 2 = 0.29126 Enthalpy, J/mol 4 HL( T , P ) = 1.03464 10 4 HV( T , P ) = 1.03464 10 Entropy, J/mol K SL( T , P ) = 67.27151 SV( T , P ) = 67.27151 Fugacity coefficient phil( T , P ) = 0.365 phiv ( T , P ) = 0.365 Fugacity, bar fugl( T , P ) = 51.09983 fugv( T , P ) = 51.09983 Volume, m^3/kmol VL( T , P ) = 0.05157 VV( T , P ) = 0.05157 Number of moles initially N Tf 50 Pf 2 3.1416 . ( .01 ) . .06 . 1000 VL( T , P ) N = 0.36552 1.013 Given SL( Tf , Pf ) SL( T , P ) Tf = 277.04181 K Tf Pressure, bar find( Tf ) Tf = 277.04181 Pf = 1.013 LIQUID VAPOR 3 Compressibility Z( Tf , Pf ) 0 = 2.52794 10 Z( Tf , Pf ) 2 = 0.99308 Enthalpy, J/mol 4 HL( Tf , Pf ) = 1.10995 10 HV( Tf , Pf ) = 93.98326 Entropy, J/mol K SL( Tf , Pf ) = 67.27151 SV( Tf , Pf ) = 0.2929 Fugacity coefficient phil( Tf , Pf ) = 26.04907 phiv ( Tf , Pf ) = 0.99311 Fugacity, bar fugl( Tf , Pf ) = 26.3877 fugv( Tf , Pf ) = 1.00603 Volume, m^3/kmol VL( Tf , Pf ) = 0.05748 VV( Tf , Pf ) = 22.58025 Solutions to Chemical and Engineering Thermodynamics, 3e U( T , P ) HV( T , P ) U( Tf , Pf ) W G 4 U( T , P ) = 1.03464 10 HV( Tf , Pf ) N . ( U( Tf , Pf ) U( Tf , Pf ) = 93.98326 3 W = 3.81613 10 U( T , P ) ) W G = 0.82959 4600 grams of TNT Note that this answer does not make sense. The reason is that with carbon dioxide, but the initial and final states would be liquid. Therefore, carbon dioxide is a poor choice of fluid for this problem, and also problem 3.44. In the third and later printings, nitrogen is used. 4.50 We start from d S = CV dT + F ∂P I H ∂T K dV V Since the entropy at 0 K is not a function of temperature, it follows that CV = 0. Also, since the entropy is not a function of specific volume, it follows that F ∂P I H ∂T K =0 V However, by the triple product rule F ∂P I F ∂V I FG ∂T IJ = −1 or H ∂T K H ∂P K H ∂V K F ∂P I = −FG ∂P IJ F ∂V I = 0 H ∂T K H ∂V K H ∂T K V T V P P T but from the thermodynamic stability condition FG ∂P IJ H ∂V K <0 T which implies that F ∂V I H ∂T K 4.51 = 0 and α = P F I H K 1 ∂V V ∂T =0 P Rewrite the Clausius equation as RT ∂V R V= + b Then = ; P ∂T P T FG ∂ V IJ H ∂T K F I H K 2 = 0 (which m eans CP is independent of pressure and equal to CP* ) 2 P and V − T F ∂V I H ∂T K a) Therefore =b P Solutions to Chemical and Engineering Thermodynamics, 3e z z T2 P2 T1 P1 ∆H = H (T2 , P2 ) − H ( T1 , P1 ) = CP* ( T )dT + bdP = 0 or β 2 γ ( T2 − T12 ) + (T23 − T13 ) + b ( P2 − P1 ) = 0 2 3 is the line of constant enthalpy. b) α( T2 − T1 ) + ∆S = S ( T2 , P2 ) − S ( T1 , P1 ) = z T2 T1 = z T2 z FH P 2 C*P (T ) ∂V dT − T ∂T P 1 C*P (T ) T1 dT − T I K z P2 P1 dP = 0 P R dP = 0 P or αln T2 γ P + β(T2 − T1 ) + ( T22 − T12 ) − R ln 2 = 0 T1 2 P1 is the line of constant entropy. c) For the fluid to have a Joule-Thomson inversion temperature ∂T µ= must undergo a sign change. However ∂P H F I H K ∂T µ= F I H ∂P K LMV − TF ∂V I OP RT + b − T R H ∂T K Q = − P P =− b =−N P H CP CP CP This is always negative, so the Clausius does not have a Joule-Thomson inversion temperature. Solutions to Chemical and Engineering Thermodynamics, 3e 5 5.1 (also available as a Mathcad worksheet) (a) G$ = H$ − TS at P = 25 . MPa and T = 22399 . ° C = 49714 . K equal with G$ V = H$ V − TS$ V = 28031 . − 497.14 × 6.2575 = −307 .8 J g the accuracy G$ L = H$ L − TS$ L = 962.11 − 497 .14 × 2.5547 = − 307.9 J g of tables V V L (b) T ( ° C) T ( K ) $ $ $ H − TS G |UV |W 225 498.15 28063 . − 498.15 × 6.2639 = −314 .1 J g 250 52315 . 28801 . − 523.15 × 6.4085 = −472 .5 300 57315 . 30088 . − 573.15 × 6.6438 = −799 .1 350 62315 . 31263 . − 62315 . × 6.8403 = −11362 . 400 67315 . 32393 . − 673.15 × 7 .0148 = − 14827 . (Note: All Gibbs free energies are relative to the internal energy and entropy of the liquid phase $ L − TS$L , we have that G$ L = 0 at being zero at the triple point. Since H$ L ~ U$ L , and G$ L = H the triple point.) (c) T (° C) T ( K) H$ L − TS$ L G$ V 160 43315 . 675.55 − 43315 . × 19427 . = −165.9 J g 170 44315 . 719 .21 − 44315 . × 2.0419 = − 185.7 180 45315 . 763.22 − 453.15 × 2.1396 = − 206.3 190 46315 . 807.62 − 46315 . × 2.2359 = −227 .9 200 47315 . 852 .45 − 47315 . × 2.3309 = −250.4 48315 . 897.76 − 48315 . × 2.4248 = −273.8 RESULTS (d) T (° C) 150 160 180 200 220 3 $ V m kg 0.001091 0.001102 0.001127 0.001157 0.001190 210 c h 224 0.001197 to 0.07998 T (° C) $ V m3 kg c h 225 250 300 350 400 0.08027 0.08700 0.09890 010976 . 012010 . (e) Will compute CP from CP ~ FG ∆H$ IJ H ∆T K = P H$ (T + ∆ T ) − H$ ( T ) ∆T Solutions to Chemical and Engineering Thermodynamics, 3e T (° C) a CP kJ kg K 150 f 170 180 190 200 210 224 4.6225 4.328 4.392 4.430 4.472 4.518 4 .572 to 3.200 T (° C) a f 250 300 350 400 CP kJ kg K 2.952 2 .574 2.350 2.260 These results are plotted below. 5.2 dU dV = Q& − P dt dt & dS Q & Closed system entropy balance: = + Sgen dt T (a) System at constant volume and constant entropy Closed system energy balance: dV dS = 0 and =0 dt dt dU Q& ⇒ = Q& and 0 = + S&gen ⇒ Q& = −TS&gen dt T Solutions to Chemical and Engineering Thermodynamics, 3e and ⇒ dU = − TS&gen ; T > 0 ; S&gen ≥ 0 dt dU ≤ 0 or U = minimum at equilibrium at constant V and S. dt (b) System at constant entropy and pressure again Q& = − TS&gen . Now dP dV d = 0⇒ P = ( PV ) . Thus dt dt dt dU dV d = Q& − P = − TS& gen − ( PV ) dt dt dt and dU d d dH + ( PV ) = (U + PV ) = = − TS&gen ≤ 0 dt dt dt dt Therefore, enthalpy is a minimum at equilibrium at constant S and P. 5.3 (a) The condition for equilibrium at constant T and V is that the Helmholtz free energy A shall be a minimum. i) Equilibrium analysis (following analysis in text) dAI = FG ∂ A IJ H ∂T K I dT I + I V ,M FG ∂ A IJ H ∂V K I dV I + I T ,M FG ∂ A IJ H∂M K I dM I I T ,V but dTI = 0 , since temperature is fixed, and FG ∂ A IJ H ∂V K I = − P I and I T, M FG ∂ A IJ H∂ M K I = G$ I I T ,V Thus, following the analysis in the text, we obtain c h c h dA = − P I − PII dV I + G$ I − G$ II dM I ⇒ PI = P II and G$ I − G$ II ii) Stability analysis: Here again we follow analysis in Sec. 5.2—and find 1 2 2 2 d A = AVV ( dV ) + 2 AVM (dV )( dM ) + AMM ( dM ) ≥ 0 2 This can be rewritten as a f a f 1 2 2 d A = θ1 dx1 + θ2 dx2 2 2 ≥0 where θ1 = AVV ; θ2 = 2 AMM AVV − AVM A2 = AMM − VM AVV AVV Solutions to Chemical and Engineering Thermodynamics, 3e and dx1 = dV + AVM dM , dx2 = dM AVV Thus, θ1 ≥ 0 and θ2 ≥ 0 θ1 = FG ∂ A IJ H ∂V K 2 = 2 T, M or ∂ ∂V FG ∂ A IJ H ∂V K T ,M FG ∂ P IJ H ∂V K = T, M FG ∂ P IJ H ∂V K T ,M ≥0 T, M ≤ 0 as previously found T ,M ∂ ∂M T ,V 2 AVM ≥0 AVV FG IJ = −FG ∂ P IJ H K H∂ M K FG ∂ A IJ = FG ∂ G$ IJ H∂M K H∂ MK ; AVM = AMM = FG ∂ P IJ H ∂V K ( − P) ⇒ − T, M θ2 = A MM − AVV = − ∂ ∂V ∂ ∂A ∂ M ∂V T ,M T ,V ; T ,V T ,V Now be Eqn. (4.8-17) on a mass basis LMFG ∂G IJ MNH ∂ M K F ∂G IJ $ Also, dG = VdP − SdT + GdM ⇒G H∂ MK FG ∂ G$ IJ H∂ MK = T ,V 1 M T ,V T, V FG ∂ G$ IJ H∂ MK = T, V FG H 1 ∂P V M ∂M IJ K T, V OP PQ F ∂ P IJ = VG H∂ M K − G$ FG H ∂P = V$ ∂M IJ K + G$ and T ,V = AMM T, V so AMM − FG IJ − − a∂ P ∂ M f H K − a∂ P ∂V f F ∂ P IJ LMV$ + FG ∂V IJ FG ∂ P IJ OP =G H∂ M K N H∂P K H∂ M K Q F ∂ P IJ LMV$ − FG ∂V IJ OP by the triple product =G H ∂ M K N H ∂ M K Q rule; Eqn. (4.1 - 6) 2 AVM ∂P = V$ AVV ∂M 2 T ,V T ,V T, M T ,V T, M T ,V T, P T ,V Since FG ∂V IJ H∂ MK T ,P A2 = V$ ⇒ AMM − VM = θ2 = 0! AVV (b) The Gibbs free energy must be a minimum for a system constrained at constant T and P Solutions to Chemical and Engineering Thermodynamics, 3e i) Equilibrium analysis dG I = FG ∂G IJ H ∂T K I dT I + I P, M Since T and P are fixed, dG I = Thus FG ∂ G IJ H∂P K I I FG ∂ G IJ H∂M K I T, M FG ∂G IJ H∂M K I dM I I T ,P dM I = G$ IdM I I c dPI + T ,P h dG = G$ I − G$ II dM I = 0 and G$ I = G$ II ii) Stability analysis FG H 1 2 ∂ 2G d G = G MM ( dM )2 = 2 ∂M2 IJ K (dM ) 2 > 0 T ,P Now FG ∂ G IJ H∂ M K 2 = 2 T ,P FG ∂G$ IJ H∂ MK Eqn. ⇒ T ,P 4.9 -10 1 M LMFG ∂G IJ MNH ∂ M K OP PQ − G$ = T ,P 1 $ $ G −G M Thus G MM ≡ 0 , and stability analysis gives no useful information. 5.4 (a) At constant M, T and V, A should be a minimum. For a vapor-liquid mixture at constant M, T and V we have: A = AL + AV and at equilibrium dA = 0 = dAL + dAV . Thus m r m dA = 0 = − P L dV L − S L dT L + G$ L dM L + − PV dV V − S V dT V + G$ V dM V but M = constant ⇒ dM L + dM V = 0 or dM L = −dM V V = constant ⇒ dV L + dV V = 0 or dV L = − dV V T = constant ⇒ dT L + dT V = 0 ⇒ dA = − P L − P V dV L + G$ L − G$ V dM L = 0 c h c h Since dV L and dM L are independent variations, we have that P L = P V ; and G$ L = G$ V also T L = T V by constraint that T is constant and uniform. (b) At constant M, T, and P, G = minimum or dG = 0 or equilibrium. m r m dG = V L dPL − S LdT L + G$ LdM L + V V dP V − S V dT V + G$ V dM V r r Solutions to Chemical and Engineering Thermodynamics, 3e and M = constant ⇒ dM L = −dM V P = constant ⇒ dPL = dP V = 0 T = constant ⇒ dT L = dT V = 0 ⇒ dG = G$ L dM L + G$ V dM V = G$ V − G$ L dM L = 0 c $L $V or G = G h for vapor-liquid equilibrium at constant T and P. (Also, T and P are uniform—this is implied by constraints.) 5.5 From Sec. 4.2 we have CP = CV − T FG ∂V IJ FG ∂ P IJ H ∂ P K H ∂T K T 2 FG ∂V IJ FG ∂ P IJ H ∂ T K H ∂V K 2 = CV − T V P T a It is the last form of the equation which is useful here now T > 0 and ∂V ∂ T f 2 P ≥ 0 . However FG ∂ P IJ RS< 0 H ∂V K T= 0 at critical point or limit of stability T Thus CP > CV in general; except that CP = CV i) at the critical point or limit of stability of a single phase. ii) For the substances with zero valuer (or very small value) of the coefficient of thermal expansion α = 1 V ∂V ∂ T P such as liquids and solids away from the critical point. a fa 5.6 f Stability conditions for a fluid are FG ∂ P IJ H ∂V K T FG ∂ F IJ H ∂ LK T CV > 0 and <0 for a fiber these translate to CL > 0 and >0 Now CL = α + βT ; if CL > 0 for all T, then CL > 0 at T ⇒ 0 implies α > 0 ; CL > 0 as T → ∞ a f implies β > 0 . Also, ∂ F ∂ L 5.7 T = γT > 0 since T > 0 , this implies γ > 0 . 1 P d U + dV T T 1 ∂S P = and = . These relations, together with the equation T ∂V U T dU = Td S − PdV ⇒ d S = Thus FG ∂ S IJ H ∂U K V FG IJ H K S = S o + αln U V + β ln o Uo V will be used to derive the required equation. (1) Solutions to Chemical and Engineering Thermodynamics, 3e [Note that Eqn. (1), which is of the form S = S (U ,V ) is a fundamental equation of state , in the sense of Sec. 4.2.] (a) (b) FG ∂ S IJ H ∂U K FG ∂ S IJ H ∂V K FG U IJ HU K =α V = U −1 o 1 U = o α 1 = ⇒ U = αT U T (2) P Vo 1 β = β ⋅ o = . Thus PV = βT . T V V V (3) [Clearly, the fluid with an equation of state given by (1) is an ideal gas with constant heat capacity] (c) Stability criteria: FG ∂ S IJ < FG ∂ S IJ FG ∂ S IJ H ∂U∂V K H ∂V K H ∂U K 2 2 2 2 and 2 U FG ∂ S IJ H ∂V K 2 2 V <0; 2 U FG ∂ S IJ H ∂U K 2 <0 2 V Now FG ∂ S IJ H ∂U K FG ∂ S IJ H ∂V K 2 V 2 2 U U| |V || W ∂ ∂U α α = − 2 < 0 ⇒ α > 0 for fluid U U V to be ∂ β β = = − 2 < 0 ⇒ β > 0 stable ∂V U V V = 2 [Note: α, β > 0 by problem statement.] and ∂ 2S ∂ = ∂ U ∂V ∂U V FG ∂S IJ H ∂V K = U ∂ ∂U V β ≡0 V Thus, the stability criteria yield α= FG ∂U IJ H ∂T K = CV > 0 since α and β are positive constants V from Eqn. (2) and β= − FG IJ H K V 2 ∂P T ∂V >0⇒ T FG ∂ P IJ H ∂V K <0 T Thus, fluid is always stable and does not have a first order phase transition. 5.8 a At limit of stability ∂ P ∂V f T = 0 for the van der Waals equation: FG P + a IJ (V − b) = RT H VK 2 So that at limit of stability FG ∂ P IJ H ∂V K 2a V 3 = RT (V − b ) 2 =0= T = − RT 2 a + = 0 ; or V − b V3 FG H IJ K FG H 1 RT 1 a = P+ 2 V −b V −b V −b V IJ K Solutions to Chemical and Engineering Thermodynamics, 3e Thus P = a(V − 2b) V 3 ; or using a = 3PCVC2 and b = VC 3 ⇒ Pr = 3Vr − 2 Vr3 To obtain the envelope, we compute Pr for various values of Vr Vr 10 2 1 0.8 0.7 Pr 0.028 0.5 1.0 0.781 0.0343 a f Notice, that the critical point Vr = 1, Pr = 1 is the upper limit of metastability (i.e., Pr ≤ 1 ), as well as the limit of single phase stability. 5.9 T and P will be taken as the independent variables at a second order phase transition FG ∂ G IJ H ∂T K F ∂ G IJ , where V = G H ∂P K G I = G II ; S I = SII , since S = − Then and V I = V II P T and, of course, T = T and P = P . From S I = SII we have that along the 2nd order phase transition curve that d SI = dS II or I II FG ∂ S IJ H ∂T K I II FG ∂ S IJ dP = FG ∂S IJ dT + FG ∂ S IJ H ∂ P K H ∂T K H ∂ P K F ∂V IJ dP = C dT − FG ∂V IJ dP C ⇒ dT − G T H ∂T K T H ∂T K I I dT + II P T I P II P I II P dP T II P P Thus FG ∂ P IJ H ∂T K along transition curve = CPI − CPII od T ∂V I ∂ T i − d∂V II P ∂T it (1) P Similarly, equating dV I = dV II yields FG ∂V IJ H ∂T K I dT + P FG ∂V IJ H ∂PK T FG ∂V IJ H ∂T K od d∂V i − d∂V ∂ Pi − d∂V I dP = II dT + P FG ∂V IJ dP H ∂P K II T Thus F dP I H dT K along transition curve = − ∂V I ∂ T I II P II T it ∂ Pi ∂T P (2a) T However, since V I = V II , we can divide numerator and denominator by V and obtain Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂ P IJ H ∂T K = along transition curve αI − αII κ IT − κTII (2b) Note: The Clausius-Clapeyron equation is T FG ∂ P IJ H∂T K along transition curve = H I − H II (3) V I − V II However, this form is indeterminate for a 2nd order phase transition. Applying L’Hopital’s rule to eqn. (3) taking derivatives of numerator and denominator with respect to T at constant P T FG ∂ P IJ H∂T K = along transition curve CPI − CPII d∂V i d ∂ T − ∂V II ∂ T I i which is eqn. (1)! Similarly, applying L’Hopital’s rule, but now taking derivatives with respect to P at constant T. F ∂ P IJ TG H∂T K c∂ H = c∂V along transition curve = VI h − c∂ H ∂ P h ∂ P h − c∂V ∂ Ph − T c ∂V ∂ T h − V + T c∂ V c∂V ∂ Ph − c∂V ∂ P h ∂P I II T T I II T T I II II P I ∂T h P II T T but V I = V II so that F ∂ P IJ ⇒ TG H ∂T K along transition curve d∂V = −T d∂V I I i − d∂V ∂ P i − d∂V ∂T II P II T i ∂ Pi ∂T P T which is eqn. (2a)! 5.10 (a) F dP I H dT K along transition curve = ∆H T ∆V ⇒ dP H$ − H$ S 335 . × 105 J kg = L = d ln T V$L − V$S −0.000093 m3 kg = −361 . × 103 J m3 dP T = − 3.61 × 109 J m3 = −3.61 × 109 Pa ⇒ P2 − P1 = − 3.61 × 109 ln 2 d ln T T1 RS −2.985 × 10 a P − P fUV T Pa W −10 or T2 = T1 exp (b) dP ∆H = dT along T ∆V transition curve but ∆V ≈ V 2 V ~ RT P 1 Solutions to Chemical and Engineering Thermodynamics, 3e dP ∆ H P d ln P ∆ H = ; = dT RT 2 dT RT 2 If we assume that ∆H is constant, then ln FG H IJ K LM N P2 ∆H 1 1 1 R P =− − ⇒ T2 = − ln 2 P1 R T2 T1 T1 ∆ H P1 OP Q −1 (c) Denver: P2 = 846 . × 105 Pa m c T2F = 273.15 exp −2.985 × 10− 10 8.46 × 104 − 1.013 × 105 hr = 273.15 K = 0° C ( freezing point essentially unchanged ) T2B = LM 1 − 8.314 × 10 ln 8.46 × 10 OP . 2.255 × 10 × 18 1.013 × 10 Q N 37315 3 6 4 5 −1 = 368 .08 K = 94.9° C Solutions to Chemical and Engineering Thermodynamics, 3e 5.11 This problem involves the application of the Clausius-Clapeyron equation. We will assume that the heats of fusion, sublimation and vaporization are all constant. Thus we will use P ∆H 1 1 ln 2 = − − in all cases. Now ∆ H vap = ∆ H sub − ∆ H fus . To calculate ∆H sub we P1 R T2 T1 will use the following sublimation data: FG H IJ K State 1: Triple point; T = 112.9° C = 386.05 K ; P = 1157 . × 104 Pa 3 State 2: T = 1054 . °C = 378.55 K ; P = 8.00 × 10 Pa ⇒ ln FG 1157 . × 10 I ∆H F 1 1 I = 0.369 = − − J H H 8.00 × 10 K R 386 .05 378 .55K 4 sub 3 ⇒ ∆ H sub = 5.980 × 10 4 J mol ∆ H fus = 1527 . × 104 J mol ⇒ ∆ H vap = (5.980 − 1527 . ) × 104 = 4.453 × 104 J mol and ∆H vap R = 5356 K . To find the normal boiling temperature we again use Clausius-Clapeyron equation. FG 1013 . × 10 I − 4.453 × 10 F 1 J = 8.314 GH T − 3861.05IJK H 1157 . × 10 K 5 ln 4 4 2 State 1 = T. P. State 2 = N.B. P. ⇒ T2 = 457 .7 K = 184 .5° C Experimental value = 183° C ; difference due to assumption that ∆H vap is a constant. 5.12 (a) At equilibrium P sat (ice) = Psat (water ) Equating the ln P sat ’s gives 28.8962 − 614.01 54328 . = 26.3026 − T T ⇒ T = 273.1° C and ln Psat (ice) = 288962 . − (b) ln P = A − 61401 . = 6.4096 ⇒ P sat = 607.7 Pa 2731 . B d ln P ∆ H and = also T dT RT 2 d ln P B = + 2 ⇒ ∆H = B ⋅ R dT T Thus ∆H R ∆H R ∆H ice→ vapor water → vapor fus = 61401 . and ∆H sub = 5105 . × 104 J mol = 54328 . and ∆H sub = 4517 . × 104 J mol = ∆ H ice→ water = ∆ H sub − ∆ H vap = 5.880 × 10 3 J mol Solutions to Chemical and Engineering Thermodynamics, 3e 5.13 (Also available as a Mathcad worksheet. The Mathcad solution includes graphs.) (a) Use the Clausius-Clapeyron equation a f ∆H vap ln P2 P1 = R 1 T1 − 1 T2 1 and graphically taking slope, I find ∆H vap ~ 42700 J mol . T (b) The vapor pressure is low enough that the ideal gas approximation should be valid—thus Plotting ln P vs. d ln Pvap ∆ ln P vap ∆ H vap = = dT ∆T RT 2 either graphically or analytically, we find ∆H vap ~ 313,600 J mol 5.14 (a) Start with Eqn. (5.4-6) f = P exp but RS 1 FV − RT I dPUV ⇒ ln f = F PV − 1I dP T RT z H P K W P z H RT K P 0 0 1 d ( PV ) dV dZ dV dP = − = − so P PV V Z V z z Z ln P V F H z FGH I K IJ K V f dZ PV dV Z P 1 = ( Z − 1) − −1 = ( Z − 1) − ln − − dV P Z =1 Z V = ∞ RT V 1 V = ∞ RT V or ln (b) Z = 1 + f 1 = ( Z − 1) − ln Z + P RT FG H B(T ) RT B and P = 1+ V V V ln FG H IJ K = z V =∞ IJ K RT − P dV V (Eqn. 5.4-8) IJ K f B B 1 = − ln 1 + + P V V RT V z FGH V z LMNFGH V V =∞ RT RT RT B − − ⋅ V V V V B 1 ZB − ln Z + B dV = − ln Z 2 V V V =∞ V IJ OP dV KQ Solutions to Chemical and Engineering Thermodynamics, 3e (c) vdW e.o.s. P= z FGH V V =∞ RT a PV V a − ; Z vdW = = − V −b V2 RT V − b V 2 RT z FGH IJ K IJ K V V RT RT RT a V a − P dV = − + 2 dV = RT ln − V V V −b V V − b V V =∞ V =∞ = RT ln V a − V −b V so vdW f ln P V a − + ( Z − 1) − ln Z V − b RTV Pb a RT P = ln Z − ln Z − − ⋅ ⋅ + ( Z − 1) − ln Z RT RT PV RT = ln F H = ( Z − 1) − aP I K A − ln( Z − B) Z Pb . RT ( RT ) (d) Peng-Robinson equation of state. Start with where A = 2 z V and B = a FG RT − PIJ dV = z LM RT − RT + OPdV HV K N V V − b V (V + b) + b(V − b)Q L V + d1 + 2 ib OP V a = RT ln − lnM V − b 2 2 b NM V + d1 − 2 ib QP LV + d1 + 2 ib OP Z a = RT ln − lnM Z − B 2 2 b MNV + d1 − 2 ib PQ V V =∞ V =∞ [See solution to Problem 4.2 for integral]. Therefore ln f PR P = (Z − 1) − ln Z + ln = (Z − 1) − ln( Z − B ) − 5.15 (a) LM d MN d i OP i PQ V + 1+ 2 b Z a − ln Z − B 2 2 bRT V + 1− 2 b a 2 2bRT ln d i V + d1 − 2 ib V + 1+ 2 b a f fHliq2 S = f Hvap ; f vap = P f P , where the fugacity coefficient, 2S corresponding states. 20 = 0.2237 89.42 255 . + 273.15 TC , H 2 S = 373.2 K ⇒ Tr = = 0.8002 373.2 ZC , H 2 S = 0.284, which is reasonably close to 0.27 PC , H 2 S = 89.42 bar ⇒ Pr = f P will be gotten from Solutions to Chemical and Engineering Thermodynamics, 3e f = 0.765 , fH 2 S = 20 × 0765 . = 153 . bar . P (b) For a liquid, from Eqn. (5.4-18) Fro m Fig. 5.4-1, f = P vap FfI H PK LM MN z P exp sat P vap V dP RT OP PQ Since Pvap = 6.455 × 103 Pa at the temperature of interest, we will assume that Also, we will consider the liquid to be incompressible. Thus z P P vap V V dP = RT RT z P dP = c V P − P vap P vap h RT and fH 2 S = P vap exp LMV c P − P MN RT vap h OP = 6455 expL 0.018( P − 6455) O Pa MN 8.314 × 10 × 310.6PQ PQ 3 so that Pressure, Pa P = 10 . × 10 50 . × 107 10 . × 108 7 fH 2 S, Pa 6,921 9,146 12,960 Reported 6,925 9,175 12,967 5.16 (also available as a Mathcad worksheet) (a) There are (at least) two ways to solve this problem. One way is to start from f = P exp RS 1 FV − RT I dP UV T RT z H P K W P 0 or RT ln f = P z FH P V− 0 I K RT dP P RT 8.314 × 10−6 MPa ⋅ m3 mol K × ( 27315 . + 400 )K 0.310748 = = m3 kg −3 P P(MPa ) × 18.01 g mol × 10 kg g P a f Pf sat ~ 1. Solutions to Chemical and Engineering Thermodynamics, 3e From Steam Tables T = 400° C P MPa V$ m3 kg V$ − RT P 0.01 0.05 0.10 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 31.063 6.029 3.103 1.5493 1.0315 0.7726 0.6173 0.5137 0.3843 0.3066 0.2548 0.2178 0.19005 0.16847 0.15120 –0.0118 –0.00596 –0.00448 –0.00444 –0.00433 –0.00427 –0.00420 –0.00421 –0.00413 –0.00415 –0.00416 –0.00416 –0.00417 –0.00417 –0.00417 By numerical integration of this data we find that f ~ −0.0084 MPa ⋅ m3 kg P f −0.0084 MPa ⋅ m3 kg ⇒ ln = = −0.027032 P 0.310748 MPa ⋅ m3 kg RT ln so f P = 0.97333 and f = 1947 . MPa . A second way to use the steam tables is to assume that steam at 400°C and 0.01 MPa is an ideal gas. From the steam tables, at these conditions, we have H$ = 3279.6 kJ kg ; S$ = 9.6077 kJ kg K ⇒ G$ = H$ − TS$ = 3279.6 − 673.15 × 9.6077 = −3187.8 kJ kg = −57412.7 kJ kmol = G ( 400° C, 0.01 MPa) = G IG( 400° C, 0.01 MPa) Also z 2 MPa G IG( T = 400° C, 2 MPa) − G IG( T = 400° C, 0.01 MPa ) = V IGdP P = 0.01 MPa G IG( T = 400° C, 2 MPa) = −574127 . kJ kmol + z 2 MPa 0.01 RT dP P = −57412.7 + 8.314 ln 200 = −277603 . kJ kmol Also, from steam tables G (T = 400° C, 2 MPa) = (3247.6 − 673.15 × 7 .1271) × 18.01 = − 2791563 . kJ kmol FG H IJ K F H f G − G IG −2791563 . + 277603 . = exp = exp P RT 8.314 × 67315 . = 0.9726 f = 0.9726 × 2 MPa = 1.945 MPa I K Solutions to Chemical and Engineering Thermodynamics, 3e a (b) Corresponding states TC = 647.3 K, PC = 22.048 MPa, w = 0.344 Tr = f 400 + 273.15 2 = 1.04 ; Pr = = 0.0907 647 .3 22.048 From corresponding states chart (actually from Table in Hougen, Watson and Rogatz, Vol. II, p. 601) we have f = 0.983 ⇒ f = 1.966 MPa P (c) Using the program PR1 we find f = 19.40 bar = 1940 . MPa Comment: The steam table results are probably the most accurate, and the corresponding states results the least accurate. Note that with the availability of the computer program PR1, the P-R e.o.s. is the easiest to use. The results would be even more accurate if the PRSV equation was used. 5.17 (a) PV B C RT BRT CRT = 1 + + 2 +L ; ⇒ V = + + +L RT V V P V P V 2P Thus PV B = 1+ 2 RT RT P + BRT V P + CRT V P + L + =1+ C 2 RT P + BRT V P + CRT V P + L a B P RT k p 1 + B RT P + L −1 k f p + C RT P + L −2 +L a Now keeping terms of order 1, B, B 2 and C only yields F I F1 − B P + LI + CF P I H K H RT K H RT K BP F P I +L = 1+ + cC − B h H RT K RT PV P = 1+ B RT RT 2 2 2 (b) V = c RT + B + C − B2 P hFH RTP IK + L and V IG = RT . Therefore P hFH RTP IK + L and R 1 L B + cC − B h P + LOdPUV f = expS P RT QP W T RT z NM c V − V IG = B + C − B 2 P 2 0 or f 2 C P RT + L 1 + 2B V + L + Solutions to Chemical and Engineering Thermodynamics, 3e R| S| T c 2 f BP C − B = exp + P RT 2 hF P I H RT K 2 U| V| W +L We will consider a number of alternatives for using the virial coefficient data. The first is to start with Eqn. (5.4-6a) RS T f 1 = exp P RT z FH P V− 0 I UV K W RS T RT 1 dP = exp P RT P V − V IG dP 0 zd P thus we need to evaluate the integral 1 RT i UVW zd (1) i V − V IG dP . Since the truncated virial equation 0 P RT = 1 V + B V 2 + C V 3 can not easily be solved for V as a function of T and P, the following procedure will be used: i) Choose values of V and compute P= FG H RT B C 1+ + 2 V V V IJ K and PIG = RT V ii) Plot P and P IG as a function of V iii) Use these two plots to obtain V IG and V (real gas) at the same value of P, also compute V (T , P )− V IG (T , P ) iv) Finally, use a numerical or graphical integration scheme to get f P as a function of P Same representative values of V − V IG are given below c h −dV − V i P 10 6 Pa IG 1 2 3 4 5 6 7 8 0.187 0.180 0.187 0.223 0.206 0.211 0.201 0.180 9 10 11 12 13 14 15 m3 kmol c h −dV − V i P 10 6 Pa IG 0.1573 0.1384 0.1215 0.1069 0.0944 0.0834 0.0739 3 m kmol Using the data and performing the integration we obtain c P 10 6 Pa f P h 1 3 5 7 9 10 11 13 15 0.939 0.822 0.703 0.602 0.527 0.499 0.475 0.439 0.412 FG ∂ P IJ dV and, with H ∂V K RT F P= G 1 + B + C IJ , that FGH ∂∂VP IJK = FGH − V1 − V2B − V3C IJK RT V H V V K An alternative is to note that dP = T 2 2 T 3 4 Solutions to Chemical and Engineering Thermodynamics, 3e and z z z cV − V hdP = RT1 V FGH ∂∂VP IJK dV − RT1 RTP dP L F 1 + 2B + 3C I dV − dP OP = lim M− PP MN a f GH V V V JK Q L F 1 − 1 IJ + 3C FG 1 − 1 IJ OP = lim M− ln PV + ln P V a P f + 2 BG H V ( P) V a P f K 2 H V ( P) V a P f K Q N 1 RT V(P) P 0 IG P T V (0 ) z P0 → 0 0 z V (P ) P 2 3 V P0 P0 0 P0 → 0 0 2 2 0 2 B 3C = − ln PV + ln RT + + V 2V 2 [Note: 0 a f lim V P0 = ∞ ] P0 → 0 Thus RS T f RT 2 B 3C = exp ln + + 2 P PV V 2V UV = RT expRS 2B + 3C UV W PV T V 2V W 2 but PV RT = 1 + B / V + C / V 2 and m exp 2 B V + 3C 2V f = P 1+ B V +C V 2 r = expm−0.3326 V + 0.01938 V r 2 2 1 − 01663 . V + 0.012921 V 2 (2) for V in m3 kmol . The use of this equation leads to results that are somewhat more accurate than the graphical integration scheme. Still another possibility is to use the results of part (a) which yields m r f = exp −0.00619 P − 1.0207 × 10−5 P2 for P in bar P (3) The results of using this equation are listed below. Finally we can also compute f P using corresponding states (Figure 5.4-1). For methyl a f fluoride TC = 317.7 K and PC = 5.875 MPa (note ZC is unknown is V C has not been measured). Thus, Tr = ( 27315 . + 50) 317 .7 = 1.017 , and for each pressure Pr can be computed, and f P found from Fig. 5.4-1. The results for each of the calculations are given below: P (bar) eqn. (1) f P 10 30 50 70 100 130 150 0.939 0.822 0.703 0.602 0.499 0.439 0.412 eqn. (2) f P 0.939 0.822 0.710 0.607 0.503 0.442 0.416 eqn. (3) f P Corresponding states f P 0.939 0.823 0.715 0.617 0.486 0.376 0.314 0.96 0.85 0.72 0.60 0.47 0.39 0.345 Note that at low pressure, all the results for f P are similar. At high pressures, however, the results differ. Equation (3) is approximate, and probably the least accurate. Equation (2) should be the most accurate, except that there is a question as to how accurate it is to use an equation of state with only the second and third virial coefficients for pressures as high as 150 bar. Solutions to Chemical and Engineering Thermodynamics, 3e 5.18 (a) Assume the vapor phase is ideal, and that ∆H vap is approximately constant (or an average ∆H vap can be used). ln ⇒ ln ⇒ FG H P2 ∆ H vap 1 1 =− − P1 R T2 T1 IJ K (1) F 2.026 I = − ∆ H F 1 − 1 I H 1013 K R H 222 .0 + 27315 . . 178.0 + 27315 . K vap vap ∆H R = 3.52 × 103 K ∆ H vap = 2.93 × 104 J mol (b) ∆H vap(T) = H(sat. vap,T )− H(sat. liq, T) IG IG = H (sat. vap, T ) − H ( T ) − H (sat. liq. , T ) − H (T ) ⇒ ∆ H vap( T ) = TC LMF H − H I MNGH T JK IG C − sat. vap, T FG H − H IJ H T K IG sat. liq., T T 200 + 27315 . (c) Tr = = = 0.851 TC 2831 . + 27315 . FG H − H IJ H T K IG C = 5.06 J mol K and sat. vap Tr = 0 .851 FG H − H IJ H T K IG C OP PQ = 44.69 J mol K sat. liq. Tr = 0 .851 ∆H vap(T) = 556.45 K 44.69 − 506 . = 2205 . × 104 J mol (d) The reason for the discrepancy is probably not the inaccuracy of corresponding states (since ZC = 0.272 which is close to 0.27) but rather the assumption of an ideal vapor phase in the Clausius-Clapeyron equation. We correct for gas-phase nonideality below. at T = 178° C , Tr = 0.811 , Z = 082 . T = 222° C , Tr = 0.890 , Z = 0.71 The average value of the compressibility is Z= 1 (0.82 + 0.71) = 0.765 2 We now replace eqn. 1 with vap ln P2 −∆ H = P1 ZR FG 1 − 1 IJ ⇒ ∆ H HT T K 2 vap c h = 0.765 × 2.93 × 104 J mol 1 = 2.24 × 104 J mol which is in much better agreement with the result of part (c). A better way to proceed would be to compute the compressibility as a function of temperature, i.e., find Z = Z (T , P ) and then integrate dP ∆ H vap P = dT Z (T , P ) RT 2 Solutions to Chemical and Engineering Thermodynamics, 3e rather than use an average value of Z, i.e. Z . 5.19 Basis: vessel volume 1 m3 (cancels out of problem) x = fraction of vessel filled with liquid water x (1 − x) N = total number of moles of water = L + V (per 1 m3 of vessel) V V 1) Total number of moles same at all conditions 2) x is the same at initial loading and at critial point State 1—low pressure V V >> V L ⇒ N1 = State 2—Critical point V V =V L x L V + (1 − x ) V = V C ⇒ N2 = N1 = N2 ⇒ x V L = V ≈ x VL 1− x x 1 + = but VC VC VC 1 VL or x = VC VC (a) Using steam tables V L (25° C) = 0001003 . m3 kg ; V C = 0.003155 m3 kg x= 0.001003 = 0.3179 0.003155 ⇒ Initial fill should contain 31.79% of volume with liquid (which was reported in the Chemical and Engineering News article). (b) Peng-Robinson equation of state V L (25° C) = 0.2125 × 10−4 m3 mol and the P-R equation of state predicts ZC = 0.3074 (solution to Problem 4.11b) so VC = ZC RTC 0.3074 × 8.314 × 10− 6 MPa m3 mol K × 647.3 K = PC 22.048 MPa = 0.75033 × 10− 4 m3 mol ⇒ x = 0.2832 or an initial fill of 28.32% of volume with liquid. 5.20 (a) One theory for why ice skating is possible is because ice melts due to the pressure put upon it under the ice skates, and then refreezes when skate leaves and the pressure is released. Skate actually moves over a film of water on the sheet of ice. To find the lowest temperature we use the Clapeyron equation to calculate the change in freezing point as a result of the applied pressure. Properties of ice: ∆H$ fus = ∆H$ sub ρ = 090 . g cc ⇒ V S = 111 . cc g vap $ − ∆H = 28348 . − 25013 . = 3335 . J g (at 0.01°C) (Appendix III) Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂ P IJ H ∂T K = sat ∆H$ ∂P 333.5 J g ⇒ = ∂ T 27315 . K × (1 − 111 . ) cc g T ∆V$ = − 1110 . J cc K = − 111.4 bar K or FG ∂T IJ ~ − 0.0090 K bar ⇒ ∆T = −0.009 K bar (∆P ) H ∂ PK Assume 70 kg person on 0.6 cm2 skate area (well sharpened) 70 = 116.7 kg cm2 × 0.9807 bar kg cm2 = 114.4 bar 0.6 ⇒ ∆T = −103 . °C ∆P = assuming skate makes complete contact with ice. If the surface is irregular (as it is) maybe contact only over 10% of area. In this case ∆T = −93 . ° C . My observation in Minnesota was that it was possible to skate down to ~ −20° C (5% contact area??). Of course, the thermodynamic model for this process may be incorrect. Other possibilities include the melting of ice as a result of friction, or by heat transfer from the skater’s foot to the ice. I believe the thermodynamic theory to be the a reasonable explanation of the phenomena. (b) Since ∆H$ fus > 0 and ∆V$fus > 0 for CO 2 and most other materials, freezing point will be elevated not depressed. Liquid film can not form and ice skating is impossible. (c) More difficult to quantify. Similar to (a) for freezing point depression, which on release of pressure causes refreezing and formation of snowball; but in this case there is also considerable heat transfer from the hands to the surface of the snowball that causes melting. Solutions to Chemical and Engineering Thermodynamics, 3e 5.21 (also available as a Mathcad worksheet) 5.21 ∆T=∆P*∆V*T/∆H From Eq. 5.7-4 5 10 . Pa bar 3 Water ∆T 6 m . 1000 . bar . 0.0906 . 10 . 273.1 . K g ∆ T = 7.412 K joule 333.8 . g 3 Acetic acid ∆T 6 m . 1000 . bar . 0.01595 . 10 . 289.8 . K g 187 . ∆ T = 2.472 K joule g 3 Tin ∆T 6 m . 1000 . bar . 0.00389 . 10 . 505.0 . K g 58.6 . ∆ T = 3.352 K joule g 3 6 m . 1000 . bar . 0.00342 . 10 . 544 . K g Bismuth ∆T ∆ T = 3.53 joule 52.7 . g K 5.22 (also available as a Mathcad worksheet) 5.22 0 .. 10 i R 8.314 ∆ H( T , a , b , c ) Ag(s) R. c . ( T ) Tmax Yi 2 1234 Tmax Tmin . ( i) 10 b .T a Tmin 298 a Tmin T, K 14710 b 0.328 ∆Hm, J/mol Yi ∆ H Yi , a , b , c 298 391.6 485.2 578.8 672.4 766 859.6 953.2 1.215 . 10 5 1.212 . 10 5 1.21 . 10 5 1.207 . 10 5 1.205 . 10 5 1.202 . 10 5 1.047 . 10 3 1.14 . 10 3 1.234 . 10 3 1.2 . 10 5 1.197 . 10 5 1.194 . 10 5 1.192 . 10 5 1.189 . 10 5 c 0 Solutions to Chemical and Engineering Thermodynamics, 3e Ag(l) Tmax Yi 2485 Tmax Tmin . ( i) 10 Tmin 1234 a Tmin 14260 1.234 . 10 1.139 . 10 1.359 . 10 1.134 . 10 1.484 . 10 1.129 . 10 1.609 . 10 1.124 . 10 1.734 . 10 1.12 . 10 1.86 . 10 1.115 . 10 1.985 . 10 1.11 . 10 2.11 . 10 1.105 . 10 2.235 . 10 1.1 . 10 2.36 . 10 1.096 . 10 2.485 . 10 1.091 . 10 3 3 3 3 3 3 3 Tmax Tmin . ( i) 10 298 a Tmin 0 5 5 5 5 5 5 3 Yi c 5 3 Tmin 0 5 3 2800 c ∆ H Yi , a , b , c 3 Tmax 0.458 ∆Hsub, J/mol T, K Yi BeO(s) b T, K 5 5 5 34230 b 0.869 ∆Hm, J/mol Yi ∆ H Yi , a , b , c 298 548.2 798.4 2.824 . 10 5 2.806 . 10 5 1.049 . 10 3 1.299 . 10 3 1.549 . 10 3 1.799 . 10 3 2.049 . 10 3 2.3 . 10 3 2.55 . 10 3 2.8 . 10 3 2.788 . 10 5 2.77 . 10 5 2.752 . 10 5 2.734 . 10 5 2.716 . 10 5 2.698 . 10 5 2.68 . 10 5 2.662 . 10 5 2.644 . 10 5 Solutions to Chemical and Engineering Thermodynamics, 3e Ge(s) Tmax Yi 1210 Tmax Tmin . ( i) 10 Tmin 298 a Tmin 20150 b 0.395 c 0 c 0 ∆Hm, J/mol T, K Yi ∆ H Yi , a , b , c 298 389.2 480.4 571.6 662.8 754 845.2 936.4 1.665 . 10 5 1.662 . 10 5 1.659 . 10 5 1.656 . 10 5 1.654 . 10 5 1.651 . 10 5 1.648 . 10 5 1.028 . 10 3 1.645 . 10 5 1.119 . 10 3 1.642 . 10 5 1.21 . 10 3 1.639 . 10 5 1.636 . 10 5 Mg(s) Yi Tmax 924 Tmax Tmin . ( i) 10 Tmin 298 a Tmin T, K 7780 b 0.371 DHm, J/mol Yi ∆ H Yi , a , b , c 298 360.6 423.2 485.8 548.4 611 673.6 736.2 798.8 861.4 924 6.376 . 10 4 6.357 . 10 4 6.338 . 10 4 6.318 . 10 4 6.299 . 10 4 6.28 . 10 4 6.261 . 10 4 6.241 . 10 4 6.222 . 10 4 6.203 . 10 4 6.183 . 10 4 Solutions to Chemical and Engineering Thermodynamics, 3e Mg(l) Tmax Yi 1380 Tmax Tmin . ( i) 10 Tmin 924 a Tmin 7750 T, K b 0.612 c DHm, J/mol Yi ∆ H Yi , a , b , c 924 969.6 5.973 . 10 4 5.95 . 10 4 3 1.015 . 10 5.927 . 10 4 3 1.061 . 10 5.904 . 10 4 1.106 . 10 3 5.88 . 10 4 3 1.152 . 10 5.857 . 10 4 3 1.198 . 10 5.834 . 10 4 1.243 . 10 3 5.811 . 10 4 3 1.289 . 10 5.788 . 10 4 3 1.334 . 10 5.764 . 10 4 1.38 . 10 3 5.741 . 10 4 NaCl(s) Tmax Yi 1074 Tmax Tmin . ( i) 10 Tmin 298 a Tmin 0 T, K 12440 b 0.391 DHm, J/mol Yi ∆ H Yi , a , b , c 298 375.6 453.2 530.8 608.4 686 763.6 841.2 918.8 996.4 1.021 . 10 5 1.017 . 10 5 1.012 . 10 5 1.006 . 10 5 1 . 10 5 9.94 . 10 4 9.871 . 10 4 9.799 . 10 4 1.074 . 10 3 9.721 . 10 4 9.639 . 10 4 9.552 . 10 4 c 0.46 . 10 3 Solutions to Chemical and Engineering Thermodynamics, 3e Si(s) Tmax Yi 1683 Tmin Tmax Tmin . ( i) 10 1200 a Tmin 18000 T, K b 0.444 c DHm, J/mol ∆ H Yi , a , b , c Yi 1.2 . 10 1.452 . 10 1.248 . 10 1.45 . 10 1.297 . 10 1.449 . 10 1.345 . 10 1.447 . 10 1.393 . 10 1.445 . 10 1.442 . 10 1.443 . 10 1.49 . 10 1.442 . 10 1.538 . 10 1.44 . 10 1.586 . 10 1.438 . 10 1.635 . 10 1.436 . 10 1.683 . 10 1.434 . 10 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 5.23 (also available as a Mathcad worksheet) 5.23 The metal tin undergoes a transition from a gray phase to a white phase at 286 K at ambien pressure. Given that the enthalpy change of this transition is 2090 kJ/mole and that the volume change of this transition is -4.35 cm3/mole, compute the temperature at which this transition occurs at 100 bar. ∆T=∆P*∆V*T/∆H From Eq. 5.7-4 bar 5 10 . Pa 3 ∆T 6 m . 286 . K 99 . bar . 4.35 . 10 . mole 2090000 ∆ T = 5.893 10 . joule 3 K mole 5.24 For the solid-liquid transition FG ∂ P IJ H ∂T K FG ∂ P IJ H ∂ ln T K = eq f FG H ∆H ∂P ⇒ T∆V ∂ ln T IJ K = eq f 127 J g ∆H = = 964 .3 J cc 01317 ∆V . cc g = 964 .3 J cc = 964 .3 × 10 6 J m3 = 9643 bar = 9.643 × 108 Pa eq ⇒ P2 = P1 + 9643 × ln T2 T1 0 Solutions to Chemical and Engineering Thermodynamics, 3e RS P − P UV = 278.7 expRS P − 10 Pa UV T9.643 × 10 Pa W T 9.643 × 10 Pa W TP ⇒ T TP = T1 exp TP 5 1 8 (1) 8 For the solid-vapor transition, assuming an ideal vapor phase ln FG IJ H K lna P P f = = P2 1 ∆ H sub 1 =− − P1 R T2 T1 ⇒− ∆ H sub R ⇒ ln P2 1 1 = − 5513 − P1 T2 T1 2 1 1 T2 − 1 T1 FG H IJ K a f ln 26.67 13.33 = −5513 K . 3.696 × 10−3 − 3822 × 10−3 and T TP L1 = M − 0.1814 × 10 NT −3 1 ln P TP P1 OP Q −1 = 1000 c h (2) 3.696 − 0.1814 ln PTP 26.67 Solving Eqns. (1) and (2) simultaneously gives P TP = 0.483 bar = 483 . kPa and T TP = 278.7 K [The melting temperature of benzene ~ triple point temperature = 553 . °C = 278.7 K , which agrees exactly with our prediction]. 5.25 First, at 298.15 K, lets relate the Gibbs free energy at any pressure to the value given at 1 bar. kg g 1 mol ( P − 1) bar × 3510 3 × 1000 × m kg 12 g G dia (298.15, P ) = G dia ( 298, P = 1 bar ) + bar m3 8.314 × 10−5 × 298 .15K mol K kg g 1 mol × ( P − 1) bar × 2220 3 × 1000 kg 12 g m G g (29815, P) = G g (298 , P = 1 bar ) + 3 bar m 8.314 × 10 −5 × 298.15K mol K F GG GH F GG GH Note that V dia = 1 m3 1 kg g m3 × × 12 = 3.4188 × 10−6 3510 kg 1000 g mol mol g m3 1 m3 1 kg × × 12 = 5.4054 × 10 −6 mol mol 2220 kg 1000 g Therefore Vg = I JJ JK I JJ JK Solutions to Chemical and Engineering Thermodynamics, 3e G dia (298.15, P ) − G g ( 29815, P ) = G dia ( 298, P = 1 bar ) − G g ( 298, P = 1 bar ) F ( P − 1)bar × (3.4188 − 5.4054) × 10 m I G mol J +G bar m GH 8.314 × 10 mol K × 298.15 K JJK −6 −5 3 3 at equilibrium at 298.15 K we have 0 = 2900 - 0 - ( P - 1) × 8.0143 × 10-5 P = 1+ 2900 = 36185 × 106 bar = 36.185 Mbar . 8.0143 × 10− 5 To find the transition pressure at other temperatures we use the Clapeyron equation J (2.377 − 5740 . ) ∆S Pa m3 ∂P mol K 1 = = × J ∂T sat ∆V m3 (3.4188 - 5.4054) × 10−6 mol Pa bar . = 16928 × 106 = 16.928 K K which indicates that for every degree K increase about 298.15 K we need to increase the pressure by 16.928 bar. However, this is a small percentage increase compared to the 36.185 MPa pressure required at 298.15 K. So the transition is essentially (within engineering accuracy) only very weakly dependent on pressure. F I H K 5.26 Mass balance: M f = Mi Energy balance: U f = Ui Equilibrium criterion: G S = G L = G V ; also S = maximum We will assume the vapor phase is an ideal gas. Properties of the triple point (a convenient reference state): U$ ( liquid, T = 0° C, triple point ) = 0 ( reference state ) U$ ( solid, T = 0° C) = − ∆H$ (solid → vapor) = −335 J g since ∆V$ ≅ 0 U$ ( vapor, T = 0° C) = ∆ H$ vap − RT = 2530 J g − 8.314 × 27315 . J mol × 1 mol 18 g = 24038 . Jg Energy content of original system: U$ ( liquid, T = −10° C) = 0 + 4 .22 J g° C × (− 10° C) = − 42.2 J g U$ ( solid, T = −10° C) = −335 J g + 2.1 J g ° C × ( −10° C) = −356 J g where CV ~ CP − R U$ ( vapor, T = −10° C) = 24038 . J g + CV ( −10° C) 8.314 . + 2.03 − . Jg = 24038 (− 10° C) = 23881 18 Also, initial specific volume of vapor phase F H V V = I K . K RT 8.314 Pa ⋅ m3 mol K × 26315 = = 7609 m3 mol P 287.6 Pa Solutions to Chemical and Engineering Thermodynamics, 3e Ratio of mass initially present in vapor to mass in liquid = . × 10−5 m3 mol M V V L 18 = = = 2.37 × 10 −6 7.609 m3 mol ML VV ⇒ Negligible mass of system initially present in gas phase! Since the initial system is a subcooled liquid + vapor, the following possibilities exist for the equilibrium state. (1) All the liquid freezes and some vapor remains (i.e., a solid-vapor system at equilibrium). The energy released (heat of fusion) would then go to heat the system—Since 335 J/g are released, and CP ~ 4 .22 J g ° C , too much energy is released for only the solid and vapor to be present. (2) Some of the liquid vaporizes and some freezes, so that a solid-liquid-vapor mixture is present. Thus, the system is at the triple point at equilibrium. [The energy released in solidification of the water goes to heat the system up to 0 °C, the triple point temperature.] We will consider this second possibility here; as a first guess, the small amount of vapor will not be included in the calculations. x = fraction of liquid that solidified Let M L = initial mass of liquid in the system Energy balance M LU$ L ( −10° C) = (1 − x ) M LU$ L (0° C) + xM LU$ S (0° C) − 42.2 J = (1 − x)(0 ) + x(− 335) ⇒ x = 0.126 fracti on that is solid 1 − x = 0.874 fraction that is liquid Now lets go back and determine the amount of vapor in the system triple point pressure = 0611 kPa = 611 Pa . A Steam tables As a first approximation, assume that the vapor still occupies about 1/2 of the total volume— this is reasonable, since we expect little volume change of the condensed phase due either to freezing or thermal expansion. c h 18 . × 10 −5 m3 mol × 611 Pa MV = 4.84 × 10 −6 = 3 M 8.314 Pa ⋅ m mol K × 27315 . K If we now include this amount of vapor in the energy balance, it makes only an insignificant change in the computed solid and liquid fractions. ⇒ We will neglect the presence of the vapor. To compute the entropy change, we notice that if we started with 1 gram of liquid, the net change in the system would be 1 g liquid ( −10° C) + −6 2 .37 × 10 g vapor ( −10° C, 287.6 Pa ) Entropy changes 1 g liquid (–10°C) → 1 g liquid (0°C) 0.874 g liquid ( 0° C) → 0.126 g solid ( 0° C) 4.84 × 10 −6 vapor (0° C, 611 Pa) Solutions to Chemical and Engineering Thermodynamics, 3e 27315 . Tf = 4.22 J gK ln = 0.1574 J gK 26315 . Ti ∆S = CP ln 0.126 g liquid (0°C) → 0.126 g solid (0°C) ∆G$ = 0 = ∆H$ − T∆S$ ∆H$ ∆H$ and ∆S = M ∆S$ = T T −335 J g ∆S = × 0126 . g = −0.1545 J K 273.15 K (4.84 − 2.37) × 10−6 = 2.47 × 10−6 g liquid (0° C) → 2.47 × 10− 6 g vapor ( 0° C) ∆S = 2 .47 × 10−6 2530 ∆H$ vap = 2.47 × 10 −6 × = 0.229 × 10−4 J K 273.16 T ⇒ vapor makes a negligible contribution in computing ∆S ∆S = 0.1574 − 01545 . = 0.0029 J K for each gram of water present. 5.27 Gibbs Phase Rule (Eqn. 5.6-1) F = 3 − P (a) Only solids can have many as 3 phases present. These can only exist at a single point of T and P as there are no degrees of freedom. If only 2 solid phases, F = 1 ⇒ a single degree of freedom. Can fix either T or P. If only one solid phase present, then F = 2 , both T and P can vary independently. (b) If a liquid is also present Liquid alone F = 3 −1 = 2 T and P independently variable Liquid + 1 solid F =3−2 =1 Can vary T or P, the other follows Liquid + 2 solids F=0 Only a single point (c) Same as (b), with vapor replacing liquid in discussion above. (d) If liquid and vapor are already present, then P = 2 ⇒ 1 degree of freedom if no solid is present (i.e., either T or P can be fixed, not both) If liquid and vapor and solid are present, P = 3 ⇒ F = 0 Triple point is a unique point on phase diagram. 5.28 Criterion for equilibrium at constant T and V as that A = minimum. However, from Problem 5.4 this implies G V = GL (not AV = AL !) a f . Thus, at equilibrium IJ V = G = A − FG ∂ A IJ V K H ∂V K Now G = A + PV and P = − ∂ A ∂V G V = AV − T FG ∂ A H ∂V F ∂ A IJ = FG ∂ A IJ ⇒G H ∂V K H ∂V K V V L L L T Also at equilibrium PV = P L V L L (1) T L V L T T ⇒ Pressures are equal when derivatives of A with respect to V are equal. The derivative of A with respect to V is the tangent to the curve in the A − V plane. Thus both curves must have a common tangent if equilibrium is to occur, and the slope of this tangent line is the negative of the equilibrium Solutions to Chemical and Engineering Thermodynamics, 3e pressure. Now must prove that the points of intersection of the tangent line and A curve are points a at which G V = GL . From the figure we have AV = AL + ∂ A ∂V f dV V T i − V L but this is exactly what is required by Eqn. (1) for G = G ! So we have indeed identified the equilibrium state. V L A VV VL V (  ∂A  V    ∂V  V − V   L ) 5.29 (a) From the equilibrium criteria we have T V = T L , P V = P L and z V L, T GV = GL ⇒ z VV V dP = 0 or V V VL V ,T FG ∂ P IJ H ∂V K dV = 0 T (b) For the van der Waals equation we have Pr = 8Tr 3 − 3Vr − 1 Vr3 (1) and FG ∂ P IJ = 6 − 24T H ∂V K V a3V − 1f r r 3 r r 2 RS 1 − 4T UV TV a3V − 1f W =6 r r 3 r 2 r Thus z V FGH ∂∂VP IJKdV VrV r r Vr L r = 0= r z FGH V rV a lna 3V − 1f − a3V − 1f VrL VV 1 r 4T 0=− − r 9 Vr V L IJ fK 1 4TrVr dVr − Vr2 3Vr − 1 2 r V −1 Vr r VrL r and ln c3V − 1h + c3V c3V − 1h L r V r r V h − c3V − 1h −1 −1 L r −1 + 9 4 TrVrL FG1 − V IJ = 0 H V K L r V r (2) Another equation arises from the fact that P V = PL ⇒ PrV = Pr L so that, using Eqn. (1) Solutions to Chemical and Engineering Thermodynamics, 3e 8Tr 3 − 3VrV − 1 VrV c h 2 = 8 Tr 3 − 3VrL − 1 VrL c h 2 , or, solving for the reduced temperature {c h c h} h c hr 2 2 1 VrV − 1 VrL 3 Tr = 8 1 3VrV − 1 − 1 3VrL − 1 mc (3) This is an independent equation between Tr , VrV and Vr L . Using Eqn. (3) in Eqn. (2) gives' R| c3V − 1h U| + c3V − 1h − c3V − 1h S|c3V − 1h V| W T 6V V R 1 1 U + − S V=0 V + V T3V − 1 3V − 1 W ln L r V r −1 V r V L r r V L r r V r L r (4) L r (c) Procedure used in solution i) Guess (or choose) a value of VrV , compute Vr L which satisfies Eqn. (4). ii) Use VrV and Vr L so obtained to compute Tr from Eqn. (3). iii) Use Vr and Tr and Eqn. (1) to get Pr = Prvap . [Note: This calculation was done on a digital computer.] Results are at end of problem solution. (d) The Clausius-Clapeyron equation can be written as ∆H dP PC dPr vap ∆ H vap = = = dT coexistance T∆V TC dTr T ∆V curve or 2 ∆ H vap 3V C 9b ∆ H vap dPrvap ∆ H vap 1 = = = dTr Tr ∆V PC Tr ∆V a a Tr ∆V r Since a = 3PCVC2 ; VC = 3b . Now 9b a has units of (energy )−1 , so define a reduced heat of vaporization, ∆Hrvap , to be 9b a ∆ H vap . Thus dPrvap dT vap Thus ∆Hr can be computed by taking derivatives of results of part (c). (This was done graphically). The results are as shown below. Tr Tr V Vr V rL Prvap ∆Hrvap vap ∆H r = Tr ∆Vr 3 × 103 0.3690 2.617 × 10−4 0.2948 1 × 10 0.3745 −4 0.3300 3 8 × 10 2 5 × 102 8772 . ×10 0.3758 1123 . ×10 −3 0.3382 0.3789 1894 . × 10−3 0.3571 0.3124 9.1 0.3341 8.69 0.3477 8.69 0.3686 8.51 Solutions to Chemical and Engineering Thermodynamics, 3e 0.3829 33503 . × 10−3 0.3802 15 . × 10 0.3896 7.299 × 10 −3 100 0.3947 0.01153 0.4423 75 0.3985 0.01597 0.4621 60 0.4020 0.02056 0.4787 50 0.4052 0.02527 0.4931 40 0.4095 0.03254 0.5119 30 0.4158 0.04505 0.5383 20 0.4268 0.07112 0.5799 15 0.4365 0.09810 0.6129 10 0.4538 0.1534 0.6649 8 0.4658 0.1954 0.6965 6 0.4849 0.2650 0.7402 5 0.4998 0.3198 0.7697 4 0.5226 0.3996 0.8072 3 0.5596 0.5240 0.8573 2 0.6410 0.7332 0.9270 1.8 0.6710 0.7899 0.9437 1.5 0.7364 0.8830 0.9697 1.0 1.0 1.0 1.0 3 × 102 2 Results are plotted below. 0.3986 8.77 0.4297 8.87 0.4522 8.70 0.4704 8.52 0.4859 8.54 0.5025 8.62 0.5251 8.53 0.5591 8.85 0.5964 8.01 0.6389 7.81 0.6807 7.51 0.7184 7.33 0.7550 6.97 0.7885 6.64 0.8323 5.86 0.8922 4.89 0.9354 3.94 0.9567 3.22 0.9849 1.43 0.4171 Solutions to Chemical and Engineering Thermodynamics, 3e The reduced vapor pressure and heat of vaporization for the van der Waals fluid. 5.30 (a) Restricted form of Gibbs Phase Rule: F = 3 − P ⇒ P must be 3 or less ⇒ quaternary point can not exist in a 1-component fluid. (b) 2 phases ⇒ F = 3 − 2 = 1 degree of freedom. Thus, if any property of one of the phases is specified, this is sufficient to fix all of the thermodynamic properties of both phases! However, if only the total molar volume of the twophase system (or some other two-phase property), i.e., V = xI V I (T , P )+ xIIV II (T, P) , this is not sufficient to solve for x I , V I and V II . That is, many choices of T and P can yield the same value of the total molar volume by varying the mass distribution between the two phases. Consider now the situation in which the total molar volume and total molar enthalpy is specified. In this case we have 1 = x I + x II V = x IV I ( T , P) + xIIV II ( T , P) and H = x I H I (T , P) + x II H II ( T , P) The unknowns here are x I , x II and either T or P (note that since the system has only one degree of freedom, either T or P, but not both are independent variables). Thus, given equation of state information (relating V and H to T and P, and the two-phase coexistance curve), the equations above provide 3 equations to be solved for the 3 unknowns. 5.31 (a) d S = FG ∂ S IJ H∂TK dT + P FG ∂ S IJ dP . Thus H∂ PK FG ∂S IJ = FG ∂ S IJ + FG ∂ S IJ FG ∂ P IJ H ∂ T K H ∂T K H ∂ P K H ∂T K T sat curve P T sat curve Solutions to Chemical and Engineering Thermodynamics, 3e but FG ∂S IJ H∂TK and, by the Maxwell relations Thus Csat = T FG ∂ S IJ H ∂T K = P FG IJ H K CP ∂ P ; ∂T T FG ∂ S IJ H∂ PK sat curve sat curve FG ∂V IJ H ∂T K = CP − αV P FG IJ H K vap ∆H ∂V = CP − vap ∂T ∆V and i = CPi − αi V i Csat ∆ H vap ∆V vap vap ∆H T ∆V vap = −Vα =− T = = CPi − FG ∂V IJ H ∂TK i P vap P ∆H ∆V vap ∆ H vap ∆V vap ; where i denotes the phase. (b) For the liquid L ∆V vap >> V L , and αi ~ 0 ⇒ Csat ~ CPL For a∂V the ∂T f P vapor we will a f a f aT − T f and ~ V T2 − V T1 2 [ CP and ∂V ∂ T f P a f a f aT − T f CP ~ H T2 − H T1 2 1 and 1 V Csat = CPV − αVV a use V ∆ H vap ∆V vap will be evaluated using finite differences above and steam tables. In each case T1 will be taken as the saturation temperature, and T2 to be the next higher temperature in the steam tables.] Thus, at 100°C (0.1 MPa) . 2776.4 − 26761 = 2.006 kJ kg K ; 50 . 19364 − 1.6958 = = 0.00481 m3 kg K 50 CPV = F dV I H dT K P at 370°C (21.0 MPa) CPV = 14.6 kJ kg K and F dV I H dT K = 0.000141 m3 kg K . Thus, at 100°C P V = 2 .006 kJ kg K − 0.00481 m3 kg K × Csat = −4.488 kJ kg K at 370°C . kJ kg 22570 1.6719 m 3 kg Solutions to Chemical and Engineering Thermodynamics, 3e V = 14.6 kJ kg K − 0.000141 m3 kg K × Csat 441.6 kJ kg 0.0027 m 3 kg = −8.359 kJ kg K 5.32 (a) Multiply out the terms, and this is easily proved. (b) SUN = = ∂ ∂U ∂ 2S ∂ = ∂ N∂U ∂ N N ,V but dS = FG ∂ S IJ H∂ NK F 1 I = − 1 FG ∂T IJ HT K T H∂NK U ,V U ,V FG IJ H K G P ∂S 1 dU + dV − dN ⇒ T T ∂N T F I H K 1 F∂GI =− G J TN H ∂ U K ∂ 2S ∂ G = − ∂U ∂ N ∂U T = 2 =− V,N + V FG IJ H K FG ∂ T IJ H ∂U K 1 ∂G T ∂U G NT 2 U ,V 2 G so that T =− U ,V FG IJ H K 1 F ∂ G I F ∂T I =− G JG J TN H ∂ T K H ∂U K − N ,V V FG ∂ S IJ H ∂U ∂ N K G ∂T T 2 ∂U V ,N V + V G NT 2 Cv Now d G = VdP − SdT ; thus FG ∂ G IJ H ∂T K =V V FG ∂ P IJ H ∂T K −S V and SUN = − R|S FG IJ T| H K 1 ∂P V ∂T CV NT U|V W| −S + V G NT 2 CV = FG IJ H K −V ∂ P NCv T ∂ T + V G + TS NT 2 CV but G + T S = H . Thus SUN = − (c) SVN FG ∂T IJ H∂ N K FG IJ + H H K NT C T ∂ ∂S ∂ F PI 1 F ∂P I = G = = J − TP FGH ∂∂NT IJK ∂ N ∂V ∂ N H T K T H∂ N K ∂ ∂S F ∂aG T fIJ = − 1 FG ∂ G IJ + G FG ∂T IJ = = −G H ∂V K ∂V ∂ N T H ∂V K T H ∂V K 1 F ∂G I 1 F ∂G I F ∂T I G F ∂T I G F∂TI =− + =− + G J G J G J G J G J NT H ∂ V K NT H ∂V K NT H ∂ T K H ∂ V K NT H ∂V K F ∂T IJ 1 LMG − TFG ∂ G IJ OP =G H ∂V K NT MN H ∂ T K PQ 1 2 =− U ,V ∂P V NCV T ∂ T 2 V V 2 U ,V U ,V U ,V 2 U ,N U ,N U,N 2 2 U U 2 U but U U U U Solutions to Chemical and Engineering Thermodynamics, 3e LM FG ∂ P IJ MN H ∂ T K dU = CV dT + T OP PQ − P dV ⇒ V FG ∂T IJ H ∂V K =− U LM FG IJ MN H K 1 ∂P T CV ∂T −P V OP PQ Also FG ∂ G IJ H ∂T K f a f a f f a f a f a∂ G ∂T f a∂U ∂V f − a∂G ∂V f a∂U ∂T f = a∂U ∂V f F ∂ G IJ − C a∂ G ∂V f ; =G H ∂ T K a∂U ∂V f F ∂ G IJ = V FG ∂ P IJ − S and FG ∂ G IJ = V FG ∂ P IJ d G = VdP − SdT ; G H ∂ T K H ∂T K H ∂V K H ∂V K = U a a ∂ G, U ∂ G, U ∂ T , V = ⋅ ∂ T, U ∂ T, V ∂ T, U V T T V T V T V T V V T T Thus, FG ∂ G IJ = V FG ∂ P IJ − S − C V a∂ P ∂V f T a∂ P ∂ T f − P H ∂ T K H ∂T K F ∂G IJ = H − T S − VT FG ∂ P IJ + T S + C TV a∂ P ∂V f G −TG T a∂ P ∂T f − P H ∂T K H ∂T K R|STFG ∂ P IJ − PU|VR|SG − T FG ∂G IJ U|V |T H ∂T K |W|T H ∂T K |W |R F ∂ P IJ |UV|RSTFG ∂ P IJ − P |UV + C TV FG ∂ P IJ = SH − VT G H ∂V K T| H ∂ T K W|T| H ∂T K W| V U T V V V U T V V V U V V V T so that, finally, SVN = FG IJ H K 1 ∂P T ∂N =− (d) S NN = FG IJ H K |RSH − VTFG ∂ P IJ |UV|RSTFG ∂ P IJ |T H ∂ T K |W|T H ∂T K − U ,V 1 NCVT 2 = U ,V V FG ∂ S IJ = ∂ RS− G UV = − 1 FG ∂G IJ H ∂ N K ∂N T T W T H ∂ N K RSFG ∂G IJ − G |UV + G FG ∂T IJ 1 | − TN | |W NT H ∂ N K TH ∂ N K A4-10 V + 2 U ,V |UV |W −P − 2 U ,V eqn. P ∂T T2 ∂ N U ,V FG IJ H K V ∂P NT ∂V FG IJ H K G ∂T T2 ∂ N T U ,V 2 U ,V U ,V Now dG = VdP − SdT + GdN ⇒ FG ∂ G IJ H∂ NK =V U ,V FG ∂ P IJ H∂ N K −S U ,V FG ∂T IJ H∂ NK +G U ,V Solutions to Chemical and Engineering Thermodynamics, 3e FG IJ + G FG ∂T IJ H K T N H∂ NK V F ∂PI =− G J + THN FGH ∂∂TN IJK = − VT FGH ∂∂ NP IJK + HT FGH ∂∂NT IJK TN H ∂ N K ⇒ S NN = − FG IJ H K V ∂P TN ∂ N + U ,V S ∂T TN ∂ N 2 U ,V U ,V 2 U ,V U ,V U ,V U ,V but from above 1 T 2 FG ∂T IJ H∂ NK FG IJ H K V ∂P NCV T ∂ T = U ,V − V H NT 2 CV and, from equating the two expressions for SVN FG IJ H K 1 ∂P T ∂N = a − H ∂ P ∂T f V + NCV T U ,V FG IJ H K ∂P V NCV ∂ T FG IJ H K 2 V ∂P NT ∂ V − V T Putting these expressions together yields S NN FG IJ H K 2 HV ∂ P = NCV T ∂ T V − H2 NCV T 2 − a V 2 ∂ P ∂T NCV f 2 V FG IJ H K V2 ∂P NT ∂ V + T (e) It is now simple algebra to combine the expressions above, and those in Sec. 5.2, and show that θ3 = a f g 2 SUU S NN − S UN S S − SUV SUN − UU VN 2 SUU SUU SUU SVV − SVN b 2 is exactly zero!! 5.33 (Mathcad worksheets in the Mathcad Utilities Directory are also available to do these calculations) Students in my thermodynamics courses have produced thermodynamics diagrams for many fluids using the program PR1 and following the methods in illustrations of Chapters 4 and 5. The following figures are examples of some of these diagrams. It should be noted that all of these diagrams are in qualitative, but not quantitative agreement with thermodynamic diagrams generated using more accurate equations of state. In particular, liquid densities are not predicted very accurately from the Peng-Robinson e.o.s. so that the location of the two-phase dome is somewhat shifted as are the other thermodynamic properties. Diagrams for other substances will be found in the file named “Other figs” Thermodynamic properties of nitrogen by Tom Petti Solutions to Chemical and Engineering Thermodynamics, 3e Pressure-volume diagram for nitrogen Peng-Robinson eos. Solutions to Chemical and Engineering Thermodynamics, 3e Solutions to Chemical and Engineering Thermodynamics, 3e 5.34 Thermodynamic properties of water (steam) by Allen Donn. Pressure-volume diagram of steam computed with the Peng-Robinson equation of state Solutions to Chemical and Engineering Thermodynamics, 3e Temperature-entropy diagram of steam computed with the Peng-Robinson equation of state. Solutions to Chemical and Engineering Thermodynamics, 3e T= 300°C T= 425°C T= 200°C T= 150°C Pressure-enthalpy diagram of steam computed with the Peng-Robinson equation of state. 5.35(a) This would be a difficult problem if it were not for the availability of the program PR1. Using this . K, program, the critical properties and the heat capacity data in the text, and the T = 27315 P = 1 bar reference state (which cancels out of the problem) we find for ethylene 85 bar and 25° C = 29815 . K H = −6388 J mol S = −52.79 J mol K By trial and error, using guessed values of T until we obtain P vap = 10 bar , we obtain T = 22135 . K ; S V = −29.44 J mol K ; V V = 01536 . ×10−2 m3 mol ; S L = −7871 . J mol K ; V L = 05454 . × 10− 4 m3 mol . Solutions to Chemical and Engineering Thermodynamics, 3e Now considering the fluid initially in the tank that will be in the tank finally as the system we have Ni = N f and Si = S f (b) Now there can not be only vapor in the tank (entropy too high) or only liquid (entropy too low), so there must be two phase mixture. Let x L = mass (or mole) fraction of liquid. Thus: c h x L S L + 1 − xL S V = S i = −52.79 J mol K c h x ( −78.71) + 1 − x L (− 29.44) = −52.79 L − 52.79 + 29.44 xL = = 0.474 ; x V = 0.526 −78.71 + 29.44 Thus, 47.4 wt % of fluid in tank is liquid, and 52.6% is vapor. Based on 1 mole in tank we have . V = 0.474 × 05454 × 10 −4 + 0.526 × 0.1536 × 10 −2 = 8.338 × 10−4 m3 mol volume % liquid = 0.474 × 0.5454 × 10−4 8.338 × 10−4 volume % vapor = 96.9% . × 100 = 31% Solutions to Chemical and Engineering Thermodynamics, 3e 5.36 (also available as a Mathcad worksheet) FG ∂ P IJ H ∂T K = sat Assume V ∆H T ∆V V L >> V ⇒ ∆V ~ V FG ∂ P IJ H ∂T K V = = sat ZRT ' P FG H ∆H ∂ ln P ⇒ 2 ZRT P ∂T IJ K = sat ∆H ZRT 2 but FG ∂ ln P IJ H ∂T K = sat F H ∂ 5622.7 43552 . − − 4 .70504 ln T ∂T T =+ I K 56227 . 4.70504 1 − = 2 (5622.7 − 4.70504T ) 2 T T T Thus ∆H 1 = (5622.7 − 4 .70504T ) ZRT 2 T 2 or ∆H = ZR (56227 . − 4.70504T ) = 31,602 J mol at 75°C Z= 31,602 = 0.9539 8.314 × (5622.7 − 4.70504 × (273.15 + 75)) but PV B = 1 + = Z = 0.9539 RT V so B = 0.9539 − 1 = −0.04607 ; B = −0.04607V V Then V = 0.9539 RT P . To find P use ln Pvap = 43552 . − 5622.7 − 4 .70504 ln( 27315 . + 75) (273.15 + 75) Pvap = 0.8736 bar V= 0.9539 × 8.314 × 10−5 × (273.15 + 75) = 31606 . × 10 −2 m3 mol 0.8736 and B = −1456 . × 10−3 m3 mol Solutions to Chemical and Engineering Thermodynamics, 3e 5.37 We start with Eqn. (5.7-4), the Clapeyron equation FG ∂ P IJ H ∂T K sat = G I =G II ∆H T∆V [Note: Error in problem statement of 1st printing. Disregard comment that the volume change on fusion is zero.] From the problem statement ∆H = 48.702 kJ mol , but no data on ∆V is given. Also Psat = 1013 . bar at T = 185 . ° C = 29165 . K . Based on other hydrocarbons, we can guess that ∆V fus ~ 1 to 2 × 10−4 m3 kg We will use this as an estimate and determine the effect on Tm . Also, the molecular weight of hexadecane is 226.45. Thus dP 48.702 kJ mol × 1000 J kJ = d ln T δ × 10 −4 m3 kg × 226 .54 g mol × 1 kg 1000 g = 214 .98 × 107 J m3 δ [where δis 1 or 2] 214.98 × 107 214 .98 × 10 2 J m3 × 10 −2 bar ⋅ m 3 kJ × 10−3 kJ J = bar δ δ 21498 21498 T2 dP = d ln T ⇒ ( P − 1.013 bar ) = ln δ δ 291.65 K 294.36 if δ = 1 (200 − 1013 . )×δ T2 = 291.65 exp = 21498 297.10 if δ = 2 = OP RS Q T LM N So the freezing point is raised between 2.7 and 5.5 K, depending on the (unknown) value of ∆V fus . 5.38 (also available as a Mathcad worksheet) This is a one-component adiabatic flash process. I will assume that only vapor + liquid are present, and then show that this is indeed the case. There are two ways to solve this problem. One is to calculate all the thermodynamic properties, and the second is to use the steam tables. Both methods will be considered here (1) Calculating all thermodynamic properties, and assuming the vapor phase is ideal. energy balance: 10. U$ L (T = 95° C) = (10 − x)U$ L (T) + xU$ V (T) equilibrium requirements: T L = T V ; P L = P V ; and G L = GV ⇒ P = P vap Also, using data supplied earlier, F H Pvap = exp 14.790 − and by the ideal gas law 54328 . T I K Solutions to Chemical and Engineering Thermodynamics, 3e P= N V RT x 18 mol × 8.314 × 10− 5 (bar ⋅ m 3 mol K ) T = VV 1 × 10−3 − (10 − x) 106 volume taken up by liquid Equating P and P vap we have F H I K x 18 × 8.314 × 10−5 T 5432.8 x 8314 . T = exp 14.790 − = ⋅ 1 × 10 −3 − (10 − x) 10 6 T 18 1000 − (10 − x) Also we have for the internal energies U$ L (T = 0° C) = 0 reference state U$ L (T = 95° C) = 95° C × 4184 . J g° C = 397 .48 J g L $ U (T ) = (T − 273.15) × 4184 . assuming C = constant v 8.314 × 273.15 U (T = 0° C) = ∆H − RT = 2260 − = 213383 . J g 18 U$ V (T ) = 213383 . + (T − 27315 . ) × 2.09 $V $ vap so that 10 × 397 .48 = (10 − x) × 4 .184 × (T − 27315 . ) + x 213383 . + (T − 27315 . ) × 2.09 I find that the solution to these equations is T = 352.68 K and P = 05411 . bar x = 03289 . g This is so far above the melting point of water, that the presence of an ice phase is impossible. (2) Using the steam tables energy balance: 10 ⋅ U$ L ( T = 95° C) = 10 × 397 .88 = (10 − x )U$ L ( T ) − xU$ V ( T ) 1442443 both at saturation also P = P sat (T) and V = 0.001 m3 = (10 − x)V$ L (T) + xV$ V (T) Procedure i) Guess T, get Psat (T) , V$L (T ) , V$ V (T) , U$ L (T) and U$ V (T ) from steam tables ii) See if Eqns. (1) and (2) are satisfied by using Eqn. (2) to get x, and then seeing if Eqn. (1) is satisfied. For example, guess T = 80° C : V$ L = 1029 . ×10−6 m3 g V$ V = 3407 . × 10−3 m3 g P = 4739 . kPa U$ L = 334.86 J g U$ V = 2482.2 J g ⇒ x( eqn. (2 )) = 0.29058 ; x( eqn. (1)) = 0.29348 Solutions to Chemical and Engineering Thermodynamics, 3e by iteration and interpolation T = 794 . ° C , P = 04739 . bar and x = 029 . grams . Difference between this solution and the previous one is due to the inaccuracies of the approximate vapor pressure equation in Part 1, and the assumption of constant heat capacities. 5.39 All the P-V data for this problem was obtained with a simple basic language program written for this problem. Calculations were done for n-butane as a representative fluid. The van der Waals loop region is shown on the diagram. What is interesting is that, in addition to the van der Waals loop, there is much structure in the P-V plot. Much of it occurs in the region of b > V and V < 0 , so that it has no relevance to our calculations. In the region V > b there is only the van der Waals loop behavior at low reduced temperatures, and the hyperbolic behavior ( PV = RT ) at very high temperatures. The main point is that the cubic equations we use exhibit quite complicated P- V behavior, but only relatively simple behavior in the region of interest to us, which is V > b . P- V diagram for n-butane calculated with the Peng-Robinson equation of state for realizable (V > b ) and physically unrealizable ( V < b ) regions. Solutions to Chemical and Engineering Thermodynamics, 3e 5.40 Let TE = the equilibrium transition temperature when both solid phases are stable. d G = VdP − SdT Also dH = TdS +VdP so at constant pressure FG ∂ S IJ H∂TK = P FG IJ H K 1 ∂H T ∂T = P Cp T ⇒ phase with higher heat capacity will have a higher entropy since the entropy of both phases are zero at 0 K. Then, again at constant pressure FG ∂ G IJ H ∂T K = −S P Since both phases have the same Gibbs free energy at the temperature, T, this implies that the substance with the larger entropy (which arises from larger heat capacity) will have the lower Gibbs free energy, and therefore be the stable phase. 5.41 PV B( T ) RT B(T ) RT =1+ ; P= + RT V V V2 FG ∂ P IJ H ∂V K =− T 2 B(T ) 3 >− RT V 1 2 2 ; −2 B(T ) RT V3 ; B( T ) > − V V Back to virial eq. <0 V3 2 V 2 =− V V ; B( T ) > − 2 2 a PV 2 +1 ± 1 + 4 PB RT − V − B( T ) = 0 ; V = RT 2 P RT V= RT RT 4 PB ± 1+ 2P 2P RT B >− LM N OP LM QN 1 RT 4 PB 1± 1+ 2 2P RT B a 1 ± 1 + 4 PB RT In fact, B( T ) > − f >− f OP Q RT fluid will be stable 4P V is sufficient since B(T ) << V in all conditions where second virial coefficient is 2 used. Approximation B( T ) > − V RT ⇒ B(T ) ~> − for stability. 2 2P Solutions to Chemical and Engineering Thermodynamics, 3e 5.42 Easy way dU dV dS Q& & = Q& − P ; = + Sgen dt dt dt T System of constant entropy Q& = − TS&gen Also constant pressure dU dV d = − TS&gen − P = − TS&gen − ( PV ) dt dt dt dU d d dH + ( PV ) = (U + PV ) = = − TS&gen ≤ 0 dt dt dt dt ⇒ H = maximum at equilibrium dH = 0 d2H ≥ 0 ⇒ dH = TdS + VdP FG ∂ T IJ (dS) + FG ∂ T IJ dSdP + FG ∂V IJ H∂S K H∂ PK H ∂S K F ∂ T IJ a∂ S f ≥ 0 ⇒ FG ∂ T IJ ≥ 0 d H=G H∂S K H ∂SK FG ∂ T IJ = T ≥ 0 ⇒ C > 0 H ∂SK C 2 d2H = P S dPdS + P FG ∂V IJ (dP) H ∂ PK 2 S 2 2 P P P P P More theoretically correct way Equilibrium criterion for a closed system at constant entropy and pressure. dU dV dS Q& & = Q& − P ; = + Sgen dt dt dt T dS Q& = T − TS&gen dt dU dS dV =T −P − TS&gen dt dt dt dS dV d Constant entropy = 0 ; constant pressure P = ( PV ) dt dt dt dU d d (U + PV ) = −TS&gen ⇒ = − ( PV ) − TS&gen ; dt dt dt dH dH = − TS&gen ≤ 0 ⇒ ≤ 0 ⇒ H = minimum stability dt dt d 2 H > 0 but dH = TdS + VdP + G i dN c hc h + cH + H hcdN h + 2c H + H h dS dN > 0 N +N = N H cdS h + 2 N H dS dN N N I II d 2 H = HSS + HSS dS I I SN I II SN II I II 2 I I NN I I SS I 2 II NN I I 2 Making a transformation of variables H dx1 = dS I + SN dN ; dx2 = dN I H NN I I SN I I c h I + N I H NN dN I 2 >0 Solutions to Chemical and Engineering Thermodynamics, 3e θ1 = NHSS ; θ2 = cNH SS NH NN 2 − N 2 HSN h NHSS As a check θ1dx12 + θ2 dx22 FG H HSN dN I HSS = NH SS dS I + = NH + SS NH dS I2 + 2 NH I2 NN dN SS 2 + H SN 2 2 NHSS NH NN − N 2 HSN dN I NHSS I dS dN + NH I ⋅ SS H SS 2 SN NH − ⋅ IJ K 2 H SN dN 2 H SS I2 I2 dN H SS which is correct so θ1dx12 + θ2 dx22 ≥ 0 ⇒ θ1 > 0; θ2 > 0 FG ∂ H IJ = N ∂ FG ∂ H IJ = N FG ∂T IJ > 0 H ∂ S K ∂S H ∂S K H∂S K C F ∂V IJ ; FG ∂ S IJ = C ⇒ FG ∂ S IJ = NC but d S = dT − G H ∂T K H ∂ T K T H ∂ T K T T θ1 = NHSS = N 2 2 P P P P P P P P P T ⇒N > 0 ; N > 0, T > 0 ⇒ CP > 0 NCP Second criterion FG H 2 NHSS NHNN − N 2 HSN ∂2 H ; H NN = NHSS ∂ N2 HSN = NH NN IJ K = S, P ∂ (G ) ∂N S, FG ∂ H IJ = ∂ (T) = FG ∂T IJ H ∂S K ∂ N H∂ NK H F ∂ G IJ − N a∂T ∂ N f −N = NG H H∂ NK a∂ T ∂ S f ∂ ∂N = P FG ∂G IJ H∂ NK S, P S ,P S, P P, N S ,P 2 S, P 2 SN SS S ,P =? P, N 5.43 (also available as a Mathcad worksheet) 5.43 Cp 0 R ISENTHALPIC CLAUSIUS EQUATION OF STATE CALCULATION 20.97 8.314 . 10 bb 0 4.28 . 10 5 bb 1 1.35 . 10 7 b( T ) bb 1 . T bb 0 5 Input initial temperature and pressure of calculation Input final pressure Pf Initial state calculations Ti bar 10 T Ti P Pi Vi 120 273.15 Pi ( R. Ti) 50 b ( Ti) Pi Zi ( Pi . Vi ) R. Ti Zi = 1.1467 DELHin R. T . ( Zi 1) Vi DELHin = 214 Guess for final state Residual enthalpy (DELHF) 2 R. Ti . bb 1 T 0.8 . Ti V( T , P ) P ( R. T ) P . 105 b ( Ti) Pf b( T ) Z( T , P ) ( P . V( T , P ) ) R. T bar Solutions to Chemical and Engineering Thermodynamics, 3e R .T .( Z ( T , P ) DELHF ( T , P ) 2 R. T . bb 1 1) V( T , P ) . 105 b( T ) DELHIG( T , P ) Ideal gas properties changes relative to the initial state Cp 0 . ( T Ti) Solve for the exit temperature Given δH DELHF( T , P ) DELHF( T , P ) DELHIG( T , P ) DELHIG( T , P ) DELHin 0 DELHin T DELHF( T , P ) HF T = 401.314 find( T ) DELHIG( T , P ) SUMMARY OF RESULTS FEED EXIT Temperature, K Ti = 393.15 T = 401.314 Pressure, bar Pi = 50 P = 10 Zi = 1.1467 Compressibility Enthalpy (relative to the feed) Z( T , P ) = 1.0291 HF = 214 0 13 δH = 3.1264 10 Symbolic determination of enthalpy departure function for the Clausius equation of state b ( T , bb ) bb 0 File: 5-43 symbolic bb 1 . T ( R. T ) P( T , V, R, bb ) V b ( T , bb ) R d P( T , V, R, bb ) dT der( T , V, R, bb ) V bb 0 bb 1 . T T R. V bb 0 bb 1 . T . bb 2 1 d P( T , V, R, bb ) dT Int( T , V, R, bb ) T . der( T , V, R, bb ) Int( T , V, R, bb ) T. P( T , V, R, bb ) R V bb 0 Upon simplification bb 1 . T T R. V bb 0 2 R. T . bb 1 . T . bb 2 1 R. V bb 0 bb 1 V bb 0 bb 1 . T T 2 bb 1 . T Solutions to Chemical and Engineering Thermodynamics, 3e V DelH ( T , V , R , bb ) Int( T , S , R, bb ) d S 15 MATHCAD has trouble with an infinite lower limit, so use a very large number instead 10 bb 1 2 R. T . DelH( T , V, R, bb ) V bb 0 1000000000000000 bb 0 bb 1 . T This term can be neglected, would be zero if an infinite lower limit could be used bb 1 2 R. T . DelH( T , V, R, bb ) bb 1 . T bb 1 2 R. T . bb 1 . T V bb 0 Final result 5.44 Clausius EOS: P = RT V − b( T ) Condition for stability is FG ∂ P IJ H ∂V K <0 T For the Clausius equation ∂P RT =− Since R > 0 , T > 0 and (V − b)2 > 0 . ∂V T (V − b) 2 FG IJ H K F ∂ P IJ must be negative or Then G H ∂V K FG ∂ P IJ < 0 ⇒ Single phase is stable at all conditions. H ∂V K T T 5.45 See solution to Problem 5.41. If fluid is unstable, then a vapor-liquid phase transition can occur. 5.46 Redlich-Kwong equation of state ln f 1 = P RT z V = ZRT P V =∞ FG RT − PIJ dV − ln Z + (Z − 1) HV K Solutions to Chemical and Engineering Thermodynamics, 3e z FGH RTV − PIJKdV = z FGH RTV − VRT− b + V(aV(T+)b)IJKdV V V =∞ z V = RT ln V V −b dV − RT ln + a (T ) V →∞ (V − b)V → ∞ V (V + b) V =∞ F I FG H K H F I H K F I H K F H IJ K F H I K V 1 V +b Z a Z+ B + a − ln = RT ln − ln V −b b V Z −B b Z f Z a Z +B ln = ln − ln − ln Z + ( Z − 1) P Z − B bRT Z a Z+B = − ln( Z − B ) − ln + ( Z − 1) bRT Z a Z + Pb RT = ( Z − 1) − ln(Z − B) − ln bRT Z aP bP A= ; B= RT 2 RT f A Z +B ln = ( Z − 1) − ln( Z − B) − ln P B Z Using the same analysis for the Soave-Redlich-Kwong equation of state leads to the following f Pb a (T ) Z + Pb RT ln = ( Z − 1) − ln Z − − ln P RT RTb Z a (T ) Z +B = ( Z − 1) − ln( Z − B) − ln RTb Z = RT ln F H F H I K I K LM a N LM OP N Q I K fO QP 5.47 (also available as a Mathcad worksheet) See Mathcad for the graphs. Problem 5.47 R .T P( V, T , R , a , b ) R. T b T 126.2 . K 0.5 . V. ( V b ) R. T . ln ( V) P( V, T , R, a , b ) d V V Tc V a a . ln ( V) a 1. . T .b 6 3.396 . 10 . Pa Pc 1. . ln ( V 1. . b ) . R. T 8.314 . R Pa . m mole . K 3 a 0.42748 . . ln ( V b ) T .b 2 2.5 R . Tc b 0.08664 . R. Tc Pc Pc 110 . K T 0 .. 100 i Pi 1.5 . b V0 R. T Vi fopi Vi . 1.001 i 1 V0 = 4.015 10 a b ln Vi T 0.5 . Vi Vi b Vi . Vi ln Zi Zi b Zi a 1 T 1.5 . R. b . ln Pi . Vi R. T Vi Vi b 5 3 1 m mole V100 = 5.655 10 3 3 1 m mole Solutions to Chemical and Engineering Thermodynamics, 3e fi Pi . exp fopi 150 100 P i 50 5 10 .Pa 0 50 0 0.5 1 1.5 log 2 2.5 V i b 6 2.5 10 6 2 10 6 1.5 10 f i 6 1 10 5 5 10 0 0 0.5 1 log T 150 . K i 0 .. 100 V0 1.5 . b Vi Vi . 1.001 i 1 1.5 2 V i b V0 = 4.015 10 5 3 1 m mole 2.5 Solutions to Chemical and Engineering Thermodynamics, 3e R. T Pi Vi fopi fi a b ln T 0.5 . Vi . Vi Vi Vi b Zi b ln Zi Zi a 1 T 1.5 . R. b . ln Pi . Vi V100 = 5.655 10 R. T 3 3 1 m mole Vi Vi b Pi . exp fopi 500 400 300 P i 5 10 .Pa 200 100 0 0 0.5 1 1.5 log 2 2.5 V i b 7 2.5 10 7 2 10 7 1.5 10 f i 7 1 10 6 5 10 0 0 0.5 1 log 1.5 V i b 2 2.5 Solutions to Chemical and Engineering Thermodynamics, 3e 5.48 (also available as a Mathcad worksheet) Problem 5.48 a) If ethanol is an ideal gas, the f = P, so that the fugacity of ethanol is 505 kPa b) Starting from eqn. 5.48 we have that ln (f/P)=(B/V) - ln Z +(Z-1) 505000 . Pa P T mol 126 ) . K ( 273.15 V = 6.571 10 P ( P . V) 1 R. T Given Z ( P . V) R. T fsat 8.314 . R ( R. T ) V 1 B V find( V) V Pa . m mol. K 3 3 3 B 6 m 523 . 10 . mol 3 m V = 5.998 10 3 3 m Z = 0.913 P . exp B ln ( Z ) (Z 1) 5 fsat = 4.592 10 Pa V 5.49 (also available as a Mathcad worksheet) Problem 5.49 The density of ethanol is 0.789 g/cc at 20 C which we will also use at 126 C, and its molecular weight is 46.07. Therefore its liquid molar volume is kPa 3 kg 46.07 . 10 . mol Vl Vl = 5.839 10 3 kg 0.789 . 10 . 5 3 10 . Pa MPa 6 10 . Pa 3 m 3 m a) f fsat . exp ( ( 25 . MPa 505 . kPa ) . Vl ) R. T 5 f = 7.066 10 Pa b) VV( p ) f Vl . 1 fsat . exp 1 . R. T 6 1 1.09 . 10 . kPa . ( 101.3 . kPa p) 5 VV( 25 . MPa ) = 5.681 10 25 . MPa 505 . kPa VV( p ) d p 5 f = 7.024 10 Pa 3 m Solutions to Chemical and Engineering Thermodynamics, 3e 5.50 (also available as a Mathcad worksheet) 5.50 FUGACITY CALCULATION USING SRK EQUATION Read in properties for Pentane Tc kappa calculation 469.6 kap S-R-K Constants: R Pc 0.480 0.00008314 33.74 om 0.251 1.574 . om 0.176 . om. om 0.08664 . b R. Tc 0.42748 . ac 2 2 R . Tc Pc Note that these are being defined as a function of temperature. Pc 2 alf( T ) 1. 1 T kap . 1 ac . alf( T ) a( T ) Tc CA ( T , P ) Z( T , P ) A CA ( T , P ) B CB( T , P ) A .B A V 2 B a( T ) . P CB( T , P ) 2 ( R. T ) P .b R. T Da ( T ) d a( T ) dT Vector of coefficients in the SRK equation in the form 0=-A*B+(A-B^2-B)*Z-*Z^2+Z^3 B 1 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if Im ZZi 0 Set any imaginary roots to zero Sort the roots ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ0 < 10 5 ZZ2 ZZ0 if ZZ2 < 10 5 Set the value of any imaginary roots to value of the real root ZZ Enter temperature T, and pressure P. T 100 C T 273.15 T K P 50 Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) fv ( T , P ) Z( T , P ) 0 Z( T , P ) 2 1 1 ln Z( T , P ) 0 ln Z( T , P ) 2 CB( T , P ) CB( T , P ) CA ( T , P ) . CB( T , P ) ln CA ( T , P ) . CB( T , P ) ln Z( T , P ) 0 CB( T , P ) Z( T , P ) 0 Z( T , P ) 2 CB( T , P ) Z( T , P ) 2 Solutions to Chemical and Engineering Thermodynamics, 3e Fugacity fugl fugv P . exp ( fl( T , P ) ) Fugacity coefficient fugl = 6.49272 P . exp ( fv ( T , P ) ) fl( T , P ) = 2.04134 fugv = 6.49272 phil fugl phil = 0.12985 P fv ( T , P ) = 2.04134 fugv phiv P phiv = 0.12985 SUMMARY OF RESULTS T = 373.15 K Vapor pressure, bar P = 50 LIQUID Compressibility VAPOR Z( T , P ) 0 = 0.23249 Z( T , P ) 2 = 0.23249 Fugacity coefficient phil = 0.12985 phiv = 0.12985 Fugacity, bar fugl = 6.49272 fugv = 6.49272 Read in properties for Benzene Tc kappa calculation S-R-K Constants: kap R 562.1 Pc 0.480 0.00008314 48.94 om 0.212 1.574 . om 0.176 . om. om b 0.08664 . R. Tc ac 0.42748 . Pc Note that these are being defined as a function of temperature. 2 2 R . Tc Pc 2 alf( T ) 1. 1 kap . 1 T a( T ) ac . alf( T ) Tc CA ( T , P ) a( T ) . P 2 ( R. T ) CB( T , P ) P .b R. T Da ( T ) d a( T ) dT Solutions to Chemical and Engineering Thermodynamics, 3e dT Z( T , P ) A CA ( T , P ) B CB( T , P ) A .B A V 2 B Vector of coefficients in the SRK equation in the form 0=-A*B+(A-B^2-B)*Z-*Z^2+Z^3 B 1 1 ZZ Solution to the cubic polyroots ( V) for i ∈ 0 .. 2 ZZi 0 if Im ZZi 0 ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ0 < 10 5 ZZ2 ZZ0 if ZZ2 < 10 5 Set any imaginary roots to zero Sort the roots Set the value of any imaginary roots to value of the real root ZZ Enter temperature T, and pressure P. 100 C T T 273.15 T K P 50 Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) Z( T , P ) 0 fv ( T , P ) Z( T , P ) 2 1 1 ln Z( T , P ) 0 CB( T , P ) ln Z( T , P ) 2 CB( T , P ) CA ( T , P ) . CB( T , P ) ln CA ( T , P ) . CB( T , P ) ln Z( T , P ) 0 CB( T , P ) Z( T , P ) 0 Z( T , P ) 2 CB( T , P ) Z( T , P ) 2 Fugacity fugl fugv P . exp ( fl ( T , P ) ) fugl = 2.01968 P . exp ( fv ( T , P ) ) fugv = 2.01968 Fugacity coefficient fl( T , P ) = 3.20908 fv ( T , P ) = 3.20908 phil fugl phil = 0.04039 P phiv fugv P phiv = 0.04039 SUMMARY OF RESULTS T = 373.15 K Vapor pressure, bar P = 50 LIQUID Compressibility Z( T , P ) 0 = 0.17187 VAPOR Z( T , P ) 2 = 0.17187 Fugacity coefficient phil = 0.04039 phiv = 0.04039 Fugacity, bar fugl = 2.01968 fugv = 2.01968 Solutions to Chemical and Engineering Thermodynamics, 3e 5.51 (Solution using Mathcad worksheet) T = -200o C Pvap = 0.10272 bar Z V = 0.99512 Z L = 4 .414 × 10 −4 H V = − 55795 . × 103 H L = −1.2994 × 104 S V = 17.372 S L = −118.74 T = -180o C Pvap = 1.348 bar Z = 0.96359 Z L = 4 .955 × 10−3 H V = − 51095 . × 103 H L = − 11948 . × 104 S V = −32.734 S L = −106.15 V T = -160o C Pvap = 6.750 bar Z V = 0.8810 Z L = 0.02307 H V = − 4.7953 × 103 H L = −1.0805 × 104 S V = −42.099 S L = −95.210 T = -140o C Pvap = 20.676 bar Z V = 0.73096 Z L = 0.07305 H V = − 4.7988 × 103 H L = − 9.4328 × 103 S V = −49.6785 S L = −84.481 T = -130o C Pvap = 32.310 bar Z V = 0.61800 Z L = 0.12528 H V = − 5.0406 × 10 3 H L = −8.5449 × 103 S V = −53.938 S L = −78.418 T = -125o C Pvap = 39.554 bar Z = 0.54226 Z L = 016843 . H V = − 52985 . × 10 3 H L = − 7.9739 × 10 3 S V = −56.685 S L = −74.744 V T = -120o C Pvap = 47.848 bar Z V = 0.42788 Z L = 0.24887 H V = − 58378 . × 10 3 H L = − 71281 . × 103 S V = −61034 . S L = −69.459 Solutions to Chemical and Engineering Thermodynamics, 3e The Mathcad worksheet for this file is shown below. Solutions to Chemical and Engineering Thermodynamics, 3e Solutions to Chemical and Engineering Thermodynamics, 3e 5.52 (also available as a Mathcad worksheet) 5.52 Pure component properties calculation using the SRK equation of state Read in properties for oxygen Tc 154.6 Pc 50.46 om 0.021 Heat capacity constants Cp 0 25.460 1.519 . 10 Cp 1 2 Cp 2 0.715 . 10 5 1.311 . 10 Cp 3 9 Reference state and kappa calculation Trs 298.15 S-R-K Constants: Prs 1.0 kap R 0.480 0.00008314 1.574 . om 0.176 . om. om b 0.08664 . R. Tc ac 0.42748 . Pc Note that these are being defined as a function of temperature for convenience. 2 2 R . Tc Pc 2 alf( T ) 1. 1 kap . 1 T a( T ) ac . alf( T ) Tc CA ( T , P ) a( T ) . P 2 ( R. T ) CB( T , P ) P .b R. T Da ( T ) d a( T ) dT Solutions to Chemical and Engineering Thermodynamics, 3e CA ( T , P ) Z( T , P ) A CA ( T , P ) B CB( T , P ) A .B 2 A V B a ( T ) .P ( R .T ) P .b R. T CB( T , P ) 2 Da ( T ) d a( T ) dT Vector of coefficients in the SRK equation in the form 0=-A*B+(A-B^2-B)*Z-*Z^2+Z^3 B 1 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ2 ZZ0 if Im ZZi 0 Set any imaginary roots to zero Sort the roots ZZ0 < 10 5 ZZ2 < 10 5 Set the value of any imaginary roots to value of the real root ZZ Enter temperature T, and pressure P. T 125 C T 273.15 T K P 100 Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) Z( T , P ) 0 fv ( T , P ) 1 Z( T , P ) 2 1 ln Z( T , P ) 0 ln Z( T , P ) 2 CB( T , P ) CB( T , P ) CA ( T , P ) . CB( T , P ) ln CA ( T , P ) . CB( T , P ) ln Z( T , P ) 0 CB( T , P ) Z( T , P ) 0 Z( T , P ) 2 CB( T , P ) Z( T , P ) 2 Fugacity fugl fugv P . exp ( fl( T , P ) ) P . exp ( fv ( T , P ) ) Fugacity coefficient fugl = 34.64672 fl( T , P ) = 1.05997 phil fugv = 34.64672 fv ( T , P ) = 1.05997 phiv Residual entropy for liquid (DELSL) and vapor (DELSV) phases fugl P fugv P phil = 0.34647 phiv = 0.34647 Solutions to Chemical and Engineering Thermodynamics, 3e R. ln Z ( T , P ) DELSL 0 R. ln Z( T , P ) 2 DELSV Da ( T ) . CB( T , P ) Z( T , P ) 0 ln Da ( T ) . Z( T , P ) 2 ln . 105 Z( T , P ) 0 b CB( T , P ) CB( T , P ) CB( T , P ) . 105 Z( T , P ) 2 b Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases DELHL DELHV R . T . Z( T , P ) 0 1 R . T . Z( T , P ) 2 1 T . Da ( T ) a( T ) . ln Z( T , P ) 0 Z( T , P ) 0 b T . Da ( T ) a( T ) . ln CB( T , P ) Z( T , P ) 2 . 105 CB( T , P ) . 105 Z( T , P ) 2 b Ideal gas properties changes relative to the reference state DELHIG DELSIG Cp 0 . ( T Cp 0 . ln Trs ) Cp 1 . T 2 Trs 2 Cp 2 . T 2 T Trs Cp 1 . ( T 3 Trs 3 Cp 3 . T 3 Trs ) Cp 2 . T 2 Trs 4 Trs 4 4 2 Cp 3 . T 2 3 Trs 3 3 P 5 R. 10 . ln Prs Total entropy and enthalpy relative to ideal gas reference state SL DELSIG DELSL V0 SV 2 T Z( T , P ) 0 . 8.314 . 10 . P DELSIG DELSV HL V0 = 0.04081 DELHIG DELHL V2 HV DELHIG DELHV 2 T Z( T , P ) 2 . 8.314 . 10 . P V2 = 0.04081 SUMMARY OF RESULTS T = 148.15 K Vapor pressure, bar P = 100 LIQUID Compressibility Z( T , P ) = 0.3313 VAPOR Z( T , P ) = 0.3313 Solutions to Chemical and Engineering Thermodynamics, 3e LIQUID VAPOR Compressibility Z( T , P ) 0 = 0.3313 Z( T , P ) 2 = 0.3313 Volume, m^3/kmol V0 = 0.04081 V2 = 0.04081 Enthalpy, J/mol 3 HL = 9.29109 10 3 HV = 9.29109 10 Entropy, J/mol K SL = 83.19194 SV = 83.19194 Fugacity coefficient phil = 0.34647 phiv = 0.34647 Fugacity, bar fugl = 34.64672 fugv = 34.64672 Some representative results are shown below. T (C) P=1 bar Z V H S -125 -150 -175 -200 0.9923 12.2227 -4301.41 -19.97 0.9872 10.1072 -4994.48 -25.1 0.9766 7.9693 -5684.02 -31.35 0.9505 5.7804 -6375.9 -35.49 P=10 bar Z V H S 0.9193 1.1323 -4561.07 -40.28 0.8565 0.877 -5357.77 -46.18 0.03572 0.02914 -12395.6 -106.11 0.04292 0.0261 -13706.2 -121.5 P=50 bar Z V H S 0.1946 0.04795 -8938.78 -79.34 0.1647 0.03373 -10919.2 -93.79 0.17634 0.02878 -12338.7 -106.71 0.21349 0.02597 -13628.9 -121.86 0.3313 0.04081 -9291.09 -83.19 0.318 0.03256 -10896.8 -95.02 0.34788 0.02839 -12261.8 -107.39 0.42446 0.02581 -13530.9 -122.29 P=100 bar Z V H S . 5.53 (also available as a Mathcad worksheet) 5.53 Pure component properties calculation using the SRK equation of state Read in properties for Water Tc 647.3 Pc 220.48 om 0.344 Heat capacity constants Cp 0 32.218 Cp 1 0.192 . 10 2 Cp 2 1.055 . 10 5 Cp 3 3.593 . 10 9 Solutions to Chemical and Engineering Thermodynamics, 3e Reference state and kappa calculation Trs 373.15 Prs 1.013 kap S-R-K Constants: R 0.480 0.00008314 1.574 . om 0.176 . om. om 0.08664 . b R. Tc 0.42748 . ac 2 2 R . Tc Pc Note that these are being defined as a function of temperature for convenience. Pc 2 alf( T ) 1. 1 T kap . 1 ac . alf( T ) a( T ) Tc CA ( T , P ) Z( T , P ) A CA ( T , P ) B CB( T , P ) A .B A V 2 B a( T ) . P ( R. T ) CB( T , P ) 2 P .b R. T Da ( T ) d a( T ) dT Vector of coefficients in the SRK equation in the form 0=-A*B+(A-B^2-B)*Z-*Z^2+Z^3 B 1 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ2 ZZ0 if Im ZZi 0 Set any imaginary roots to zero Sort the roots ZZ0 < 10 5 ZZ2 < 10 5 Set the value of any imaginary roots to value of the real root ZZ Enter temperature T, and pressure P. T 50 C T 273.15 T K P 0.15 Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) fv ( T , P ) Z( T , P ) 0 Z( T , P ) 2 1 1 ln Z( T , P ) 0 ln Z( T , P ) 2 CB( T , P ) CB( T , P ) CA ( T , P ) . CB( T , P ) ln CA ( T , P ) . CB( T , P ) ln Z( T , P ) 0 CB( T , P ) Z( T , P ) 0 Z( T , P ) 2 CB( T , P ) Z( T , P ) 2 Solutions to Chemical and Engineering Thermodynamics, 3e Fugacity fugl fugv Fugacity coefficient P . exp ( fl ( T , P ) ) fugl = 0.09983 fl( T , P ) = 0.40721 P . exp ( fv ( T , P ) ) fugv = 0.14972 3 fv ( T , P ) = 1.83629 10phiv fugl phil phil = 0.6655 P fugv P phiv = 0.99817 Residual entropy for liquid (DELSL) and vapor (DELSV) phases DELSL DELSV R. ln Z( T , P ) 0 CB( T , P ) Da ( T ) . R. ln Z( T , P ) 2 CB( T , P ) Da ( T ) . Z( T , P ) 0 ln CB( T , P ) . 105 Z( T , P ) 0 b Z( T , P ) 2 ln CB( T , P ) . 105 Z( T , P ) 2 b Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases DELHL DELHV R . T . Z( T , P ) 0 1 R . T . Z( T , P ) 2 1 T . Da ( T ) a( T ) . ln Z( T , P ) 0 Z( T , P ) 0 b T . Da ( T ) a( T ) . ln CB( T , P ) Z( T , P ) 2 . 105 CB( T , P ) . 105 Z( T , P ) 2 b Ideal gas properties changes relative to the reference state DELHIG DELSIG Cp 0 . ( T Cp 0 . ln Trs ) Cp 1 . T 2 Trs 2 Cp 2 . T 2 T Trs Cp 1 . ( T 3 Trs 3 Cp 3 . T 3 Cp 2 . T Trs ) 2 Trs 4 Trs 4 4 Cp 3 . T 2 2 3 Trs 3 3 P 5 R. 10 . ln Prs Total entropy and enthalpy relative to ideal gas reference state SL DELSIG DELSL SV DELSIG DELSV HL DELHIG DELHL HV DELHIG DELHV SUMMARY OF RESULTS T = 323.15 K Vapor pressure, bar P = 0.15 LIQUID VAPOR 4 Compressibility Z( T , P ) 0 = 1.35706 10 Enthalpy, J/mol 4 HL = 4.74037 10 3 HV = 1.71382 10 Entropy, J/mol K SL = 127.05678 SV = 10.96203 Fugacity coefficient phil = 0.6655 phiv = 0.99817 Fugacity, bar = Z( T , P ) 2 = 0.99816 = Solutions to Chemical and Engineering Thermodynamics, 3e 5.54 (also available as a Mathcad worksheet) 5.54 ISENTHALPIC PENG-ROBINSON EQUATION OF STATE CALCULATION Tc 154.6 Cp 0 Pc 25.46 50.46 om 1.591 . 10 Cp 1 2 Peng-Robinson Constants: 0.021 0.7151 . 10 Cp 2 R kap 1.54226 . om 0.26992 . om. om 0.37464 5 1.311 . 10 Cp 3 0.00008314 0.07780 . b 9 R. Tc 0.45724 . ac Pc Input initial temperature and pressure of calculation Input final pressure Pf Ti T Ti P T kap . 1 a( T ) ac . alf( T ) Tc Da ( T ) Z( T , P ) A CA ( T , P ) B CB( T , P ) A .B 2 (1 bar 30 CA ( T , P ) a( T ) . P ( R. T ) 2 P .b R. T CB( T , P ) d a( T ) dT 3 B 3.B A V 2 Pi Pi 2 1. 1 Pc bar 3.0 Initial state calculations alf( T ) K, 120. B Vector of coefficients in the PR equation in the form 0=-(A*B-B^2-B^3)+(A-3*B^2-2*B)*Z-(1-B)*Z^2+Z^3 2.B B) 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ2 ZZ0 if 2 2 R . Tc Im ZZi 0 ZZ0 < 10 5 ZZ2 < 10 5 Set any imaginary roots to zero Sort the roots Set the value of any imaginary roots to value of the real root ZZ Calculate inital properties Calculate initial molar volume and enthalpy and entropy departure Zf( T , P ) VL Z( T , P ) Z( T , P ) 0 . R . T P 0.0888 . 103 Z( T , P ) = 0 0.0888 Solutions to Chemical and Engineering Thermodynamics, 3e R . T . Z( T , P ) 0 DELHin a( T ) . ln 2. 2 .b R. ln Z( T , P ) 0 DELSin T . Da ( T ) 1 Da ( T ) . CB( T , P ) 3 DELHin = 5.9875 10 ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) . 105 . 105 DELSin = 40.1647 Guess for final state 0.8 . Ti T P Pf Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) fv ( T , P ) Given Z( T , P ) 0 Z( T , P ) 2 fl( T , P ) 1 1 ln Z( T , P ) 0 ln Z( T , P ) 2 fv ( T , P ) 0 CA ( T , P ) CB( T , P ) 2 . 2 . CB( T , P ) CA ( T , P ) CB( T , P ) T . ln . ln 2 . 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) T = 101.906 find( T ) Residual entropy for liquid (DELSL) and vapor (DELSV) phases DELSL( T , P ) DELSV( T , P ) R. ln Z( T , P ) 0 R. ln Z( T , P ) 2 CB( T , P ) CB( T , P ) Da ( T ) . ln 2. 2 .b Da ( T ) . ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases DELHL( T , P ) DELHV( T , P ) R . T . Z( T , P ) 0 R . T . Z( T , P ) 2 1 T . Da ( T ) a( T ) . ln 2. 2 .b 1 T . Da ( T ) a( T ) . 2. 2 .b ln Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Solutions to Chemical and Engineering Thermodynamics, 3e Ideal gas properties changes relative to the initial state DELHIG( T , P ) Cp 0 . ( T DELSIG( T , P ) T Cp 0 . ln Ti Ti) Cp 1 . T 2 Cp 2 . T 2 Ti 2 Cp 1 . ( T Find vapor-liquid split 3 Cp 3 . T 3 Ti 3 Ti) Cp 2 . T 2 4 Ti 4 2 Ti Cp 3 . T 2 x 4 3 3 Ti P 5 R. 10 . ln Pi 3 0.5 Given x. DELHV( T , P ) x x) . DELHL( T , P ) (1 DELHIG( T , P ) DELHin x = 0.1618 find( x) Fraction vapor HV DELHV( T , P ) DELHIG( T , P ) SV DELSV( T , P ) DELSIG( T , P ) HL DELHL( T , P ) DELHIG( T , P ) SL DELSL( T , P ) DELSIG( T , P ) δH x. HV ( 1 x) . HL DELHin δS x. SV ( 1 x) . SL DELSin SUMMARY OF RESULTS Temperature, K FEED Ti = 120 Pressure, bar Pi = 30 Enthalpy, J/mol (relative to feed) Entropy, J/mol K (relative to feed) VAPOR T = 101.906 P=3 P=3 x = 0.1618 Vapor-liquid split Compressibility LIQUID T = 101.906 Z( Ti, Pi ) 0 = 0.0888 Z( T , P ) 0 = 9.3464 10 0 3 HL = 7.0203 10 0 SL = 48.8038 3 Enthalpy change J/mol δH = 0 Entropy change J/mol K δS = 1.4957 Z( T , P ) 2 = 0.9309 HV = 635.2466 SV = 13.8527 Solutions to Chemical and Engineering Thermodynamics, 3e 5.55 (also available as a Mathcad worksheet) ISENTROPIC PENG-ROBINSON EQUATION OF STATE CALCULATION Tc 154.6 Cp 0 Pc 25.46 50.46 om 1.591 . 10 Cp 1 2 Peng-Robinson Constants: 0.021 0.7151 . 10 Cp 2 R kap 1.54226 . om 0.26992 . om. om 0.37464 5 1.311 . 10 Cp 3 0.00008314 0.07780 . b 9 R. Tc ac 0.45724 . 2 2 R . Tc Pc Input initial temperature and pressure of calculation Input final pressure Pf Ti T Ti P T kap . 1 a( T ) ac . alf( T ) Tc Da ( T ) Z( T , P ) A CA ( T , P ) B CB( T , P ) A .B 2 (1 CA ( T , P ) a( T ) . P ( R. T ) 2 P .b R. T CB( T , P ) d a( T ) dT 3 B 3.B A V 2 bar 30 Pi 2 1. 1 Pi bar 3.0 Initial state calculations alf( T ) K, 120. Pc B Vector of coefficients in the PR equation in the form 0=-(A*B-B^2-B^3)+(A-3*B^2-2*B)*Z-(1-B)*Z^2+Z^3 2.B B) 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ2 ZZ0 if Im ZZi 0 ZZ0 < 10 5 ZZ2 < 10 5 Set any imaginary roots to zero Sort the roots Set the value of any imaginary roots to value of the real root ZZ Calculate inital properties Calculate initial molar volume and enthalpy and entropy departure Zf( T , P ) VL Z( T , P ) Z( T , P ) 0 . R . T P 0.0888 . 103 Z( T , P ) = 0 0.0888 Solutions to Chemical and Engineering Thermodynamics, 3e R . T . Z( T , P ) 0 DELHin a( T ) . ln 2. 2 .b R. ln Z( T , P ) 0 DELSin T . Da ( T ) 1 Da ( T ) . CB( T , P ) 3 DELHin = 5.9875 10 ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) . 105 . 105 DELSin = 40.1647 Guess for final state 0.8 . Ti T P Pf Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) fv ( T , P ) Given Z( T , P ) 0 Z( T , P ) 2 fl( T , P ) 1 1 ln Z( T , P ) 0 ln Z( T , P ) 2 fv ( T , P ) 0 CA ( T , P ) CB( T , P ) 2 . 2 . CB( T , P ) CA ( T , P ) CB( T , P ) T . ln . ln 2 . 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) T = 101.906 find( T ) Residual entropy for liquid (DELSL) and vapor (DELSV) phases DELSL( T , P ) DELSV( T , P ) R. ln Z( T , P ) 0 R. ln Z( T , P ) 2 CB( T , P ) CB( T , P ) Da ( T ) . ln 2. 2 .b Da ( T ) . ln 2. 2 .b Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases DELHL( T , P ) DELHV( T , P ) R . T . Z( T , P ) 0 R . T . Z( T , P ) 2 1 T . Da ( T ) a( T ) . ln 2. 2 .b 1 T . Da ( T ) a( T ) . 2. 2 .b ln Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 0 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) Z( T , P ) 2 1 2 . CB( T , P ) . 105 . 105 Solutions to Chemical and Engineering Thermodynamics, 3e Ideal gas properties changes relative to the initial state DELHIG( T , P ) Cp . ( T DELSIG( T , P ) T Cp 0 . ln Ti 0 Ti) Cp 1 . T 2 Cp 2 . T 2 Ti 2 Cp 1 . ( T Find vapor-liquid split x Ti) 3 Cp 3 . T 3 Ti 3 Cp 2 . T 2 2 Ti 4 4 Ti 4 Cp 3 . T 2 3 3 Ti P 5 R. 10 . ln Pi 3 0.5 Given x. DELSV( T , P ) x (1 x) . DELSL( T , P ) DELSIG( T , P ) DELSin x = 0.1379 find( x) Fraction vapor HV DELHV( T , P ) DELHIG( T , P ) SV DELSV( T , P ) DELSIG( T , P ) HL DELHL( T , P ) DELHIG( T , P ) SL DELSL( T , P ) DELSIG( T , P ) δH x. HV ( 1 x) . HL DELHin δS x. SV ( 1 x) . SL DELSin SUMMARY OF RESULTS Temperature, K FEED Ti = 120 Pressure, bar Pi = 30 Enthalpy, J/mol (relative to feed) Entropy, J/mol K (relative to feed) Enthalpy change J/mol Entropy change J/mol K VAPOR T = 101.906 P=3 P=3 x = 0.1379 Vapor-liquid split Compressibility LIQUID T = 101.906 Z( Ti, Pi ) 0 = 0.0888 Z( T , P ) 0 = 9.3464 10 3 Z( T , P ) 2 = 0.9309 0 3 HL = 7.0203 10 HV = 635.2466 0 SL = 48.8038 SV = 13.8527 δH = 152.4165 δS = 0 Solutions to Chemical and Engineering Thermodynamics, 3e 5.56 (also available as a Mathcad worksheet) 5.56 ISENTHALPIC S-R-K EQUATION OF STATE CALCULATION Tc 154.6 Cp 0 Pc 25.46 50.46 om 1.591 . 10 Cp 1 2 S-R-K Constants: 0.021 0.7151 . 10 Cp 2 R kap 1.574 . om 0.176 . om. om 0.480 5 1.311 . 10 Cp 3 0.00008314 0.08664 . b 9 R. Tc ac 0.42748 . 2 2 R . Tc Pc Input initial temperature and pressure of calculation Input final pressure Pf Ti T Ti P T kap . 1 a( T ) ac . alf( T ) CA ( T , P ) Tc A CA ( T , P ) B CB( T , P ) A .B A V 2 B bar 30 a( T ) . P ( R. T ) 2 P .b R. T CB( T , P ) d a( T ) dT Da ( T ) Z( T , P ) Pi Pi 2 1. 1 K, 120. bar 3.0 Initial state calculations alf( T ) Pc Vector of coefficients in the S-R-K equation in the form 0=-A*B+(A-B^2-B)*Z-Z^2+Z^3 B 1 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if Im ZZi 0 Set any imaginary roots to zero Sort the roots ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ0 < 10 5 ZZ2 ZZ0 if ZZ2 < 10 5 Set the value of any imaginary roots to value of the real root ZZ Zf( T , P ) Calculate inital properties Calculate initial molar volume and enthalpy and entropy departure DELHin R . T . Z( T , P ) 0 1 VL Z( T , P ) Z( T , P ) 0 . R . T 0.1004 . 103 Z( T , P ) = P T . Da ( T ) b a( T ) . ln 0 0.1004 Z( T , P ) 0 CB( T , P ) Z( T , P ) 0 . 105 Solutions to Chemical and Engineering Thermodynamics, 3e R. ln Z ( T , P ) DELSin Da ( T ) . 0 CB( T , P ) 3 DELHin = 6.0618 10 ln Z( T , P ) 0 CB( T , P ) Z( T , P ) 0 b . 105 DELSin = 40.9502 Guess for final state 0.8 . Ti T P Pf Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv fl( T , P ) fv ( T , P ) Given Z( T , P ) 0 Z( T , P ) 2 fl( T , P ) 1 1 ln Z( T , P ) 0 CA ( T , P ) . CB( T , P ) ln Z( T , P ) 2 CB( T , P ) CA ( T , P ) . CB( T , P ) fv ( T , P ) 0 T Z( T , P ) 0 ln Z( T , P ) 0 Z( T , P ) 2 ln CB( T , P ) CB( T , P ) CB( T , P ) Z( T , P ) 2 T = 102.0671 find( T ) Residual entropy for liquid (DELSL) and vapor (DELSV) phases DELSL( T , P ) R. ln Z( T , P ) 0 CB( T , P ) Da ( T ) . DELSV( T , P ) R. ln Z( T , P ) 2 CB( T , P ) Da ( T ) . Z( T , P ) 0 ln CB( T , P ) . 105 Z( T , P ) 0 b Z( T , P ) 2 ln CB( T , P ) . 105 Z( T , P ) 2 b Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases DELHL( T , P ) R . T . Z( T , P ) 0 1 DELHV( T , P ) R . T . Z( T , P ) 2 1 T . Da ( T ) a( T ) . ln Z( T , P ) 0 a( T ) . ln . 105 Z( T , P ) 0 b T . Da ( T ) CB( T , P ) Z( T , P ) 2 CB( T , P ) . 105 Z( T , P ) 2 b Ideal gas properties changes relative to the initial state DELHIG( T , P ) Cp 0 . ( T Ti) Cp 1 . T 2 2 2 Ti Cp 2 . T 3 3 3 Ti Cp 3 . T 4 4 4 Ti Solutions to Chemical and Engineering Thermodynamics, 3e T Cp . ln DELSIG( T , P ) 0 Cp 1 . ( T Ti Find vapor-liquid split Cp 2 . T Ti) 2 Cp 3 . T 2 Ti 2 x 3 3 Ti P 5 R. 10 . ln Pi 3 0.5 Given x. DELHV( T , P ) x x) . DELHL( T , P ) (1 DELHIG( T , P ) DELHin x = 0.1661 find( x) Fraction vapor HV DELHV( T , P ) DELHIG( T , P ) SV DELSV( T , P ) DELSIG( T , P ) HL DELHL( T , P ) DELHIG( T , P ) SL DELSL( T , P ) DELSIG( T , P ) δH x. HV ( 1 x) . HL DELHin x. SV ( 1 δS x) . SL DELSin SUMMARY OF RESULTS Temperature, K FEED Ti = 120 Pressure, bar Pi = 30 LIQUID T = 102.0671 P=3 P=3 x = 0.1661 Vapor-liquid split Z( Ti, Pi ) 0 = 0.1004 Compressibility Enthalpy, J/mol (relative to feed) Z( T , P ) 0 = 0.0106 Z( T , P ) 2 = 0.934 3 HL = 7.1435 10 0 Entropy, J/mol K (relative to feed) 5.57 VAPOR T = 102.0671 HV = 630.1699 SL = 49.936 0 SV = 13.8781 Enthalpy change J/mol δH = 0 Entropy change J/mol K δS = 1.6121 (also available as a Mathcad worksheet) 5.57 ISENTROPIC S-R-K EQUATION OF STATE CALCULATION Tc Cp 0 154.6 25.46 Pc 50.46 Cp 1 om 1.591 . 10 2 S-R-K Constants: Cp 2 R 0.021 kap 0.7151 . 10 0.480 5 1.574 . om 0.176 . om. om 1.311 . 10 Cp 3 0.00008314 b 0.08664 . 9 R. Tc ac 0.42748 . Pc Input initial temperature and pressure of calculation Input final pressure Initial state calculations Pf bar 3.0 T Ti P Pi Ti 120. K, 2 2 R . Tc Pc Pi 30 bar Solutions to Chemical and Engineering Thermodynamics, 3e Initial state calculations T Ti P Pi 2 alf ( T ) 1. 1 T kap . 1 a( T ) ac . alf( T ) Tc A CA ( T , P ) B CB( T , P ) A .B A V 2 B P .b R. T CB( T , P ) 2 ( R. T ) d a( T ) dT Da ( T ) Z( T , P ) a( T ) . P CA ( T , P ) Vector of coefficients in the S-R-K equation in the form 0=-A*B+(A-B^2-B)*Z-Z^2+Z^3 B 1 1 ZZ polyroots ( V) Solution to the cubic for i ∈ 0 .. 2 ZZi 0 if Im ZZi 0 Set any imaginary roots to zero Sort the roots ZZ sort ( ZZ ) ZZ0 ZZ2 if ZZ0 < 10 5 ZZ2 ZZ0 if ZZ2 < 10 5 Set the value of any imaginary roots to value of the real root ZZ Zf( T , P ) Calculate inital properties Calculate initial molar volume and enthalpy and entropy departure DELHin DELSin R . T . Z( T , P ) 0 R. ln Z( T , P ) 0 1 VL Z( T , P ) 0 . R . T 0.1004 . 103 Z( T , P ) = P T . Da ( T ) a( T ) . ln CB( T , P ) Da ( T ) . ln CB( T , P ) Z( T , P ) 0 Z( T , P ) 0 CB( T , P ) Z( T , P ) 0 b DELSin = 40.9502 T 0.8 . Ti P 0 0.1004 Z( T , P ) 0 b 3 DELHin = 6.0618 10 Guess for final state Z( T , P ) Pf Fugacity expressions [actually ln(f/P)] for the liquid fl and vapor fv . 105 . 105 Solutions to Chemical and Engineering Thermodynamics, 3e fl ( T , P ) Z( T , P ) fv ( T , P ) Z( T , P ) 2 Given fl( T , P ) 1 0 ln Z( T , P ) 0 ln Z( T , P ) 2 1 CA ( T , P ) . CB( T , P ) CB( T , P ) CA ( T , P ) . CB( T , P ) fv ( T , P ) 0 T ln CB( T , P ) Z( T , P ) 0 Z( T , P ) 2 ln CB( T , P ) Z( T , P ) 0 CB( T , P ) Z( T , P ) 2 T = 102.0671 find( T ) Residual entropy for liquid (DELSL) and vapor (DELSV) phases DELSL( T , P ) R. ln Z( T , P ) 0 CB( T , P ) Da ( T ) . DELSV( T , P ) R. ln Z( T , P ) 2 CB( T , P ) Da ( T ) . Z( T , P ) 0 ln CB( T , P ) . 105 Z( T , P ) 0 b Z( T , P ) 2 ln CB( T , P ) . 105 Z( T , P ) 2 b Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases DELHL( T , P ) R . T . Z( T , P ) 0 1 DELHV( T , P ) R . T . Z( T , P ) 2 1 T . Da ( T ) a( T ) . Z( T , P ) 0 ln a( T ) . . 105 Z( T , P ) 0 b T . Da ( T ) CB( T , P ) Z( T , P ) 2 ln CB( T , P ) . 105 Z( T , P ) 2 b Ideal gas properties changes relative to the initial state DELHIG( T , P ) Cp 0 . ( T DELSIG( T , P ) Cp 0 . ln Ti) Cp 1 . T 2 2 Ti Cp 2 . T 2 T Ti Find vapor-liquid split Cp 1 . ( T x Ti) 3 3 Ti 3 Cp 2 . T 2 (1 x) . DELSL( T , P ) 4 4 Ti 4 2 Ti 2 0.5 Given x. DELSV( T , P ) Cp 3 . T DELSIG( T , P ) DELSin Cp 3 . T 3 3 3 Ti P 5 R. 10 . ln Pi Solutions to Chemical and Engineering Thermodynamics, 3e x x = 0.1408 find ( x ) Fraction vapor HV DELHV( T , P ) DELHIG( T , P ) SV DELSV( T , P ) DELSIG( T , P ) HL DELHL( T , P ) DELHIG( T , P ) SL DELSL( T , P ) DELSIG( T , P ) δH x. HV ( 1 x) . HL DELHin δS x. SV ( 1 x) . SL DELSin SUMMARY OF RESULTS Temperature, K FEED Ti = 120 Pressure, bar Pi = 30 LIQUID T = 102.0671 P=3 P=3 x = 0.1408 Vapor-liquid split Z( Ti, Pi ) 0 = 0.1004 Compressibility Enthalpy, J/mol (relative to feed) Entropy, J/mol K (relative to feed) Z( T , P ) 0 = 0.0106 Z( T , P ) 2 = 0.934 0 3 HL = 7.1435 10 HV = 630.1699 0 SL = 49.936 SV = 13.8781 Enthalpy change J/mol δH = 164.5454 Entropy change J/mol K 5.58 VAPOR T = 102.0671 δS = 7.1054 10 15 This problem was solved using the attached Mathcad worksheet. The results are T(o C) Pvap with α(T) Pvap with α=1 273.15 283.15 293.15 303.15 323.25 343.15 373.15 393.15 423.25 448.15 474.15 523.15 0.3137 0.5529 1.697 3.208 9.994 26.681 92.355 186.67 463.23 886.08 1599.4 4065.2 166.57 221.329 288.55 369.83 580.97 867.65 1467.0 1997.1 3016.5 4094.2 5456.5 8759.0 (P in kPa) Solutions to Chemical and Engineering Thermodynamics, 3e 623.15 643.15 16744 21060 18865 As can be seen, the S-R-K equation is of comparable accuracy to the P-R equation. In both cases if the α parameter is set to one, the results are not very good, indeed quite bad at low temperatures. The Mathcad worksheet used in solving this problem is given below. Solutions to Chemical and Engineering Thermodynamics, 3e 5.59 5.59 (also available as a Mathcad worksheet) The solution is that the final temperature is 131.34 K, and the final pressure is 37.036 bar. Using SRK EOS with the approximate two-constant heat capacity expression Property Data (T in K, P in bar): Tc R 126.2 Pc 0.00008314 33.94 kap om 0.480 Initial Conditions (Vt=total volume, m^3): Cp1 b 27.2 Cp2 0.0042 1.574 . om 0.176 . om. om Ti Peng-Robinson Constants: Initial temperature 0.04 0.08664 . 170 Pi R. Tc ac 100 Vt 0.42748 . 0.15 R Tc Pc T 2. 2 Pc Ti Note that these are being defined as a function of temperature since we will need to interate on temperature later to obtain the final state of the system Find initial molar volume and number of moles Start with initial guess for volume, m^3/mol 2 alf( T ) 1. 1 kap . 1 T Tc ac . alf( T ) a( T ) d a( T ) dT Da ( T ) V R. Ti Pi Solutions to Chemical and Engineering Thermodynamics, 3e Solve P-R EOS for initial volume Given Pi R .T V Vi = 1.02 10 Initial molar volume and number of moles Entropy departure at the initial conditions DELSi R. ln ( Vi a( T ) ( V.( V b 4 Vi b)) Vt Ni 3 Ni = 1.471 10 Vi b). Now consider final state Pi R. T Da ( T ) . ln Vi b Nf Ni Find ( V ) b . 105 Vi 0.15 10 . 50 Vf V Vf Nf Type out final number of moles and specific volume Nf = 971.269 Final pressure, will change in course of solving for the final temperature Entropy departure at final conditions Solve for final temperature using S(final)-S(initial)=0 DELS( T ) GIVEN 0 27.2 . ln T Ti T R. ln ( V b ) . 0.0042 . ( T Pf( T ) R. T Ti) R. T a( T ) V b V. ( V b ) Da ( T ) . ln b Pf( T ) 5 R. 10 . ln Pi V b . 105 V DELS( T ) T = 131.34 a) At a given temperature, the stability limit of a fluid is determined by the following criterion (Note that this leads to the spinodal curve) ∂P =0 ∂V T FG IJ H K For the given EOS, the stability limit of a fluid undergoing a pressure change at constant temperature is ∂P RT BRT CRT = − 2 − 2 3 −3 4 = 0 ∂V T V V V FG IJ H K or V 2 + 2 BV + 3C = 0 In order to have a phase transition, there must be two distinct stability limits, i.e., the above quadratic equation must have two different roots of V. Therefore, ( 2 B ) 2 − 4 × 1 × (3C) > 0 or B 2 > 3C 4 DELSi FIND( T ) Type out solution 5.60 Pf( T ) Vf = 1.544 10 Pf( T ) = 37.076 Solutions to Chemical and Engineering Thermodynamics, 3e b) According to Illustration 4.2-1 LM F ∂P I N H ∂T K dU = CV dT + T OP Q − P dV V LM F ∂P I N H ∂T K OP Q −P =0 But for the given EOS T V Therefore, ∆U = dU = CV (V , T ) dT z z Since FG ∂C IJ H ∂V K =T V T FG ∂ P IJ H ∂T K 2 2 = 0 (Because B and C are not functions of T) V Therefore Cv = Cv (T) = CV* = a + bT and z T 2 b ∆U = ( a + bT ) dT = a ( T2 − T1 ) + ( T22 − T12 ) 2 T 1 The internal energy change is the same for an ideal gas. c) According to Eqn 4.2-19 C ∂P d S = V dT + dV so that T ∂T V F I H K ∂P FG RT + BRT + CRT IJ TF I H K FG ∂T IJ = − ∂T = P = H V V V K H ∂V K C a + bT a + bT V S V For an ideal gas, FG ∂T IJ H ∂V K S FG IJ H K RT P V RT = = = ( a + bT a + bT V a + bT ) 2 3 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 7KHUPRG\QDPLFSURSHUWLHVRIQ+H[DQHE\:LOOLDP3URYLQH 7  . 7 7  . . 7 . 7 . 7 7  .  . 7  . 7  . 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 3 3 3 3 3  EDU  EDU  EDU  EDU  EDU 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 7KHUPRG\QDPLFSURSHUWLHVRIQEXWDQHE\&KLX&KDQ 375 K 350 K 325 K 300 K 275 K 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 7KHUPRG\QDPLFSURSHUWLHVRIPHWKDQHE\0LFKDHO6RZD 6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H Solutions to Chemical and Engineering Thermodynamics, 3e 6 6.1 (a) By Eqn. (6.2-3) FG ∂ H IJ H∂N K i = Gi ; P , S , N j≠ i but Gi = Hi − TSi . Thus FG ∂ H IJ H∂N K i f F ∂U IJ dU = G H ∂S K = Hi − TSi P , S , N j≠ i a (b) Since U = U S ,V , N FG ∂U IJ dV + ∑ FG ∂U IJ H ∂V K H∂ N K F ∂U IJ dN = TdS − PdV + ∑ G H ∂N K dS + V,N i S ,N i dN i S ,V , N j≠i (1) i i i S ,V , N j≠i However, we also have U = H − PV ; dU = dH − PdV − VdP , and, by Eqn. (6.2-3) dU = VdP + TdS + ∑ Gi dNi − PdV −VdP = TdS − PdV + ∑ Gi dNi Equating (1) and (2) shows that Gi = FG ∂U IJ H∂N K i A = A( T ,V , N ) ⇒ dA = FG ∂ A IJ H ∂T K dT + V,N FG ∂ A IJ H ∂V K (2) . Next we start from S ,V , N j ≠i dV + ∑ i T, N FG ∂ A IJ H∂ N K i dN i T ,V , N j≠ i or dA = − SdT − PdV + ∑ i However, we also have that A = U − TS ; FG ∂ A IJ H∂N K i dN i T ,V , N j≠i (3) Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e dA = dU − TdS − SdT = TdS − PdV + ∑ Gi dNi − TdS − SdT or dA = −SdT − PdV + ∑ Gi dNi (4) Comparing (3) and (4) yields Gi = FG ∂ A IJ H∂N K i 6.2 T ,V , N j≠i a (a) General: θ = ∑ Ni θi where θi = ∂θ ∂ Ni f and T , P , N j≠ i d θ = ∑ θi dN i + ∑ Ni d θi (1) However, we also have that dθ = FG ∂θ IJ H ∂TK dT + V,N FG ∂θ IJ H ∂V K dV + ∑ T, N FG ∂θ IJ H∂N K i dN i (2) T ,V , N j ≠i Subtracting (2) from (1) yields FG ∂θ IJ H ∂T K 0=− dT − V ,N FG ∂θ IJ H ∂V K LM F ∂θ I MN GH ∂ N JK dV + ∑ θi − T ,N i OP PQdN + ∑ N dθ i T ,V , N j≠ i i i At constant T and V LM FG ∂θ IJ MN H ∂ N K 0 = ∑ θi − OP dN + ∑ N dθ PQ i i T ,V , N i i (general equation) For θ = A , θi = Ai and FG ∂θ IJ H∂N K i θi − FG ∂θ IJ H∂N K i = T ,V , N j≠i FG ∂ A IJ H∂N K i = Gi . T ,V , N j≠i = Ai − Gi = − PVi and T ,V , N j≠i ∑ NidAi T , V = P∑ Vi dNi T , V specific equation for θ = A (b) Following the analysis above, we also get Thus, Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂θ IJ H ∂U K 0=− dU − V ,N FG ∂θ IJ H ∂V K LM F ∂θ I MN GH ∂ N JK dV + ∑ θi − U,N OP PQdN + ∑ N dθ i i U ,V , N j ≠i i i and, at constant U and V OP dN + N dθ PQ ∑ G F ∂S IJ Now, choosing θ = S , and using that G =− , which is easily H∂N K T 0= LMθ − F ∂θ I ∑ M GH ∂ N JK N i i i i i U ,V , N j≠i i i U ,V , N j≠i derived, yields −T ∑ Ni dSi U ,V = ∑ Hi dN i U ,V (c) Following a similar analysis to those above, we obtain FG ∂θIJ H ∂SK 0=− dS − V ,N FG ∂θ IJ H ∂V K LM F ∂θ I MN GH ∂ N JK dV + ∑ θi − S, N i OP PQdN + ∑ N dθ i S ,V , N j ≠i i which, at constant V and S, reduces to LM F ∂θ I MN GH ∂ N JK Finally, using θ = U , and a∂ U ∂ N f 0 = ∑ θi − i OP PQdN + ∑ N dθ i S ,V , N j ≠i i S ,V , N j≠i i i = Gi yields ∑ NidU i S ,V = ∑ l− PVi + TSiqdNi S ,V 6.3 (a) At constant U and V, S = maximum at equilibrium C C i =1 i =1 S = S I + S II = ∑ NiI Si I + ∑ NiII Si II but FG ∂ S IJ H ∂U K F ∂ S IJ +G H ∂U K dS = 0 = I FG ∂ S IJ H ∂V K F ∂ S IJ +G H ∂V K dU I + I V ,N II V ,N FG ∂ S IJ H∂ N K F ∂ S IJ + ∑G H∂ N K dV I + ∑ I U ,N dU II II I II dV II II U ,N Since U = U I + U II = constant, dU II = −dU I I I i U ,V , N dN iI j≠ i II II i dNiII U ,V , N j ≠i i Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e Since V = V I +V II = constant, dV II = −dV I and since Ni = NiI + NiII = constant, dNiII = −dNiI Also, FG ∂ S IJ H ∂U K = V ,N FG IJ H K 1 ∂S ; T ∂V = U ,N FG H P ∂S and T ∂ Ni IJ K =− U ,V , N j≠i Gi T (see previous problem) Thus dS = 0 = F 1 − 1 I dU + FG P HT T K H T I I I II I − IJ K FG H IJ K P II G1I G1II I dV − − dN iI ∑ T II T I T II i ⇒ T I = T II ; P I = PII ; and Gi I = Gi II for equilibrium in a closed system at constant U and V. (b) For a closed system at constant S and V, U has an extremum. Thus FG ∂U IJ H ∂S K F ∂U IJ +G H ∂S K I dU = 0 = FG ∂U IJ H ∂V K F ∂U IJ +G H ∂V K I dS I + I V,N II I V,N I I i i S, N dS II II FG ∂U IJ H ∂N K F ∂U IJ + ∑G H∂ N K dV I + ∑ II dV II II S ,V , N j ≠i II II i U ,V , N j ≠i i S ,N dNiI dN iII but S, V and N j , j = 1, L, C are constant. Thus c h c h c h dU = 0 = T I − T II dS I + P I − PII dV I + ∑ Gi I − Gi II dN iI i ⇒ T I = T II , P I = PII and Gi I = Gi II for equilibrium in a closed system at constant S and V. 6.4 (a) For a closed system at constant T and V, A is a minimum at equilibrium; thus dAV , T = 0 . From Eqn. (6.2-5) dA = − PdV − SdT + ∑ Gi dNi or dA V , T = ∑ Gi dNi But, Ni = Ni , 0 + ν i X . Thus dN i = νi dX and dA V , T = b∑ ν G gdX = 0 or FGH ∂∂ XA IJK i = ∑ νi Gi = 0 . i V ,T i (b) For a closed system at constant U and V, S = maximum, or dS U ,V = 0 . From Eqn. (6.2-4) dS = 1 P 1 dU + dV − ∑ Gi dN i ; thus T T T Solutions to Chemical and Engineering Thermodynamics, 3e dS U ,V = − 1 1 Gi dNi or dS U ,V = − ∑ T T b∑ G ν gdX i i and ∂S ∂X 6.5 =− U ,V 1 T ∑νiGi = 0 i Let mi = molecular weight of species i. Multiplying Eqn. (6.3-2a) by mi and summing over all species i yields, for a closed system ∑ mi Ni = total mass in system = ∑ mi Ni,0 + X ∑νi mi total mass in system initially However, since the total mass is a conserved quantity, ∑ mi Ni = ∑ mi Ni,0 ⇒ X ∑ν i mi = 0 , where X can take on any value. Consequently, if this equation is to be satisfied for all values of X, then ∑ ν imi = 0 ! M Similarly, in the mu lti-reaction case, starting from Ni = Ni ,0 + ∑ νij X j , we get j =1 C C C M C M M C i =1 i= 1 i =1 j =1 i =1 j =1 j =1 i =1 ∑ mi Ni = ∑ mi Ni,o + ∑ mi ∑νij X j ⇒ ∑ mi ∑νij X j = 0 = ∑ X j ∑νijmi Since the X j ’s are not, in general, equal to zero, we have C ∑ νijmi = 0 i =1 a f a f In particular, for the reaction H 2 O = H 2 + 1 2 O 2 , or H 2 + 1 2 O 2 − H 2 O = 0 , we have ∑ νijmi = (+ 1)(2) + FH 2IK (32) + ( −1)(18) = 0 . 1 i 6.6 From Eqns. (6.6-4) we have V1 = V 1 + ∆V mix + x2 and a ∂ ∆V mix ∂ x1 f (1) T ,P Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e V2 = V 2 + ∆V mix + x1 a f ∂ ∆V mix ∂ x1 (2) T ,P Now since T, P and X, are the independent variables, we have that 0 since pure component volume is a function of dV1 T, P = = = dV 1 T, P a ∂ ∆V mix ∂x 1 a T and P only + d ∆V mix a f + T , P +d T, P a LMN ∂ a∆ f OPQ ∂ V mix x 2 x1 f ∂ ∆V mix ∂x 1 f ∂ 2 ∆V mix ∂ x 12 x 2 f T , ∂x 2 ∂x 1 P T , P dx 1 + x2 a ∂ 2 ∆ V mix ∂ x 12 f dx 1 T, P ∂x 2 = −1 ∂x 1 dx 1 since T , P Similarly a ∂ 2 ∆V mix dV2 T , P = − x1 f ∂ x12 dx1 T ,P Thus ∑ xiαVi T , P = x1x2 a ∂2 ∆V mix f ∂ x12 dx1 − x2 x1 a ∂2 ∆V mix T, P ∂ x12 f dx1 ≡ 0 T, P Thus, V1 and V2 given by equations (1) and (2) identically satisfy the GibbsDuhem equation ∑ xidθ i T , P = 0 . A similar argument applies for the partial molar enthalpies of Eqn. (6.6-9). 6.7 (also available as a Mathcad worksheet) The students can solve this problem by drawing tangent lines to the ∆V mix curves. Polak and Lu smoothed their data using the Redhich-Kister equation (see Eqn. (6.6-5a)). That is, they fitted their data to a n ∆V mix = x1 x2 ∑ C j x2 − x1 j =1 Now a f a ∂ ∆V mix = 1 − x1 ∂ x1 f j −1 a = x1 1 − x1 f∑ C (1 − 2 x) j −1 j f∑ C a1 − 2x f − x ∑ C a1 − 2 x f − 2 x a1 − x f∑ C ( j − 1)a1 − 2 x f ∂ a ∆V f V − V = a ∆V f − x = a1 − x f k A − 2 x Bp ∂x j −1 j 1 j −1 1 Thus 1 1 mix j 1 2 1 mix 1 and 1 j 2 1 j −2 1 1 (1) Solutions to Chemical and Engineering Thermodynamics, 3e a f V2 − V 2 = ∆V mix − x1 ∂ ∆V mix = x12 A + 2 x2 B ∂ x1 ∑ Cj a1 − 2 x1f j −1 B = ∑ C j ( j − 1) 1 − 2 x1 a f k p (2) where A= n a n and j =1 j =1 f j −2 Taking species 1 to be methyl formate, Polak and Lu found C1 methyl formate - Methanol C2 C3 C4 − 0.33259 − 010154 . − 0.0516 0.0264 methyl formate - Ethanol 0.81374 −0.00786 0.0846 −3 3 [units are cc/mol; multiply by 10 0.0448 to get m kmol ] I have used the equations above and the constants given to find V1 − V 1 and V2 − V2 , since this leads to more accurate results than the graphical method. The results are tabulated and plotted below. Methyl formate - Methanol xMF 0 0.1 0.2 0.3 0.4 0.5 0 –0.039 –0.065 –0.080 –0.085 –0.083 V1 − V 1 –0.459 –0.329 –0.225 –0.148 –0.093 –0.058 V2 −V 2 0 –0.007 –0.025 –0.051 –0.080 –0.109 0.6 0.7 0.8 0.9 1.0 –0.075 –0.063 –0.047 –0.027 0 V1 − V 1 –0.035 –0.021 –0.011 –0.004 0 V2 −V 2 –0.136 –0.162 –0.192 –0.236 –0.309 ∆V mix acc molf xMF ∆V mix acc molf b g Thus VMF = 6278 . + V1 −V 1 cc/mol or 10−3 m3 kmol . b g VM = 4073 . + V2 −V 2 . Methyl formate - Ethanol xMF 0 0.1 0.2 0.3 0.4 0.5 0 0.080 0.136 0.174 0.196 0.203 V1 − V 1 0.935 0.682 0.507 0.381 0.285 0.205 V2 −V 2 0 0.013 0.043 0.085 0.137 0.201 0.6 0.7 0.8 0.9 1.0 0.196 0.174 0.134 0.077 0 V1 − V 1 0.138 0.081 0.037 0.010 0 V2 −V 2 0.284 0.390 0.522 0.680 0.861 ∆V mix acc molf xMF ∆V mix acc molf Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e b g Thus VMF = 6278 . + V1 −V 1 cc/mol. Multiply by 10−3 for m3 kmol . b VE = 5868 . + V2 − V 2 6.8 g This problem is similar to the last one, and will be treated in a similar fashion. Fenby and Ruenkrairergasa give their data in the form a f a ∆H mix J mol = x2 1 − x2 f∑ C a1 − 2 x f n j =1 j j −1 (1) 2 where component 2 is the fluorobenzene. The constants given in the aforementioned reference and Fenby and Scott J. Phys. Chem 71, 4103 (1967) are given below System C1 C2 C3 C4 C6 H 6 − C6 F5Cl –2683 929 970 0 C6 H 6 − C6 F5Br –3087 356 696 0 C6 H 6 − C6 F5I –4322 –161 324 0 C6 H 6 − C6 F6 –1984 +1483 +1169 0 230 +578 +409 +168 C6 H 6 − C6 F5H Solutions to Chemical and Engineering Thermodynamics, 3e If we replace x2 with 1 − x1 in Eqn. (1), we regain the equation of the previous illustration, except for a factor of (−1) j −1 in the sum and the corresponding places in the other equations. xC 6 H 6 ∆H mix 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 –252 –463 –609 –679 –671 –590 –453 –284 –119 0 bH − Hg C 6H6 bH − Hg C 6 F5Cl –2642 –2171 –1790 –1466 –1175 –903 –646 –409 –205 –57.8 0 0 –39.2 –130 –242 –349 –439 –506 –555 –601 –666 –784 xC 6 F5Cl 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 [Note: J/mol] C6 H 6 − C6 F5Br xC 6 H 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ∆H mix 0 –263 –488 –654 –751 –772 –717 –595 –420 –212 0 bH − H g bH − H g C6 H 6 C6 F5 Br –2747 –2248 –1829 –1469 –1149 –861 –600 –370 –181 –50.0 0 0 –42.9 –153 –306 –486 –683 –893 –1120 –1374 –1671 –2035 C6 H 6 − C6 F5I ∆H mix 0 –359 –657 –883 –1026 –1081 –1042 –910 –688 –382 0 bH − H g bH − H g C6 H 6 C6 F5 I –3837 –3119 –2489 –1937 –1456 –1040 –689 –402 –187 –48.9 0 0 –52.1 –200 –431 –740 –1121 –1572 –2095 –2695 –3379 –4159 xC 6 F5 x 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e C6 H 6 − C6 F6 6.9 xC 6 H 6 ∆H mix 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 –218 –392 –502 –536 –496 –394 –253 –108 –4.5 0 bH − H g bH − H g C6 H 6 − C6 F5H ∆H mix bH − H g bH − H g C6 H 6 C6 F6 –2298 –1899 –1590 –1332 –1097 –867 –637 –413 –212 –60.9 0 0 0 61.0 0 –31.2 –2.2 36.2 –1.1 –93.0 –3.9 –2.8 +6.8 –146 13.5 –42.3 +37.4 –162 31.4 –72.3 +100 –125 57.5 –87.0 +202 –28.9 86.9 –84.5 344 +121 110 –66.7 524 +308 116 –39.4 +737 +503 85.9 –12.6 +973 +688 0 0 1217 ↑ ↑ ↑ Note: Changes in sign in column C6 H 6 xC 6 F5 x C6 F5 H 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 (a) Gibbs Phase Rule: F = C − M − P + 2 P = 2 , C = 2 , M = 0 ⇒ F = 2 − 0 − 2 + 2 = 2 degrees of freedom Thus can fix two variables, usually from among T, P, x and y. (b) P = 1 , C = 3 and M = 1 ⇒ F = 3 − 1 − 1 + 2 = 3 degrees of freedom Thus, we can fix 3 variables, for example, T, P and xH 2 . (c) Formation reactions C + 2O → CO 2 C + O → CO 2H → H 2 C + 4H → CH 4 2H + O → H 2 O Use O = CO − C and H = 1 H 2 to eliminate O and H from the set so that 2 C + 2( CO − C) → CO 2 a a f 2CO → CO 2 + C C + 4 1 2 H 2 → CH 4 ⇒ C + 2H 2 → CH 4 f 2 1 2 H 2 + ( CO − C) → H 2 O H 2 + CO → H 2 O + C Thus we have found a set (there is no unique set) of three independent reactions among the six species. Consequently, C = 6 , M = 3 , P = 2 (solid carbon + gas phase). F = C − M − P + 2 = 6 − 3 − 2 + 2 = 3 degrees of freedom. As a check: c # of unknowns = 8 T S , PS , T V , P V , xCO 2 , xCO , xH 2 , xCH 4 Note: xH 2 O = 1 − xCO 2 − xCO − xH 2 − xCH 4 h Solutions to Chemical and Engineering Thermodynamics, 3e Relations among the unknowns T S = TV , PS = P V , no phase equilibrium relations, but 3 chemical equilibrium relations of the form ∑ νij Gi = 0 . 8 unknowns− 5 eqns. = 3 unspecified unknowns or 3 degrees of freedom a f 6.10 (a) In general, for a binary, two-phase mixture C = 2, M = 0, P = 2 F = C − M − P + 2 = 2 − 0 − 2 + 2 = 2 degrees of freedom. However, for an azeotrope there is the additional restriction x1 = y1 , which eliminates one degree of freedom. Thus, there is only 1 degree of freedom for a binary, azeotropic system. (b) In osmotic equilibrium P I ≠ PII , since the membrane is capable of supporting a pressure difference, and G2I ≠ G2II , where 2 is the species which does not pass through the membrane. Therefore, the independent unknowns are T I , PI , x1I , T II , P II and x1II . [Note, x2I and x2II are not independent unknowns since x2I = 1 − x1I and x2II = 1 − x1II ]. There are two equilibrium relations between these six unknowns: viz. T = TII and G1I = G1II . Consequently, I there are four degrees of freedom … that is, as we shall see in Sec. 8.7, if T, PI , P II and x1I are specified, x1II will be fixed. (c) Case I: M = 0, C = 2, P = 2 ⇒ F = 2 − 0 − 2 + 2 = 2 Case II: M = 0, C = 2, P = 3 ⇒ F = 2 − 0 − 3 + 2 = 1 6.11 (a) Gibbs Phase Rule: F = C − M − P + 2 C = 2 , M = 0 ⇒ F = 2 − 0 − P + 2 = 4 − P degrees of freedom. Therefore, a maximum of 4 phases can exist at equilibrium (for example a solid, two liquids and a vapor, or two solids, a liquid and a vapor, etc.) (b) Gibbs Phase Rule: F = C − M − P + 2 C = 2 , M = 1 ⇒ F = 2 − 1 − P + 2 = 3 − P degrees of freedom. Therefore, a maximum of e phases can exist at equilibrium (for example a two liquids and a vapor, or a solid, a liquid and a vapor, etc.) 6.12 (a) dNi = N& i + N& i ,rxn dt dU 0 dV = ∑ N& i Hi + Q& − W s −P dt dt & dS Q = ∑ N& i Si + + S&gen dt T dS T − T ∑ N& i Si − TS&gen = Q& dt Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e dU dS dV = ∑ N& i Hi + T − T ∑ N& i S i − TS&gen − P dt dt dt dU dV dS +P −T = ∑ N& i Hi − TSi − TS&gen dt dt dt dU dV dS dNi dX +P −T = ∑ N& i µi − TS&gen = ∑ − νi µi − TS&gen dt dt dt dt dt General expression Now System is only permeable to species 1 dU dV dS dN 1 dX +P −T − − ν1 µ1 = − TS& gen ≤ 0 dt dt dt dt dt When T and P constant d d (U + PV − TS ) − N1 − ν1 X µ1 ≤ 0 dt dt d G − N1 − ν1 X µ1 ≤ 0 dt ⇒ G − N1 − ν1 X µ1 = minimum at equilibrium (b) When T and V are constant d d (U − TS ) − N1 − ν1 X µ1 ≤ 0 dt dt ⇒ A − N1 − ν1 X µ1 = minimum at equilibrium b g F H F H I K a 6.13 (a) a a f f a a f I K f f 2N → N 2 2O → O 2 2N + O → N 2 O 2N + 2O → 2NO 2N + 4O → N 2 O 4 1 N2 + O2 → N2O 2 N 2 + O 2 → 2NO N 2 + 2O2 → N 2 O 4 2N + 4O → 2NO 2 N 2 + 2O2 → 2NO 2 5 2N + 5O → N 2 O 5 N2 + O2 → N2O5 2 ⇒ 5 independent reactions (b) F = C − M − P + 2 = 7 − 5 − 1+ 2 = 9 − 6 = 3 F = 3 degrees of freedom (c) 1 degree of freedom used in O 2 : N 2 ratio ⇒ 2 degres of freedom 6.14 Mass balance: M1 + M2 = M f Molecular weight H 2O = 18.02 g mol Energy balance: M1U$ 1 + M2U$ 2 = M f U$ f In each case the system is M1 kg of solution 1 + M2 kg of solution 2. Since Q = 0 , Ws = 0 (adiabatic mixing) For liquids U$ ≡ H$ . Thus we have M H$ + M2 H$ 2 H$ f = 1 1 M1 + M2 Solutions to Chemical and Engineering Thermodynamics, 3e c h 1 $ when M1 = M2 ; H$ f = H1 + H$ 2 . 2 (a) Read from Figure 6.1-1 H$ 1 = 6.9 × 103 J kg H$ = −6.1 × 103 J kg 2 c h 1 Thus H$ f = 5.410 × 104 = 2 .705 × 10 4 J kg 2 To find the composition, so a sulfuric acid balance 1 ρ1 M1 + ρ2 M 2 = ρ f M f ⇒ ρ f = ρ1 + ρ2 2 where ρi = weight percent of ith flow stream. a Thus ρf = f since M1 = M2 1 (10 + 90) = 50 wt % sulfuric acid. From Figure 6.1-1 2 50 wt % H2SO 4 ⇒ Tf ~ 110° C H$ = U$ = 2 .705 × 10 4 J kg (b) Here H$1 = 69 . × 103 J kg , 1 H$ 2 = −3186 . × 105 J kg ⇒ H$ f = ( 6.9 − 318.6) × 103 = −156 . × 105 J kg 2 ρ1 = 10 wt % , ρ2 = 60 wt % ⇒ ρ f = 35 wt % . Using and Figure 6.1-1, Tf ~ 22° C . Notice that there is a balance between the energy released in mixing, ∆H$ mix , and the energy absorbed in heating the mixture, CP ∆T . In case (a), ∆H$ mix is very large, and Tf > T1 or T2 , while in case (b) ∆H$ mix is smaller, so that Tf ~ T1 . 6.15 (a) MW H 2 O = 18.02 g mol ; MW H 2SO 4 = 98.08 g mol 100 g H 2 O = 555 . mol 100 g H 2 SO 4 = 1.02 mol Note: When these are mixed, a solution containing 5.44 mol H 2 O /mol acid is formed. ∆H s for such a solution is –58,390 J/mol acid. Thus, a f total heat released = 1.02 mol acid × −58,390 J mol acid = −59,558 J (Negative sign means that heat is released!) (b) Adding another 100 grams of water produces a solution which contains 10.88 mol H 2 O /mol acid. From the graph ∆H s = −64,850 J mol acid . However, – 58,390 J/mol of acid were released in preparing the first solution, so that only – 6,460 J/mol acid, or 6,590 J, are released on this further dilution. Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e H 2 SO 4 ⇒ (c) 60 wt % 40 18.02 = 3.629 moles H 2 O moles acid 60 98.08 for which ∆H s = −52,300 J mol acid , and 60 mol aci d = −31,990 J 98.08 Note: Enthalpy of 60 WT% solution is –31,990 J relative to pure components at the same temperature. Similarly 25 wt % H 2SO 4 ⇒ 16.27 mol H 2 O mol acid , ∆H s ~ −68,830 J mol acid ∆Hs = −52,300 J mol acid × and 0.25 × 75 = −13,160 J 98.08 Final solution =175 grams ; 78.75 grams acid = 0803 . mol, ∆Hs = −68,830 J mol acid × 96.25 grams water = 5347 . mol ⇒ 6.66 mol H 2 O mol acid . So that ∆ H s = −60,670 J mol acid ∆H s = −48,720 J Thus, enthalpy change on mixing, ∆H mix is ∆Hmix = −48,720 − ( −31,990 − 13160 , ) = −3570 J Thus, 3570 J = 357 kJ must be removed to keep solution isothermal! N (d) For 1 mole of solute: 1 + N 2 H mix = H 1 + N2 H 2 + 1 ⋅ ∆ H s 2 (argument of N1 a FG IJ H K f ∆H s ) and for N1 moles of solute and N2 moles of solvent. a N + N fH 1 2 mix FG N IJ = H HN K F N IJ + N ∂a∆ H f ⋅ ∂aN N f + ∆H G H N K ∂a N N f ∂ N = N1 H 1 + N 2 H 2 + N1∆ H s 2 mix 1 Now H1 = FG ∂ H IJ H ∂N K = H1 mix 1 2 s 1 s 1 T ,P 2 2 1 T, P or FG N IJ − N LM ∂ ∆ H aN N f OP H N K N N ∂a N N f Q F ∂ H IJ we obtain Similarly, starting from H = G H ∂N K ∂ ∆H a N N f H −H = ∂a N N f H1 − H 1 = ∆ H s 2 2 1 1 2 s 2 1 1 T, P a T ,P f ∂ N 2 N1 N = − 22 ∂ N1 N1 mix 2 2 2 T ,P 2 s 1 2 2 (e) 50 wt % acid ⇒ since 1 1 1 T ,P 50 18.02 = 5.443 mol H 2 O mol acid 50 98.08 ∆H s (5.443) = − 58,370 J mol and, from the accompanying graph a ∂ ∆H s N2 N1 ∂ N2 N1 a f f = at N 2 N1 =5.443 ( −91,630 ) − (− 46,030) = −2,280 J mol 20 so that H2 − H 2 = −2,280 J mol and Solutions to Chemical and Engineering Thermodynamics, 3e H1 − H1 = (−58,370) − 544 . (−2,280) = −45,967 J mol . 6.16 To get partial molar properties it is easiest to first convert all data in problem to mole fractions and properties per mole. xCCl 4 = a wt % CCl4 153.84 wt % CCl4 153.84 + 100 − wt % CCl4 7811 . f a f where MWCCl 4 = 15384 . ; MWC6 H 6 = 7811 . . CP ( mole mixture ) = CP (grams mixt ure) × ( MW of mixture ) c h = CP × xCCl 4 × 153.84 + 1 − xCCl 4 × 7811 . ∑ xiCP,i , where CP,i = heat capacity of pure ∆CP , mix = CP (mixture) − ∑ xi CP, i . Results are given below: also, compute species i and a Wt % CCl4 xCCl 4 CP J mol K ∑ xiCP,i ∆CP ,mix J mol K 0 10 20 30 40 50 60 70 80 90 100 0 0.0534 0.1126 0.1787 0.2529 0.3368 0.4323 0.5423 0.6701 0.8205 1 137.90 133.91 129.55 124.45 118.85 113.98 111.29 110.48 110.59 114.44 124.15 137.90 137.17 136.35 135.44 134.42 133.72 131.96 130.44 128.69 126.62 124.15 0 –3.26 –6.80 –10.99 –15.67 –19.74 –20.67 –19.96 –18.10 –12.18 0 f Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e Using these data, and the graphical procedure introduced in Sec. 6.6, we obtain the following results. xCCl 4 bC P − CP CP, CCl 4 bC P − CP g CCl 4 g C 6H6 CP, C6 H 6 xCCl 4 bC P − CP CP, CCl 4 bC P − CP CP, C6 H 6 g CCl 4 g C 6H6 0 0.1 0.2 0.3 0.4 0.5 –71 –60.7 –58.0 –44.5 –27.5 –17.5 53.15 63.5 66.2 79.7 96.7 106.7 0 –0.5 –1.3 –6.7 –16.0 –24.0 137.9 137.4 136.6 131.2 121.9 113.9 0.6 0.7 0.8 0.9 1.0 –11.8 –8.7 –4.1 –1.2 0 112.4 115.45 120.1 123.0 124.15 –30.8 –36.7 –49.8 –67.5 –80.5 107.1 101.2 88.1 70.4 57.4 Solutions to Chemical and Engineering Thermodynamics, 3e An alternate solution to this problem follows. Alternate Solution to Problem 6.16 Instead of using Equations (6.6-10a and b) and ∆CP , mix data, Equations (6.611a and b) and the heat capacity data for the mixture can be used. Since Equations (6.6-11a and b) are very similar to Equations (6.6-10a and b) [of which Equations (6.6-4a and b) and (6.6-9a and b) are special cases], it follows that the graphical construction discussed in Sec. 6.6 can be used. The difference, however, is that the tangents to the CP, mix vs. mole fraction curve will give CP, CCl4 and CP ,C6 H6 bC P − CP g C6 H6 as before. directly, rather than bC P − CP g CCl4 and An illustrative graph, and the numerical results obtained using a much larger graph are given below: xCCl 4 0 0.1 0.2 0.3 0.4 0.5 CP, CCl4 3.0 63.0 63.0 82.0 97.0 106.2 CP ,C6 H6 137.9 137.9 137.9 130.7 122.9 114.7 xCCl 4 0.6 0.7 0.8 0.9 1.0 CP, CCl4 113.0 117.0 120.3 123.2 124.15 CP ,C6 H6 105.7 97.6 87.3 70.8 55.9 Chapter 6 Solutions to Chemical and Engineering Thermodynamics, 3e Note that these results differ from previous results by small amounts. Previous results are probably more accurate since the curvature of ∆CP , mix vs. xCCl 4 is greater than that of CP, mix vs. xCCl 4 , so tangents are found with greater accuracy. 6.17 Let UV W of 60 WT% solution x = lbs. of 20 WT% solution used to make 1 lb. y = lbs. of pure acid (a) Total mass balance: x + y = 1 Species mass balance on acid: 0.2 x + y = (0.6 )(1) ⇒ 0.2 x + (1 − x ) = 0.6 or x = 05 . kg 20 WT% solution, y = 05 . kg pure acid. (b) From Figure 6.1-1 H$ ( 20 wt%, 5° C) = −1.22 × 105 J kg H$ (100 wt%, 50° C) = 7 .10 × 10 4 J kg H$ ( 60 wt%, 70° C) = −159 . × 105 J kg H$ ( 60 wt%, boiling point) = H$ ( 60 wt%, 143° C) ~ 0 J kg Using the change over a time interval form of the energy balance equation, considering the initial state to be two 0.5 lbs. of separated 20 WT% and pure acid solutions, and the final state to be 1 lb. of mixed solution, and neglecting the difference between H$ and U$ for these liquids, yields c h H$ 60 wt%, Tf − 0.5H$ (20 wt%, 5° C) − 0.5H$ (100 wt%, 50° C) = Q Solutions to Chemical and Engineering Thermodynamics, 3e at Tf = 70° C b g b Q = −159 . × 105 − 0.5 × −1.22 × 105 − 0.5 × 7.1 × 10 4 g = − 6.25 × 104 J kg final solution at Tf = boiling point = 143° C b g b g Q = 0 − 05 . −122 . × 105 − 05 . 71 . × 104 = −255 . × 104 J kg final solution 6.18 Suppose there was enough information available on ∆θmix , where θ is any extensive thermodynamic property of a mixture, as a function of the three mole numbers N1 , N2 , and N3 , that the data could be fitted to a polynomial expression in x1 , x2 and x3 or, equivalently, in N1 , N2 and N3 where N = ∑ Ni . The i partial molar properties could then be obtained by differentiation of the polynomial expression for ∆θmix . That is since a 3 θ = Nθ = ∑ Ni θi + ∆θmix N1, N 2 , N 3 i= 1 θi = ∂θ ∂ Ni = θi + T , P , N j≠ i a ∂ ∆θmix ∂ Ni f f T , P, N j≠ i so that θi − θi = a ∂ ∆θmix ∂ Ni f T , P , N j≠ i Alternately, graphical methods could be developed for finding θi − θi along paths where Ni is varied, and other mole numbers are fixed (i.e., xi is varied, while the mole ratios of the other species in the mixture are fixed.) Since it is unlikely that enough information will be available for any mixing property to obtain ∆θmix as an explicit function of mole fractions or species mole numbers for ternary, quaternary, etc. mixtures, it is not surprising that there is little information on partial molar properties in such systems. Solutions to Chemical and Engineering Thermodynamics, 3e  D [  7KH*LEEV'XKHPHTXDWLRQLV (TXDWLRQE  w+ w+ [ w[ 73 w[ 73     1RZ  [   w[ w[ E [ DQG       5      IRUDOO [ Ÿ E   E   E  +  ZKHUH +  DQG +  DUH WKH SXUH +  DQG D   0 E [ VRWKDW   E E [ [   w+ w[ 73    TL Ÿ D o   w+ w+ [ w[ 73 w[ 73 OLP T L L [ E   [  w+ w[ 73  E         FRPSRQHQWPRODUHQWKDOSLHV7KXV +  E[  + +  E[  +        DQG '+ '+ 1 6 1 [ + + [ + +  PL[    0 [  [ 5E[ [  PL[     6 [ E[  [ E[       E[ [     1RWH  6RUU\ DERXW  VHW RI GDWD EHLQJ JLYHQ LQ DOFRKRO ZW DQG RWKHU LQ ZDWHU PROHEXWWKLVLVWKHZD\WKHGDWDDSSHDUHGLQWKH,QWHUQDWLRQDO&ULWLFDO7DEOHV D )LUVWZLOOFRQYHUWWKHGDWDWRPROHIUDFWLRQV ZW$ NJ$ u   [ NJ$  NJ: NJ$ 0: NJ$ 0:  NJ: 0: ZW$ ZW$    ZW$ 0: 0: $ $ Ÿ[ $ $ : $ $OVR 9 0: U PL[ PL[ ZKHUH U PL[ PL[WXUHGHQVLW\DQG 0: LVWKHPROH IUDFWLRQDYHUDJHGPROHFXODUZHLJKWRIPL[WXUH LH 0: $OVR9 9 : 0: U ZWDOFRKRO DQG $ $ 0: : U DOFRKRO  : ¦ [L 0:L Solutions to Chemical and Engineering Thermodynamics, 3e ZW DOFRKRO [$                                           0:                      9 PL[  ¦ [ 9 L L ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ '9 PL[  FFPRO >PXOWLSO\E\  IRU P NPRO @  ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤  7KH '9 PL[ GDWDDUHSORWWHGDQGWKHJUDSKLFDOSURFHGXUHRI6HFXVHGWR 1 6 1 6 ILQG 9$  9 $ DQG 9:  9 : 5HVXOWVDUHJLYHQLQWKHIROORZLQJWDEOH 1H[WQRWHWKDW Solutions to Chemical and Engineering Thermodynamics, 3e '+ PL[  SHUPROH  PL[WXUH  +HDWHYROYHG 0ROHIUDFWLRQ u u SHUPROHHWKDQRO RIHWKDQRO  6LQFH KHDW LV HYROYHG '+ PL[ LV QHJDWLYH 2QFH '+ 1+ 1+ : + : + [ :                      PL[ : : 1 6  1+ LVFRPSXWHGJUDSKLFDOSURFHGXUHLVXVHGWRJHW +  + 6   7DEOH EHORZ JLYHV 19  9 6  19  9 6 DVDIXQFWLRQRIWKHZDWHUPROHIUDFWLRQ $ 9 9 : : 9 9 $ $ FFPRO ¤  ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤  ¤ '+ $ PL[  ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤  n : : + + : : $ $ + 6 DQG 6  DQG $ $ + + $ $ N-PRO ¤ ¤ ¤    ¤  ¤ ¤ ¤ ¤ ¤  ¤  ¤  ¤ ¤ ¤ ¤ ¤ ¤  " n Solutions to Chemical and Engineering Thermodynamics, 3e  :H ZDQW WR HYDOXDWH +$9 7  3 \  +$/ 7  3 [  ZKHUH [$  DQG \$  GHQRWH WKH 2 7 OLTXLGDQGYDSRUDOFRKROPROHIUDFWLRQVUHVSHFWLYHO\DQGWKHVXSHUVFULSWV9DQG/ GHVLJQDWH WKH YDSRU DQG OLTXLG SKDVHV  7R DQ H[FHOOHQW DSSUR[LPDWLRQ DW WKH WHPSHUDWXUHVKHUH +$9 7  3 \ + $9 7  3 7RSURFHHGIXUWKHUZHXVH 2 7 + $9 7  3  +$/ 7  3 [ ZKHUH + $9 7  3  + $/ 7  3 + $9 7  3  + $/ 7  3  + $/ 7  3  +$/ 7  3 [ ' + YDS SXUH  - PRO  6HH3UREOHPD HWKDQRO DQG +$/ 7  3 [  + $/ 7  3 ZDVFRPSXWHGLQ3UREOHP7KXV ' + $YDS  PROH   + $/ 7  3  - PRO  +$/ 7  3 [$ 0 $   a  5  - PRO ' + $YDS  PROH     - PRO $ YDS ' + $  PROH   a   - PRO $ 7R HYDOXDWH '+ $YDS o PROH  FDUH PXVW EH WDNHQ VLQFH +$/  + $/  EHFRPHV YHU\ 3 $ 8 ODUJH DQG QHJDWLYH  LQ WKLV OLPLW  7R DYRLG VHULRXV HUURUV ZH ZLOO ILW WKH ORZ DOFRKRO KLJK ZDWHU  PROH IUDFWLRQ GDWD ZLWK D SRO\QRPLDO LQ PROH IUDFWLRQ DQG HYDOXDWH +$  + $ DQDO\WLFDOO\,XVHG 1 6 0 '+ PL[ 0 [$ [: $  % [$  [: 55 See Eqn. (6.6-5a) 7KHQ + + $  w 1' +   w 1 7 3 1 PL[ $ $ 1 DQG OLP +  + [: o [$ o  $ $ 6   $  %   )LWWLQJ '+ [ : 2 $[  % [   [ : : PL[  GDWD DW [ :     DQG  ,   N- PRO DQGN-PRO7KXV + + [ o $ $ $       N- PRO 7KXV '+ YDS $ [$ o     7 :  ILQGWKDW $  :    N- PRO Solutions to Chemical and Engineering Thermodynamics, 3e &OHDUO\ DW PRGHUDWH DQG KLJK HWKDQRO FRQFHQWUDWLRQV DQ HWKDQRO PROHFXOH PXVW LQWHUDFW ZLWK WKH ZDWHUHWKDQRO PL[WXUH WR DOPRVW WKH VDPH H[WHQW DV DQ HWKDQRO PROHFXOHLQWHUDFWVZLWKSXUHHWKDQRO7KXVLWVKHDWRIYDSRUL]DWLRQIURPVROXWLRQ LV DERXW WKH VDPH DV IURP SXUH HWKDQRO  +RZHYHU DW YHU\ ORZ DOFRKRO FRQFHQWUDWLRQVWKHUHLVDGUDPDWLFFKDQJH3UHVXPDEO\ZDWHU QRZDOPRVWSXUH IRUPVDPRUHRUGHUHGVWUXFWXUH SUREDEO\DVDUHVXOWRIK\GURJHQERQGLQJ 7KXV LWVHHPVUHDVRQDEOHWKDWDWYHU\ORZHWKDQROFRQFHQWUDWLRQVHDFKHWKDQROPROHFXOH LV PRUH LQYROYHG LQ K\GURJHQ ERQGLQJ ZLWK ZDWHU PROHFXOHV  WKDQ LW LV LQ SXUH HWKDQRO ZLWKHWKDQROPROHFXOHV  &RQVHTXHQWO\WKHKHDWRIYDSRUL]DWLRQRIHWKDQROIURPGLOXWHDOFRKROVROXWLRQVLV JUHDWHU WKDWLVPRUHHQHUJ\LVQHHGHG WKDQIRUWKHSXUHVXEVWDQFH  D    OLP 9 7  3 [  9    ¦ DL 0 [  L [ L  5  0 E  OLP 9 7  3 [L 9 7 3 [ o [ o    E Q [E [ E [ [ 9 7  3 [ 5 9 7 3 E    w 19 7 3 1  w1     1[ 9  1[ 9  0 1[ 50 1[ 5 ¦Q DL 0 1[  1[ 5L "# 1 1L L $ ! L Q w  0 1  1 5 "# :1[L 1 9  1 9  1 1 ¦ DL w1 ! 0 1  1 5L $ L Q D L0 1  1 5L Q D 0 1  1 5L L 9 1 ¦ L 1 1  ¦ L 0 1  1 5L L L 01  1 5 Q 0 1  1 5L  1 1 ¦ DL L   0 1  1 5L L Q 9  [ ¦ DL 0 [  [ 5L  [ [ ¦ DLL0 [  [ 5L L  [ [ ¦ DL L   0 [  [ 5L Q 9  [ ¦ DL 0 [  [ 5L [  [  L[  L   [ 0 [  [ 5 w w1                                                                9   9 [    L         Q ¦ DL 0 [ L    [ L  L   [    5    6LPLODUO\E\WDNLQJGHULYDWLYHZLWKUHVSHFWWR 1 ZHREWDLQ  9  9 [    ¦ DL 0 [  7KHUHIRUH 9 H[  9 9   [   [  Q ¦ DL 0 [ L L  5   L  [    [ L  L   [    5    DQG 9H[ 9  9  0  [ ¦ D [  [ L 5 L   L   [   1L ? Solutions to Chemical and Engineering Thermodynamics, 3e F H[ 9  07 3 [ o 5 H[ 9  Q f  L   ¦ DL  L   Q ¦ DL L  L   D  D  D  D    H[ 9  07 3 [  5 o 9 H[    Q ¦ DL  L   f  L   Q ¦ DL L   D  D  D  D        7KHVH GHULYDWLRQV DUH WKH VDPH DV LQ 6HF   )RU H[DPSOH VWDUWLQJ ZLWK WKH FORVHGV\VWHPHTXDWLRQV G1 GW ZLWK 6 JHQ   G8 GW 4  6 7 G6 G9 4  :  3 DQG GW GW JHQ V ¦ 1L8L DQG 6 ¦ 1L 6L :HKDYHILUVW1 RU0  t   8 FRQVWDQW 1RZIRUDFRQVWDQWYROXPHDGLDEDWLFV\VWHPZLWKQRVKDIWZRUNZHKDYH G8 GW  Ÿ FRQVWDQW DOVR9 FRQVWDQW DQG G6 GW 6 JHQ Ÿ6 6LPLODUO\ZLWK : YROXPHZHKDYH V t  Ÿ 6 FDQRQO\LQFUHDVHDWFRQVWDQW19DQG8 PD[LPXPDWHTXLOLEULXPDWFRQVWDQW198  IRUDQLVRWKHUPDOV\VWHP FRQVWDQW17DQG9 DWFRQVWDQW G8 GW 4  6 7 G6 4 DQG GW JHQ RU 4 7 G6  76 GW JHQ VR G 8  76 G$ G6 G8  76 Ÿ 76 7 GW GW GW GW Ÿ $ PLQLPXPDWHTXLOLEULXPDWFRQVWDQW1  7  DQG9  JHQ 6LPLODUO\RQHFDQVKRZWKDW *  0 0 0 [  [  [ 1   JHQ PLQLPXPDWFRQVWDQW17DQG3 5 0L w 10 G1L 7 3 1  EXW  01 M zL  w 0   w 1L  7 3 1   M zL Solutions to Chemical and Engineering Thermodynamics, 3e  w 0   w 1L  7 3 1   M w 0  w [ M   M  7 3 1  w 1L  7 3 1 M ¦  w [ zL   M  zN  M zL 1RZ [M % 1   K&  1 M   K   1L '1 1 1M w w 1L 1 1M w [M  1 w 1L  [M  LIM z L 1   [L  LIM L 1   7KHUHIRUH  w 0   w 1L  7 3 1   w 0 [M  w 0     [L        w [L 7 3 1  1  M L  w [M 7 3 1 1 w 0 [M  w 0  ¦    1  w [L  7 3 [ M L  w [M 7 3 [ 1  w 0   ¦ [ M  w 0  Ÿ 0L 0    w [L  7 3 [  w [M 7 3 [ ¦ M zL z     M N  zM z zL     M   N N zL zM zL   N zM 6HH6HFWLRQ 6LQFHWKHVWDEOHHTXLOLEULXPVWDWHRIWKHPL[WXUHIRUVRPHUDQJHRIFRPSRVLWLRQVLV DV WZR OLTXLG SKDVHV UDWKHU WKDQ D VLQJOH KRPRJHQHRXV SKDVH WKH *LEEV IUHH HQHUJ\RIWKHKRPRJHQHRXVPL[WXUHPXVWEHJUHDWHUWKDQDOLQHDUFRPELQDWLRQRI WKH *LEEV IUHH HQHUJLHV RI PL[WXUHV RI FRPSRVLWLRQV RQ HLWKHU VLGH RI WKH DFWXDO PL[WXUH FRPSRVLWLRQ  7KDW LV WKH *LEEV IUHH HQHUJ\ RI WKH PL[WXUH PXVW EH DV LQGLFDWHGLQ)LJXUHEHORZ 1RZWKH*LEEVIUHHHQHUJ\RIWKHPL[WXUHLV * 1 * 1 * 1 * 1 * ZLWKWKHUHVWULFWLRQVWKDW 1 1 FRQVWDQW 1 , ,   , , ,,   ,,  ,, ,,   ,,  R   R FRQVWDQW * ,  ,,  DQG 1  1 ,  1 7KXVZHKDYHWKDW  2 7 2 7 1 * 1 *  1 1 *  1 1 * ,  ,  , ,   R  ,  ,,  R ,,   ,,  $WHTXLOLEULXP  w *   w 1 7 3 1 ,    Ÿ* ,  ,  * ,,  ZKHUH LQ HYDOXDWLQJ HDFK RI WKHVH GHULYDWLRQV ZH KDYH XVHG WKH *LEEV'XKHP HTXDWLRQ DQG  w *   w 1 7 3 1 ,    Ÿ* ,  ,  * ,,  Solutions to Chemical and Engineering Thermodynamics, 3e +RZHYHU * 0w * w 1 5  LV D WDQJHQW WR WKH * YHUVXV 1  FXUYH  7KXV WKH ,    HTXLOLEULXPUHTXLUHPHQWWKDW * , ,, * UHTXLUHVWKDWWKHFRPSRVLWLRQVRIWKH WZR   HTXLOLEULXPSKDVHVDUHDWWKHLQWHUVHFWLRQVRIHDFKOREHRIWKH*YHUVXV 1 FXUYH ZLWKWKHVLQJOHWDQJHQWOLQHWRERWKFXUYHV6HH)LJ>1RWH6HH3UREOHP@ 7KHOLPLWRIVWDELOLW\RIDVLQJOHSKDVHLVIRXQGIURPWKHFRQGLWLRQWKDW G *   +HUHWKDWLPSOLHV    w *   w 1 7 3 1   w *   w 1 7 3 1    1* 1 * 1RZ *           * 1    w *   w 1 7 3 1   1     w *   w 1 7 3 1       *   6LQFHWKHODVWWZRWHUPVVXPWR]HURE\WKH*LEEV'XKHPHTXDWLRQ7KXV  w *   w *   w 1 7 3 1  w 1 7 3 1            7KXVWKHOLPLWVRIVWDELOLW\RIDVLQJOHSKDVHDUHWKHLQIOHFWLRQSRLQWVRQWKH *YV 1  RU*YV [ FXUYHDQGWKHORFDOPD[LPXPDQGPLQLPXPRQWKH * YV 1     RU * YV [ FXUYHV 6HH)LJXUH 7KHUHJLRQEHWZHHQHDFKFRH[LVWLQJSKDVH FRPSRVLWLRQDQGWKHDGMDFHQWLQIOHFWLRQSRLQWUHSUHVHQWVDPHWDVWDEOHUHJLRQ7KLV LVLOOXVWUDWHGLQ)LJXUH   Solutions to Chemical and Engineering Thermodynamics, 3e  D 0 5   [% 0  [% 5   0   [% 5  0   [% 5 +  [% + %  0  [% 5 + EXW '+ '+ [% 0  [% 5   0   [% 5  0   [% 5 )URP(TXDWLRQ E w 0' + 5 ' +  [% +  + DOVR [% + %    [% + ($ +  PL[ ($  PL[ PL[ PL[ '+ ($ w [% PL[ 0    [% 5 w 0'w+[ 5 PL[ % ($ +%  + % 1RZ 0 w '+ w [% PL[ 5 0   [% 5   0   [% 5  0   [% 5  [% 0  [% 5   0   [% 5   7KHUHIRUH 1+ ($ + ($ 6 0 5 0 [%       [%      [%  0 5 0  [%   [%       [%  5  5  DQG 1+%  + % 6 0  [% 5   0   [% 5  0   [% 5  [% 0  [% 5   0   [% 5    E $W [%   6               - PRO 1+%  + % 6               - PRO 1+  ($ +  ($  (c)  0L[LQJSURFHVV 6\VWHP PROHRIHDFKLQLWLDOPL[WXUH PROHVWRWDO 'LIIHUHQFHIRUPRIPDVVEDODQFH 1 I 1 L  1 L     PRO   %DODQFHRQEHQ]HQH VSHFLHVEDODQFH  [% I 1 I  [% I  [% L 1 L  [% L 1 L        REYLRXVO\       1 L8 L  1 L8 L  4 )RUOLTXLGVROXWLRQV 8 | + &RQVHTXHQWO\ (QHUJ\EDODQFH 1 I 8 I     Solutions to Chemical and Engineering Thermodynamics, 3e 0 + I  + L  + L 4  5 0 5 0    + [%  + [%    + [% 5  EXW '+ PL[ Ÿ+ + 0 '+ PL[ 5  [ % + %    [% + PL[ ($ 0 5  [% + %    [ % + PL[  SRO\QRPLDO JLYHQ LQ SUREOHP VWDWHPHQW ($  SXUH FRPSRQHQW HQWKDOSLHV 4  '+  '+  '+ PL[ PL[ ' + 5 0[% 5  + %  + 0[% 5  + %  + 0 [%  5  ' + 0 [% 5  ' + 0[% PL[ 0 [%      + %    + ($ ($ PL[ PL[  u       4 ($ 5  PL[ - %& N- () u PROHIUDFWLRQ 4%& N- () ' PROQ  SURSDQRO * RIQ  SURSDQRO ' PRORIVROXWLRQ * 7KXVZHREWDLQWKHIROORZLQJ                               0ROH + 2 4N-PROSURSDQRO '+ N-PROVROXWLRQ  PL[ 0ROH + 2 4N-PROSURSDQRO '+ N-PROVROXWLRQ  PL[ 0ROH + 2 4 '+  PL[ 0ROH + 2 4 '+  PL[ '+ PL[             ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤   ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤     LV SORWWHG EHORZ DQG +  +  DQG +  +  DUH HYDOXDWHG XVLQJ WKH JUDSKLFDOSURFHGXUHRI6HF     Solutions to Chemical and Engineering Thermodynamics, 3e 'DVKHGOLQHVDUHVDPSOHWDQJHQWOLQHV>1RWH5HVXOWVLQWDEOHDQGILJXUHEHORZJRWWHQ XVLQJDPXFKELJJHUJUDSK@ [+  2 +Q3  + Q3 ++  2  + +  2 N-PRO            ¤   ¤   ¤   ¤   ¤   ¤ Solutions to Chemical and Engineering Thermodynamics, 3e  0 '+ PL[ D [[ $  % [  [ [ 0 5 0 5 5 [   [ $  %  [   2 [  7 $  %0 [  5  w '+  0 [  [ 5 $  %0[  [ 5   %[ [  w[   w ' +  [ [ $  %0 [  [ 5 '+  [   w[   [ 0 [  [ 5 $  [ 0 [  [ 50 [  [ 5 %   %[ [ [ $  %0 [  5 +  +    PL[   PL[  PL[                           $ %      +  +  DW [   $ %   w ' +   w[  [ [ $  %0 [  [ 5  [ 0 [  [ 5 $  %0 [  [ 5   %[ [ [ $  %0   [ 5 +  +    $  %     "#    +  +  $  $  % ! ' + PL[  [  w ' +   w[  PL[       DW [  PL[ ' + PL[  [               DW. $     u    %     u        - PRO              - PRO +  +  w$ w% w E & &    +  +  w7 w7 w7 Ÿ +  +  3 L 1 3 L Ÿ& 3  & 3  L  L 6 w + + w7 1     6   ww 7$  ww 7%            - PRO. & 3  F & 3            - PRO. 1  1  1 QRFWDQROPDVVEDODQFH  [ 1  [ 1  [ 1 $OVR SUREOHPLQIRUPDWLRQ  1  1 2YHUDOOPDVVEDODQFH             Solutions to Chemical and Engineering Thermodynamics, 3e  Ÿ 1  %DVLVRIFDOFXODWLRQ 1  1  +   1  + '+ PL[ + Ÿ 4 0 [[ 0' + 5 0' + 5 0' + 5 PL[  PL[  PL[     1  +   4 +  [ +  [ +  ' + PL[  [ +  [ +   5 0 5  1 1  1 60' + 5 0' + 5  0' + 5  0' + 5  0[  [ 5    1  ' + PL[   1  ' + PL[ PL[  ' + PL[   u    u   [ (QHUJ\EDODQFH   1   PL[    PL[  PL[             u    - PRO            u    - PRO         u     4    u     u    u   Ÿ 4   - PROVROXWLRQ Ÿ +HDWPXVWEHDGGHG 4   - PROVROXWLRQ   - PRO    Solutions to Chemical and Engineering Thermodynamics, 3e The mass balance of the acetic acid-pyridine streams at steady-state is kmol 0 = N& P + N& A + N& mix ⇒ − N& mix = N& P + N& A ⇒ N& mix = -2 min 6.29 The energy balance is 0 = N& P H P + N& A H A + N& mix H mix + Q& = N& P H P + N& A H A + N& mix xP H P + xA H A + ∆ H mix + Q& a a f a f f a f = 1 ⋅ H P − H P + 1 ⋅ H A − H A − 2 ⋅ ∆ H mix xP = 0.5 + Q& so Q& = 2 ⋅ ∆ H mix ax P f = 0.5 Now from the table a f ∆ H a x = 0.5029f = −4765 J / mol By interpolation ∆ H a x = 0.5f ≈ −4773 J / mol ∆ H mix xP = 0.4786 = −4833 J / mol mix P mix P and kmol J 1 kJ 1000 mol Q& = 2 ⋅ ( −4773) ⋅ ⋅ min mol 1000 J kmol kJ = −9546 min Negative sign means that heat must be removed (or cooling supplied) to keep the process at a constant temperature. Since ethylene glycol has a value of CP = 2.8 kJ/kg K. From an energy balance we have that kJ kJ 2.8 × 20 K × M& = 9546 kg ⋅ K min Therefore & = M 9546 kJ min kJ 2.8 × 20 K kg ⋅ K = 170.5 kg ethylen e glycol min (also available as an Mathcad worksheet) 6.30 Problem 6.30 x 0 0 H0 0 x1 0.0371 H1 1006 x2 0.0716 H2 1851 x3 0.1032 H3 2516 x4 0.1340 H4 3035 x5 0.1625 H5 3427 x6 0.1896 H6 3765 x7 0.2190 H7 4043 x8 0.2494 H8 4271 x10 0.3006 H10 4571 x11 0.3234 H11 4676 x9 0.2760 H9 4440 x12 0.3461 H12 4760 x13 0.3671 H13 4819 x14 0.3874 H14 4863 x15 0.3991 H15 4832 x16 0.4076 H16 4880 x17 0.4235 H17 4857 x18 0.4500 H18 4855 x19 0.4786 H19 4833 x20 0.5029 H20 4765 Solutions to Chemical and Engineering Thermodynamics, 3e 18 18 19 19 20 20 x21 0.5307 H21 4669 x22 0.5621 H22 4496 x23 0.5968 H23 4253 x24 0.6372 H24 3920 x25 0.6747 H25 3547 x26 0.7138 H26 3160 x27 0.7578 H27 2702 x28 0.8083 H28 2152 x29 0.8654 H29 1524 x30 0.9277 H30 806 x31 1.0 H31 i 0 0 , 1 .. 31 0 2000 H i 4000 6000 0 0.5 1 x i One-constant Margules fit f( x) x. ( 1 x) 4 S = 1.961 10 linfit ( x, H , f ) S Two-constant Margules fit f( x) x. ( 1 x. ( 1 x) . x) ( 2 . x 1 ) SS linfit ( x, H , f ) 4 1.893 10 SS = 3 8.068 10 Three-constant Margules fit f( x) x. ( 1 x) x. ( 1 x) . ( 2 . x 1 ) x. ( 1 HH( x) x) . ( 2 . x 1 ) 4 1.88 . 10 . ( x. ( 1 dHH( x) d HH( x) dx ∆ H1( x) HH( x) (1 4 1.88 10 SS linfit ( x, H , f ) 2 SS = 3 7.983 10 3 1.143 10 x) ) 3 7.983 . 10 . ( x. ( 1 x) . dHH( x) ∆ H2( x) x) . ( 2 . x 1 ) ) HH( x) 3 1.143 . 10 . x. ( 1 x. dHH( x) x) . ( 2 . x 1 ) 2 Solutions to Chemical and Engineering Thermodynamics, 3e Solutions to Chemical and Engineering Thermodynamics, 3e Solutions to Chemical and Engineering Thermodynamics, 3e ∆ H1 xi HH xi ∆ H2 xi 2.793 . 10 0 970.622 1.917 . 10 0 64.168 230.38 462.512 753.807 1.7 . 10 1.074 . 10 4 2.45 . 10 4 3 1.76 . 10 2.16 . 10 4 2.393 . 10 3 3 2.931 . 10 3 3.363 . 10 3.718 . 10 3 4.045 . 10 3 3 4.322 . 10 4.517 . 10 3 4.66 . 10 3 3 4.762 . 10 3 4.835 . 10 4.88 . 10 3 4 3 4 1.516 . 10 1.418 . 10 1.355 . 10 1.828 . 10 1.195 . 10 2.288 . 10 1.044 . 10 2.716 . 10 9.243 . 10 3.127 . 10 8.227 . 10 3 3.52 . 10 7.36 . 10 3 3.92 . 10 6.565 . 10 4.296 . 10 5.886 . 10 4.663 . 10 5.281 . 10 4.875 . 10 4.953 . 10 5.03 . 10 4.724 . 10 5.319 . 10 4.317 . 10 5.8 . 10 3.696 . 10 6.315 . 10 3.102 . 10 6.747 . 10 2.653 . 10 7.231 . 10 2.2 . 10 7.763 . 10 4 4 4 4 3 3 3 3 4.902 . 10 3 4.906 . 10 4.905 . 10 3 4.895 . 10 3 3 4.853 . 10 4.777 . 10 3 4.688 . 10 3 3 4.561 . 10 4.388 . 10 3 4.162 . 10 3 3 3.86 . 10 3.545 . 10 3 3.186 . 10 3 3 2.751 . 10 3 2.218 . 10 1.581 . 10 859.046 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1.759 . 10 8.327 . 10 1.349 . 10 963.67 683.156 458.239 274.249 135.442 48.028 8.49 0 8.946 . 10 3 3 3 3 9.48 . 10 3 9.989 . 10 3 1.05 . 10 4 1.1 . 10 4 1.144 . 10 4 1.177 . 10 4 1.196 . 10 4 Solutions to Chemical and Engineering Thermodynamics, 3e 6.31 Starting by writing the equation for the formation of each of the six compounds present from their elements C + 4H = CH4 2O = O2 C + 2O = CO2 C + O = CO 2H = H2 2H + O = H2 O (1) (2) (3) (4) (5) (6) Now using eqn. (2) to eliminate the oxygen atom, and eqn. (5) to eliminate the hydrogen atom. We obtain C + 2H2 = CH4 C + O2 = CO2 C + 1/2O2 = CO H2 + 1/2O2 = H2O Thus from the Denbigh method, we find there are four independent reactions. One such set is listed above. 6.32 (a) N 2 ( g ) + H 2 ( g ) = 2NH 3 ( g ) ∆Hrxn = 2 × (− 461 . ) = −92.2 kJ mol ∆Grxn = 2 × (− 165 . ) = −33.0 kJ mol (b) C3 H 8 ( g ) = C2 H 4 ( g ) + CH 4 ( g ) ∆H rxn = 52.5 − 74.5 − ( −104 .7) = 82.7 kJ mol ∆Grxn = 685 . − 505 . − ( − 24.3) = 42.3 kJ mol (c) CaCO3 ( s) = CaO( s) + CO 2 ( g ) ∆Hrrxn = −635.1 − 393.5 − ( −1206.9) = 178.3 kJ mol ∆Grxn = −604 .0 − 394.4 − ( −11288 . ) = 130.4 kJ mol (d) 4CO( g ) + 8H 2 ( g ) = 3CH 4 ( g ) + CO 2 ( g ) + 2 H 2 O( g ) ∆H rxn = 3 × ( −74.5) + ( −393.5) + 2 × ( −241.8) − 4 × ( −110.5) = −658.6 kJ mol ∆Grxn = 3 × (− 505 . ) + ( −394 .4 ) + 2 × (− 228.6 ) − 4 × ( −137 .2 ) = −454 .3 kJ mol 6.33 Buckmasterfullerene C60 (BF) + 60 O2 = 60 CO2 for which ∆Hcomb = 26,033 kJ/mol= 26,033 kJ/60 mols C Graphite 60C + 60 O2 = 60CO2 for which ∆Hcomb = 60×393.513= 23,611 kJ/60 mols C For these reactions sice only carbon, carbon dioxide and oxygen are involved, ∆H f = -∆Hcomb Subtracting the first chemical reaction above from the second yields 60C > C60 (BF) => -26033 – (-23611) = -2422 kJ/mol C60 (BF) Solutions to Chemical and Engineering Thermodynamics, 3e 6.34 (also available as an Mathcad worksheet) Problem 6.34 Partial molar enthalpies x0 0 H0 File: 6-34.MCD 0 x1 0.0120 H1 68.8 x2 0.0183 H2 101.3 x3 0.0340 H3 179.1 x4 0.0482 H4 244.4 x5 0.0736 H5 344.6 x6 0.1075 H6 451.1 x7 0.1709 H7 565.3 x8 0.1919 H8 581.0 x10 0.2636 H10 566.1 x11 0.2681 H11 561.9 x13 0.3073 H13 519.6 x14 0.3221 H14 508.0 x9 0.2301 x12 0.2721 x15 H9 585.0 H12 557.8 0.3486 H15 468.5 x16 0.3720 H16 424.4 x17 0.3983 H17 369.1 x18 0.4604 H18 197.1 x19 0.4854 H19 135.4 x20 0.5137 H20 66.1 x21 0.5391 H21 1.9 x22 0.5858 H22 117.1 x23 0.6172 H23 186.5 x24 0.6547 H24 266.9 x25 0.7041 H25 360.3 x26 0.7519 H26 436.6 x27 0.7772 H27 470.5 x28 0.7995 H28 495.9 x29 0.8239 H29 510.0 x30 0.8520 H30 515.8 x31 0.8784 H31 505.3 x32 0.8963 H32 486.0 x33 0.9279 H33 420.5 x34 0.9532 H34 329.2 x35 0.9778 H35 184.7 x36 0.9860 H36 123.3 x37 0.9971 25.1 x38 1.0 H38 0.0 12 12 i 13 13 14 H37 14 0 , 1 .. 38 1000 500 H i 0 500 1000 0 0.5 x i One-constant Margules fit f( x) x. ( 1 HH( x) x) SS SS0 . x. ( 1 linfit ( x, H , f ) SS = 528.45491 x) dHH( x) d HH( x) dx PH1( x) HH( x) (1 x) . dHH( x) PH2( x) HH( x) x. dHH( x) 1 Solutions to Chemical and Engineering Thermodynamics, 3e Two-constant Margules fit x. ( 1 f ( x) HH( x) PH1( x) x. ( 1 x) x) . ( 2 . x 1 ) x. ( 1 x) . SS0 HH( x) (1 linfit ( x, H , f ) SS SS1 . ( 2 . x 1 ) x) . dHH( x) PH2( x) SS = dHH( x) HH( x) 337.24041 5707.44046 d HH( x) dx x. dHH( x) Solutions to Chemical and Engineering Thermodynamics, 3e Three-constant Margules fit x. ( 1 x) f ( x) x. ( 1 x) . ( 2 . x 1 ) x. ( 1 2 x) . ( 2 . x 1 ) HH( x) SS0 . ( x. ( 1 dHH( x) d HH( x) dx x) ) SS 488.57112 linfit ( x, H , f ) SS = 5672.45617 970.2807 SS1 . ( x. ( 1 PH1( x) x) . ( 2 . x 1 ) ) HH( x) (1 SS2 . x. ( 1 x) . dHH( x) x) . ( 2 x 1 ) PH2( x) 2 HH( x) x. dHH( x) Solutions to Chemical and Engineering Thermodynamics, 3e Four-constant Margules fit x. ( 1 f ( x) HH( x) dHH( x) x) x. ( 1 x) . ( 2 . x 1 ) x. ( 1 2 x) . ( 2 . x 1 ) x. ( 1 3 x) . ( 2 . x 1 ) x. ( 1 x) . SS0 d HH( x) dx SS SS1 . ( 2 . x 1 ) PH1( x) linfit ( x, H , f ) 2 SS2 . ( 2 . x 1 ) HH( x) (1 3 SS3 . ( 2 . x 1 ) x) . dHH( x) PH2( x) HH( x) x. dHH( x) Solutions to Chemical and Engineering Thermodynamics, 3e Solutions to Chemical and Engineering Thermodynamics, 3e HH x i 0 75.89284 112.97104 197.51978 264.87861 365.61955 465.07305 563.45181 575.52278 576.41179 558.17713 554.54726 551.10303 512.60889 492.43244 451.15379 409.80542 358.55983 221.37494 161.16559 90.55115 25.5922 95.51229 176.23404 269.19976 380.26243 466.63265 500.06403 520.4105 530.95404 525.02317 498.49631 467.10138 380.96262 279.46841 148.70801 97.36045 21.20369 0 PH1 xi 6620.61619 6037.1938 5746.57438 5066.79383 4503.47003 3607.09619 2606.80402 1219.73582 871.2077 347.75299 14.29521 57.06648 94.0214 379.84612 481.19324 638.98059 756.15737 866.44984 1052.07298 1101.2544 1140.97708 1162.73326 1169.06642 1148.81031 1098.66681 990.04823 841.94903 748.83482 660.0669 557.74661 436.6149 323.9931 250.96992 135.3294 62.11408 15.16587 6.1957 0.27562 0 PH2 xi 0 3.48837 7.95429 26.13746 50.23256 108.09291 207.10545 428.17388 505.3063 644.75104 763.09798 778.58558 792.26028 908.52549 955.04467 1034.5447 1100.47128 1169.46453 1307.91205 1351.95197 1391.46839 1415.53852 1422.80738 1391.88005 1303.49667 1070.73515 670.81348 367.73066 36.47376 405.60256 1033.96809 1759.05242 2335.16915 3542.17012 4706.43722 6030.57744 6517.96343 7216.85219 7407.10877 Solutions to Chemical and Engineering Thermodynamics, 3e 6.35 Assume reactor operates in steady state. Then the mass balance is 0 = Ni ,in − Ni ,out + νi X or N i ,in = + N i, out − νi X and the energy balance is 0= ∑N i ,in ∑N H i ,in − i i ,out H i , out +Q i or ∑ N H +∑ N H = −∑( N − ν X ) H +∑ N H = ∑ N bH − H g + ∆ H (T ) X Q=− i ,in i, out i ,in i i, out i i, out i i ,out i ,in i i ,out i i ,out i ,out i, in rxn in i Using a Mathcad worksheet, the heats of formation and heat capacities in the appendices of the textbook, we find that 59.93 kJ must be supplied per mole of N2 entering reactor. See Mathcad worksheet for this problem. 6.36 (also available as an Mathcad worksheet) 6.36 x25 0 H250 x500 0 H500 x251 0.027 H251 223.16 x501 0.031 H501 76.20 x252 0.034 H252 290.15 x502 0.043 H502 121.84 x253 0.054 H253 329.50 x503 0.082 H503 97.55 x254 0.094 H254 384.25 x504 0.098 H504 52.75 x255 0.153 H255 275.07 x505 0.206 H505 125.60 x256 0.262 H256 103.41 x506 0.369 H506 370.53 x257 0.295 H257 81.22 x507 0.466 H507 435.43 x258 0.349 H258 11.35 x508 0.587 H508 473.11 x259 0.533 H259 133.98 x509 0.707 H509 460.55 0 0 0 x2510 0.602 H2510 168.31 x5010 0.872 H5010 238.23 x2511 0.739 H2511 177.94 x5011 0.9999 H5011 0.0 x2512 1.0 0.0 x5012 1.0 0.0 i 0 .. 12 H2512 H5012 Nomenclature H25 = enthalpy at 25C H50 = enthalpy at 50C HH25 and HH50 are correlated enthalpies. ∆H125 = difference between partial molar and pure component enthalpies of species 1 at 25C, etc. Solutions to Chemical and Engineering Thermodynamics, 3e x. ( 1 x) x. ( 1 x) . ( 2 . x 1 ) Three-constant Margules fit f( x) x. ( 1 s25 x) . ( 2 . x 1 ) 2 851.268 linfit ( x25, H25 , f ) s25 = 3 1.543 10 3 5.027 10 s50 3 1.95 10 linfit ( x50, H50 , f ) s50 = 3 1.443 10 3 2.099 10 HH25( x) s250 . x. ( 1 x) s251 . x. ( 1 x) . ( 2 . x 1 ) s252 . x. ( 1 2 x) . ( 2 . x 1 ) HH50( x) s500 . x. ( 1 x) s501 . x. ( 1 x) . ( 2 . x 1 ) s502 . x. ( 1 x) . ( 2 . x 1 ) 2 Solutions to Chemical and Engineering Thermodynamics, 3e dHH25 ( x ) d HH25 ( x ) dx dHH50 ( x ) d HH50 ( x ) dx ∆ H150( x50) HH50( x50) (1 x50) . dHH50( x50) ∆ H125( x25) HH25( x25) (1 x25) . dHH25( x25) ∆ H250( x50) HH50( x50) x50. dHH50( x50) ∆ H225( x25) HH25( x25) x25. dHH25( x25) Solutions to Chemical and Engineering Thermodynamics, 3e 6.37 (also available as an Mathcad worksheet) 6.37 x0 0.2108 H0 738 x1 0.2834 H1 900 x2 0.3023 H2 933 x3 0.4285 H3 1083 x4 0.4498 H4 1097 x5 0.5504 H5 1095 x6 0.5562 H6 1096 x7 0.6001 H7 1061 x8 0.6739 H8 976 x9 0.7725 H9 780 x10 H10 622 i 0.8309 0 .. 10 Hxxi Hi xi . 1 xi 600 4420 800 4430 H i Hxx i 1000 4440 1200 4450 0.2 0.4 0.6 x i 0.8 1 0.2 0.4 0.6 x i 0.8 1 Solutions to Chemical and Engineering Thermodynamics, 3e 4430 . 1 ∆ H1i xi ∆ H1i 2 ∆ H2i 4.436 . 10 3 196.854 355.798 404.837 813.402 896.278 3 2.275 . 10 3 2.156 . 10 3 1.447 . 10 3 4.432 . 10 3 4.424 . 10 3 4.422 . 10 3 3 4.433 . 10 3 4.425 . 10 3 1.342 . 10 1.341 . 10 895.481 872.526 708.446 471.092 229.28 126.675 3 2 Hxxi ∆ H2i 2.759 . 10 4430 . xi 3 1.37 . 10 4.44 . 10 3 1.595 . 10 3 4.421 . 10 3 2.012 . 10 3 4.441 . 10 3 2.644 . 10 3 4.438 . 10 3 3.058 . 10 3 4.427 . 10 3 1 6.38 (a) C8 H 18 + 12 O 2 + 47.02N2 → 8CO2 + 9H 2 O + 47.02N2 2 ∆Hrxn = 8∆ H f , CO 2 + 9 ∆ H f , H 2 O − ∆H f , C 8 H 18 = 8(− 393.5) + 9( −2418 . ) − (− 208.4 ) = −51158 . kJ ∆U rxn = ∆ Hrxn − ∆ NRT = − 51158 . kJ(17 − 135 . ) × 8.314 × 298.15 kJ 1000 = − 51158 . − 8.7 kJ = −5124.5 kJ CP of mixture = 8 × 5125 . + 9 × 39.75 + 47.02 × 32.43 = 2292.61 J mol K . J mol K CV of mixture = CP − NR = 2292.61 − 64.02 × 8.314 = 176035 A # of moles ∆U rxn 51245 . × 10 3 = 298 .15 + = 298.15 + 291107 . = 3209.2 K CV 1760.35 by ideal gas law N f Tf N f Tf NT PV = NRT ⇒ i i = ; Pf = Pi Pi Pf Ni Ti Tfinal = Tin + 64.02 32092 . × = 11386 . bar 60.52 29815 . (b) Adiabatic expansion Pf = 1 bar Solutions to Chemical and Engineering Thermodynamics, 3e CP ( per mole) = FPI T = TG J HPK 229261 . 229261 . = = 3581 . 8 + 9 + 47.02 64.02 R CP = 3209.2 × 2 2 1 1 F 1 I H 11386 K . 8 .314 3581 . T2 = 3209.2(0087827 . )0 .23217 = 18245 . K 0 dU dS = W& ; = 0 + S gen dt dt W = CV ∆T = −2.438 × 106 J mol of octane (c) This is like Carnot cycle with a varying upper T 0 dU dT dS Q& C dT = Q& + W& = CV ; = + S gen = P ; T2 = 150° C dt dt dt TL T dt dU dS & = TL +W dt dt ∆U − TL ∆S = W or W = CV∆T − TL ⋅ CP ln TL TH W = 176035 . (423.15 − 18245 . ) − 42315 . × 2292.61ln 42315 . 18245 . = −1049 . × 106 J mol of octane dT C dT & dT C dT = TL P + W ⇒ W& = CV − TL P dt T dt dt T dt TL WS = CV TL − TH − TL CP ln TH dU = ∑ N& i ,in Hi ,in − ∑ N& i ,out H i ,out + Q& + W& = 0 dt 0 dS Q& = ∑ N& i , in Si ,in − ∑ N& i ,out S i ,out + + S gen =0 dt Tamb CV a f (for maximum work) Q& = −Tamb ∑ N& i ,in Si , in − ∑ N& i , out Si , out b bH bH g b g − ∑ N& bH − T g − ∑b N& + Xν gbH g g 0 = ∑ N& i , in Hi ,in − Tamb Si , in − ∑ N& i , out Hi ,out − Tamb Si , out + W& −W& = ∑ N& i , in = ∑ N& i , in i ,in − Tamb Si , in i ,in − Tamb Si , in i , out i ,out i , in i amb Si , out − Tamb Si ,out i ,out Absolute maximum work Tin = Tout = Tamb Ideal gas Hi = H i ; Gi , in = Gi ,out ; Si = Si − R ln xi −W& = ∑N i ,in G i , in − RTamb i RTamb ∑N i ∑N i ,in i ,in ∑N G + + X ∑ ν bG − RT ln x g ln xi, in − i ln xi , out i, in i ,in i i i i amb i ,out g Solutions to Chemical and Engineering Thermodynamics, 3e −W& = RTamb ∑N = RTamb ∑N i , in ln i ,in ln xi , in xi ,out xi ,in xi ,out +X ∑ ν G − RT ∑ ln x i i + X∆Grxn − RTamb νi i ,out amb ∑ ln x νi i ,out 6.39 C is the number of components, and M is the number of phases. Then the unknowns are N iK (number of moles of species i in phase K) = C × P unknowns P (pressure in phase K) = P unknowns K T K (temperature in phase K) = P unknowns. Total number of unknowns is C × P + P + P = P × (C + 2 ) Then restrictions are that T is the same in all phases, i.e., T I = T II = T III =..... P - 1 restrictions P is the same in all phases, i.e., P I = PII = PIII =..... P - 1 restrictions K Gi must be the same for species i in all phases = C × ( P - 1) restrictions In addition we have the stoichiometric relation for each species that K M k=1 j =1 N i = ∑ Nik = Ni , o + ∑ νij X j which provides an addition C restrictions. Therefore the number of degrees of freedom F are F = (C + 2) ⋅ P - (C + 2) ⋅ ( P -1) - C = C + 2 - C = 2 independent of the number of components, phases or independent chemical reactions. Therefore Duhem's theorem is valid. Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7 7.1 a f PV T , P, N1 , N2 K = ∑ Ni RT a f ⇒ Vi ( T , P, x) = V i (T , P ) U T , P, N 1 , N 2 K = ∑ N i U i ( T , P) ⇒ U i ( T , P, x ) = U i ( T , P) Also Si (T, P , x) = S i (T, P) − R ln xi ∆U mix = ∑ xi U i ( T , P, x) − U i ( T , P) = ∑ xi 0 = 0 i i ∆V mix = ∑ xi Vi ( T , P, x) − V i (T , P ) = ∑ xi 0 = 0 i i ∆ H mix = ∆U mix + P∆V mix = 0 ∆S mix = ∑ xi Si (T , P, x )− S i (T, P) = ∑ xi −R ln xi = −R∑ xi ln xi b g a ∆G mix = ∑ xi Gi ( T , P, x) − G i (T , P) = ∑ xi Hi − TSi − H i − T S i b g b = ∑ xi Hi − H i − T ∑ xi Si − S i g f = ∆ H mix − T ∆S mix = RT ∑ xi ln xi Similarly ∆ Amix = ∆U mix − T∆ S mix = RT∑ xi ln xi . 7.2 The picture of the process here is as follows Mixture ∑ N i Moles of gas at T and V ! 1 T ,V , P1 B 2 T ,V , P2 Mix keeping   → T ,V , Pf T and V fixed M C T , V , PC (a) Let Pi = initial pressure of species i (pressure in unmixed state) P = final pressure of mixed gas Pi = xi P = partial pressure of species i in final state want to show that Pi = Pi P = NRT V = Pi = N i RT V and b∑ N gRT V i Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e ↓ initial pressure of pure i Pi = xi P = xi NRT V = Ni RT V = Pi ↑ partial pressure of species i Q.E.D. (b) Since the internal energy of an ideal gas is independent of total pressure, it follows that U i IGM ( T , x ) = U IG i ( T ) for mixing at constant total pressure or constant partial pressure. Thus, ∆U IGM mix = 0 . Next, Vi IGM (T , P , x) = RS∑ N RT UV = RT = RTx = RTx T P W P Px P RT V aP , T f =x = x V aT , P f ∂V ∂ Ni = xi j i i i i T ,P IG i i Pi i Ni IG i i a f Vi IGM (T , P, x) = xiV iIG T , Pi Thus ∆θIGM mix Can now define two m r a fr m ∆θ IGM = ∑ xi θi (T , P, x )− θ i (T , P ) and ∆θ IGM = ∑ xi θ i (T, P , x) − θ T, Pi mix mix 1 2 ∆θ IGM was computed in Section 7.1 and will not be considered here. We will be concerned mix 1 with ∆θ IGM ! mix 2 ∑ x lV (T , P, x ) − V aT , P fq = ∑ x kx V aT , P f − V aT , P fp V V V = ∑ x a x − 1f = ∑ x a x − 1f = ∑ a x − 1f N xN N ∆V mix = IGM IGM i i i i i i i i i i C i i i i i = i i i =1 V V (1 − C ) (1 − C) = C N Ni ∑ i =1 C Note: ∑1 = C i =1 where C = number of components. For enthalpy we have a f Hi IGM (T , P, x) = U iIGM ( T , P, x) + PVi IGM ( T , P, x) = U iIG (T , P) + PxiV iIG T , Pi = Thus U IG i (T , P ) + d H iIG( T , P) i ∆H IGM = ∑ xi Hi IGM (T, P , x) − H IG mix i (T , P ) = 0 1 and PVi (T , P) = IG Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e a fi d = ∑ x nU ( T , P) + PV (T , P ) − U ( T , P) − PV aT , P fs = ∑ x k0 + PV ( T , P) − PV aT , P fp = ∑ x {RT − RT } = 0 C IGM ∆H mix 2 = ∑ xi H iIGM (T , P , x ) − H 1 T , Pi IG i =1 IG i i IG i i i i i i i i i i i i To compute ∆S IGM mix we use the same sort of argument as in Section 7.1, but noting here that the volume occupied by each gas in the initial and final states are the same. Therefore SiIGM ( T , P, x) = S IG i T , Pi . Since T and V of each species is unchanged (see eqn. (3.4-2)). a f Therefore a fs = 0 n ∆S IGM = ∑ xi Si IGM (T , P , x) − S IG mix i T , Pi 2 i For the Helmholtz free energy we note that A = U − TS ⇒ Ai IGM (T , P , x) = U iIGM ( T , P, x) − TSi IGM( T , P, x) a f a f = U iIG( T ) − TS IG T , Pi = AiIG T , Pi i Thus, ∆ AIGM = 0 . Finally G = A + PV , ⇒ mix 2 a f a f IG Gi IGM (T , P , x) = Ai IGM( T , P, x) + PVi IGM ( T , P, x) = AIG i T , Pi + Pxi V i T , Pi = AiIG aT, P f + PV aT, P f = aT, P f IG i i i G iIG i i So that ∆GIGM =0 mix 2 7.3 Generally mixing at constant T and P and mixing at constant T and V are quite different. However, for the ideal gas we have PVi = N i RT (pure fluids) and PV = ∑ Ni RT (mixtures) Thus for the pure fluids (same T and P) N RT N RT V1 = 1 and V2 = 2 P P N1 RT N2 RT RT ⇒ V1 + V2 = + = N1 + N2 =V P P P So for the ideal gas the mixing process described in problem statement is also a mixing process at constant T and P and Table 7.1-1 applies here also. a 7.4 f a f We have the following properties for a mixture for mixing at constant T and P: U ( T , P, x) = ∑ Ni U i (T , P) V (T , P , x) = ∑ Ni V i (T , P ) S (T , P , x) = ∑ Ni S i (T , P) − R∑ Ni ln xi 0 and S i = S i + CV ,i ln Ui U 0i + R ln Vi V i0 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e S 0i , U 0i , V 0i are at some reference state. (a) Find Vi , U i , S i and G i in terms of S 0i , U 0i , V 0i , CV, i , R, T, and P . Need U i , V i . ∂S ∂U We know dU = Td S − PdV → 1 ∂S ; T ∂V = V = U P U V and S i = S i0 + CV,i ln i0 + R ln 0i for T Ui Vi pure component i. ∂S 1 1 = = CV ,i → U i = CV ,i T ∂U V T Ui ∂S 1 ∂S ∂U =R and ⋅ ∂V U Vi ∂V U ∂ S ∂U ∂S =T V ∂V ∂U RT P ∂U So U i = ∂ Ni =− S 1 ∂S ⇒ P ∂V ⋅ V ∂V ∂U = T⋅ U = −1 S −1 ∂S = −1 → P ∂V = U R P = Vi T ⇒Vi = = T , P , N j ≠i ∂ ∂Ni ∑ Ni CV,iT = CV,i T = U i U i = CV,i T Vi = 7.5 ∂V ∂ Ni = T , P , N j≠ i ∂ ∂ Ni ∑ Ni V i = RT = Vi = V i P (a) Start with eqn. 7.2-13 ln fi 1 = ln φi = xi P RT P= ∂P ∂ Ni N ∂P ∂ Ni = V V z V = ZRT P V =∞ LM RT − N FG dP IJ MN V H ∂N K i V OPdV − ln Z PQ RT a NRT N 2a NRT ∑ ∑ Ni N jaij − 2 = − 2 = − V −b V V − Nb V V − ∑ Ni bi V2 RT V − ∑ Ni bi − 2∑ N a −b f − a V bV − ∑ N b g NRT j ij 2 i i = RT NRTbi 2 ∑ N j aij + − V − Nb (V − b) 2 V2 = 2 ∑ x j a ij RT RTbi + − 2 V (V − b ) V2 i 2 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e f 1 ln φi = ln i = xi P RT z ZRT P LM N = ln 2 ∑ x j a ij i 2 V =∞ 1 V = RT ln RT V −b LM RT RT RTb MM V − V − b − (V − b) N OP Q ZRT P V =∞ Z Bi + − Z − B ( Z − B) j + V2 2 ∑ x j a ij ZRT P RTbi + − (V − b ) V = ∞ OP PPdV − ln Z Q ZRT P j − ln Z V2 V =∞ 2 ∑ x j a ij j F where B = Pb I H RT K − ln Z RTV f Bi ⇒ ln φi = ln i = − ln (Z − B) − xi P Z − B i i 2∑ x j aij j RTV (b) For a pure van der Waals fluid (Eqn. 5.4-13) ln a f fi a = (Z − 1) − ln Z − Bi − i P RTV and, by definition of the activity coefficient fi = xi f iγ i ⇒ R| 2∑ x A U |V B f = x P exp S − ln( Z − B ) − Z |T Z − B |W f = P exp R ST(Z − 1) − lnaZ − B f − AZ UVW j i ij j i i mixture ii i i pure fluid i so fi = xi f i RS |T LMF 2∑ x A I JK NGH expk( Z − 1) − lna Z − B f − a A f Z p exp Bi ( Z − B ) − ln( Z − B) − j Z ij j i ii OP UV Q |W mixture = γi pure fluid Note that the compressibilities in pure fluid and mixture will generally be different at the same T and P. 7.6 As a preliminary note that, from Eqns. (4.4-27 and 28) z LMTF ∂ P I − P OPdV MN GH ∂ T JK PQ LMFG ∂ P IJ − R OPdV MNH ∂ T K V PQ V = ZRT P H ( T , P) − H IG (T , P ) = RT ( Z − 1) + V =∞ and z V = ZRT P S (T , P ) − S IG (T , P) = R ln Z + V =∞ V V Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e vdw E.O.S. P = RT a − 2 so V −b V FG ∂ P IJ = R ; T FG ∂ P IJ H ∂T K V − b H∂T K FG ∂ P IJ − R = R − R ; H ∂ T K V (V − b) V V RT RT a a − + 2 = 2 V − b (V − b) V V −P= V V z V = ZRT P ⇒ H ( T , P) − H IG (T , P ) = RT ( Z − 1) + a V2 V =∞ dV = RT ( Z − 1) − and z V = ZRT P S (T , P) − S IG ( T , P) = R ln Z + V =∞ a RTA = RT (Z − 1) − V Z LM R − R OPdV NV − b V Q ZRT P (V − b) = R ln Z + R ln = R ln( Z − B ) V V =∞ Now on to solution of problem. RT ex (a) V = V mix − ∑ xi V i = Z mix − ∑ xi Zi = ∆V mix P Zmix = compressibility of mixture at T and P b g Zi = compressibility of pure fluid i at T and P Will leave answer to this part in this form since the analytic expression for Zi and Zmix (solution to cubic) is messy. Though it can be analytically and symbolically with a computer algebra program such as Mathcad, Mathematica, Maple, etc.) RT RTAmix RTAi (b) H ex = H mix − xi H i = − − xi RT Zi − 1 − Z mix − 1 Z mix Z mix i L ∑ MN a ∑ FG x A IJ − RTA HZ K Z F x A − A IJ = RT b Z − ∑ x Z g + RT G ∑ H Z Z K = aH − PV f − ∑ x a H − PV f = bH − ∑ x H g − PbV −∑xV g F x A − A IJ − RT bZ = RT b Z − ∑ x Z g + RT G ∑ H Z Z K F x A − A IJ = + RT G ∑ H Z Z K b g = RT Z mix − ∑ xi Zi + ∑ RT i i mix i i mix i mix i i mix i U ex OP Q f mix mix mix i i i i i i mix i i i mix mix i i i i i mix mix i mix mix mix − ∑ xi Zi g Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e (c) S mix − ∑ xi Si − R ∑ xi ln xi =S ex a = R lna Z = R lna Z f a f f − R∑ x lnaZ − B f + ln x f − R x ln x aZ − B f = P ln Z mix − Bmix − R X i ln Zi − Bi − R∑ xi ln xi = R ln mix − Bmix mix − Bmix i i i i i i i i Zmix − Bmix a Π Z i − Bi i f xi b g (d) G ex = H ex − TS ex = RT Zmix − ∑ xi Zi + RT − RT ln i i mix i mix Z mix − Bmix a Π Zi − Bi i f xi A ex = U ex − TS ex = + RT 7.7 FG ∑ x A − A IJ H Z Z K FG ∑ x A − A IJ − RT ln Z − B H Z Z K Πa Z − B f i i mix mix i mix i i mix xi i (a) Start from eqn. (7.2-13) ln φi = ln fi 1 = yi P RT z V = ZRT P V =∞ LM RT F ∂P I MN V − N GH ∂N JK i T ,V , N j≠i OP PQdV − ln Z but PV B ∑ ∑ yi y j Bij = 1 + mix = 1 + RT V V P= RT Bmix RT + = V V2 ∂P RT = + ∂ Ni V j V2 2 N ∑ N j Bij RT ⇒ = z V2 V 2 ∑ N j Bij RT ∂P NRT N = + ∂ Ni V f 1 ln i = yi P RT ∑ Ni RT + RT ∑ ∑ Ni N j Bij V = ZRT P V =∞ j V 2 = RT 2 ∑ x j Bij + RT V V2 LM RT RT 2 RT ∑ x B OP MM V − V − V PPdV − ln Z N Q 2 ∑ x j Bij − ln Z V j ij j 2 (eqn. 7.4 - 6) Note also that PV B PV 2 PV 2 =1+ or =V + B −V − B = 0 RT V RT RT Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e ⇒V = 1 ± 1 + 4 PB RT PV 1 or = Z = 1 ± 1 + 4 PB RT 2 P RT RT 2 d i as P → 0, Z → 1 (ideal gas limit) so only + sign allowed Z= d 1 1 + 1 + 4 PB RT 2 i Note that at low pressures we can obtain a simpler expression. At low pressures PV B B P = 1 + mix ≈ 1 + mix RT V RT Then m RT RT + Bmix = + y12 B11 + 2 y1 y2 B12 + y22 B22 P P RT RT V − V IG = + Bmix − = ∑ ∑ yi y j Bij = V ex P P V= r Also a V = N V = N1 + N 2 f RTP + N +1 N mN 1 2 1 B11 + N22 B12 + 2 N1 N2 B22 r 2 2 ∑ N j Bij ∂ RT 1 V1 = V= − ∑ ∑ Ni N j Bij + Nj + N ∂ N1 P N1 + N 2 i 1 2 = = = = V1 − V1 IGM = ln f1 1 = y1 P RT RT P RT P RT P RT P RT P − ∑ ∑ yi y j Bij + 2 ∑ y j Bij + 2 y1B11 + 2 y2 B12 − y12 B11 − 2 y1 y2 B12 − y22 B22 a f + y a2 − y f B + y a2 − y f B 0 f 1 1 11 + 2 y22 B12 − y22 B22 1 1 11 + 2 y22 B12 − y22 B22 − zc P a + y1 2 − y1 B11 + 2 y2 1 − y1 B12 − y22 B22 a h RT P f V1 − V1 IGM dP = y1 2 − y1 B11 + 2 y22 B12 − y22 B22 RS a T f f P ⇒ 1 = exp y1 2 − y1 B11 + 2 y22 B12 − y22 B22 y1 P RT P RT UV W This is an alternate, some approximate expression that we will use in what follows. Also, for the pure component we have LM N f1 B P = exp 11 P RT OP Q Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e Note that these expressions are slightly easier to use then the full expressions since we don’t have to solve for V (or Z) first l a f a exp y1 2 − y1 B11 + 2 y22 B12 − y22 B22 P RT f1 = γ1 = y1 f1 exp B11 P RT RS b T = exp LM y a 2 B N k p g = exp − 1 − 2 y1 + y12 B11 + 2 y22 B12 − y22 B22 2 2 12 − B11 − B22 f RTP OPQ = γ P RT fq UV W 1 δ12 y22 P where δ12 = 2 B12 − B11 − B22 RT (b) Repeating the argument for a ternary mixture or ln γ 1 = ln γ 1 = a f P 2 y2 δ12 + y2 y3 δ12 + δ13 − δ22 + y32δ13 RT By simple generalization ln γ 1 = 7.8 P 2 RT ∑ ∑ yi y jcδ1i + δij − δijh Note: δii = 0 i j i ≠1 j ≠1 i≠ j a k fp N N R = NG = S A + BFGH NN −+ NN IJK UVW N +N T F ∂ G IJ = N RS A + BFG N − N IJ UV =G H ∂ N K N + N T H N + N KW N N RS A + B aN − N fUV − aN + N f T N + N W N N R B Ba N − N f U + − S N + N TN + N aN + N f VW = x k A + Ba x − x fp − x x k A + Ba x − x fp + x x Ba1 − x + x f (a) G ex = x1 x2 A + B x1 − x2 G ex ex 1 1 2 2 1 2 1 2 ex G1ex 2 1 1 T ,P 1 2 2 1 2 1 2 1 2 1 2 2 1 1 1 2 2 1 2 1 2 1 2 2 2 2 1 2 1 2 1 2 2 3 2 3 = Ax2 + Bx2 − 2 Bx2 + 2 Bx2 − 2 Bx2 Thus G1ex = RT lnγ 1 = ( A + 3B )x22 − 4 Bx32 . 2 1 2 1 2 Now by repeating the calculation, or by using the symmetry of G ex and replacing B by −B and interchanging the subscripts 1 and 2 we obtain G2ex = RT lnγ 2 = ( A − 3B )x12 + 4 Bx13 2 RTa12 x1q1 x2 q 2 ⇒ x1q1 + x2q 2 After some algebra (b) G ex = G ex = N G ex = 2 RTa12 q1q2 N1 N2 N1q1 + N2 q 2 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e G1ex = d ∂ N G ex ∂ N1 ⇒ ln γ 1 = Similarly ln γ 2 = (c) i 2 RTa12 q1 = a 1 + x1q1 x2 q 2 T , P, N 2 G1ex 2a12 q1 = RT 1 + x1 q1 x2 q 2 a β a 1 + βx2 αx1 f f = 2 f 2 a α 1 + αx1 βx2 f 2 . 2 G ex = 2 a12 z1 z2 + 2a13 z1z3 + 2a 23z2 z3 ; RT zi = where xi qi ∑ x jq j and j FG ∑ N q IJ ∑ ∑ a H K −1 G ex = N G = RT ex k k k k kj Nk N j q k q j ; thus j G ex ∂ ln γ i = i G ex = RT ∂ Ni T , P , N j ≠i − qi ∑ a kjq k q j xk x j j, k FG ∑ x q IJ H K + 2 2 ∑ aij qi q j x j j ∑ xk q k k k k k Now setting α12 = 2q1 a12 , β12 = 2 q2 a 21 = 2q 2 a12 = α21 ⇒ q 2 = q1 β13 , etc. For the case i = 1 α13 similarly, q 3 = ln γ 1 = nx α aβ 2 2 12 12 α12 q1 β12 ; α12 f + x α aβ α f s + x x aβ α faβ α f α kx + x aβ α f + x aβ α fp 2 2 3 2 13 13 13 1 2 3 2 12 12 12 12 3 13 13 13 2 12 a f a f a f + α13 − α23 α12 β12 13 Interchanging indices 1 and 2 ln γ 2 nx β aα = 2 1 12 12 β12 f 2 a f s + x x aα β faβ α f β kx + x aα β f + x aβ α fp 2 + x32α23 β23 α23 2 1 3 1 12 12 12 12 3 23 23 23 2 + α13 − α23 β12 α12 12 23 Finally, interchanging indices 1 and 3 in the original equation yields ln γ 3 = nx β aα 2 2 23 23 f 2 a f s + x x aα β faα β f β kx + x aα β f + x aα β fp β23 + x12 β13 α13 β13 3 7.9 2 1 2 2 23 23 (also available as a Mathcad worksheet) b Using Eqns. (7.6-b) yields: α = 1 RT LM a Nb 1 1 23 a − 2 b2 23 1 OP Q 2 13 13 13 2 23 + β13 − β12 β23 α23 13 b and β = 2 RT LM a Nb 1 1 a2 − b2 OP Q 2 . From Section 4.6, we have three different expressions relating the a and b parameters to the critical properties: 27 R 2 TC2 RTC and b = . Eqn. (4.6-4a) 64 PC 8 PC 1) a= 2) a = 3 PC V 2C and b = VC . Eqn. (4.6-4b) 3 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 9V C RTC V and b = C . Eqn. (4.6-3a) 8 3 Since ZC is not equal to 3/8 for the fluids under consideration, each set of relations will give a 3) a= different pair of values for a and b. Generally, set 1 is used, since V C is known with less accuracy than PC and TC . All three sets of parameters will be considered here. VC = MW ρC Set 1 a Benzene 2,2,4-trumethyl pentane 0.2595 m3 kg 0.4776 m3 kg c h 0.119 c m h c h 0.232 c m h 2 1.875 × 106 m3 Pa kmol2 b 3 2 3 2 kmol α β Set 2 kmol 0.480 0.937 a 9 .945 × 105 m3 Pa kmol2 c h 1.698 × 106 m3 Pa kmol2 c h b 0.0865 m3 kmol 0159 . m3 kmol 2 α β Set 3 2 3.609 × 10 6 m3 Pa kmol2 2 0.353 0.658 b g c h a 1.3655 × 106 m3 Pa kmol2 2 .476 × 106 m3 Pa kmol2 b 0.0865 m3 kmol 0159 . m3 kmol 2 2 α β Set 4 0.433 0.807 Example 7.5-1 Fitting the van Laar equation α = 0.415 β = 0.706 Example 7.6-1 α= Set 5 Regular Solution Theory a f V1 2 δ1 − δ2 = 0.703 RT V β = 2 α = 1304 . V1 The 5 sets of results are plotted below. Numbers in circles denote parameter sets used. Parameter set 4 , fitted to the experimental data, should be the most accurate. Parameter set obtained using V C and TC data should be reasonably good, also. 3 , Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e B 7.10 i) One-constant Margules equation a RT lnγ 1 = Ax22 Thus RT ln γ *1 = RT ln or γ *1 = exp f RT ln γ 1 x1 = 0 = A af γ 1 x1 = Ax22 − A = − A 1 − x22 γ 1 x1 = 0 a LM − Ac1 − x hOP MN RT PQ 2 2 c f γ1 = and h LM c MN − A 1 − x22 x1 ⋅ 1000 exp ms M1 RT ii) Two-constant Margules equation af RT ln γ a x = 0f = α + β γ ax f RT ln γ = RT ln = −α c1 − x h − β c1 − x h γ a x = 0f L −α c1 − x h − β c1− x hOP γ = exp M RT MN PQ L −α c1 − x h − β c1 − x hOP x ⋅ 1000 γ = exp M mM RT MN PQ RT ln γ 1 x1 = α1 x22 + β1 x23 1 * 1 1 1 1 1 2 2 2 2 1 1 s 1 1 1 1 * 1 and 1 1 1 Thus 1 3 2 1 2 2 1 3 2 3 2 hOP PQ Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e iii) van Laar equation α a f a f ; ln γ a x = 0f = α α ln γ a x f = ln γ a x f − ln γ a x = 0f = −α 1 + aαx βx f ln γ 1 x1 = * 1 1 1 1 1 1 2 1 + αx1 βx2 1 1 2 1 2 or, upon rearrangement, LM −α x a2βx + αx f OP N aβx + αx f Q L −α x a2βx + αx f OP x ⋅ 1000 = exp M mM N aβx + αx f Q 2 γ *1 = exp 1 2 1 2 2 and γ1 1 2 1 1 2 1 2 s 1 2 1 iv) Regular Solution Theory a f a a f a f a f c ha LV cφ − 1haδ − δ f OP and γ = exp M RT MN PQ LV cφ − 1haδ − δ f OP x ⋅ 1000 γ = exp M mM RT MN PQ f RT ln γ 1 x1 = V 1φ22 δ1 − δ2 af 2 a f and RT ln γ 1 x1 = 0 = V 1 δ1 − δ2 2 x2V 2 ⇒ 1 as x1 → 0 ) x1V 1 + x2 V 2 (since φ2 = Thus f RT ln γ *1 x1 = RT ln γ 1 x1 − RT lnγ 1 x1 = 0 = V 1 φ 22 − 1 δ 1 − δ 2 1 * 1 2 2 2 1 s 2 2 2 1 1 1 2 2 1 2 1 v) UNIQUAC Model LM θτ ∑ x l − q M1 − ln ∑ cθ τ h − ∑ θ τ ∑ NM ln γ a x → 0f = lim a ln γ f φ z θ φ ln γ i = ln i + q i ln i + li − i xi 2 φi xi j ij j j i j ij j j k kj k i i OP PP Q i xi → 0 Now consider xi → 0 , then θ j →1 and θi → 0 a f a f FrI z Fq r I r L τ O ln γ = lnG J + q lnG ⋅ J + l − l − q M1 − lncτ h − P τ Q Hr K 2 Hq r K r N γ F φ r IJ + z q lnFG θ ⋅ q r IJ − φ ∑ x l + r l ln = ln γ = ln G γ ax → 0f H x r K 2 Hφ q r K x r LM O θτ τ P − q − ln ∑ θ τ − ∑ + ln τ + MM τ P ∑θ τ PQ N φi xi ri 1 ri φ r = ⋅ = , i = i ; xi x1r1 + x2 r2 xi x1r1 + x2 r2 xi rj i i i j 1 i j j i i ij j i j * 1 ij i i j 1 θi xi qi x1q1 + x2 q2 q rj = = i φi xi ri x1r1 + x2 r2 ri q j jj i j i i i i j i i i j j ii 1 j ij i ij j ij j ij j k k kj i j jj Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e γ1 = x1 ⋅ 1000 * γ 1 where γ 1* is as given above. ms M1 7.11 An ideal gas constrained to remain at constant volume and T, is also a system at constant internal energy and volume, since U is only a function of temperature for the ideal gas. Consequently, at equilibrium, the entropy should be a maximum. Suppose there were N1 molecules and N lattice sites. For any distribution of the N1 molecules among the N lattice sites there will be N1 lattice sites with molecules, and N 2 = N − N1 empty lattice sites. Thus we can consider the “lattice gas” to be a mixture of N1 molecules and N2 holes, and the entropy of various configurations of this binary system can be computed. Following the analysis of Appendix 7.1, it is clear that the random mixture, or uniform distribution of gas molecules, is the state of maximum entropy. A completely ordered state (for example, the first N1 lattice sites filled, and the next N 2 = N − N1 lattice sites empty) is an especially low entropy configuration. 7.12 The principle of corresponding states, and the pseudo-critical constant concept will be used first, then the Peng-Robinson equation of state (program PR1) 290 800 (a) O 2 : TC = 154 .6 K ; PC = 50.46 bar ; Tr = = 1876 . ; Pr = = 1585 . . 154.6 50.46 f f From Figure 5.4-1: = 1025 . ⇒ f =P = 820 bar . P P Using the P-R e.o.s.. and the program PR1 fO 2 = 7351 . bar . F I H K (b) N 2 : TC = 126.2 K ; PC = 3394 . bar ; Tr = 290 = 2.298 ; 126.2 Pr = 800 = 23.57 ; 33.94 fN 2 = 1088 bar . Using the P-R e.o.s. fN 2 = 1043 bar . (c) Lewis-Randall Rule Corresponding states P-R e.o.s. fO 2 0.3 × 820 = 2460 . bar 0.3 × 7351 . = 220.5 bar fN 2 0.7 ×1088 = 7616 . bar 0.7 × 1043 = 7301 . bar (d) Kay’s Rule TCM = 0.3 × 154 .6 + 0.7 × 126.2 = 134.72 K PCM = 0.3 × 50.46 + 0.7 × 38.94 = 38.90 bar ψO 2 = − T 2 TCM cT C, O 2 h − TCM = − 290 134 .72 2 (154 .6 − 134.72) = −0.318 290 (126.2 − 134.72) = +0136 . 134 .72 2 P PC, O 2 − PCM =− = −6112 . 2 PCM ψN 2 = − ψO2 2 c h ψN2 2 = 2.622 290 800 TrM = = 2.1526 ; PrM = = 20.565 134.72 38.90 f ≅ 1.36 ; P Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e f H − H IG 17 . ~ 1.23 ; ≅− = − 0.856 ; ZM ~ 1.6 P RTC 1.987 ln f N2 xN 2 P = ln 123 . − ( 0136 . )( −0.856 ) ( 2.1526)2 + (1.6 − 1)(2.622 ) 20.565 = 0.2070 + 0.0251 + 0.0765 = 0.3086 f N2 ⇒ ln f O2 xO 2 P xN 2 P = 13615 . ; f N 2 = 0.7 × 800 × 1.3615 = 762.4 bar = ln 1.23 − fO 2 ⇒ (− 0.318 )(− 0856 . ) (1.6 − 1)( −6112 . ) = − 0.02929 20.65 = 0.97113; fO 2 = 0.97113 × 0.3 × 800 = 2331 . bar xO 2 P (e) Prausnitz-Gunn Rule PCM = R ∑ xi Z C,i ∑ xi TC,i / b + (2 .1526)2 gb = Z CM = TCM g c∑ x V h i C,i =V CM ZCM = 0.3 × 0.288 + 0.7 × 0.290 = 0.2894 TCM = 134 .72 ( see part d ) V CM = 0.3 × 0.0732 + 0.72 × 0.0895 = 0.08461 0.08314 × 0.2894 × 134.72 = 38.31 bar {vs. 38.90 bar in part d} 0.08461 and PrM are so close to results in (d) that ZM , f P ; H − H IG are all the same. Also, ψ’s PCM = TrM are the same. ψ2 2 = RSF TH I F K H I F K H I UV KW ψO2 2 RSF TH I F K H I F K H I UV KW N ln fN2 xN 2 P 800 0.0895 − 0.0846 126 .2 − 134 .72 0.290 − 0.2894 − − 38.31 0.0846 134 .72 0.2894 800 = {0.05792 + 0.06324 − 0.00207} = 2.487 38.31 800 0.0732 − 0.0846 154 .6 − 134 .72 0.288 − 0.2894 = − − 38.31 0.0846 134 .72 0.2894 = −5.794 = 0.2070 + 0.0251 + φN 2 = ln f N2 xN 2 P f O2 xO2 P = 1.3547 0.6 × 2.487 = 0.30357 2088 . f N 2 = 758.6 bar = −0.01819 ; φO 2 = fO 2 xO 2 P = 0.9820 ; fO 2 = 235.7 bar Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e (f) Using the program PR1we find fO 2 = 224 .9 bar and fN 2 = 732.3 bar . Lewis-Randall with corresponding states with Peng-Robinson eos Kay’s Rule Prousnitz-Gunn Peng-Robinson e.o.s. directly (program PR1) SUMMARY fN 2 fO 2 761.6 bar 246.0 bar 730.1 762.4 758.6 732.3 220.5 233.1 235.7 224.9 7.13 This problem was solved using the program UNIFAC. To present the extent of nonideality, two measures will be used. One is the infinite dilution activity coefficients, and the other is G ex(max) , that is, the maximum value of the excess Gibbs free energy. The results appear below for the case of T = 50° C 1 water ethanol benzene 2 ethanol benzene toluene benzene toluene toluene γ ∞1 γ ∞2 G ex (J/mol) 2.7469 304.0 446.5 8.8774 8.1422 0.9650 7.2861 1867.7 8776.2 4.5590 5.4686 0.9582 829.6 3507.9 3765.4 1162.0 1177.7 –26.1 These results were obtained treating toluene as 5 ACH groups + 1 ACCH 3 group. An alternative is to consider toluene to be 5 ACH groups, 1 AC group and 1 CH 3 group. We do this just to demonstrate that there can be a number of possible group assignments, each of which will result in somewhat different activity coefficients. 1 water ethanol benzene 2 toluene toluene toluene γ ∞1 γ ∞2 G ex (J/mol) 340.1 9.928 1.0058 6162.0 5.966 1.0080 3685.0 1269.2 4.5 We see, from the results (independent of which group assignment is used for toluene) that the benzene-toluene mixture, which contains chemically similar species, is virtually an ideal solution. The water-toluene and water-benzene mixtures consist of very dissimilar species and, therefore, the mixtures are very nonideal. Ethanol contains a hydrocarbon end and a polar -OH end. Consequently, it is almost equally compatible (or incompatible) with both water and hydrocarbon solvents and forms only moderately nonideal mixtures with both this behavior is predicted above. Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.14 Regular solution theory should not be used with hydrogen-bonded solvents such as water and ethanol. However, merely for demonstration, we will use R.S.T. for these compounds. The “Handbook of Chemistry and Physics” reports δ H 2 O = 9.9 . δEtOH = 10.0 and Also, V H 2 O = 18 cc mol and V EtOH = 58.4 cc mol . In regular solution theory a RT lnγ i = V i φ 2j δ 1 − δ 2 f 2 so γ ∞i = exp LMV aδ − δ f OP N RT Q 2 i 1 2 so γ ∞1 γ ∞2 ethanol 1.000 1.001 δEtOH = 10.0 benzene 1.014 1.070 δbenz = 9.2 toluene 1.028 1.181 δtol = 8.9 1 2 Water Ethanol benzene 1.060 1.093 toluene 1.116 1.223 Benzene toluene 1.013 1.015 Since the solubility parameters of all the components are similar, regular solution theory predicts essentially ideal solution behavior, even though, for example, the water-aromatic hydrocarbon mixtures are highly nonideal. This is an example of how bad the regular solution theory predictions can be when used for mixtures for which it is not appropriate. This example should serve as a warning about the improper use of thermodynamic models. 7.15 Start from LM N ∂ G − G IGM ∂ Tr RT In general LM OP N Q OP = T ∂ LM G − G OP Q R ∂T N RT Q G( T , P, x) − G IGM (T , P, x) H − H IG = − Tr , M S − S IG . TCM Tc IGM CM F I H K ∂ G H = − 2 ; using this above yields ∂T T T LM N OP Q LM N ∂ G − G IGM T 1 H − H IGM = − CM2 H − H IGM = − 2 ∂ Tr RT RT RTrm TCM Also LM N IGM ∂ G−G ∂ Pr RT OP = P ∂ dG − G Q RT ∂ P P F PV PV = G − RT P H RT CM IGM OP Q i = PRT dV − V i IJ = 1 aZ − 1f K P (7.7-12) IGM CM IGM CM Using these equations in Eqns. (7.7-9 and 11) gives M r (7.7-13) Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e ln FG f IJ − T dH − H i N FG ∂ T IJ H PK x P RT HNK F∂ P I 1 + a Z − 1f N G P H N JK F f I dH − H i ψ + aZ − 1f ψ = lnG J − H P K RT T P IGM fj CM = ln rm 2 j j T , P , N i≠ j r, M M r j T , P , Ni ≠ j IGM j 1 2 r ,M CM j 2 M (7.7-14) r For Kay’s rules, TCM = ∑ xi TC ,i and PCM = ∑ xi PC, i , we have F ∂ T I = N ∂ RS T UV = − NT ∂ T = − NT ∂ RS ∑ N T UV GH ∂ N JK ∂ N TT W T ∂ N T ∂ N T N W NT R T ∑ N T U = − T mT − T r =− − S VW T T T N N ψ1j ( K ) = N r i C ,i CM j j C, j 2 CM CM i C,i 2 2 CM 2 CM j C, j 2 CM j CM Since the “combining rule” for PCM is the same as for TCM (for Kay’s rule), it follows that ψ2j ( K ) = − m P PC, j − PCM 2 PCM r For the Prausnitz-Gunn rule, TCM = TCM ( Kay ) , so ψ 1j (PG ) = ψ 1j (K) . However R PCM = FG ∑ x Z IJ FG ∑ x T IJ H KH K i C ,i i i C,i i ∑ xiV C,i i Thus, ψ2j ( PG ) = N F ∂P I GH ∂ N JK k p RS R ∑ N Z ∑ N T UV |T ∑ N ∑ N V |W 2 PCM j T , P, N i≠ j =− NP ∂ 2 ∂Nj PCM i C, i i C ,i i i C, i RS RZ ∑ N T + RT ∑ N Z − P LM 1 − V OPUV T|∑ N ∑ N V ∑ N ∑ N V N ∑ N ∑ N V QW| T V UV NP R Z 1 =− + − − S P | T∑ N Z ∑ N T N ∑ N V |W T Z U P R V = 1+ − − S V P T V T Z W −V I F T − T I F Z − Z I O P LF V ψ ( PG ) = G JK − GH T JK − GH Z JK PQ M P NH V =− NP 2 PCM C, j i C ,i CM CM C, j i C ,i C, j CM i i i C,i C, j Thus ∂ PCM ∂Nj NP =− r C, j C, j CM CM CM C, j CM CM CM i C, j i C,i C, j i C,i C, j i C,i j 2 i i C, j CM CM C,i C, j CM CM C ,i Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.16 T, P x1 moles pure 1 Process T, P x1 , x2 T, P x2 moles pure 2 System: 1 mole of initial mixture system is closed, isothermal and isobaric Mass balance: x1 + x2 = 1 dU dV Energy balance: = Q& − P + W&s dt dt dS Q& & Entropy balance: = + Sgen dt T Thus dU & dV W&s = −Q+ P dt dT dS Q& = T − TS&gen dt dU dS dV ⇒ W&s = −T + TS&gen + P dt dt dt a) Since both P and T are constant, we can write dU d d W&s = + ( PV ) − ( TS ) + TS&gen dt dt dt d dG = (U + PV − TS ) + TS&gen = + TS&gen dt dt dG Clearly, for W&s to be a minimum, S&gen = 0 , and W&smin = . dt Wsmin FG per mole of IJ = G H initial mixtureK f − G i = x1 G 1 + x2 G 2 − x1G1 − x2 G2 b g b = x1 G 1 − G1 + x2 G 2 − G2 = x1 RT ln f1(T , P) f 1 (T , P , x) g + x2 RT ln b) Now for either ideal mixtures or Lewis-Randall mixtures, f 2 ( T , P) f 2 ( T , P, x ) fi (T , P, x ) = xi . fi (T , P ) Therefore, Wsmin = RT −x1 ln x1 − x2 ln x2 ≥ 0 , so work must be added! Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e dS dS Q& = T − TS&gen ; thus Q& max = T , which occurs when Ws = Wsmin . dt dt Following same analysis as above leads to [Note: l Q max = T x1 S 1( T , P) − S1( T , P, x) + x2 S 2 (T , P ) − S 2 ( T , P, x) q c) Using the ideal gas or ideal mixture assumption, since isomers can be expected to form ideal mixtures, and the result above J × 300 K × − 0.5 ln 0.5 − 0.5 ln 0.5 mol ⋅ K J J = −8.314 × 300 K × ln 0.5 = −17288 . mol ⋅ K mol of feed Wsmin = RT − x1 ln x1 − x2 ln x2 = 8.314 7.17 LM a N a G1 = f OP f Q 2 N1 N 2 C N1 − N 2 A+ 2 N1 + N2 N1 + N2 NG = ∂( N G ) = x2 A + C x1 − x2 ∂ N 1 T , P, N 2 a f a − x1 x2 A + C x1 − x2 2 f 2 LM a N − N f − 2Ca N − N f OP N a N + N f aN + N f Q = x a1 − x f A + Ca x − x f + x x 2 Ca x − x f − 2 Ca x − x f = x A + Ca x − x f + 2Cx x a x − x f 1 − x + x = x A + Ca x − x f + 4Cx x a x − x f = RT ln γ 2 + x1 N2 2C 1 2 1 2 3 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 2 2 2 2 1 2 2 2 2 G2 = 1 1 2 1 2 1 2 2 1 2 1 2 ∂( N G ) = x1 A + C x1 − x2 ∂ N2 T , P , N1 a f 1 2 1 a − x1 x2 A + C x1 − x2 2 fLMN −a2Na N+ −N Nf f − 2Ca NaN+−NNf f OPQ = x a1 − x f A + Ca x − x f − 2 x x Ca x − x f 1 + x − x = x A + Ca x − x f − 4Cx x a x − x f = RT ln γ a f 2 2 + x1 x2 N1 + N2 1 2 2 1 1 2 2 3 1 2 2 1 2 2 1 or 1 2 1 2 2 1 2 2 1 2 1 1 2 2 1 2 2 a f + 4Cx ax − x f A + Ca x − x f − 4 Cx a x − x f RT ln γ 1 = x22 A + C x1 − x2 2 RT ln γ 2 = x12 2 1 1 2 2 1 1 2 2 7.18 (a) i) One constant Margules equation. a f RT ln γ 1 = A 1 − x1 2 ; RT ∂ ln γ 1 = −2 A 1 − x1 ∂ x1 a f Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e a or ∂ ln γ 1 −2 A 1 − x1 = ∂ x1 RT lim x1 → 1 f a f ∂ ln γ 1 2 A 1 − x1 = lim =0 x → 1 ∂ x1 RT 1 ii) Two constant Margules equations a f + β a1 − x f 1 = n−2α a1 − x f − 3β a1 − x f s → 0 as x → 1 RT 2 RT ln γ 1 = α1 1 − x1 ∂ ln γ 1 ∂ x1 3 1 1 1 1 2 1 1 1 iii) van Laar Equation ln γ 1 = α a 1 + αx1 βx2 f 2 Thus a f a f ∂ ln γ 1 2α2 β2 1 − x1 = ∂ x1 β 1 − x1 + αx1 → 0 as x1 → 1 3 iv) Regular Solution Theory expression R.S.T. has the same form as the van Laar Equation, so that proof follows from (iii) above. (b) Starting from the Gibbs-Duhem Equation, Eqn. (7.3-16) C 0 = ∑ xi i =1 F ∂ lnγ I GH ∂ x JK i j T, P we obtain FG ∂ln γ IJ H ∂x K 0 = x1 + x2 1 1 T, P FG ∂ lnγ IJ H ∂x K 2 1 T ,P Alternatively, since dx2 = −dx1 , we have x1 FG ∂ lnγ IJ H ∂x K 1 Now lim x1 = 1 and lim FG ∂ln γ IJ H ∂x K ⇒ lim x1 x1 → 1 1 T, P (*) T ,P T ,P =0 1 2 =0 1 1 FG ∂ln γ IJ H ∂x K 2 T ,P FG ∂ lnγ IJ H ∂x K x1 → 1 x1 → 1 = x2 1 ⇒ lim x2 x1 → 1 FG ∂ln γ IJ H ∂x K =0 2 2 T ,P Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e which also implies that lim x2 x2 → 0 FG ∂ lnγ IJ H ∂x K = 0 or, more generally 2 2 lim xi xi → 0 T ,P FG ∂ln γ IJ H ∂x K =0 i i T ,P Thus we have F ∂ lnγ IJ limG H ∂x K ln γ 1 departs, with = 0 ⇒ zero slope, from its i xi →1 i value of 0 at xi = 1 T, P and ln γ 1 rises less rapidly 1 = 0 ⇒ than as xi → 0. Thus i xi → 0 x i i T ,P xi ln γ i is bounded!!! 7.19 Let M = molality of salt in solution. i) For KCl: z+ = 1 , z− = 1 , M K = M , MCl = M ; F ∂ln γ IJ lim x G H ∂x K i 1 1 zi2 Mi = (1 × M + 1 × M ) = M ∑ 2 2 z+ = 3 z− = −1 1 2 ii) For CrCl 3 : I = 3 × M + 1 × 3M = 6 M M + = M M− = 3 M 2 I= a f iii) For Cr2 SO 4 3 : UV W z+ = 3 z− = −2 M+ = 2 M M− = 3M UV W m r I = 1 2 3 × 2 M + 4 × 3 M = 15 M 2 m Now, the Debye-Hückel expression is lnγ ± = −α z+ z − and Equation (7.11-18) ln γ ± = i) KCl M 0.1 0.2 0.3 0.5 0.6 0.8 1.0 −α z+ z− 1+ I ln γ ± experiment 0.770 0.718 0.688 0.649 0.637 0.618 0.604 I + 0.1 z + z− I ; I α = 1178 . Debye-Hückel ln γ ± = −1178 . M 0.689 0.590 0.525 0.435 0.402 0.349 0.308 r F molI H lit K 12 at 25°C Eqn. (7.11-18) ln γ ± = −1178 . M 1+ M 0.761 0.709 0.679 0.645 0.635 0.621 0.613 + 0.1 M Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e ii) CrCl 3 ln γ ± M 0.1 0.2 0.3 0.5 0.6 0.8 1.0 a f iii) Cr2 SO 4 M 0.1 0.2 0.3 0.5 0.6 0.8 1.0 ln γ ± = −8657 . M 0.331 0.298 0.294 0.314 0.335 0.397 0.481 0.065 0.021 87 . × 10−3 2.2 × 10−3 12 . × 10−3 4.3 × 10−4 17 . × 10−4 ln γ ± ln γ ± = −27374 . M ln γ ± = − 8.657 M 1 + 2.449 M 0.256 0.226 0.227 0.262 0.291 0.373 0.492 + 18 . M 3 0.0458 0.0300 0.0238 0.0190 0.0182 0.0185 0.0208 174 . ×10−4 4.82 × 10−6 3.08 × 10 −7 392 . × 10−9 618 . × 10−10 2.33 × 10−11 129 . ×10−12 ln γ ± = −27.374 M 1 + 3.873 M 0.0502 0.0113 0.122 0.508 1.104 5.559 29.44 +9 M Thus the Debye-Hückel and extended Debye-Hückel (with a fixed value of the δ parameter) theories are not very accurate. However, if the δ parameter is adjusted, much better agreement with experimental data can be achieved. This is left to the student to prove. 7.20 (also available as a Mathcad worksheet) Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e lngDH2 i 1.178 . M i 1 Mi 0.5 0.5 0.1 . M i lngDH3i 1.178 . M i 1 Mi 0.5 0.5 0.30 . M i Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.21 The Gibbs-Duhem equation, written in terms of molalities and using the mean ionic activity coefficient is as follows: MSd G S + M E d G E = 0 where S is solvent and E is electrolyte but c + RT lna x γ f G E = G oE + RT ln γ ν± M ν+ + M ν− − h GS = S S So that MSd G S + M E d G E = 0 G oS a f c M d lna x γ f + M d lncγ h MSd ln xSγ S + M E d ln γ ν± M +ν + M−ν − = 0 S S S E ν ν ± M± h = 0 = M d lnax γ f + M νd lndγ M i S S S E ± ± This is the Gibbs-Duhem equation for the solute-electrolyte system. For HCl M + = M HCl ν+ = 1 M − = M HCl M±2 = M1HCl ν− = 1 ⋅ M1HCl = 2 MHCl 1000 = 55.56 18 MS 5556 . xS = = MS + M E 55.56 + M E MS = a f MSd ln γ S xS + M HCl (1 + 1) d ln γ ± M HCl = 0 a f a f d ln γ S xS = −2 M HCl d ln γ ± MHCl MH 2 O d ln γ S xS = −2 M HCl d ln γ ± MHCl 5556 . ∆ ln γ S xS = −2 M HCl ∆ ln γ ± M HCl 5556 . a f This can now be used as a basis for numerical integration with the activity coefficient expression from Illustration 7.11-1. Or proceeding further, Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e d ln γ S xS = a −2 MHCl d ln γ ± M HCl M H2O f a f a f 2 M HCl d ln γ ± −2 M HCld ln M HCl + 5556 . 5556 . 5556 . 2 M HCl d ln γ ± −2 M HCld ln M HCl d ln γ S + d ln =− + 5556 . + M HCl 5556 . 5556 . d ln γ S + d ln xS = − FG H IJ K a f a f From Illustration 7.11-1 ln( γ ± ) = −1178 . M HCl 1+ FG H d ln(γ ± ) = − d ln γ S − MHCl + 0.3 M HCl 1 1178 . 2 M HCl 1 + M HCl + IJ K 1 1178 . + 0.3 dMHCl 2 (1 + MHCl ) 2 dM HCl 5556 . + MHCl FG H IJ K 2 M HCl 1 1178 . 1 1178 . 2 − + + 0.3 dM HCl − dM HCl 5556 . 55.56 2 M HCl 1 + M HCl 2 (1 + M HCl ) 2 d ln γ S =− = FG 1 . +M H 5556 + HCl 1178 . M HCl 5556 . ⋅ (1 + M HCl ) − 1178 . M HCl 5556 . ⋅ (1 + M HCl ) 2 − IJ K 0.6 M HCl 2 − dM HCl 5556 . 5556 . This can only be solved by numerical integration. (See MATHCAD file for this problem). 1 1 gamma ( M ) 0.5 4.5185 .10 3 0 0 0 10 20 M 30 30 7.22 (a) The two-constant Redlich-Kister expansion, which leads to the two-constant Margules equation is k a G ex = x1 x2 A + B x1 − x2 fp Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e Thus a f G ex = A + B 2 x1 − 1 x1x2 (1) Which is a linear function of x. The form of the Wohl Equation which leads to the van Laar Equation is G ex = 2 RTa12 x1q1 x2 q2 x1q1 + x2 q 2 which can be rearranged to x1x2 G ex = a f x1q1 + 1 − x1 q2 2 RTa12 q1q2 (2) which is also a linear function of x. Equations (1) and (2) provide the justification for the procedure. (b) The figure below is the required plot. Clearly, neither equation is an accurate fit of the data. [The 2-constant Wohl (or van Laar) equation plot of the data, i.e., the form of Eq. (2), is closest to being linear, and therefore should be the better of the two-constant fits of the data. The data can, however, be fit quite well with a 3-constant Redlich-Kister expansion—See Illustration 8.1-4] 7.23 Expression for G ex in this problem is the same as that of Eq. (7.6-6). If we recognize that A and B in Eq. (7.6-6) is replaced by ART and BRT here. Also, since 1 − 2 xAr = xCH 4 − xAr , species 1 is methane and species 2 is argon. a f c h Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e (a) Therefore RT lnγ 1 = ( ART + 3BRT )x22 − 4 BRTx23 and RT lnγ 2 = ( ART − 3BRT )x22 + 4 BRTx23 At x1 = x2 = 0.5 1 1 ( A + B ) = (0.2944 + 0.0118) = 0.0766 ; γ CH 4 = 10796 . 4 4 1 1 ln γ 2 = ( A − B) = (0.2944 − 0.0118) = 0.0706 ; γ Ar = 10732 . 4 4 ln γ 1 = a a fk (b) G ex = RTxAr 1 − xAr A + B 1 − 2 xAr G ex ax Ar f = 0.5 = fp at x Ar = 05 . a f ART G ex xAr = 0.5 AT and = A R 4 Thus a ax f G = 0.5f 0.2944 ( at T = 112 K ) = 112 × = 8.2432 K R 4 G a x = 0.5f 0.2804 (at T = 115.74 K ) = 115.74 × = 81134 . K G ex xAr = 0.5 0.3036 (at T = 109 K ) = 109 × = 8.2731 K R 4 ex Ar ex Ar R 4 Now replacing differentials with finite differences G ex R ∆T T 109 ∆ FG G IJ HRK G ex RT ex 8.2731 –0.0299 ex –0.0023 8.2432 0.0736 3.74 –0.1298 115.74 FG G IJ H RT K 0.0759 3 112 ∆ –0.0035 8.1134 0.0701 Next using a ∂ ∆G RT ∂T Thus ∆T . c ∆G ex ∆T RT f = P LM c MN ∂ ∆ G RT −∆ H 2 and RT ∂T h × b− RT g = ∆ H 2 mix ex h OP PQ = P − H ex − ∆ H mix = RT 2 RT 2 where T = average temperature over Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e ⇒ ∆H mix ≅ −8.314 × (112 K )2 × (c) From FG ∂G IJ H∂TK = − S we obtain P S ex = − d R∆ G ex / R RS T UV W 1 −0.0023 −0.0035 + = 888 . J mol 2 3 3.74 FG IJ H K ∂ G ex ∂T R =− P S ex . Therefore, R i = −8.314 J mol K × 1 RS− 0.0299 + −0.1298UV 2T 3 3 W ∆T = 0.2213 J mol K Also ∆S mix = − R ∑ xi ln xi + S ex = −8.314 × 2 × (0.5 ln 0.5) + 0.045 = 5.984 J mol K 7.24 We start with ln fi 1 = xi P RT zc P h Vi − Vi IGM dP = 0 1 RT Eqn. (7.2 - 3a) z LMMNFGH P 0 ∂V ∂ Ni IJ K − T , P , N j ≠i OP PQ RT dP P Now dP = 1 P RT P P P d ( PV ) − dV = dZ − dV = dZ = − dV V V V V Z V Also, by triple product rule FG ∂V IJ H∂ N K i ⇒ Vi = ⋅ T , P , N j≠ i FG ∂V IJ H∂ N K i So FG ∂ P IJ H ∂V K P , T , N j≠ i FG ∂ N IJ H ∂P K F ∂ P IJ = −G H∂ N K ⋅ = −1 i T ,N j i T ,V , N j≠i T ,V , N j ≠i FG ∂V IJ H ∂ PK T ,N j Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e ln z FGH z FGH IJ K fi 1 ∂P = − xi P RT ∂ Ni T ,V , N V =− = = 7.25 1 ∂P RT V = ∞ ∂ Ni 1 RT 1 RT z LMMN z LMMN V V =∞ V V =∞ IJ K j≠ i FG ∂V IJ H ∂ PK z dP − T ,N j LM N 1 P P dZ − dV P Z V z z V NdV + T ,V , N j≠ i OP Q Z 1 1 dV − dZ V Z V =∞ P= 0 Z =1 FG IJ H K RT F ∂ P IJ − NG V H∂ N K RT ∂P −N V ∂ Ni T ,V , N j≠i i T ,V , N j≠i OPdV − ln Z Z =1 PQ OPdV − ln Z PQ LM∑ x Λ OP N Q LM ∑ x Λ OP G NG = = −∑ N lnM RT RT MN N PPQ G ∂ FG I ⇒ = G J RT ∂ N H RT K LM ∑ x Λ OP LM Λ ∑ N Λ dN OP N = − ln M −∑N − N dN P ∑ N Λ MM N MN N PPQ PQ N x ∑x Λ L O G xΛ ln γ = = − ln M∑ x Λ P − ∑ + RT N Q ∑x Λ ∑ ∑x Λ L O xΛ = 1 − lnM ∑ x Λ P − ∑ N Q ∑x Λ C G ex = − ∑ xi ln RT i =1 ex j ij j ex j C ij j i =1 ex 1 i ex 1 j T , P , N j≠ i ij j C j i =1 i j ij j i1 2 ij 1 j 1 ex 1 C j =1 C j C i ij i =1 j ij j =1 C j ij i i= 1 j ij j i =1 j C i i1 j ij j i1 j ij j Which is the answer to part b... To obtain the result of part a, we restrict i and j to the values 1 and 2, and note that Λii = 1 . Thus ln γ 1 = 1 − ln x1 + x2 Λ12 − x1 x2 Λ 21 − x1 + x2 Λ12 x1Λ 21 + x2 but 1− x1 x + x Λ −x x2 Λ12 = 1 2 12 1 = x1 + x2 Λ12 x1 + x2 Λ12 x1 + x2 Λ12 so that ln γ 1 = − ln x1 + x2 Λ 12 + x2 LM Λ Nx + x Λ − 12 1 2 12 Λ 21 x1 Λ 21 + x2 OP Q Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.26 All the calculations for this problem were done using the program VLMU with the binary interaction parameter for CO 2 − n C4 equal to 0.13 as given in Table 7.4-1. The results are only given in graphical form here. T = 377.6 K kij = 0.13 80 supercritical fCO 60 2 40 vapor 20 liquid 40 vapor 60 80 60 fnC 40 4 20 xnC 4 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e T =300 K kij = 0.13 80 liquid 60 f CO 2 40 40 20 20 liquid vapor vapor 80 60 40 40 20 f 20 nC 4 liquid x nC 4 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.27 a G ex = ax1 x2 x1 − x2 N G ex = f = ALM N N − N N OP aN + N f N aN + N f Q L 2 N N − N − 2c N N − N N = AM aN + N f MN a N + N f a AN1 N2 N1 − N 2 2 1 2 2 2 1 2 1 ∂ N G ex ∂ N1 f 2 2 1 1 2 1 2 2 2 2 1 N 2 ,T , P 2 2 = A 2 x1 x2 − 1 − 2 x12 x2 x22 = Ax2 2 x1 − x2 − 2 x12 + 2 1 2 3 2 2 hOP PQ 2 x1 x22 a f + 2 x1x2 = Ax2 2 x1 1 − x1 − x2 + 2 x1 x2 a f = Ax2 2 x1 x2 − x2 + 2 x1 x2 = Ax22 4 x1 − 1 = Ax22 4 − 4 x2 − 1 a3 − 4x f = RT ln γ L N − 2 N N − 2c N N − N N h OP = AM a N + N f PQ MN a N + N f = ∂ NG ∂ N2 ex Ax22 2 2 1 N1 , T , P 1 1 =A x12 1 − 2 1 2 2 2 1 2 x1 x2 − 2 x12 x2 + 2 1 2 3 2 2 2 x1 x22 a f = Ax1 x1 − 2 x2 − 2 x1 x2 + 2 x22 = Ax1 x1 + 2 x2 x2 − 1 − 2 x1 x2 = Ax1 x1 − 2 x1 x2 − 2 x1 x2 = a f a f Ax12 1 − 4 x2 = a 1 − 4 1 − x1 Ax12 f = −3 + 4 x1 = RT ln γ 2 (This is just a check since by symmetry of original equation 1 ↔ 2 gives minus sign. Therefore 1 ↔ 2 on lnγ must give minus sign!) Does this expression satisfy the Gibbs-Duhem Equation? d ln γ 1 d ln γ 1 d ln γ 1 d ln γ 1 x1 + x2 = 0 or − x1 + x2 =0 dx1 dx1 dx2 dx1 Ax12 d ln γ 2 A d A d = x12 −3 + 4 x1 = −3 x12 + 4 x13 dx1 RT dx1 RT dx1 c c h A −6 x1 + 12 x12 RT d ln γ 1 A d A d = x22 3 − 4 x2 = 3 x22 − 4 x32 dx2 RT dx2 RT dx2 = h a c f c h h A 6 x2 − 12 x22 RT Gibbs-Duhem Equation A A − x1 6 x2 − 12 x22 + x2 −6 x1 + 12 x12 RT RT A = −6 x2 x1 + 12 x1 x22 − 6 x2 x1 + 12 x12 x2 RT A 12 A 2 2 = x1 x2 −12 x1 x2 + 12 x1 x22 + 12 x12 x2 = x1 x2 x1 + x2 − 1 RT RT 12 A 2 2 = x1 x2 ( 0) = 0 RT ⇒ Satisfies Gibbs-Duhem Equation = c h c c h h a f Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.28 To check the utility of these models we will use the Gibbs-Duhem equation in the form x1 FG ∂ lnγ IJ H ∂x K + x2 1 1 FG ∂ln γ IJ H ∂x K 1 T ,P =0 2 T ,P For the model a ln γ 1 = Ax22 = A 1 − x1 f 2 ln γ 2 = Bx12 Gives x1 FG ∂ lnγ IJ H ∂x K + x2 1 1 T ,P FG ∂ln γ IJ H ∂x K a 1 f = 0 = x1 ⋅ 2 ⋅ A 1 − x1 (− 1) + x2 B ⋅ 2 x1 2 T ,P = 2 x1 x2 ( B − A) = 0 The only way this equation can be satisfied is if A = B ; if not the Gibbs-Duhem equation is violated. For the model lnγ 1 = Ax2n ; lnγ 2 = Ax1n x1 FG ∂ lnγ IJ H ∂x K + x2 1 1 FG ∂ln γ IJ H ∂x K a = x1 ⋅ n ⋅ A 1 − x1 2 1 T ,P f n −1 ( −1) + x2 ⋅ n ⋅ Ax1n −1 = 0 T ,P = nAx1 x2 − x2n − 2 + x1n − 2 = 0 The only way the Gibbs-Duhem equation can be satisfied for all values of x1 and x2 (with x1 + x2 = 1 ) is if n = 2 in which case the term in brackets is always zero. For the model lnγ 1 = Ax2n ; lnγ 2 = Bx1n . We have x1 FG ∂ lnγ IJ H ∂x K + x2 1 1 T ,P FG ∂ lnγ IJ H ∂x K a = x1 ⋅ n ⋅ A 1 − x1 2 1 f n −1 ( −1) + x2 ⋅ n ⋅ Bx1n −1 = 0 T, P = nx1 x2 − Ax2n − 2 + Bx1n −2 = 0 For this equation to be satisfied, the term in the brackets must be zero. This can only be in n = 2 and A = B . Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.29 We will write the Flory-Huggins expression as a ex G RT G ex RT G ex RT f = χ x1 + mx2 φ1φ2 = res = N1 ln comb = res F GH N G ex RT ∂ G ∂ N1 RT ex χx1 x2 m x1 + mx2 φ1 φ x1 mx 2 + N2 ln 2 with φ1 = , φ2 = x1 x2 x1 + mx 2 x1 + mx2 χN1 N2 m N1 + mN 2 = res I = χN m − χN N m JK N + mN a N + mN f 2 1 2 2 res 1 2 res I = χN m JK N + mN 1 a f a f = χ φ2 − φ1φ2 = χφ2 1 − φ1 = χφ22 2 Similarly F GH ∂ G ex ∂ N2 RT G ex RT 1 = N1 ln comb F GH ∂ G ex ∂ N1 RT a 2 f φ1 φ + N2 ln 2 x1 x2 I = ln φ + N JK x 1 comb χN1 N 2 m = χm φ1 − φ1φ2 = xm φ12 N1 + mN 2 − 1 1 1 ∂ φ ∂ φ ln 1 + N 2 ln 2 ∂ N1 x1 ∂ N 1 x2 φ1 1 N = = x1 x1 + mx 2 N1 + mN 2 and LM N ∂ φ N + mN 2 1 N ln 1 = 1 − ∂ N1 x1 N N1 + mN 2 N1 + mN 2 a φ2 m Nm = = x2 x1 + mx2 N1 + mN 2 LM N OP; N ∂ f Q ∂N ln 1 2 1 φ1 = x1 − φ1 x1 OP Q ∂ φ m 1 ∂ φ φ ln 2 = − ; N2 ln 2 = x2 − 2 ∂ N 1 x2 Nm N1 + mN 2 ∂ N1 x2 m Therefore I + ∂ FG I JK ∂ N GH RT JK φ φ = ln + a x − φ f + F x − I + χφ H x mK ln γ 1 = F GH ∂ G ex ∂ N1 RT 1 1 1 ex 1 comb 1 2 res 2 2 2 F H I K φ φ φ 1 = ln 1 + 1 − φ1 − 2 + xφ22 = ln 1 + φ2 1 − + χφ22 x1 m x1 m Also Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e F GH ∂ G ex ∂ N2 RT I = ∂ L N ln φ + N ln φ O JK ∂ N MN x x PQ 1 2 1 conf 2 2 1 2 φ x ∂ φ1 x ∂ φ2 = ln 2 + N1 1 + N2 2 x2 φ1 ∂ N 2 x1 φ2 ∂ N2 x2 144244 3 1442443 x1 − mφ 1 x2 − φ 2 φ ln γ 2 = ln 2 + x1 − mφ1 + x2 − φ2 + χφ12 x2 a f a f = ln φ2 φ + φ1 − mφ1 + xφ12 = ln 2 + (1 − m)φ1 + χφ12 x2 x2 = ln φ2 − ( m − 1)φ1 + χφ12 x2 7.30 (also available as a Mathcad worksheet) 7.30 i 0 , 1 .. 10 0.1 . i xi fmai xi . exp 1.06 . 1 fmi 1 xi xi . exp 1.06 . xi . 1.126 2 2 . 0.847 0 x= 0 0 0 0 0 0 0 0.847 1 0.1 1 0.266 1 0.77 2 0.2 2 0.444 2 0.707 3 0.3 3 0.568 3 0.652 4 0.4 fma = 4 0.66 fm = 4 0.602 5 0.5 5 0.734 5 0.552 6 0.6 6 0.8 6 0.496 7 0.7 7 0.867 7 0.427 8 0.8 8 0.94 8 0.334 9 0.9 9 1.024 9 0.2 10 1 10 1.126 10 0 Hma Hm 1.126 . exp ( 1.06 ) 0.847 . exp ( 1.06 ) Hma = 3.25 Hm = 2.445 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e 7.31 Show AEOS ( P → ∞ ) = C LM a Nb − ∑ xi mix mix start −P= OP Q ai bi z V ∂A → A V − A V → ∞ = − PdV ∂V T ∞ (V → ∞ is convenient since we have ideal gas and ideal gas mixtures) P-R RT a P= − ← pure component V − b V (V + b) + b (V − b) z z V AV − AV →∞ = − V RT a + dV V − b ∞ V (V + b ) + b(V − b ) ∞ = − RT ln(V − b ) − ln ∞ + z V a dV 2 V + 2 bV − b 2 ∞ 14442444 3 Need to integrate From Problem 4.2 we have that z V ∞V 1 2 + 2bV − b 2 dV = 1 2 2b F V + d1 − 2 ib I GH V + d1 + 2 ib JK ln ⇒ A V − A V →∞ = − RT ln(V − b ) − ln ∞ + a 2 2b ln F V + d1 − 2 ibI GH V + d1 + 2 ibJK Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e So for pure component: ka f F V + b d1− 2 iI G J 2 2 b H V + b d1 + 2 i K f − ln ∞p + 2 a2b lnFG VV ++ bb dd11−+ 22 iiIJ H K p ai Ai V − Ai V → ∞ = − RT ln V − bi − ln ∞ + i ln i By exact analogy for mixture ka A V − A V →∞ = − RT ln V mix − bmix i mix mix mix mix mix mix Now when V → ∞ get ideal gas or ideal gas mixture: AV − A IG a = − RT {ln(V − b ) − ln ∞} + ka f 2 2b F V + bd1− 2 iI GH V + bd1+ 2 iJK ln p A V − A IGM = − RT ln V mix − bmix − ln ∞ + a mix 2 2 bmix ln FV GH V d i IJ d1 + 2 i K mix + bmix 1 − 2 mix + bmix and by definition Aex = A − AIM (i.e., A = AIM + A ex ) so; have A − AIGM so d i Aex = A − AIGM − AIM + A IGM and A IGM =∑ + RT ∑ xi ln xi ; AIM = ∑ xi Ai + RT ∑ xi ln xi xi AiIG Aex = A − AIGM − ∑ xi Ai − RT ∑ xi ln xi + ∑ xi AiIG + RT ∑ xi ln xi A ex d = A− A IGM i −∑ x dA − A i i IG i i this is why we found ∆ A for pure component z V So putting in results for A V − A ∞ = − PdV for pure i and mixture. ∞ iIJ 2 2b +b 2 iK R| F V + b d1− 2 iI U| a − ∑ x S − RT lnaV − b f + RT ln ∞ + ln G JV 2 2 b H V + b d1 + 2 i K | |T W Need to collect some terms. L O A = − RT MlnaV − b f − ln ∞ − ∑ x lnaV − b f − ln ∞ P N Q F I F V + b d1 − 2 i V + b d1 − a a + − lnG − ∑x lnG J 2 2b 2 2 b H V + b d1 + H V + b d1 + 2 iK a f a mix Aex = − RT ln V mix − bmix − ln ∞ + FV GH V ln mix mix i mix mix i i d d1 + + bmix 1 − 2 i i i i i i i ex i mix mix i i i mix mix mix i i i i i i mix mix i mix Now let P → ∞ which is the same as V i → bi and V mix → bmix = −RT [ ln a a mix + 2 2 b mix 1 b mix ln − b mix Fc GH c 2 2 − + f 3 ln ∞ − ∑ x i [ ln h I−∑ h JK a 2 bi 2 b mix 2 b mix ai xi 2 f 4 − b i − ln ∞] ln 2 bi Now 1 and 2 cancel ln 0 − ∑ xi ln 0 = 0 Fc GH c hI h JK 2 − 2 bi 2 + 2 bi iIJ 2 iK 2 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e and 3 and 4 cancel − ln ∞ + ∑ xi ln ∞ = 0 . i.e., −∞ + 3 ⋅ ∞ = 0 So Aex P- R = P→ ∞ FG H IJ K FG H 1 a mix 2− 2 ai 2− 2 ⋅ ln − ∑ xi ln 2 2 bmix 2+ 2 2 2bi 2+ 2 FG 2 − 2 IJ ⋅ 1 LM a H 2 + 2 K 2 2 Nb La A = −0.6232 M Nb = ln mix ex P- R P→ ∞ mix FG 2 − 2 IJ 1 = −0.6232 = C H2+ 2K 2 2 where ln mix * OP Q a O −∑x P bQ mix − ∑ xi i IJ K ai bi i i for P - R Now for van der Waals ⇒ same process though solution is briefer. V RT V a ∂A −P = ⇒ A V − AV →∞ = − dV + dV ∞V −b ∞ 2 ∂V T V z z Pure component AV− A IG a f = − RT ln V i − bi + RT ln ∞ − ai Vi and for the mixture AV− A IGM a f = − RT ln V M − bM + RT ln ∞ − d i d aM VM i and Aex ≡ A − A IM = A − AIGM = ∑ xi Ai − A IG ← same as above z V Putting in results for A V − A ∞ = − PdV for pure i and for the mixture. ∞ a Aex = − RT ln V M RS T f − b M − RT ln ∞ − a f aM VM − ∑ xi − RT ln V i − bi − RT ln ∞ − a = − RT ln V M f a ai Vi f − b M + ∑ xi ln V i − bi + ln ∞ − ∑ xi ln ∞ − Take limit P → ∞ , V i → bi ; V M → b M . First 4 terms cancel! aM a Aex − ∑ xi i VDW = − 1 bM bi P→ ∞ LM N OP Q 7.32 Starting from aij a b M − M = ∑ ∑ xi x j bij − ≡ Q and RT RT i j G ex = C* LM a Nb UV W FG H M − ∑ xi M i ai bi OP Q IJ K aM a + ∑ xi i VM Vi Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e or ex aM G a a = * + ∑ xi i ≡ DRT and b M = M bM C bi DRT i Substituting, we then obtain aM a − M = Q so that DRT RT and bM = aM D =Q RT 1− D aM D Q +Q= Q +Q= RT 1− D 1− D Equation (7.10-11) is easily derived, is generic, and applies to any mixing rule. This will be used as the starting point. With the Wong-Sandler mixing rule Note that derivatives must be taken with respect to mole numbers. 7.33 Therefore FG H Q = ∑ ∑ xi x j bij − i j aij RT FG H IJ K N 2 Q = ∑ ∑ Ni N j bij − i j needs to be in the form of aij RT IJ K Similarly D = ∑ xi i ai G ex + * needs to be in the form of bi RT C RT ND = ∑ Ni i ex ai NG + bi RT C * RT From this starting point, eqns. (7.10 -12 and 13) are easily derived. Starting from eqn. (7.2-13) 7.34 ln fk 1 = xk P RT z V = ZRT / P V =∞ LM RT F ∂P I MN V − N GH ∂N JK k T ,V , N j≠k OP PQdV − ln Z The Soave-Redlich-Kwong equation of state is P= RT a( T ) NRT N 2a( T ) − = − V − b V (V + b ) V − Nb V (V + Nb ) with Nb = ∑ Ni bi and N 2 a = ∑ ∑ Ni N j aij i i j Now taking the derivative, we obtain N FG ∂P IJ H ∂N K k = T ,V , N j≠k FG IJ H K RT ∂P −N V ∂N k 2 ∑ xi a ik RT RTbk abk i + − + V − b (V − b ) 2 V (V + b ) V (V + b) 2 = T ,V , N j≠k 2 ∑ xi aik RT RT RTbk abk i − − + − V V − b (V − b) 2 V (V + b) V (V + b )2 Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e and then ln OPdV − ln Z z x P PQ LM R|2∑ x a ZRT / P RTb RT ln + +S ZRT / P − b ZRT / P − b | b 1 M = M T RT M MM− b(ZRTab/ P + b) N f k k = 1 RT V = ZRT / P V =∞ LM RT − N F ∂P I MN V GH ∂N JK k T ,V , N j≠k i ik k i − abk k b2 U| ZRT / P OP V| ln ZRT / P + b P PP − ln Z W PP Q Now using B=Pb/RT and A = Pa/(RT) 2 we obtain fk Z Bk A ln = ln + + xk P Z − B Z − B B R| 2∑ x A S| A T i i ik U| V| W B Z A Bk − k ln − − ln Z B Z + B B Z+ B However, the Soave-Redlich-Kwong equation of state can be rewritten as follows RT a P= − V − b V (V + b ) PV V a Z A =Z= − = − RT V − b RT (V + b) Z − B Z + B B A − Z− B Z+ B Using this expression in the 2nd and 4th terms on the right-hand side of the fugacity expression yields the desired result 2∑ xi Aik f Z A B Z B i ln k = − ln Z − B + − k ln + k ( Z − 1) xk P Z − B B A B Z + B B Z −1 = R| S| T U| V| W Note that in this derivation, we have used the following dx 1 x = ln x( x + b) b x +b dx 1 x 1 = 2 ln + 2 x + b b ( x + b) x( x + b) b z z z F H F H I K I K dx = ln( x − b ) ( x − b) 7.35 See Mathcad worksheet. a and b) See Mathcad file 7-35.MCD and figures contained there c) Clearly Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e a f a Ax2 RT x1 + mx2 T H ex = χRT x1 + mx2 φ1φ2 = f ax +xmx f a x mx + mx f 1 1 2 2 1 2 Ax22 x1Rm = x1 + mx2 a ex G φ φ Ax2 = x1 ln 1 + x2 ln 2 + x1 + mx2 φ1φ2 RT x1 x2 T F F Ax II I GG ∂H N T a x + mx fφ φ K JJ K G ∂N JK H ax + mx fφ φ IK IJ A ∂ L Nx a x + mx f x mx O A ∂ L N N mN OP = = M P M J ∂N T ∂N N ax + mx f Q T ∂N N a N + mN fa N + N fQ JK AL N mN N N mN N N mN OP = M − − T N a N + mN fa N + N f a N + mN f a N + N f a N + mN fa N + N f Q FG H ex 1 ∂N G ln γ 1 = RT ∂ N1 F ∂F N Ax GG H T GH f IJ K T , P, N 2 F H 2 φ 1 = ln 1 + 1 − φ2 + x1 m 1 2 1 2 1 T , P, N 2 2 1 2 1 2 2 1 1 1 2 1 2 1 2 2 2 1 1 1 2 2 1 2 T ,P ,N 2 2 1 2 2 2 1 2 1 1 2 2 2 2 1 2 2 1 2 1 2 1 2 A Ax2φ2 Ax2 φ2 x2 φ2 − x2φ2 φ1 − x1 x2φ2 = 1 − φ1 − x1 = φ2 − x1 T T T φ 1 Ax2φ2 ln γ 1 = ln 1 + 1 − φ2 + φ2 − x1 x1 m T Ax2 ∂ N x1 + mx2 φ1φ2 1 ∂ N G ex φ2 T ln γ 2 = = ln + (1 − m)φ1 + RT ∂ N2 T , P , N x2 ∂ N2 = F H I K FG H IJ K FF GG H GH 1 f IK IJ JJ K a T , P, N 1 F ∂FH N Ax ax + mx fφ φ IK I GG T JJ = A ∂ LM Nx ax + mx fx mx OP = A ∂ LM N N m OP ∂N T ∂N N ax + mx f Q T ∂N N a N + mN faN + N fQ GH JK OP AL 2 N mN N Nm N Nm = M − − T N a N + mN fa N + N f a N + mN f a N + N f a N + mN fa N + N f Q 2 1 2 1 2 2 2 2 1 2 1 2 1 2 2 2 2 2 1 1 2 1 T , P , N1 1 2 1 2 1 2 2 2 1 2 2 2 2 1 2 2 1 2 1 2 A Ax1φ2 Ax2φ2 2 x1φ2 − x1φ22 − x1 x2φ2 = 2 − φ2 − x2 = φ1 + x1 T T T φ Ax2 φ2 ln γ 2 = ln 2 + (1 − m )φ2 + φ1 + x1 x2 T = d) and e) See figures in Mathcad worksheet 7-35.mcd. 1 1 2 2 Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 7 Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 7 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8 8.1-1 fiV = fi L ⇒ xi Pi vapγ i = yi P , since the pressure is low enough that fugacity coefficient corrections will be small. (a) For the ideal solution, γ i = 1 for all species; 1 = EB, 2 = nH ; yi = xi Pi vap P . Thus, y1 = 0.4723 × 0.7569 0.4537 = 0.7879 and y2 = 0.5277 × 0.0773 0.4537 = 0.0899 ; . ∑ yi = 08778 which indicates that the ideal solution assumption is invalid! (b) Regular solution behavior: V 1 = 75 cm3 a f δ1 = 8.9 cal cc a V 2 = 148 cm 3 12 a δ2 = 7.4 cal cc f 12 f φ1 = x1V 1 x1V 1 + x2 V 2 = 0.4723 × 75 (0.4723 × 75 + 0.5277 × 148) = 0.312 φ2 = 0.688 ln γ 1 = V 1φ22 δ1 − δ2 = 0133 . ; γ 1 = 1142 . . Similarly RT y1 = 1142 . × 0.7879 = 0.8998 ; y2 = 1.055 × 0.0899 = 0.0948 ; and closer to unity. (c) UNIFAC: using the program UNIFAC we (d) First the expression γ i = yi P Therefore, ∑ yi = 0.9946 have ⇒ y1 = 1173 . × 0.7879 = 0.9242 ; y2 = 1118 . × 0.0899 = 01005 . ; xi P1vap γ 2 = 1055 . . γ 1 = 1173 . . ∑ yi = 10247 which is much and γ 2 = 1118 . ; which is too high. and the given vapor-liquid equilibrium data will be used to compute the species activity coefficients in the given solution: 0.8152 × 0.3197 = 1.211 ; similarly, γ 2 = 1.069 0.2843 × 0.7569 Using eqns. (7.5-10) we obtain β = 0.3055 and α = 0.6747 . Thus, using the van Laar eqn. γ1 = ln γ 1 = 0.6747 1 + 2 .2085 x1 x2 2 and ln γ 2 = 0.3055 1 + 0.4528 x2 x1 2 at x1 = 0.4723 , γ 1 = 1.079 , γ 2 = 1144 . , so that y1 = 08504 . , y2 = 0.1029 and Since none of the models yields . . ∑ yi = 0953 ∑ yi = 10. , none of the solution models is completely correct. Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e Since the regular solution model comes closest to meeting this criteria, it presumably leads to the best predictions—however, this is merely a hypothesis. 8.1-2 The van Laar equation will be used to fit the data given. Starting from 1 = H2O γ i = yi P xi Pi vap 2 = FURF we obtain, at 10 mole % water, γ 1 = 5.826 and γ 2 = 1.266 . Using eqn. (7.5-10) we get α = 8.5648 and β = 0.7901 . Thus, ln γ 1 = 8.5648 a1 + 10.841 x x f 2 1 and ln γ 2 = 2 0.7901 a1 + 0.0922 x x f 2 2 1 which we will assume is valid at all temperatures. At the new temperature we have xiγ i P1vap = yi P or x1γ 1 × 10352 . = y1 × 1013 . and x2γ 2 × 01193 . = y2 × 1.013 which must be solved together with the activity coefficient expressions above, and the criteria that x1 + x2 = 1 and y1 + y2 = 1 . Solution procedure I used was to guess a value of x1 , compute x2 from x2 = 1 − x1 , compute γ 1 and γ 2 from the expression above, yi from yi = xi γ i Pi vap P for i = 1 and 2, and then check to see if ∑ yi = 1 . Proceeding this way, the following results were obtained calculated measured Note x1 0.075 0.20 x2 0.925 0.80 y1 0867 . 0.89 y2 0129 . 0.11 ∑ yi = 0.996 which is not quite equal to 1. The discrepancy between the calculated and experimental results indicates the dangers of using approximate solution models. 8.1-3 The desired result may be proved a number of different ways. ∂P Simplest proof: We have show that at an azeotropic point ∂x1 FG IJ H K = 0 using the triple product rule T in the form FG ∂P IJ F ∂T I F ∂x I H ∂x K H ∂P K H ∂T K = −1 1 1 T x1 P yields FG ∂P IJ H ∂x K FG ∂T IJ F ∂P I = 0 H ∂x K H ∂T K R ∂P ∂P Since there is no reason to believe F I = 0 Sin fact, F I H ∂T K H ∂T K T 1 T =− 1 x1 P x1 = x1 P∆ H vap RT 2 UV W Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e FG ∂T IJ H ∂x K We then have 1 = 0. P Alternate proof: P = x1γ 1 P1vap + x2γ 2 P2vap = RT V for an ideal gas phase. Thus FG ∂T IJ H ∂x K 1 = P RS T LM N OP Q V ∂ ln γ 1 ∂ ln P1vap γ 1 P1vap + x1γ 1 P1vap + − γ 2 P2vap R ∂ x1 ∂ x1 + x2γ 2 P2vap LM ∂ lnγ N ∂x ∂ ln P2vap ∂ x1 + 2 1 OP UV = 0 QW P Now: i) FG ∂ ln P IJ H ∂x K vap 1 1 = 0 Since the pure component vapor pressure does not depend on the mixture P FG ∂T IJ H ∂x K composition at fixed P and T since 1 =0 P ii) Gibbs-Duhem eqn. is FG IJ H K H ex ∂ T T ∂ x1 →0 c ⇒ γ 1 P1vap FG ∂P IJ + x FG ∂ ln γ IJ + x FG ∂ lnγ IJ H ∂x K H ∂x K H ∂x K L F ∂ lnγ IJ OP = 0 − γ P hM1 + x G N H ∂x K Q − V ex 1 1 1 1 P →0 P vap 2 2 =0 2 2 1 1 P P 1 1 1 P or γ 1 P1vap = γ 2 P2vap . From here on it is the same argument as in the text. Alternative to proof above: start with P = x1γ 1 P1vap + x2γ 2 P2vap FG ∂P IJ H ∂x K 1 RSFG ∂ ln γ IJ TH ∂ x K IJ + FG ∂ ln P K H ∂x ≡ 0 = γ 1 P1vap + x1γ 1 P1vap 1 P + x2γ 2 P2vap RSFG ∂ lnγ TH ∂x 1 1 2 P vap 2 1 P FG ∂ ln P IJ UV − γ P H ∂x K W IJ UV KW + 1 vap 1 1 vap 2 2 P P Now using an argument similar to (i) above, and also using (ii), gives γ 1 P1vap = γ 2 P2vap 8.1-4 In general, we have xiγ i Pi vap = yi P and know vap PET (a) Ideal = 02321 . bar and solution: PBvap ∑ xiγ i Pi vap = P . Also, from the experimental data, we = 0.2939 bar. xi Pi vap = yi P P = xET × 0.2321 + xE = 0.2939 or xET × 0.2321 and P P = 0.2321 − 0.0617 xET . Consequently x − y and P − x and diagrams are given on following page. ∑ xi Pivap = P . Thus yET = Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e (b) Regular solution model: δi V Li ethanol 12.5 58.4 benzene 9.2 Ethanol solubility parameters at 89.0 25° C was computed using ∆H vap ET = 9674 d vap vap L ∆U vap ET = ∆ H ET − RT and δET = ∆U ET V ET φ2BV 2ET δET − δ B cal/mol i 12 2 = 1.0059φ2B and ln γ B = 15329 . φ 2ET . These activity coefficient RT expressions are used with the general equations above to obtain the solution. The results are given below. (c) The program UNIFAC was used to obtain the predictions shown in the figures below. (d) First we evaluate the activity coefficients at the given data point using γ i = yi P xi Pi vap to Thus ln γ ET = obtain γ ET = 1.2244 and γ B = 2.0166 . Next using eqns. (7.5-10) we obtain α = 2.0271 and β = 1.4993 . {This is to be compared with α = 195 . and β = 116 . in Table 7.5-1]. Thus we obtain RS 2.0271 1 + 13520 . x a1 − x T R 14993 . = expS T 1 + 0.7396a1 − x f x γ ET = exp ET and γB ET ET UV fW UV W 2 2 ET Using these expressions in the general equations we obtain the results plotted below. Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-5 (a) Using the vapor pressure data (Plotting vap PAC ≈ 0.6665 bar and ln P vap vs 1 T ), I find that at T = 1054 . °C, PTvap ≈ 08793 . bar. a f γ AC = 1013 . 0.6665 = 1520 . Thus and γ T = 1.013 0.8793 = 1152 . at the azeotropic composition of xT = 0.627 . Next, using eqns. (7.510) and treating toluene as species 1, I find α = 1075 . and β = 1.029 . Thus, ln γ T = 1075 . 1 + 1045 . and ln γ AC = xT 2 xM 1029 . 1 + 0.957 xAC 2 xT . These expressions have been used to obtain the results plotted below. (b) fi L = fi V ⇒ xi γ i Pi vap = yi P . Thus, γ i = xi γ i Pi vap P and ∑ yi = 1 . Procedure I used was, for each value of xT , to i) Guess an equilibrium temperature T ii) Compute yT and yAC , and check to see if ∑ yi = 1 iii) If not, guess a new value of T and repeat the calculation A simpler procedure is to use Mathcad or another computer algebra program Results xT yT T (° C) Experiment 0.25 0.50 0.75 0.25 0.43 0.25 Ideal 0.50 0.75 0.30 0.56 0.80 104.5 100.8 100.6 107.5 105.8 105.8 116.5 0.43 114 111 0.57 0.69 van Laar 0.50 0.75 0.57 0.70 Ideal solution results were obtained in a similar matter, except that all activity coefficients were set equal to unity. 8.1-5 0 , 1 .. 20 i 0.05 . i xi Write van Laar model this way to avoid division by zero. 1.075 . 1 gamt ( i) exp 1 xi xi 1.029 . xi 2 1.045 . xi gamac( i) 2 exp xi 0.957 . 1 3 xi 2 1.5 gamt ( i ) gamac ( i ) 2 ln( gamt ( i ) ) 2 1 ln( gamac ( i ) ) 0.5 1 0 0.5 x i 1 0 0 0.5 x i 1 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e Pi xi . gamt ( i) . 0.8793 xi . 0.8793 Pid i 1 1 xi . gamac( i) . 0.6665 xi . gamt ( i) . yi xi . 0.6665 yid i xi . 0.8793 Pi 0.8793 Pid i 1 y P i yid 0.5 Pid i 1 i i 0 0.8 0.6 0 0.5 x i 1 8.1-6 (a) We start with eqn. (6.2-12b): 0 ∑ xidGi + SdT − VdP = 0 . a ff dGi = RTd ln f i = RTd ln xiγ i fi T1 P , so that RT ∑ xi d ln xi + RT ∑ xi d lnγ i + RT∑ xi d ln fi −VdP = 0 However, for the pure fluid fugacity, we have, from eqn. (7.2-8a) RTd ln fi = d G i = V i dP Thus RT ∑ xi d ln xi + RT ∑ xi d lnγ i + b∑ x V −V gdP = 0 i i Also ∑ xiV i − V = ∑ xiV i − ∑ xiV i = −∑ xiV i = −V ex ⇒ RT ∑ xi d lna xiγ i f − V exdP = 0 ex Now assuming i) Ideal gas-phase behavior: xiγ i Pi vap = yi P or xiγ i = yi P Pi vap and ii) That PV ex / RT << 1 we obtain ∑ xid lnaxiγ i f = ∑ xid lnc yi P or h Pi vap = PV ex d ln P RT ∑ xid ln yi + ∑ xid ln P − ∑ xid ln Pivap = d PV ex 1 And note that at constant temperature SdT = 0 and a 0.5 x i i RT d ln P Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e ∑ xid ln Pi vap = 0 , since Now noting that Pi vap is a function of temperature only and F PV ∑ xid ln P = d ln Pb∑ xi g = d ln P , yields ∑ xid ln yi = GH FG H FG H IJ K ex RT IJ K − 1 d ln P or IJ K x1 x x x PV ex dy1 + 2 dy2 = 1 − 2 dy1 = − 1 d ln P ≈ −d ln P y1 y2 y1 y2 RT Since a y1 + y2 = 1 , f dy2 = −dy1 . a Also f a f a f a f a y − x f dy = d ln P y a1 − y f dx dx y2 = 1 − y , x1 1 − x1 x 1 − y1 − y1 1 − x1 x −y − = 1 = 1 1 y1 1 − y1 y1 1 − y1 y1 1 − y1 1 1 1 1 1 1 and x2 = 1 − x1 , so 1 To obtain the x − y diagram, I used the equation above in a finite difference form. Using the argument i to denote the ith data point, the equation above becomes y1(i) − x1(i ) ⋅ y1 (i) − y1(i − 1) = ln P(i) − ln P(i − 1) y1 (i) 1 − y1 (i) a f y1(i ) is unknown, however, P1(i ) , P1(i − 1) , x1 (i) are known. Also y1(1) is either 0 or 1 depending on which end of the data one starts with. In fact, I started at both ends, in two separate calculations, to check the results. I solved this problem using the equation above rewritten as y1(i ) = B ± B 2 − 4C 2 where B= x1 (i) + y1(i − 1) + ∆ ln P x (i) y (i − 1) and C = 1 1 1 + ∆ ln P 1 + ∆ ln P and averaged the results from starting at the x1 = 0 and x1 = 1 ends. Once x1 and γ 1 = y1 P b. x1 P1vap y1 , were known, the activity coefficients were calculated from and γ 2 = y2 P x2 P2vap . Results are given below. CCl 4 + n-Heptane System = exprmntl x-y data Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e c. Ethylene bromide + 1-nitropentane System Azeotrope = exprmntl x-y data 8.1-7 A simpler solution using Mathcad is available as a Mathcad worksheet. (a) At the bubble point we have yi = xi Pi vap P where P = 5 bar xET = 0.05 ; xP = 0.10 , xNB = 0.40 and xMP = 0.45 . Procedure used was i) Guess T, ii) Compute each yi , and the sum guessed T is too high; if recalculate. Solution: ∑ yi . ∑ yi = 1 , guessed T is correct; if ∑ yi > 1 , ∑ yi < 1 , guessed T is too low. If ∑ yi ≠ 1 , we correct T and If T = 29366 . K (bubble point) yET = 0.4167 , yP = 0.1730 , yNB = 0.1601 and yMP = 0.2502 . (b) The dew point calculation is similar. Here, yET = 0.05 , yP = 010 . , yNB = 0.40 and yMP = 0.45 . P = 5 bar, and T and the xi 's are the unknowns. Thus, here we guess the dew point temperature, compute each of the xi 's from xi = Pyi Pi vap guessed temperature is the dew point temperature; if ∑ xi <1 , guessed T is too high. and evaluate ∑ xi >1 , ∑ xi . If ∑ xi = 1 , the guessed T is too low; if Solution (obtained using the computer) T = 314.23 K (dew point) xET = 0.0039 , xP = 0.0337 , xNB = 0.5215 and xMP = 0.4409 . (c) The advantage of the Mathcad worksheet for the isothermal flash calculation is that one can use the initial flash equations directly, rather than having to make the substitutions below. For the isothermal flash vaporization calculation, we proceed as in Illustration 8.1-3. First, we calculate the K factors, i.e. 10 + −817.08 303.15 + 4 .402229 KET = = 10185 . , 5 and, similarly KP = 2.238 , KNB = 0.546 and KMP = 0.743 . Thus, the equations to be solved are: xET + xP + xNB + xMP = 1 (1) a f yET + yP + yNB + yMP = 1 ⇒ 10185 . xET + 2.238 xP + 0.546 xNB + 0.743 xMP = 1 Also, a f xET L 1 − KET + KET = 0.05 ⇒ xET (10185 . − 9 .185 L) = 0.05 and, similarly (2) (3) Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e xP ( 2.238 − 1.238 L ) = 0.10 (4) xNB (0.546 + 0.454 L ) = 0.40 (5) xMP (0.743 + 0.257 L ) = 0.45 (6) Solution procedure I used was to guess L, compute the xi 's from eqns. (3 to 6), and then ascertain whether eqns. (1) and (2) were satisfied. After a number of iterations, I obtained the following solution: L = 0.86667 V = 0.13333 xET = 0.0225 yET = 0.2289 xP = 0.0858 yP = 0.1921 xNB = 0.4258 yNB = 0.2326 xMP = 0.4659 yMP = 0.3464 ∑ xi = 1.000 ∑ yi = 1.000 (d) For an adiabatic flush vaporization, shown below, the energy balance must also be satisfied liquid liquid X vapor pressure reducing valve or device This is a (two-phase) Joule-Thomson expansion, so that the energy balance yields H in = H out , or ∑ xi H i (T , P, x ) inlet cond itions = L ∑ xi H i (T , P , x) outlet liquid conditions + L L V ∑ yi H i cT , P, yh outlet vapor conditi ons V This equation must be satisfied, together with the mass balances and phase equilibrium equations of part c. Thus, we have one new unknown here, the outlet temperature, and an additional equation from which to find that unknown. 8.1-8 (a) Starting from xiγ i Pi vap = yi P , we obtain γ i = yi P xi Pi vap , and using the data in the problem a statement, we can compute each γ i , and then ln γ P γ A These results, together with G a ex f and G ex RT = xP ln γ P + xA lnγ A . RT xP xA and its inverse are tabulated on the following page. f Also, there is a plot of ln γ P γ A vs. xA . This plot indicates that the data appears to be thermodynamically consistent (i.e. z a f ln γ P γ A dxA ≈ 0 ), though the points at the composition extremes ( xA = 0.021 and xA = 0.953 ) look suspect (b) See Problem 7.22 the plots of G ex RT xP xA and xP xA G ex RT appear on the following page. The fact that neither is linear indicates that neither the two-constant Margules, nor the van Laar equation will accurately fit the data. Hence, one will have to use at least a 3-constant Redlich-Kister expansion for the Gibbs free energy to obtain a good fit of the experimental data for this system! Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e γP γA 0.021 0.979 3.3407 13140 . 0.061 0.939 3.6497 10643 . 0134 . 31326 . 11142 . 0.210 0.790 2.5617 11700 . 0.292 0.708 2.2196 1.2187 xA xP FG γ IJ Hγ K G ex RT 0.2927 G es RTxA xP 14.237 xA xP RT G ex 0.0702 12323 . 01367 . 2.3866 0.4190 1.0337 0.2467 2.1259 0.4704 0.7837 0.3216 1.9385 0.5159 0.5995 0.3729 18037 . 0.5544 0.3000 ln P A 0.405 0866 . 0.4198 17421 . 0.5740 0.503 0.497 15132 . 15582 . − 0.0293 0.4288 1.7153 0.5830 0.611 0.389 13299 . 18214 . − 0.3145 0.4074 17141 . 0.5834 0.728 0.272 11689 . 2 .3716 − 0.7075 0.3485 1.7600 0.5682 3.1505 − 10948 . 01962 . 1.7235 0.5802 10191 . 4 .5509 − 14964 . 0.0893 1.9937 0.5016 0.869 0.595 18190 . 0.131 10542 . 0.953 0.047 13475 . 0.9331 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e The next step is to fit parameters in the Gibbs free energy models to the experimental data. I have done this assuming small errors in all the variables (T, P, x and y) and using the maximum likelihood method. The results of the different models are given below: Wilson model Λ12 = 347.82 Λ21 = 107523 . Pmeas (hPa) 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 Pcalc (hPa) 1008.46 1012.01 1012.35 1012.89 1012.21 1008.83 1024.86 1007.84 1011.79 1010.94 1012.31 Tmeas (o C) 49.15 45.76 39.58 36.67 34.35 32.85 33.35 31.97 31.93 32.27 33.89 Tcalc (o C) 49.17 45.76 39.58 36.67 34.35 32.87 33.31 31.99 31.93 32.28 33.89 x1,meas x1,calc y1,meas y1,calc .0210 .0610 .1340 .2100 .2920 .4050 .5030 .6110 .7280 .8690 .9530 .0317 .0556 .1273 .1942 .2958 .4290 .4291 .6224 .7287 .8640 .9554 .1080 · 3070 .4750 .5500 .6140 .6640 .6780 .7110 .7390 .8100 .9060 .2353 .3404 .5048 .5761 .6330 .6731 .6725 .7128 .7380 .7957 .8933 1013 hPa = 1013 . bar = 1013 . × 105 Pa The sum of squares of weighted residuals for this model is 1298, the mean deviation in y1 is 2.55%, and in P is 0.29% Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e NRTL model Pmeas (hPa) 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 Pcalc (hPa) 1008.14 1011.69 1011.87 1012.35 1012.18 1010.35 1025.99 1007.37 1010.33 1009.50 1011.83 τ12 = 777.95 Tmeas (o C) 49.15 45.76 39.58 36.67 34.35 32.85 33.35 31.97 31.93 32.27 33.89 Tcalc (o C) 49.17 45.76 39.58 36.67 34.35 32.86 33.30 31.99 31.94 32.28 33.89 τ21 = 432 .53 x1,meas x1,calc y1,meas y1,calc .0210 .0610 .1340 .2100 .2920 · 4050 .5030 .6110 .7280 .8690 .9530 .0379 .0650 .1399 .2034 .2939 .4186 .4173 .6208 .7296 .8581 .9505 .1080 .3070 .4750 .5500 .6140 .6640 .6780 ·7110 .7390 .8100 .9060 .2400 .3469 .5131 .5843 .6403 .6793 .6784 .7131 .7348 .7896 .8890 Sum of squares of weighted residuals =1547 Mean deviation in y1 is 3.00%; in P = 0.34% UNIQUAC Model The parameters are τ12 = 572.61 and τ21 = –72.84 Mean deviation in y1 is 3.0790; in P is 0.34% Pmeas (hPa) 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 Pcalc (hPa) 1008.12 1011.66 1011.82 1012.26 1012.10 1010.40 1026.29 1007.25 1010.16 1009.43 1011.80 Tmeas (o C) 49.15 45.76 39.58 36.67 34.35 32.85 33.35 31-97 31.93 32.27 33.89 Tcalc (o C) 49.17 45.76 39.58 36.67 34.35 32.86 33.30 31.99 31.94 32.28 33.89 x1,meas x1,calc y1,meas y1,calc .0210 .0610 ·1340 .2100 ·2920 .4050 .5030 ·6110 .7280 .8690 .9530 .0381 .0655 .1412 .2048 .2946 .4180 .4177 .6206 .7295 .8579 .9503 .1080 .3070 .4750 .5500 .6140 .6640 .6780 .7110 .7390 .8100 .9060 .2402 .3474 .5141 .5855 .6417 .6807 .6800 .7139 .7351 .7895 .8888 van Laar modelα = 15032 . β = 18534 . Mean % P = 0.34 ; y = 318% . sum of squares of wt. residuals =1625 Pmeas (hPa) 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 Pcalc (hPa) 1008.13 1011.66 1011.78 1012.19 1012.06 1010.66 1025.98 1007.14 1009.92 1009.57 1011.89 Tmeas (o C) 49.15 45.76 39.58 36.67 34.35 32.85 33.35 31.97 31.93 32.27 33.89 Tcalc (o C) 49.17 45.76 39.58 36.67 34.35 32.86 33.30 31.99 31.94 32.28 33.89 x1,meas x1,calc y1,meas y1,calc .0210 .0610 .1340 .2100 .2920 .4050 .5030 .6110 .7280 .8690 .9530 .0380 .0656 .1419 .2057 .2947 .4164 .4121 .6202 .7293 .8585 .9512 .1080 .3070 .4750 .5500 .6140 .6640 .6780 .7110 .7390 .8100 .9060 .2403 .3478 .5154 .5874 .6441 .6837 .6822 .7162 .7362 .7897 .8894 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 2-Constant Margules Model A = 17737 . B = 19259 . Mean % deviation in P = 0.33% and in y = 2.90% , and sum of squares of weighted residuals =1401 Pmeas (hPa) 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 1013.00 Pcalc (hPa) 1008.60 1012.14 1012.66 1013.56 1013.81 1004.67 1023.95 1005.18 1014.78 1013.07 1012.36 Tmeas (o C) 49.15 45.76 39.58 36.67 34.35 32.85 33.35 31.97 31.93 32.27 33.89 Tcalc (o C) 49.17 45.76 39.58 36.67 34.35 32.88 33.31 32.00 31.92 32.27 33.89 x1,meas x1,calc y1,meas y1,calc .0210 .0610 .1340 .2100 .2920 .4050 .5030 .6110 .7280 .8690 .9530 .0287 .0502 .1135 .1731 .2764 .4396 .4598 .6465 .7317 .8863 .9578 .1080 .3070 .4750 .5500 .6140 .6640 .6780 .7110 .7390 .8100 .9060 .2337 .3382 .5022 .5736 .6314 .6653 .6670 .6899 .7082 .7932 .8928 So, of the models considered here, the Wilson model provides the best description (of the twoconstant models) for this data set. 8.1-9 Using the program UNIFAC taking T and xP as known, and computing γ P , γ A and P as well as yP we obtain xP T (° C) γ calc P γ calc A 0.021 49.15 4.1390 1006 . 0.061 45.76 3.7515 P calc = ∑xγP yPcalc yexp P 0.922 0.147 0.108 10053 . 0.983 0.325 0.307 i i i ( bar ) vap 0134 . 39.58 31680 . 10258 . 0.976 0.498 0.475 0.210 36.67 2 .6687 1.0649 0.995 0.583 0.550 0.292 34.35 2 .2487 11302 . 0.993 0.635 0.614 0.405 32.85 18162 . 1.2697 0.993 0.677 0.664 0.503 33.35 15416 . 14540 . 1004 . 0.697 0.678 0.611 3197 . 13247 . 17663 . 1002 . 0.717 0.711 0.728 3193 . 11592 . 2 .3176 1001 . 0.742 0.739 0.869 32.27 10388 . 3.5893 1.005 0.804 0.810 0.953 3389 . 10053 . 4.9909 1.018 0.897 0.906 A measured value =1013 . bar Solutions to Chemical and Engineering Thermodynamics, 3e While the prediction is not perfect, it is relatively good. Section 8.1 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-10 First we should check to see if this problem is soluble (i.e.., well-posed in the sense of the Gibbs phase rule). The Gibbs phase rule, eqn. (6.9-6) is F = C − M − P + 2 . Thus here we have F = 3 − 0 − 2 + 2 = 3 degrees of freedom. Since the temperature, and two independent liquidphase mole fractions are specified, the problem is well posed. For the solution of this problem, the following subscripts will be used: 1 = ethanol , 2 = benzene and 3 = ethyl acetate . As the first step, compute the pure component vapor pressures. This is done by using the vapor pressure data in the “Chemical Engineers' Handbook ”, making plots of ln Pi vap vs 1 T , and then determining ln Pi vap (and hence Pi vap ) at T = 78° C c1 T = 2.847 × 10 Kh we find −3 P1vap ≅ 10 . bar; P2vap ≅ 0.9666 bar and P3vap ≅ 1053 . bar Next, we need compute the liquid phase activity coefficients. This will be done using the ternary van Laar eqn. (eqn. (A7.3-2)). [See also Problem 7.8c], together with the entries in Table 7.6-1. Here one has to be careful about the order in which the species appear in the table. I obtained the following: α12 = 1.946 β12 = 1610 . ⇒ α21 = β12 = 1.610 α32 = 115 . β32 = 0.92 ⇒ α23 = β32 = 0.92 α31 = 0.896 β31 = 0.896 ⇒ β21 = α12 = 1946 . β23 = α32 = 115 . α13 = β31 = 0.896 β13 = α31 = 0.896 Now from eqn. (A7.3-2) ln γ 1 {x α e j = 2 2 β 12 2 12 α 12 e j eα + α − α j} x + x e j+ x e j + 1730 . x x r 0.6333 = = 0.7308 + x32α13 β 13 2 α 13 1 = . x m13320 2 2 + 0.896 x32 β + x2 x3 α12 12 β 12 2 α 12 β 13 α 13 β 13 3 α 13 12 13 α 12 23 β 12 2 2 3 x1 + 0.8273x2 + x3 2 0.8666 x2 = x3 = 0.4 x1 = 0.2 ⇒ γ 1 = 2.0767 To obtain an expression for γ 2 , we interchange subscripts 1 and 2 in eqn. (A7.3-2) to obtain [see solution to prob. 7.8c] ln γ 2 {x β e j = 2 1 α 12 2 12 β 12 + x32α23 e j e je jeβ + α − α j} x +x e j+ x e j + 2 .7025x x r 0.5403 = = 0.4145 β 23 2 α 23 2 = m2.3521x 2 1 + 14375 . x23 + x1 x3 α 12 1 β 12 x2 + 1.2087x1 + 1.250 x3 α 12 β 12 β 23 α 23 β 23 3 α 23 12 23 β 12 13 α 12 2 1 3 2 x2 = x3 =0 .4 x1 = 0.2 13036 . ⇒ γ 2 = 15136 . An expression for γ 3 is obtained by interchanging indices 1 and 3 in eqn. (A7.3-2) to obtain [see solution to Problem 7.8c] Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e ln γ 3 {x β e j = α 23 2 2 2 23 β 23 e je jeβ + β − β x + x e j+ x e j + 0.0268x x r 0.1557 = + x12 β13 e j α 13 2 β 13 α 23 2 β 23 3 = m0.7360x 2 2 + 0.896 x12 + x1 x2 α 23 β 23 α 13 β 13 α 13 1 β 13 23 β 23 12 α 23 13 j} 2 1 2 x3 + 0.80 x2 + x1 2 x 2 = x3 = 0.4 x1 =0 .2 0.8464 ⇒ ln γ 3 = 01840 . and γ 3 = 12020 . With these "preliminaries" taken care of, we can now proceed on to the solution. The equilibrium equations are xiγ i Pi vap = yi P and ∑ xiγ i Pi vap = P Therefore x1γ 1 P1vap = 0.2 × 2.0767 × 1.000 = 0.41534 bar x2γ 2 P2vap = 0.4 × 15136 . × 0.9666 = 0.58522 x3γ 3 P3vap = 0.4 × 12020 . × 1053 . = 0.50620 P = 150684 . bar and y1 = 0.2756 y2 = 0.3884 y3 = 0.3360 Note that the vapor composition is only very slightly different than the liquid composition. (This is because the vapor pressures and activity coefficients of the species are all quite similar). An alternative is to use the program UNIFAC to estimate the activity coefficients. Using the program with ethanol 1 − CH 3 , 1 − CH 2 , 1 − OH , benzene (6–ACH) and ethyl acetate a a f f 1 − CH 3 , 1 − CH 2 , 1 − CH 3COO we obtain, at 20 mole % ethanol, 40 mole % benzene and 40 mole % ethyl acetate at 78°C ) that γ 1 = 2.2062 ; γ 2 = 11931 . and γ 3 = 10038 . The solution is P = 12965 . bar and y1 = 0.3181 ; y2 = 0.3558 and y3 = 0.3261 Clearly this result is different from the ternary van Laar prediction. In the absence of experimental data for this ternary mixture, it is difficult to say which model is better. 8.1-11 For the simpler models, it is possible to show by simple mathematics that the model either does or does not permit a double azeotrope. For example, the van Laar model is a f G ex 2a12 x1q1 x2 q 2 2 a12 αβx1x2 αβx1 1 − x1 = × = = RT x1q1 + x2 q2 2 a12 αx1 + βx2 αx1 + β 1 − x1 a f Now for the benzene-hexafluorobenzene system G ex has an interior maximum and an interior minimum. That is, dGex dx1 is zero twice in the region 0 ≤ x1 ≤ 1 . To see if the van Laar model permits this we examine Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e FG IJ a f a f H K a a ff a f a f αβa1 − 2 x f αβx a1 − x f(α − β) − =0 αx + βa1 − x f dx + βa1 − x f ⇒ a x − x faαx + βx f − x x (α − β) = 0 d G ex αβ 1 − x1 αβx1( −1) αβx1 1 − x1 = + − dx RT αx1 + β 1 − x1 αx1 + β 1 − x1 αx1 + β 1 − x1 or 1 1 1 1 αx1 x2 − αx12 (α − β) = 0 1 2 1 2 2 1 1 2 − βx1 x2 + or αx12 = βx22 ⇒ 1 1 2 βx22 FG IJ H K α x = 2 β x1 − αx1 x2 + βx1 x2 = 0 2 or x2 α =± x1 β Now α and β must be of same sign (otherwise we get the square root of a negative number). Also, since 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1 , only positive sign is allowed. Thus x2 x1 = α β when dGex dx1 = 0 . And only an interior maximum (if α > 0 and β > 0 ) or an interior minimum (if α < 0 and β < 0 ) can occur, but not both! Therefore, van Laar model can not describe the observed behavior. Similarly, obviously the one-constant Margules model Gex = Ax1 x2 can not give both an interior minimum & maximum, so it can not describe observed behavior. Instead of continuing this extreme argument, we will look at the results of merely fitting the experimental data. Two-constant-Margules model Pmeas (hPa) 521.60 525.70 525.68 522.87 518.18 509.89 507.73 503.50 499.74 497.57 497.94 501.55 Pcalc (hPa) 521.60 518.42 517.53 517.19 516.24 514.09 511.32 507.72 503.06 498.70 496.96 501.55 x1,meas x1,calc y1,meas y1,calc .0000 .0941 .1849 .2741 .3648 .4538 .5266 .6013 .6894 .7852 .8960 1.0000 .0000 .0940 .1849 .2741 .3648 .4539 .5268 .6015 .6896 .7852 .8960 1.0000 .0000 .0970 .1788 .2567 .3383 .4237 .4982 .5783 .6760 .7824 .8996 1.0000 .0000 .0880 .1777 .2679 .3605 .4522 .5275 .6051 .6970 .7960 .9063 1.0000 - only 1 azeotrope at x1 ≥ 0.9 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e Wilson model Pmeas (hPa) 521.60 525.70 525.68 522.87 518.18 509.89 507.73 503.50 499.74 497.57 497.94 501.55 Pcalc (hPa) 521.60 510.55 500.76 492.21 484.89 479.35 476.28 474.74 475.30 479.24 488.48 501.55 y1,meas y1,calc .0000 .0970 .1788 .2567 .3383 .4237 .4982 .5783 .6760 .7824 .8996 1.0000 .0000 .0757 .1556 .2407 .3335 .4300 .5118 .5974 .6982 .8038 .9145 1.0000 Only a single azeotrope predicted to occur. NRTL model Pmeas Pcalc x1,meas y1,meas y1,calc (hPa) (hPa) 521.60 521.60 .0000 .0000 .0000 525.70 518.93 .0941 .0970 .0896 525.68 516.49 .1849 .1788 .1773 522.87 514.23 .2741 .2567 .2647 518.18 512.08 .3648 .3383 .3545 509.89 510.11 .4538 .4237 .4436 507.73 508.62 .5266 .4982 .5170 503.50 507.19 .6013 .5783 .5927 499.74 505.66 .6894 .6760 .6825 497.57 504.17 .7852 .7824 .7804 497.94 502.69 .8960 .8996 .8938 501.55 501.55 1.0000 1.0000 1.0000 No azeotrope results form the least squares fitting of parameters UNIQUAC model Pmeas (hPa) 521.60 525.70 525.68 522.87 518.18 509.89 507.73 503 50 499.74 497.57 497.94 501.55 Pcalc (hPa) 521.60 528.19 526.27 521.58 515.87 510.44 506.61 503.46 500.91 499.57 499.80 501.55 x1,meas y1,meas y1,calc .0000 .0941 .1849 .2741 .3648 .4538 .5266 .6013 .6894 .7852 .8960 1.0000 .0000 .0970 .1788 .2567 .3383 .4237 .4982 .5783 .6760 .7824 .8996 1.0000 .0000 .0953 .1717 .2503 .3368 .4276 .5046 .5852 .6807 .7832 .8978 1.0000 Double azeotrope predicted, as indicated. ← ← Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e Therefore, of the models considered only the UNIQUAC model is capable of producing the peculiar behavior of G ex for this system. 8.1-12 From Table 8.1-1 we have (assuming an ideal vapor phase) x1 γ1 γ2 log 10 FG γ IJ Hγ K 1 2 See figure below. 0.0503 3.4337 1.0247 0.5251 01014 . 31394 . 1.0192 0.4885 01647 . 2.6218 10445 . 0.3997 0.2212 2.2340 10918 . 0.3109 0.3019 19334 . 11332 . 0.2320 0.3476 17879 . 11637 . 0.1865 0.4082 15928 . 12643 . 0.1003 0.4463 15237 . 13068 . 0.0666 0.5031 14284 . 13755 . 0.0164 0.5610 1.3225 1.4984 −0.0542 0.6812 11841 . 1.7837 − 01779 . 0.7597 11285 . 2 .0086 −0.2504 0.8333 10648 . 2 .4539 − 0.3625 0.9180 1.0223 31792 . −0.4927 Solutions to Chemical and Engineering Thermodynamics, 3e The two areas I and II appear to be approximately equal, so the data will be presumed to be thermodynamically consistent. In fact, from proper numerical analysis, we find the data to be consistent. Log Section 8.1 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-13 P = x1γ 1 P1vap + x2γ 2 P2vap FG ∂P IJ H ∂x K 2 ∂x ∂γ 1 ∂γ + γ 2 P2vap + x2 P2vap 2 ; where we have used that 1 = −1 as ∂x2 ∂ x2 ∂x2 = −γ 1 P1vap + x1 P1vap T ∂γ 1 = 0 . So ∂ x2 x2 → 0 γ 1 → 1 and FG ∂P IJ H ∂x K 2 ∂γ 2 ∂x2 = − P1vap + γ 2 P2vap + x2 (→ 0) T , x2 → 0 so that F I GH JK P1vap + ∂P ∂x 2 γ 2 x2 → 0 = vap P2 a f T , x2 → 0 constant temperature ebulliometer Now P = x1γ 1 P1vap + x2γ 2 P2vap and FG ∂P IJ H ∂x K 2 FG ∂γ IJ H ∂x K F ∂γ IJ P +x G H ∂x K = 0 = −γ 1 P1vap + x1 2 P +γ 2 P2vap P 2 as x2 → 0, γ 1 → 1 and P vap 2 2 2 FG ∂P IJ FG ∂T IJ H ∂T K H ∂x K F ∂P IJ FG ∂T IJ +xγ G H ∂T K H ∂x K vap P1vap + x1γ 1 1 1 2 P vap 2 2 2 T 2 P ∂γ 1 →0 ∂ x2 0 = − P1vap + FG IJ H K dP1vap ∂T dT ∂ x2 a f + γ 2 x2 → 0 P2vap P or a f γ 2 x2 → 0 = 8.1-14 P1vap − FG dP IJ FG ∂T IJ H dT K H ∂x2 K vap 1 P, x2 → 0 P2vap constant pressure ebulliometer (also available as a Mathcad worksheet) Clearly many different thermodynamic models can be used. We will use the van Laar model ln γ 1 = α αx 1 + βx 1 2 2 and ln γ 2 = β 1+ β x2 2 α x1 which gives lnγ ∞1 = α and lnγ ∞2 = β . Using the data in the problem statement α = ln (1.6931) = 0.5266 and β = ln(19523 . ) = 0.6690 . Using these parameter values in the activity Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e coefficient equations above, together with Pi = xiγ i Pi vap ; P = P1 + P2 and yi = Pi P gives, at x1 = 0.2 x2 = 0.2 y1 = 0.4483 y2 = 0.5517 and P = 06482 . bar Also 8.1-15 x2 = 0.500 y1 = 0.7036 y2 = 0.2946 P = 0.8431 0.700 0.8118 01882 . 0.9262 0.850 0.8943 01057 . 0.9732 0.900 0.9256 0.0744 0.9861 0.950 0.9604 0.0396 0.9972 0.975 0.9795 0.0205 1.0019 (also available as a Mathcad worksheet) Using Mathcad I obtained the following results T = 300 K KEOH− EAC T = 400 K KEOH− EAC xEOH = 01 . 58340 . xEOH = 01 . 15.318 0.5 0.4255 0.5 11172 . 0.9 0.03103 0.9 0.0815 Thus the results exhibit strong composition and temperature dependence. For an ideal solution y P vap y x Pvap xi Pi vap = yi P ⇒ i = i ⇒ Kij = i i = i vap xi P yj xj Pj Thus, for an ideal solution, the relative volatility Kij has no composition dependence, but can be dependent on temperature (unless, fortuitously, Pi vap and Pjvap have the same temperature dependence, that is, ∆ H ivap = ∆ H vap j ). The composition dependence arises from the non-ideal solution behavior. Since the activity coefficients dependent on temperature, nonideal solution behavior also contributes to the temperature dependence of the relative volatility. 8.1-16 This system was used for illustration in the first edition. The figures which appear below are from that source. [I changed to the hexane-triethylamine system since the x and y were too close in the benzene-ethylene chloride system because the pure component vapor pressures are so close.] Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-17 x1γ 1 P1vap FfI=yP H PK 1 a f P = γ P a f Pf = P e a f Pf a f P γ P a f Pf P e a f P f P i a f Pf = P e d a f i a f Pf = e d P a f Pf P a f Pf P a 24f 3 a f Pf = e14 P a4f P43f ; 12 (a) α21 = y2 x2 γ 2 P2vap f P = y1 x1 γ 1 P1vap f P vap 2 vap 1 A x12 − x 22 vap 2 vap 1 vap 2 2 vap 1 1 2 1 RT 2 1 − A 1 − 2 x1 RT vap 2 vap 1 2 Composition 1 T dependenceand T dependence T and P dependence (b) Ideal mixture at low pressure f A = 0 above and also all =1 P F I H K α21 = P2vap (T ) P1vap (T ) 1 424 3 T dependence A vap Ax12 RT 2 vap Ax22 RT 1 2 1 x12 − 1− x1 2 RT 2 1 2 1 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-18 a) Starting from L L f i = f i we get, for the ideal solution, that xi Pi vap = yi P Now adding such equations for both components, we get x1 P1vap + x2 P2vap = P so that xi Pi vap ; x1 P1vap + x2 P2vap yi = a f yi x1 = 0.5 = In a equimolar mixture Pi vap P1 + P2vap vap b) For the nonideal mixture xiγ i Pi vap = yi P Now adding these equations for both components, we get x1γ 1 P1vap + x2 γ 2 P2vap = P so that xi γ i Pi vap yi = x1γ 1 P1vap + x2 γ 2 P2vap ; For the one - constant Margules model a f xi Pi vap exp( a 1 − xi 2 ) yi = x1 P1vap exp( ax22 ) + x2 P2vap exp( ax12 ) In a equimolar mixture with the 0.5 Pi vap exp( a ( 05 .) ) Pi vap = 2 2 vap vap 0.5 P1vap exp(a ( 0.5) ) + 0.5 P2vap exp( a (0.5) ) P1 + P2 which is exactly the same result as for the ideal solution. However, these two different models only give the same vapor-phase composition in an equimolar mixture. However, even in this case, the pressures for the ideal and oneconstant Margules mixtures are different. a 2 f yi x1 = 0.5 = 8.1-19 G ex = Ax1 x2 ⇒ γ1 = exp FG Ax IJ ; γ H RT K 2 2 2 FG Ax IJ H RT K = exp 2 1 x1γ 1 P1vap = y1 P Azeotrope x1 = y1 ⇒ γ1 = P P1vap 2 γ2 P P vap P vap e Ax1 = vap ⋅ 1 = 1vap = 2 γ1 P P2 P2 e Ax2 ln RT RT d a =e d A x12 − x 22 P1vap A 2 A 2 = x1 − x22 = x1 − 1 − x1 vap P2 RT RT c a h i RT f i = RTA cx 2 2 1 − 1 + 2 x1 − x12 h f A P vap RT P vap RT Pvap 2 x1 − 1 = ln 1vap ⇒ A = ln 1vap = ln 2vap RT P2 2 x1 − 1 P2 1 − 2 x1 P1 So for an azeotrope to form (1) If P2vap > P1vap Azeotrope will form near x1 = 0 if A = RT ln P2vap P1vap Azeotrope will form at x1+ = 05 . if A = ∞ ; at x1− = 05 . if A = −∞ . Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e Azeotrope will form near x1 = 1 if A = − RT ln FG H FG H 1 RT P vap 1− ln 2vap 2 A P1 Or in general x1 = IJ IJ KK P2vap P1vap So we can draw figures of regions in which azeotropes can be expected to form. RT P vap (2) If P1vap > P2vap then A = ln 1vap 1 − 2 x1 P2 Mirror image of point 1 2 Ax1 1 − x1 RT (b) T = ; A= at x1 = 0.5 ; A = 2RT R 2 x1 1 − x1 a f a f (also available as a Mathcad worksheet) 8.1-20 8.1-20 T 69 p5 26799 10.422 p6 p5 exp ( p5 ) p5 = 2.721 8.314 . ( 273.15 T) p6 exp ( p6 ) p6 = 1.024 35200 . 8.314 ( 273.15 T) p7 exp ( p7 ) p7 = 0.389 29676 10.456 p7 T) 8.314 . ( 273.15 11.431 x5 0.25 x6 P x5 . p5 x6 . p6 0.45 x7 x7 . p7 ( x5 . p5 ) y5 0.3 P = 1.258 y6 ( x6 . p6 ) P y7 ( x7 . p7 ) P P P = 1.258 Bubble point pressure Bubble point compositions y5 = 0.541 y6 = 0.366 y7 = 0.093 Now on to dew point calculation Initial guesses z5 0.25 GIVEN x5 x6 soln x5 P z6 1 0.45 x5 z7 x5 . p5 z5. P x7 1 0.1 x6 0.6 x7 0.3 0.3 x6 . p6 z6. P x7 . p7 z7. P FIND( x5 , x6 , x7 , P ) soln 0 x6 soln 1 Dew point pressure Dew point compositions x7 soln 2 P soln 3 P = 0.768 x5 = 0.071 x6 = 0.338 x7 = 0.592 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-21 (also available as a Mathcad worksheet) 8.1-21 Solving for the bubble point pressure T 69 P p5( T ) 26799 exp 10.422 p6( T ) 8.314 . ( 273.15 8.314 . ( 273.15 y6 T) T) K5( T , P ) 8.314 . ( 273.15 0.33 y7 T) 0.33 z5 p5( T ) P p6( T ) = 1.024 K6( T , P ) p6( T ) p7( T ) = 0.389 K7( T , P ) p7( T ) 35200 exp 11.431 0.33 p5( T ) = 2.721 29676 exp 10.456 p7( T ) y5 1.013 0.25 z6 0.45 z7 P P 0.3 GIVEN K5( T , P ) . z5 soln y5 K6( T , P ) . z6 K7( T , P ) . z7 1 y5 K5( T , P ) . z5 y6 K6( T , P ) . z6 y7 K7( T , P ) . z7 FIND( y5 , y6 , y7 , P ) soln 0 y6 y5 = 0.541 soln 1 y7 soln 2 y6 = 0.366 P soln 3 y7 = 0.093 P = 1.258 This is the bubble-point pressure solution. Now on to the dew-point pressure problem. x5 0.33 x6 0.33 x7 Note that xi=yi/Ki 0.33 GIVEN z5 z6 z7 K5( T , P ) K6( T , P ) K7( T , P ) soln x5 1 x5 z5 K5( T , P ) x6 z6 K6( T , P ) x7 z7 K7( T , P ) FIND( x5 , x6 , x7 , P ) soln 0 x5 = 0.071 x6 soln 1 x7 x6 = 0.338 soln 2 P x7 = 0.592 soln 3 P = 0.768 This is the dew-point pressure solution. So for a mixture of the composition z5=0.25, z6=0.45 and z7=0.30, at a temperature of 69 C, the mixture will be all liquid at pressures above 1.258 bar, and all vapor at pressures below 0.768 bar. Vapor-liquid equilibrium will exist at this temperature only between 0.768 and 1.258 bar, so this is the pressure range we will examine. Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e T 69 L 0.99 P 1.2 K5( T , P ) . x5 GIVEN x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 x5 soln 0 x6 x5 = 0.223 y5 K5( T , P ) . x5 P soln 1 y6 L L K6( T , P ) . x6 y7 K6( T , P ) . x6 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x6 x5 = 0.18 soln 1 x7 x6 = 0.458 K5( T , P ) . x5 y6 y5 = 0.445 soln 2 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x5 = 0.141 K5( T , P ) . x5 y5 = 0.383 L = 0.906 K7( T , P ) . x7 soln L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 V 1 L V = 0.264 L = 0.736 K7( T , P ) . x7 0.60 K6( T , P ) . x6 x5 L y7 = 0.128 K5( T , P ) . x5 GIVEN 1 V = 0.094 x7 = 0.362 K6( T , P ) . x6 y7 y6 = 0.427 L V 0.80 K5( T , P ) ) z5 1.0 x7 ) 0 y7 = 0.104 K5( T , P ) ) y5 x6 K7( T , P ) . x7 x5 . ( L. ( 1 x5 ( x5 FIND( x5 , x6 , x7 , L) soln 3 x7 = 0.32 K5( T , P ) . x5 GIVEN K7( T , P ) . x7 soln soln 2 y6 = 0.389 1.1 y5 x7 x6 = 0.456 y5 = 0.507 P K6( T , P ) . x6 x6 soln 1 x6 = 0.445 y6 x7 soln 2 soln L soln 3 x7 = 0.414 K6( T , P ) . x6 y7 y6 = 0.456 K7( T , P ) . x7 K7( T , P ) . x7 y7 = 0.161 ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) V 1 V = 0.451 L L = 0.549 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e P 0.9 L 0.40 K5( T , P ) . x5 K6( T , P ) . x6 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 GIVEN x5 soln 0 x6 x5 = 0.107 y6 y5 = 0.323 P 0.8 L x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x6 soln 1 x7 x6 = 0.359 K5( T , P ) . x5 y6 y5 = 0.267 0.77 soln 2 K6( T , P ) . x6 y7 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x6 x5 = 0.071 y6 y5 = 0.251 1.25 soln 1 x7 x6 = 0.339 K5( T , P ) . x5 y5 soln 2 K6( T , P ) . x6 y7 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x5 = 0.246 K5( T , P ) . x5 y5 = 0.536 K7( T , P ) . x7 K7( T , P ) . x7 soln L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 V 1 L V = 0.91 L = 0.09 K7( T , P ) . x7 K7( T , P ) . x7 soln L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 V 1 L V = 0.995 L = 5.309 10 K7( T , P ) . x7 0.95 K6( T , P ) . x6 x5 L = 0.337 y7 = 0.298 K5( T , P ) . x5 GIVEN L V = 0.663 x7 = 0.59 y6 = 0.451 L 1 0.10 K6( T , P ) . x6 x5 V y7 = 0.274 K5( T , P ) . x5 GIVEN x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 x7 = 0.563 y6 = 0.459 L x6 y7 = 0.208 K6( T , P ) . x6 y5 L ( x5 0.20 x5 = 0.078 y5 K6( T , P ) . x6 y7 K5( T , P ) . x5 x5 P soln 2 soln x7 = 0.481 y6 = 0.469 GIVEN P x7 x6 = 0.412 K5( T , P ) . x5 y5 soln 1 K7( T , P ) . x7 x6 soln 1 x6 = 0.451 y6 x7 soln 2 soln L soln 3 x7 = 0.303 K6( T , P ) . x6 y7 y6 = 0.369 K7( T , P ) . x7 K7( T , P ) . x7 y7 = 0.094 ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) V 1 V = 0.013 L L = 0.987 3 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e i 0 , 1 .. 9 PP 8.1-22 0.768 0.071 0.338 0.592 0 .77 0.071 0.339 0.590 0.0053 .8 0.078 0.359 0.563 0.090 .9 0.107 0.412 0.481 0.337 1.0 xx5 0.141 xx6 0.445 xx7 0.414 LL 0.549 1.1 0.180 0.458 0.362 0.736 1.2 0.223 0.456 0.320 0.906 1.25 0.246 0.451 0.303 0.987 1.258 0.250 0.450 0.300 1.0 (also available as a Mathcad worksheet) 8.1-22 Solving for the bubble point temperature T 69 p5( T ) p6( T ) p7( T ) P 1.013 exp 10.422 exp 10.456 exp 11.431 26799 . 8.314 ( 273.15 T) 29676 . 8.314 ( 273.15 T) 35200 . 8.314 ( 273.15 T) p5( T ) = 2.721 K5( T , P ) p5( T ) P p6( T ) = 1.024 K6( T , P ) p6( T ) p7( T ) = 0.389 K7( T , P ) p7( T ) P P Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e y5 0.33 y6 0.33 y7 0.33 z5 0.25 z6 0.45 z7 0.3 GIVEN K5( T , P ) . z5 K7( T , P ) . z7 1 y5 K5( T , P ) . z5 y6 K6( T , P ) . z6 y7 K7( T , P ) . z7 FIND( y5 , y6 , y7 , T ) soln y5 K6( T , P ) . z6 soln 0 y6 soln 1 y5 = 0.548 y7 soln 2 y6 = 0.363 T soln 3 y7 = 0.088 T = 61.788 This is the bubble-point temperature solution. Now on to the dew-point temperature problem. x5 0.33 x6 0.33 x7 Note that xi=yi/Ki 0.33 GIVEN z5 z6 z7 K5( T , P ) K6( T , P ) K7( T , P ) x5 soln 2 T z5 x6 K5( T , P ) z6 K6( T , P ) x7 z7 K7( T , P ) FIND( x5 , x6 , x7 , T ) soln x5 1 soln 0 x6 soln 1 x5 = 0.074 x7 x6 = 0.346 soln 3 x7 = 0.579 T = 77.436 This is the dew-point pressure solution. So for a mixture of the composition z5=0.25, z6=0.45 and z7=0.30, the mixture will be all liquid at temperatures below 61.79 C, and all vapor at temperatures above 77.44 C. Vapor-liquid equilibrium will exist only between 61.79 and 77.44 C, so this is the temperature range we will examine. T 62 L 0.99 P 1.013 K5( T , P ) . x5 GIVEN x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 x5 soln 0 x6 x5 = 0.246 y5 K5( T , P ) . x5 65 soln 1 x6 = 0.451 y5 = 0.543 T K6( T , P ) . x6 y6 0.80 soln 2 soln L soln 3 x7 = 0.303 K6( T , P ) . x6 y7 y6 = 0.367 L x7 K7( T , P ) . x7 K7( T , P ) . x7 y7 = 0.09 ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) V 1 V = 0.012 L L = 0.988 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e K5 ( T , P ) . x5 GIVEN x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 x5 soln 0 x6 x5 = 0.198 y6 y5 = 0.476 68 L soln 2 K6( T , P ) . x6 y7 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x6 x5 = 0.157 soln 1 x7 x6 = 0.453 K5( T , P ) . x5 y6 y5 = 0.411 soln 2 K6( T , P ) . x6 y7 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x6 x5 = 0.124 y5 soln 1 x7 x6 = 0.432 K5( T , P ) . x5 y5 = 0.352 74 y6 soln 2 L = 0.813 K7( T , P ) . x7 K7( T , P ) . x7 soln L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 V 1 L V = 0.365 L = 0.635 K7( T , P ) . x7 K7( T , P ) . x7 soln L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 V 1 L V = 0.551 L = 0.449 K7( T , P ) . x7 y7 = 0.183 0.20 K5( T , P ) . x5 K6( T , P ) . x6 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 GIVEN L V = 0.187 x7 = 0.443 K6( T , P ) . x6 y7 y6 = 0.464 L 1 0.40 K6( T , P ) . x6 x5 V y7 = 0.144 K5( T , P ) . x5 GIVEN x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 x7 = 0.389 y6 = 0.444 L L x6 0.60 x5 . ( L. ( 1 71 soln ( x5 y7 = 0.114 K6( T , P ) . x6 y5 K7 ( T , P ) . x7 x7 = 0.343 K5( T , P ) . x5 x5 T x7 y6 = 0.41 GIVEN T soln 1 x6 = 0.459 K5( T , P ) . x5 y5 T K6 ( T , P ) . x6 K7( T , P ) . x7 soln ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e x5 soln x6 0 x5 = 0.098 y5 = 0.301 T 76 L K6( T , P ) . x6 y7 y6 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x6 x5 = 0.083 soln 1 x7 x6 = 0.369 K5( T , P ) . x5 y6 y5 = 0.27 soln 2 L = 0.251 K7( T , P ) . x7 K7( T , P ) . x7 soln L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 V 1 L V = 0.891 L = 0.109 K7( T , P ) . x7 y7 = 0.27 K5( T , P ) . x5 K6( T , P ) . x6 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x6 x5 = 0.077 soln 1 x7 x6 = 0.353 K5( T , P ) . x5 y5 = 0.256 78 L 0.10 GIVEN y5 1 V = 0.749 x7 = 0.548 K6( T , P ) . x6 y7 y6 = 0.46 L x5 V 0.10 x5 . ( L. ( 1 77 soln 3 y7 = 0.232 K6( T , P ) . x6 y5 L x7 = 0.504 K5( T , P ) . x5 x5 T soln 2 y6 = 0.467 GIVEN T x7 x6 = 0.398 K5( T , P ) . x5 y5 soln 1 y6 L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) soln 3 V 1 L V = 0.966 L = 0.034 K7( T , P ) . x7 y7 = 0.291 0.05 K5( T , P ) . x5 K6( T , P ) . x6 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 GIVEN soln x7 = 0.57 K6( T , P ) . x6 y7 y6 = 0.453 L soln 2 K7( T , P ) . x7 K7( T , P ) . x7 ( x5 x6 x7 ) 0 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e x7 . ( L. ( 1 x5 K7( T , P ) ) soln 0 x6 x5 = 0.071 y5 = 0.242 T 61 L soln 3 x7 = 0.592 y6 = 0.445 V 1 L V = 1.045 L = 0.045 K7( T , P ) . x7 y7 = 0.313 0.9 x5 . ( L. ( 1 K5( T , P ) ) K5( T , P ) ) z5 x6 . ( L. ( 1 K6( T , P ) ) K6( T , P ) ) z6 x7 . ( L. ( 1 K7( T , P ) ) K7( T , P ) ) z7 soln 0 x5 = 0.264 K5( T , P ) . x5 y5 = 0.566 L K6( T , P ) . x6 y7 y6 FIND( x5 , x6 , x7 , L) soln soln 2 K6( T , P ) . x6 x5 i x7 K5( T , P ) . x5 GIVEN y5 soln 1 x6 = 0.337 K5( T , P ) . x5 y5 K7( T , P ) ) z7 x6 soln 1 x7 x6 = 0.446 y6 K7( T , P ) . x7 soln soln 2 soln 3 x7 = 0.29 K6( T , P ) . x6 y7 y6 = 0.351 L ( x5 x6 x7 ) 0 FIND( x5 , x6 , x7 , L) V 1 L V = 0.047 L = 1.047 K7( T , P ) . x7 y7 = 0.083 0 , 1 .. 9 TT 61.788 0.25 0.45 0.3 1.0 62 0.246 0.451 0.303 0.988 65 0.198 0.459 0.343 0.813 68 0.157 0.453 0.389 0.635 71 xx5 0.124 xx6 0.432 xx7 0.443 LL 0.449 74 0.098 0.398 0.504 0.251 76 0.083 0.369 0.548 0.109 77 0.077 0.353 0.570 0.034 77.436 0.074 0.346 0.570 0.0 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-23 (also available as a Mathcad worksheet) 8.1-23a i Pi 0 .. 10 T xi 380 Pvap1 3120.29 exp 9.3225 T Pvap2 T 630 . gam1 x= exp 57.57 . 1 xi 323.15 2 8.314 . T T 335 . 1 323.15 xi . gam1 . Pvap1 1 . x i 2 8.314 . T x . gam2 . Pvap2 i 0 0 0 0.329 1 0.1 1 0.368 2 0.2 2 0.403 3 0.3 3 0.433 P= T 323.15 0 0 4 0.4 T 335 . 1 323.15 exp 630 . gam2 63.63 3341.62 exp 9.2508 T Pi 0.1 . i 4 0.461 5 0.5 5 0.485 6 0.6 6 0.508 7 0.7 7 0.529 8 0.8 8 0.548 9 0.9 9 0.566 10 1 10 0.583 P in bar Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e T 380 Pvap1 exp 9.3225 3120.29 T T 630 . gaml i exp y1i T T . 1 2 xi 323.15 8.314 . T 630 . gam2 i 3341.62 exp 9.2508 63.63 335 . 1 323.15 Pvap2 T 335 . 1 323.15 exp T 323.15 . x i 2 8.314 . T xi . gaml i . Pvap1 y2i Pi 0.582581 1 y1i 0.6 0.5 P i 0.4 0.328551 0.3 0 0 0.2 0.4 0.6 x i 0.8 1 1 57.57 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e 8.1-23b generalized at fixed pressure 0 .. 10 i TTi 0.1 . i xi T 373. DT 5 DT > 0.00001 while Pvap1 3120.29 exp 9.3225 T Pvap2 63.63 3341.62 exp 9.2508 T T 630 . gam1 T 10 . ln T T TTi T 335 . 1 323.15 exp xi 2 323.15 . x i 2 8.314 . T xi . gam1 . Pvap1 DT . 1 323.15 8.314 . T 630 . P T 335 . 1 323.15 exp gam2 57.57 xi . gam2 . Pvap2 1 380 P . 750 DT T TTi Have to recalculate vapor pressures, activity coefficients and vapor phase mole fractions since these variables are only defined within the subprogram. Pvap1i exp 9.3225 Pvap2i exp 9.2508 TTi i TTi 323.15 exp 63.63 3341.62 TTi 630 . gam1 3120.29 57.57 335 . 1 TTi . 1 xi 323.15 . 8.314 TT i 630 . gam2 i exp TTi 335 . 1 323.15 TTi 323.15 8.314 . TTi . x i 2 2 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e P i xi . gam1 i . Pvap1i xi . gam1 i . Pvap1i y1i Pi P= gam1 = 1 xi . gam2 i . Pvap2i 1 y2i xi . gam2 i . Pvap2i Pi 0 0 0.507 0 0 0 0 0 0 0 394.064 1 0.507 1 0.1 1 0.193 1 390.316 2 0.507 2 0.2 2 0.339 2 387.383 3 0.507 3 0.3 3 0.456 3 385.011 4 0.507 4 0.4 4 0.554 x= 0 y1 = TT = 4 383.041 5 0.507 5 0.5 5 0.639 5 381.368 6 0.507 6 0.6 6 0.717 6 379.919 7 0.507 7 0.7 7 0.789 7 378.646 8 0.507 8 0.8 8 0.859 8 377.513 9 0.507 9 0.9 9 0.929 9 376.498 10 0.507 10 1 10 1 10 375.584 0 0 0.507 0 0 1.293 0 0 1 0 0 0.886 1 1.23 1 1.003 1 0.795 1 0.453 2 1.177 2 1.01 2 0.73 2 0.414 3 1.133 3 1.023 3 0.679 3 0.385 4 1.096 4 1.041 4 0.64 gam2 = Pvap1 = Pvap2 = 4 0.362 5 1.065 5 1.065 5 0.608 5 0.343 6 1.041 6 1.095 6 0.581 6 0.328 7 1.023 7 1.132 7 0.558 7 0.315 8 1.01 8 1.175 8 0.539 8 0.303 9 1.003 9 1.227 9 0.522 9 0.293 10 1 10 1.286 10 0.507 10 0.285 400 1 390 TT i y1 i 380 0.5 370 0 0.5 x i 1 0 0 0.5 x i 1 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e (also available as a Mathcad worksheet) 8.1-24 8.1-24 NB Benzene activity in benzene - polyisobutylene (40,000) mixtures 1 NPIB 40000 VB 88.26 VIB 131.9 R χ 8.314 104 mb 0.8331 mpib 1 mb WtB mb WtB 78 xb xpib WtB WtPIB 78 40000 PhiB = 0.4264 m lnGB ln PhiB 1 1 . PhiP PhiP 3 xb . VB WtPIB xb . VB xpib . NPIB . VIB PhiP PhiP = 0.5736 1 1 WtB PhiB xb = 0.9977 χ . PhiP 2 γB exp ( lnGB ) γ B = 1.0529 χ . PhiB 2 γP exp ( lnG2 ) γP= 0 m (1 m) . PhiB xpib ab lnG2 = 238.9603 lnGB = 0.0516 xb . γ B ab = 1.0505 activity of benzene Partial pressure of benzene = mb PhiB WtB = 0.4545 m = 574.7878 NB . VB xb lnG2 xb xpib = 2.3352 10 NPIB . VIB ln 1 mpib 1.0 0.5543 mpib 1 0.0606 . ab = 0.0637 bar mb WtB mb mpib WtB = 0.3566 WtPIB xb . VB xpib . NPIB . VIB PhiP 1 WtB WtB 78 xb xpib WtB WtPIB 78 40000 xb = 0.9965 PhiB = 0.3309 1 xb PhiB xpib = 3.5056 10 3 xb . VB PhiP = 0.6691 1 PhiB Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e lnGB ln PhiB 1 1 . PhiP m χ . PhiP 2 γB exp ( lnGB ) γ B = 1.0133 (1 m) . PhiB χ . PhiB 2 γP exp ( lnG2 ) γP= 0 ab xb . γ B xb lnG2 PhiP ln xpib lnGB = 0.0132 lnG2 = 184.5044 ab = 1.0097 activity of benzene 0.0606 . ab = 0.0612 Partial pressure of benzene = mb 0.291 mpib 1 bar mb WtB mb mpib WtB = 0.2254 WtPIB xb . VB xpib . NPIB . VIB PhiP 1 WtB WtB 78 xb xpib WtB WtPIB 78 40000 xb = 0.9933 lnGB ln ln xb PhiB PhiB = 0.2061 PhiB PhiP xb . VB 3 xpib = 6.6564 10 1 . PhiP m χ . PhiP 2 γB exp ( lnGB ) γ B = 0.8608 (1 m) . PhiB χ . PhiB 2 γP exp ( lnG2 ) γP= 0 ab xb . γ B xpib lnGB = 0.1499 lnG2 = 113.4422 1 PhiB PhiP = 0.7939 1 xb lnG2 1 ab = 0.8551 activity of benzene Partial pressure of benzene = 0.0606 . ab = 0.0518 bar Calculation of pure component vapor pressure of benzene Data from Perry's Pvap = 40 mm Hg at T = 7.6 C and 60 mm Hg at 15.4 C A 10 B 3000 given ln ( 40 ) A B 273.15 con A 7.6 B 273.15 15.4 find( A , B) A = 18.6885 con 0 B con 1 3 B = 4.2111 10 B exp A Pvap ln ( 60 ) A 273.15 750 10 Pvap = 0.0606 bar Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e (also available as a Mathcad worksheet) 8.1-25 8.1-25 NC Cyclohexane activity in cyclohexane - polyisobutylene (40,000) mixtures 1 NPIB 40000 84.16 VC 104 mc 1.318 mpib 1 mc 84.16 xpib WtC WtPIB 84.16 40000 PhiC = 0.5716 lnGC PhiC ln ln 1 . PhiP 1 m) . PhiC (1 xpib mpib xc PhiC 3 xc . VC WtC = 0.5686 WtPIB xc . VC xpib . NPIB . VIB PhiP PhiP = 0.4284 0.475 1 1 WtC PhiC xc = 0.9984 2 γC exp ( lnGC ) γ C = 0.9578 χ . PhiC 2 γP exp ( lnG2 ) γP= 0 xc . γ C ac lnG2 = 262.067 lnGC = 0.0431 ac = 0.9563 activity of cyclohexane Partial pressure of cyclohexane = 0.1303 . ac = 0.1246 mc χ 8.314 χ . PhiP m PhiP R m = 469.5731 xc lnG2 1 xpib = 1.5938 10 NPIB . VIB NC . VC m 131.9 mc WtC WtC xc VIB .779 0.434 mpib 1 bar mc WtC mc WtC = 0.3026 mpib WtPIB 1 WtC WtC 84.16 xc WtC WtPIB 84.16 40000 xc = 0.9952 lnGC xpib ln PhiC = 0.3052 PhiC ln PhiP xpib lnGC = 0.2593 xc PhiC xpib = 4.8245 10 xc . VC xpib . NPIB . VIB xc . VC 3 PhiP 1 PhiC PhiP = 0.6948 1 1 . PhiP m χ . PhiP 2 γC exp ( lnGC ) γ C = 0.7716 (1 m) . PhiC χ . PhiC 2 γP exp ( lnG2 ) γP= 0 lnG2 = 137.998 ac xc . γ C xc lnG2 1 ac = 0.7679 activity of cyclohexane Partial pressure of cyclohexane = 0.1303 . ac = 0.1001 bar Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e mc 0.147 mpib 1 mc WtC mc mpib WtC = 0.1282 WtPIB xc . VC xpib . NPIB . VIB PhiP 1 WtC WtC 84.16 xc PhiC WtPIB 84.16 40000 xc = 0.4174 lnGC ln xpib ln PhiC xc PhiC = 0.1556 PhiC PhiP xc . VC xpib = 0.5826 1 . PhiP m χ . PhiP 2 γC exp ( lnGC ) γ C = 1.2146 (1 m) . PhiC χ . PhiC 2 γP exp ( lnG2 ) γP= 0 lnG2 = 72.5182 ac xc . γ C xpib lnGC = 0.1944 1 PhiC PhiP = 0.8444 1 xc lnG2 1 ac = 0.507 activity of benzene 0.1303 . ac = 0.0661 Partial pressure of cyclohexane = bar So while not perfect, the value of the Flory parameter chosen, 0.475, gives a reasonably good description of the cyclohexane-polyisobutylene system. Calculation of pure component vapor pressure of cyclohexane Data from Perry's Pvap = 60 mm Hg at T = 14.7 C and 100 mm Hg at 25.5 C A 10 B 3000 given ln ( 60 ) A B 273.15 con A 14.7 273.15 25.5 find( A , B) A = 18.2201 con 0 273.15 Pvap B con 1 3 B = 4.0661 10 B exp A 25 Pvap = 0.1303 750 bar (also available as a Mathcad worksheet) 8.1-26 8.1-26 NP B ln ( 100 ) A Pentane activity in pentane - polyisobutylene (40,000) mixtures 1 NPIB 40000 104 VP 72.15 .630 VIB 131.9 R 8.314 χ 0.85 Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e mp 1.405 mpib 1 mp WtP mp WtP 84.16 xp xpib WtP WtPIB 84.16 40000 PhiP = 0.6012 lnGP 1 . PhiPib 1 xp lnG2 ln PhiP 3 WtPIB xp . VP xpib . NPIB . VIB xp . VP PhiPib = 0.3988 PhiPib 1 WtP 1 PhiP xp = 0.9985 m = 442.9714 PhiP ln xp xpib = 1.4953 10 NPIB . VIB NP . VP m 1 WtP = 0.5842 mpib m PhiPib (1 m) . PhiP xpib lnGP = 0.0258 χ . PhiPib 2 χ . PhiP 2 γP γ Pib γ Pib = 0 exp ( lnG2 ) xp . γ P aP lnG2 = 259.8176 γ P = 1.0261 exp ( lnGP ) aP = 1.0246 activity of n-pentane 0.3778 . aP = 0.3871 Partial pressure of n-pentane = mp 0.269 mpib 1 bar mp WtP mp WtP = 0.212 mpib WtPIB 1 WtP WtP 84.16 xp WtP WtPIB 84.16 40000 xp = 0.9922 lnGP xpib ln PhiP = 0.224 PhiP 1 xp lnG2 ln PhiPib xpib lnGP = 0.2023 (1 1 . PhiPib m m) . PhiP 1 xp PhiP xpib = 7.7609 10 χ . PhiPib χ . PhiP 2 lnG2 = 94.3441 2 xp . VP 3 xp . VP xpib . NPIB . VIB PhiPib 1 PhiP = 0.224 γP γ Pib ap exp ( lnGP ) exp ( lnG2 ) xp . γ P γ P = 0.8169 γ Pib = 0 ap = 0.8105 activity of n-pentane Partial pressure of n-pentane = 0.3778 . ap = 0.3062 bar PhiP Section 8.1 Solutions to Chemical and Engineering Thermodynamics, 3e mp 0.0294 mpib 1 mp WtP mp WtP = 0.0286 mpib WtPIB 1 WtP WtP 84.16 xp PhiP WtPIB 84.16 40000 xp = 0.1264 lnGP ln xpib ln xp PhiP = 0.0355 PhiP 1 xp lnG2 1 PhiP PhiPib xpib = 0.8736 1 . PhiPib m m) . PhiP (1 xpib lnGP = 0.4822 xp . VP xp . VP xpib . NPIB . VIB χ . PhiPib 2 γP χ . PhiP 2 ap 1 PhiP PhiPib = 0.9645 exp ( lnGP ) γ Pib lnG2 = 15.5691 PhiPib exp ( lnG2 ) xp . γ P γ P = 1.6197 γ Pib = 1.7316 10 7 ap = 0.2047 activity of n-pentane 0.3778 . ap = 0.0773 Partial pressure of pentane = bar So while not perfect, the value of the Flory parameter chosen, 0.85, gives a reasonably good description of the pentane-polyisobutylene system. Calculation of pure component vapor pressure of pentane Data from Perry's Pvap = 200 mm Hg at T = 1.9 C and 400 mm Hg at 18.5 C A 10 B 3000 given ln ( 200 ) A B 273.15 con A 1.9 B 273.15 find( A , B) A = 17.4764 con 0 B con 1 3 B = 3.3496 10 B exp A Pvap ln ( 400 ) A 273.15 750 10 Pvap = 0.3778 bar 18.5 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  8VLQJWKHFULWLFDOSURSHUWLHVLQWKHWH[WWKHSURJUDP9/08DQGWKHIROORZLQJLQWHUDFWLRQ SDUDPHWHUV  N&  &   N&  &   N&  &  ,REWDLQWKHIROORZLQJ  %XEEOHSRLQW 3 EDU  7 . \& \& \&                                                                      8VLQJWKHVDPHSURJUDPDQGLQIRUPDWLRQDVDERYH,REWDLQWKHIROORZLQJ 'HZSRLQW 3 EDU 7 . [& [& [&                                                                                 6HHILJXUHRQIROORZLQJSDJH  $JDLQZHXVHWKHSURJUDP9/08DQGWKHGDWDIURP3UREOHP$OVRVLQFHDWEDUWKH EXEEOHSRLQWRIWKHPL[WXUHLV.DQGWKHGHZSRLQWLV.ZHRQO\QHHGWRFRQVLGHU WHPSHUDWXUHVEHWZHHQWKHVHWZRH[WUHPHV7KHUHVXOWVIROORZ 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 3 EDU 7 . [ [ [ \ \ \ 9 / VSOLW                                                                                        1RWHWRLQVWUXFWRU 5H3UREOHPVDQG <RXVKRXOGWDNHWLPHWRGLVFXVVKRZWKHFRPSRVLWLRQVDUHFKDQJLQJZLWKSUHVVXUHLQHDFK RIWKHFDVHVDERYH)RUH[DPSOHLQ3UREOHPDWORZEXEEOHSRLQWSUHVVXUHVWKHYDSRU FRPSRVLWLRQLVYHU\GLIIHUHQWWKDQWKHOLTXLGZLWKWKHYDSRUJUHDWO\HQULFKHGLQWKHOLJKW &  FRPSRQHQW+RZHYHUDVWKHSUHVVXUHLQFUHDVHVDQGWKHFULWLFDOSRLQWLVDSSURDFKHGWKHYDSRU FRPSRVLWLRQEHFRPHVVLPLODUWRWKDWRIWKHOLTXLG$QDORJRXVFRPPHQWVDSSO\WRWKHGHZSRLQW FDVHRI3UREOHP 0 5 9DSRU/LTXLG(TXOLEULXP   3 LQ EDU 3BES 3BGS L L %XEEOHSRLQW FXUYH  'HZSRLQW FXUYH             7BES  7BGS L L 7 LQ .  6HHVROXWLRQWR3UREOHP7KHGHULYDWLRQRI(TVLVLGHQWLFDOWRWKHGHULYDWLRQRIHTQV    DDQGE 7KHVHDOJRULWKPVDUHLQFRUSRUDWHGLQWRWKHSURJUDP9/08([DPLQHWKDWSURJUDPWRVHH WKHDOJRULWKPVXVHG  D 7KHHTXDWLRQVWREHXVHGWRVROYHWKLVSUREOHPDUHWKHPDVVEDODQFHVWKHHTXLOLEULXPFRQGLWLRQ HTXDOLW\ RI IXJDFLWLHV  DQG WKH HQHUJ\ EDODQFH  :ULWLQJ WKHVH HTXDWLRQV IRU DQ RSHQ VWHDG\ IORZV\VWHPZHKDYH IRUPROHRIIHHGRIFRPSRVLWLRQV ]  L 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 0DVVEDODQFHV ] [ /  \ 9 L      1  /  9  VXPPLQJHTXDWLRQVDERYHRYHUDOOVSHFLHV SKDVHHTXLOLEULXPFRQGLWLRQ I / IL9 L L   L L I/ Ÿ[3 [ ˜3 L \3 L L I9 \ ˜3 L      1 L L L RU / [ I 7  3 [ L L 9 2 \ I 7  3 \ L L 7 RU . L HQHUJ\EDODQFH L I L I \ [ / . 7  3 [ L 9 L L       1 L 9  ¦1  ¦ 1] + 6 1 + L L 6  ¦ 1 1 + 6  ¦ 1 1 + 6 LQ L L RXW L / RXW L RU L L LQ 9 ¦ 1[ + 6 L 9 L $OVRZHKDYHWKHVXPPDWLRQFRQGLWLRQV ¦ [L  DQG ¦ \L / ¦1\ + 6 L /  L   E :LWK WKH H[FHSWLRQ RI HT   WKH RWKHU HTXDWLRQV DUH WKH RQHV XVHG LQ WKH LVRWKHUPDO IODVK FDOFXODWLRQ VHHHTV DQG 7KHUHIRUHWKHHDVLHVWDOJRULWKPWRLPSOHPHQWLVWR XVHWKHRQHIRUWKHLVRWKHUPDOIODVKZLWKDQH[WUDRXWHUORRSZKLFKLWHUDWHVRQILQDOWHPSHUDWXUH 7KLVLVGRQHE\DGGLQJDQHQWKDOS\FDOFXODWLRQ VHHHTD WRWKHSURJUDPDQGFDOFXODWLQJ WKHHQWKDOS\RIWKHIHHGVWUHDPDQGWKHOLTXLGDQGYDSRUVWUHDPV,IHT  LVQRWVDWLVILHGWKH H[LWWHPSHUDWXUHLVDGMXVWHGDQGWKHFDOFXODWLRQUHSHDWHG F $ 0DWKFDG ZRUNVKHHW 0&'  LV DYDLODEOH IRU WKLV FDOFXODWLRQ 7KLV ZRUNVKHHW LV DOVR DYDLODEOHDVWKH$GREH3')ILOHSGI  7KLVSUREOHPLVSUREDEO\PRVWHDVLO\VROYHGXVLQJDQHTXDWLRQRIVWDWHVXFKDVWKH3HQJ5RELQVRQ HTXDWLRQ8VLQJWKHSURJUDP9/08WKHFULWLFDOSURSHUWLHVLQ7DEOHDQG N   IURP 7DEOH ZHREWDLQWKHIROORZLQJ PROHHWKDQH &DOFXODWHG LQOLTXLG YDSRUPRO   3 EDU  0HDVXUHPHQW YDSRUPRO  3 EDU                                 7KXVZHVHHXVLQJWKHSURJUDP9/08ZHREWDLQYHU\DFFXUDWHSUHGLFWLRQVLQDVLPSOHPDQQHU WKRXJKRIFRXUVHPXFKZRUNZHQWLQWRSUHSDULQJWKHSURJUDP :LWKWKHH[FHSWLRQRIWKH PROHWKDQHOLTXLGWKHFRPSRVLWLRQVDUHSUHGLFWHGWRDERXWPROHIUDFWLRQDQGEDU DFFXUDF\  $JDLQWKHSURJUDP9/08ZLOOEHXVHGZLWKWKHFULWLFDOSURSHUWLHVLQ7DEOHDQGWKHYDOXH N  JLYHQLQ7DEOH7KHRQO\TXHVWLRQLVKRZWRXVHWKHSURJUDPWRJHW.YDOXHV, KDYHXVHGWKHLVRWKHUPDOIODVKVLQFHWKDWLVWKHRQO\RSWLRQWKDWDOORZVPHWRVSHFLI\7DQG3 2QHWKHQKDVWRFKRRVHDIHHGFRPSRVLWLRQWKDWDVVXUHVWKDWRQHLVLQWKHWZRSKDVHUHJLRQ WKLV FDQEHFKHFNHGE\DFROOHFWLRQRIEXEEOHSRLQWRUVLPLODUFDOFXODWLRQVLIGHVLUHG 7KLV FRUUHVSRQGVWRPHWKDQHFRPSRVLWLRQVLQWKHUDQJH 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  d [& d  ,QWKLVUDQJHZHILQGWKHIROORZLQJ [ \ PHWKDQH   .   EHQ]HQH     DVNHGIRULQSUREOHPVWDWHPHQW  :HXVHWKHSURJUDP9/08FULWLFDOSURSHUWLHVLQ7DEOHDQGDYDOXHRI N  JLYHQLQ 7DEOH7KHSUREOHPPXVWEHVROYHGE\WULDODQGHUURU7KHHDVLHVWZD\LVWRVWDUWZLWKWKH EXEEOHSRLQW3SURJUDP7KLVOHDGVWRWKHUHVXOWWKDWWKHEXEEOHSRLQWSUHVVXUHLVEDU 7KHUHIRUHDORZHUSUHVVXUHWKDQEDUPXVWEHXVHGWRSURGXFHDSSUHFLDEOHYDSRU/LNHZLVH XVLQJWKHGHZSRLQWSUHVVXUHSURJUDPJLYHVDGHZSRLQWSUHVVXUHRIEDU7KHUHIRUHWKH SUHVVXUHPXVWEHEHWZHHQEDUDQGEDUWRSURGXFHDSSUHFLDEOHYDSRU%\WULDODQGHUURU     DQG ZHILQGDW 7   .  3  EDU9 /  )HHG /LT 9DSRU     & Q&   3KDVHFRPSUHVVLELOLW\ =  .          8VLQJWKHSURJUDP9/08FULWLFDOSURSHUWLHVLQ7DEOHDQGWKHIROORZLQJLQWHUDFWLRQ SDUDPHWHUV N&  &   N&  Q&   N&  L&   N&  Q&   N&  L&  DQG NQ&  L&  ZHREWDLQWKHIROORZLQJ &RPSRQHQW )HHG /LTXLG 9DSRU     HWKDQH .  SURSDQH Q  EXWDQH           L  EXWDQH      PROHV FRPSUHVVLELOLW\          7KHUHIRUHPRORIWDQNFRQWHQWVZLOOEHYDSRUDQGWKHUHPDLQLQJPROZLOOEH OLTXLG>,IZHEHOLHYHWKHFRPSUHVVLELOLWLHVHYHQWKRXJKWKHOLTXLGFRPSUHVVLELOLW\KDVVRPHHUURU WKHQZHKDYHWKDWRIWKHYROXPHRIWKHWDQNLVILOOHGZLWKOLTXLGDQGWKHUHPDLQLQJ LVILOOHGZLWKYDSRU@  7KHDQDO\VLVLVVLPLODUWRWKDWRI3UREOHPH[FHSWWKDWWKHHQHUJ\EDODQFH  ¦ 1] + 6 L L LQ / ¦ 1[ + 6  9 ¦ 1 \ + 6 / L 9 L L L XVHGWKHUHLVQRZUHSODFHGZLWKWKHHQWURS\EDODQFH  ¦ 2] 6 7 L L LQ / / 9 ¦ 4[ 6 9  9 ¦ 4 \ 6 9 L L L L $ 0DWKFDG ZRUNVKHHW 0&'  LV DYDLODEOH IRU WKLV FDOFXODWLRQ 7KLV ZRUNVKHHW FDQ EH YLHZHGDVWKH$GREH3')ILOHSGI 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  D + 9 GDWDDUHREWDLQHGIURPWKH6XSHUKHDWHG6WHDP7DEOHV$OVR + / 7  3   03D | + / 7  DQ\SUHVVXUH VLQFHDWORZDQGPRGHUDWHSUHVVXUHVWKHOLTXLG HQWKDOS\LVLQGHSHQGHQWRISUHVVXUHWRDQH[FHOOHQWDSSUR[LPDWLRQ7KHUHIRUH + / 7  3 LV WDNHQDORQJWKHVDWXUDWLRQOLQHDQGWKHQH[WUDSRODWHGWRKLJKWHPSHUDWXUHDVVKRZQEHORZ *HQHUDO7KHVWDUWLQJSRLQWIRUVROYLQJWKLVSUREOHPLV I 1/ I 19 Ÿ [1  J 1  I 1/ \1  3  31  ZKHUH 31  LVWKHSDUWLDOSUHVVXUHRIQLWURJHQLQWKHJDVSKDVH$OVR I 1/ D IXJDFLW\RISXUH OLTXLGQLWURJHQLVEDUDFFRUGLQJWRWKHSUREOHPVWDWHPHQW ,GHDOVROXWLRQ J 1   DOVR 31   EDU SUREOHPVWDWHPHQW WKXV 31  [1  I 1/    E 1RQLGHDOVROXWLRQ +HUH OQ J 1  2     [1   7   6LQFH IURP WKH LGHDO VROXWLRQ FDVH DERYH [1   LV TXLWH VPDOO DQGZLOOEHHYHQVPDOOHUKHUH LWLVUHDVRQDEOHWRDVVXPHWKDW   [1  |   OQ J 1  J 1   7KXV [1  31   u    / 1 I1 J   u  7KH+HQU\ V/DZ&RQVWDQWLVWKHFRQVWDQWLQWKHH[SUHVVLRQ +[ L L I 9 KHUH +1  [1  L  EDU   DQG 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H WKXV + 1 EDU [    EDU 1 {J $OVR VLQFH + 1 I 1 / 1  DQG 9 H[   ZH KDYH WKDW WKH DFWLYLW\ FRHIILFLHQW J 1  LV LQGHSHQGHQWRISUHVVXUH7KXVWKHRQO\SUHVVXUHYDULDWLRQRIWKH+HQU\ VODZFRQVWDQWZLOOEH WKURXJKWKH3R\QWLQJSUHVVXUHFRUUHFWLRQWRWKHOLTXLGSKDVHRISXUHQLWURJHQ  D 7R FRPSXWH WKH LGHDO VROXELOLW\ ZH ZLOO XVH 6KDLU V FRUUHODWLRQ )LJ  ILUVW ZH QHHG WR FRPSXWHWKHUHGXFHGWHPSHUDWXUH   7U    WKXV / I 3& #   DQG I / )LJ   u EDU  EDU  7KHUHIRUHDWDWPSDUWLDOSUHVVXUHRIPHWKDQH 3&+  LGHDO [&+  E 7R FRPSXWH J &+   EDU  EDU / I &+  WKH /   [&+  I &+ DFWLYLW\ F FRHIILFLHQWV ZH XVH / [&+  J &+  I &+    EDU  RU  u  [&+  7KHIROORZLQJUHVXOWVDUHREWDLQHG  &+   EHQ]HQH J &+  &+   &+  u   DOOVROYHQWV &+   &&O  J &+  &+   &+ J &+    J &+    0F'DQLHO   *XHUU\   7KHUHJXODUVROXWLRQPRGHOJLYHVIRUWKH &+   & + PL[WXUH J &+ H[S %K9 2G &K ' / &+  &+   G &+ 57 7 I (K) K*  %& u     (   ' u  )*   &+ H[S    6LQFH I & + | 1RWH &+  SDUDPHWHUVIURP7DEOH &+ SDUDPHWHUVIURP7DEOH 7KLV UHVXOW LV QRW LQ DJUHHPHQW ZLWK HLWKHU VHW RI GDWD EXW LV GLVWLQFWO\ FORVHU WR *XHUU\ V UHVXOW  D 6WDUWIURP I / L I * Ÿ [J I / L L L L \3 L I  3 L 'HWHUPLQDWLRQRIQLWURJHQSURSHUWLHV 7U 1   .  .   3U 1  EDU EDU  6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H I  3 1 )URP )LJ  I 1/ 3   EDU 1RZ XVLQJ 6KDLU V FRUUHODWLRQ )LJ    KRZHYHUDWEDUZHKDYH 3& I 1/ 3 #     I 1/ 3 EDU 3&   H[S 3& %K9 /1 &K ' 57  Ÿ I 1/ 3   H[S  (K )K * 3     EDU  EDU 'HWHUPLQDWLRQRIEHQ]HQHSURSHUWLHV 7U & +   )URP )LJ    .   .  DQG 3U & +  EDU EDU    I #   DQG IRU WKH OLTXLG ZH QHHG WKH YDSRU SUHVVXUH  )URP WKH 3 YDSRU  EDUDW 7   q & DQG 3 YDS  EDU &KHPLFDO(QJLQHHUV+DQGERRNZHKDYH 3 YDS  $  %  DV WKH LQWHUSRODWLQJ IRUPXOD ZH ILQG 3 YDS    EDU DW 7   q & XVLQJ OQ 3 YDS 7 I )URP)LJZHKDYH ZLWKDOLWWOHH[WUDSRODWLRQ WKDW |  >$ORQJWKHVDWXUDWLRQ 3 VDW OLQH@7KXV     I &/ +  3&YDS +   I  H[S%K&9 &/ + 2 3  3YDS 7 (K)  3  VDW K' 57 K*    u  u H[S   () %&  u   u   * '  EDU  7KXVWKHHTXDWLRQVWREHVROYHGDUH [1  J 1   EDU \1  EDU [& +  J & +  EDU [1   [& +  \1   \& +  WRJHWKHUZLWK J 1 \&  +  EDU   %K9 2G H[S& K' / 1  1 7  G & +  I &  +  57 (K )K * DQG J &+  %K9 2G 1  G 7 I 1 (K H[S& )K 57 K' * / & +   & +     ZKHUHWKH 1  SDUDPHWHUVDUHJRWWHQIURP7DEOHDQGWKHEHQ]HQHSDUDPHWHUVIURP7DEOH %HFDXVHRIWKHQRQOLQHDUQDWXUHRIWKHHTXDWLRQV GXHWRWKHFRPSRVLWLRQGHSHQGHQFHRI WKHDFWLYLW\FRHIILFLHQW WKLVSUREOHPLVEHVWVROYHGE\WULDODQGHUURU,FKRVH [1   DVWKH LQLWLDOJXHVV 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 6ROXWLRQREWDLQHGZDV [1   DQG\1    [1  DQG\1   0HDVXUHGYDOXHV E $WEDUWKHFDOFXODWLRQLVVLPLODUKRZHYHUWKHQXPEHUVDUHDOLWWOHGLIIHUHQW,ILQG I 1/ I 9 |     |  DQG I &/ +  |  3& 3 &+  6ROXWLRQREWDLQHGZDV [1  DQG   \1  0HDVXUHPHQW\LHOGV  \ 1  [1  ,Q ERWK FDVHV WKH OLTXLG FRPSRVLWLRQV DUH LQ EHWWHU DJUHHPHQW ZLWK H[SHULPHQW WKDQ WKH YDSRU FRPSRVLWLRQV 1RWH,KDYHIRXQGWKDWVRPHVWXGHQWVWU\WRPDNHDODUJHH[WUDSRODWLRQRIWKHYDSRUSUHVVXUH UDWKHUWKDQXVLQJ6KDLU VFRUUHODWLRQLWLVDODUJHH[WUDSRODWLRQKHUHVLQFHWKHQLWURJHQFULWLFDO WHPSHUDWXUH LV  .   ,I ZH H[WUDSRODWH WKH ORZ WHPSHUDWXUH YDSRU SUHVVXUH DQG PDNH WKH VPDOO IXJDFLW\FRHIILFLHQWFRUUHFWLRQZHREWDLQ I 1/ EDU FRPSDUHGWREDUKHUHDW  EDU  7KLV OHDGV WR [1    FRPSDUHG WR  FDOFXODWHG KHUH DQG  REVHUYHG H[SHULPHQWDOO\ 0RUDO8VH6KDLU VFRUUHODWLRQLQVWHDGRIPDNLQJODUJHH[WUDSRODWLRQVRIWKHYDSRUSUHVVXUH  D 6XSSRVHDVPDOODPRXQWRIOLTXLG '1 LVYDSRUL]HGWKHQWKHUHDUH \'1 PROHVRIGLVVROYHG JDV LQ WKH YDSRU DQG [  '[ 1  '1 PROHV RI GLVVROYHG JDV OHIW LQ WKH OLTXLG ZH DUH LQWHUHVWHGLQDGLIIHUHQWGLVWLOODWLRQLHWKHFDVHZKHUH '[ DQG '1 ZLOOEHYHU\VPDOO7KXV [  '[ 1  '1 [1  ['1  1'[  '[ '1 | [1  ['1  1'[ 1RZZULWLQJDPDVV PROH EDODQFHRQWKHGLVVROYHGJDV\LHOGV \'1  [  '[ 1  '1 | \'1  [1  ['1  1'[ [1 7KXV '[ '1 E 8VLQJ \ 0[  1 5   \[ G[ DQGWDNLQJWKHOLPLWDV '1 o  \LHOGV 1 G1 G[ +[ \LHOGV G1 3 DQG [ 1 \LHOGV [ G OQ [ [ I +[ 3 [ 1     [ +3 G OQ [ RU 1 3 G OQ 1 +3 1 G OQ 1 RU OQ [  OQ [ 1 3 I ZKLFKFDQEHUHZULWWHQDV \[ 1 +3 1RZLQWHJUDWLQJEHWZHHQ 3 +3 OQ 1  OQ 1  3 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H [ [ F  1  + 3 1    3 1 RU 1  [  3 + 3 [    [ 1  ZHKDYH     7KXVRQO\RILQLWLDOQXPEHURIPROHVRI [ 1 OLTXLG QHHG EH YDSRUL]HG LQ D GLIIHUHQWLDO GLVWLOODWLRQ LH QR YLROHQW ERLOLQJ RWKHUZLVH HTXLOLEULXPZLOOQRWEHREWDLQHG WRUHPRYHRIWKH &2  [ 1       )RU [ 1 )RU 7KXVRQO\RILQLWLDOQXPEHURIPROHVRIOLTXLGQHHGEHYDSRUL]HGWRUHPRYHRIWKH &2  ,XVHGWKHEXEEOHSRLQWRSWLRQRISURJUDP9/08WUHDWLQJWKHOLTXLGPROHIUDFWLRQRI &2  DVDQ  DGMXVWDEOHSDUDPHWHUXQWLOD &2  SDUWLDOSUHVVXUHRIEDULQWKHYDSRUSKDVHZDVREWDLQHG 7KHUHVXOWVDSSHDUEHORZ [&2   3WRW \&2     3&2  \&2  ˜ 3WRW  EDU                       7KHUHIRUHWKHSUHGLFWHGVROXELOLW\LV [&2  |    D 7KLV SUREOHP LV WUHDWHG LQ WKH VDPH PDQQHU DV WKH SUHYLRXV SUREOHP  7KH UHVXOWV DUH JLYHQ EHORZ N  3&2  \&2  ˜ 3WRW  [&2   3WRW \&2                 7KHUHIRUH WKH SUHGLFWHG VROXELOLW\ LV |  H[SHULPHQWDOYDOXHRI [&2  E N  [&2 3WRW \&2  [&2    7KLV LV FRQVLGHUDEO\ KLJKHU WKDQ WKH  3&2  \&2  ˜ 3WRW                      ,Q WKLV FDVH [&2  |   ZKLFK LV TXLWH FORVH WR WKH H[SHULPHQWDO YDOXH RI   7KLV LOOXVWUDWHVWKHLPSRUWDQFHRIWKHELQDU\LQWHUDFWLRQSDUDPHWHU N  6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  D 9 D  EDU  D u  PU :  J P  1:   u  u   J PRO  1* E P u   . 1* ˜  u  EDU PRO .  39 57 1   1 "# ! 1$    11:*  [ 1* 1*  1: [  . "   U u  u  u   u  #$ !   D u   !  / YROXPHJDV IRUVLPSOLFLW\DVVXPH P OLTXLG YROXPHOLTXLG / 9 P : *   :  U: D "# $   1 ˜  u  7  1     9 ˜   u  7 *  *    1 "#   U u  u  7 "#  $ ! 1 $ !  / u     u  7 U "# / $ !  : [  :  /   u  7   *  F 6 1    1  u   6u 1 u 6u  1 1 u 6u   :  * [  [. + :   6 u      6 u    * G   FP P   EDU 1 * ˜  u   EDUP PRO. u   . u 9 *  :    6 6       Ÿ[ . 6   1 0  + H 1  * : 6 1 1 1 *  6 06 * [ : 6 06  6 6   0     6 &RQGLWLRQIRUHTXLOLEULXPDVWKHVROXELOLW\OLPLWLV I / I 9 ZKLFKLPSOLHV L 0 L 5 0 5 I / 7  3 [  [ VRO I / 7  3 [  I/ VRO  57 [ 57 57 OQ OQ OQ I 9 7  3  I 9 7  3 \  I9  EDU VLQFHWKHIXJDFLW\RIWKHVSHFLHVLQWKHYDSRUSKDVHDVWKLVORZSUHVVXUHLVJLYHQE\WKH/HZLV5DQGDOOUXOH DQGMXVWHTXDOWRWKHIXJDFLW\RIWKHSXUHVSHFLHVDWEDU1RZWKHODVWWHUPRQWKHULJKWRIWKLV HTXDWLRQLVHTXDOWRWKH*LEEVIUHHHQHUJ\FKDQJHRIWUDQVIHUULQJWKHJDVIURPWKHLGHDOJDVVWDWHWRD VROXWLRQRIXQLWPROHIUDFWLRQ7KHUHIRUH '* HT  57 OQ L L L '* HT  57 OQ [ VRO  57 OQ L L L 0 0 L L 5 I / 7  3 [   EDU I 7  3  9 L L L 5 L L L 57 OQ [ VRO  '* L L 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  57 OQ [ VRO EXW w* DOVR 7  + RU w7 ZKHUH'*LVWKHIUHHHQHUJ\FKDQJHGDVNHGIRULQWKHSUREOHPVWDWHPHQW7KHUHIRUH '* OQ [ VRO L w *7 w7 % %  & OQ 7  '7  (7  WKHQ '*  57 $   & OQ 7  '7  (7  7 7 w* +   Ÿ '+ 7  7 w7 7 % w '+ 5  %  &7  '7    (7   5 $   & OQ 7  '7  (7  7  7 w7 '+  '* + * '6 * +  76 Ÿ 6 7 7 $ "#()2 7 $* %&  ' ! 5  %  &7  '7    (7   $7  %  &7 OQ 7  '7   (7  7 5 $7  &7 OQ 7  &7   '7   (7  7 5 $  & OQ 7  &   '7  (7  '6 &3  "# $  ! L  w+  Ÿ '&  w' +   w7  3  w7  3 5 &   '7   (7  D :HH[SHFWWKHVROXELOLW\RIEURPLQHLQZDWHUWREHTXLWHORZVRWKDWWKHPRODUFRQFHQWUDWLRQRI ZDWHUZLOOEHHVVHQWLDOO\XQFKDQJHG7KHQWKHFKDQJHLQIUHHHQHUJ\IRUWKHEURPLQHGLVVROXWLRQ SURFHVVLV '* 0 57 OQ 0    DT DT I %U I %U  I+2 0   57 OQ DT  0    I +2 0  0  0    0   57 OQ 57 OQ 0   0        ZKHUHLVWKHPRODUFRQFHQWUDWLRQRIZDWHU$VVXPLQJ0ZLOOEHYHU\VPDOOWKHVHFRQGWHUP FDQEHQHJOHFWHGDQGZHREWDLQ  '*  0 0 57 OQ   0   7KHUHVXOWVDUHSORWWHGEHORZ     * L         0 L    6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H E $WVDWXUDWLRQWKHIXJDFLW\RIOLTXLGEURPLQHHTXDOVWKDWRIEURPLQHLQVROXWLRQ7KHUHIRUH DT I %U I %U/  RU 0  VR0   (LWKHUE\XVLQJWKLVYDOXHLQWKHHTXDWLRQDERYHRUXVLQJWKHJUDSKDERYHZHVHHWKDWWKH )UHHHQHUJ\FKDQJHLV]HURLIWKHOLTXLGLVVDWXUDWHGZLWKEURPLQH   7U [&2  J  Z  &2  7&  . 3& EDU 7ROXHQH   )URP3UDXVQLW]6KDLU&RUUHODWLRQ 7%  I/ #  $VVXPHYHU\OLWWOHWROXHQHLQYDSRU \&2 a  3& / &2  I &2  $WEDU 7U 07  3 0 5   EDU 5 H[S= 9 \&2 3 I 3 &2       3U     EDU 57   I )LJXUH  |  3 /  u   EDU I &2  1RZFDOFXODWHWKH3R\QWLQJFRUUHFWLRQ  FF PRO u  EDU P u  H[S   . u  u   EDUP PROFF  FF  !   u  u  "# !  u  u  u  $ "# $  H[S   H[S    6RLGHDO¦3UDXVQLW]6KDLU§VROXELOLW\  u  [&2   u   1RZFRQVLGHUVROXWLRQQRQLGHDOLW\ 7DEOH 7DEOH G &2  G 7  97  OQ J &2 I7  9&2  0 FF PRO5I     FDO FF   - PRO. u   . u  FDO 97 [7 97 [7  9&2 [&2 2    [&2  7 2    [&2 2 7 I 7 7    [&2  [&2 7 2    [&2      [&2 7    [&2 6RWRILQGWKHQRQLGHDOVROXELOLW\PXVWVROYH   [&2 H[S I 7 H[S     [&2    [&2 2 J ZKLFKKDVWKHVROXWLRQ [&2 72    XVLQJ0$7+&$' )URP3URJUDP9/08ZLWK N&2   7 XVLQJIODVKZLWKHTXLPRODUIHHG   7L B  .  6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 3UHVVXUH EDU [  &2 7 1RWH 3&2  N&2  7 \    \&2  u 3  u  a EDU   &2 7 3&2  a EDU [  \    :KLFKLVUHDVRQDEO\FORVHWRWKH3UDXVQLW]6KDLUFRUUHODWLRQUHVXOWHVSHFLDOO\JLYHQWKHGLIIHUHQFHLQ WKHPHWKRGV  D )URPWKH6WHDP7DEOHV 7 q &  3   N3D E DWP N3D   \: EDU UHPDLQGHULVR[\JHQDQGQLWURJHQ   ,QLWLDOSDUWLDOSUHVVXUHRI 1   u      N3D ,QLWLDOSDUWLDOSUHVVXUHRI 2  u      N3D 0ROHIUDFWLRQ 1  LQZDWHU [1  +1  [1  N3D N3D EDU  u   EDU PROHIUDFWLRQ 31    u   u   u   0ROHIUDFWLRQ 2 LQZDWHU   EDU [2   u   EDU PROHIUDFWLRQ   u  u   u  Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e 8.4-1 (a) From eqn. (8.4-2) we have, at equilibrium, that d i d i for all species i xiI γ iI x I = xiII γ iII x II and from regular solution theory we have a RT lnγ i = V i φ 2j δ 1 − δ 2 G and ex a f 2 = x1V 1 + x2V 2 φ1φ2 δ1 − δ 2 = f 2 a x1 x2V 1V 2 δ1 − δ2 x1V 1 + x2V 2 f. 2 The critical solution temperature is found from FG ∂ G IJ H ∂x K 2 2 1 =0= T, P FG ∂ G IJ H ∂x K 2 ex 2 1 FG ∂ G IJ H ∂x K 2 + IM 2 1 T, P T, P where a G IM = x1 G 1( T , P) + x2 G 2 (T , P ) + RT x1 ln x1 + x2 ln x2 f By taking derivatives, we find that FG ∂ G IJ H ∂x K 2 IM 2 1 = T ,P FG H RT ∂ 2 G ex and x1 x2 ∂x12 IJ K =− ax V 1 T, P a 2V 21 V 22 δ1 − δ2 1 + x2 V 2 f f 2 3 Thus, setting FG ∂ G IJ H ∂x K 2 IM 2 1 = T ,P FG ∂ G IJ H ∂x K 2 ex 2 1 =0 T ,P we obtain RTC = a 2 x1x2 V 12V 22 δ1 − δ 2 ax V 1 1+ x2V 2 f 3 f 2 = 2φ1φ2 a f f V 1V 2 δ1 − δ 2 x1V 1 + x2 V 2 a (b) To find the upper consolute temperature, that is, TC ,max , we use 2 (*) FG ∂T IJ H ∂x K = 0 or C 1 P FG ∂T IJ = 2V V aδ − δ f RS x − x − 3x x aV − V f UV = 0 H ∂x K ax V + x V f T ax V + x V f W clearly the term k p must be zero at the upper consolute temperature. Thus, we obtain R 2 1 C 2 2 2 1 2 1 2 3 1 P 1 x1 = 1 2 V1 2 1 1 1 2 V1 −V2 ± 1 2 2 2 V 12 + V 22 − V 1V 2 aV 1 −V 2 f Only the negative solution is realistic. Thus, the composition at the upper consolute point is Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e cV x1 = 1 − x2 = 2 1 h + V 2 − V 1V 2 − V 1 2 aV 2 f −V 1 Note that this composition depends only on the molar volumes of species, and not their solubility parameters! Note also, that as V 2 → 1 , x1 → 0.5 , as should be expected. Substituting this result into eqn. (*) above yields RTC = 8.4-2 ex For G a aV f {aV + V fdV + V − V V i − V − V f {dV + V − V V i − aV + V f} 2V 12V 22 δ1 − δ2 2 2 2 1 = Ax1 x2 we have, from Gi 2 1 1 2 2 1 2 2 ex 12 2 2 1 2 2 1 F ∂dN G = RT ln γ = G H ∂N ex i i RT lnγ 2 = Ax12 − V 22 } 3 12 1 2 1 2 iIJ K . That RT lnγ 1 = Ax22 and T , P , N j≠ i . I II (a) The equilibrium curve is one for which G i = G i or xiIγ Ii = xiIIγ iII for both species (i.e., i = 1, 2 ). Thus, the equilibrium phase envelope is the solution to the equations R| Ac1 − x h U| R − x h U| S| RT V| = x exp|S| Ac1RT V| T W T W c1− x h expR|S| AxRT U|V| = c1 − x h expR|S| AxRT U|V| T W T W I 2 i xiI exp and I2 i I i II 2 i II i II2 i II i and we have two equations for the two unknowns: xiI , xiII FG ∂ G IJ H ∂x K 2 (b) Limit of stability criterion is 2 1 = 0 , where T, P a f G = x1 G 1 + x2 G 2 + RT x1 ln x1 + x2 ln x2 + Ax1 x2 144444424444443 123 G setting FG ∂ G IJ H ∂x K 2 2 1 IM = 0 yields x1 x2 = T, P solving for x1 yields x1 = G a ex f RT = x1 1 − x1 = x1 − x12 2A 1 1 2 RT 1 1 2 RT 1 1 2 RT ± 1− or xiI = − 1− and xiII = + 1− 2 2 A 2 2 A 2 2 A 8.4-3 (a) Regular solution theory suppose that Sex = 0 , or, since G ex = Hex − TS ex , that G ex = H ex . This is the case for the C6 H 6 - CCl4 system, but not for the C6 H 6 - CS2 system. Therefore, regular solution theory is not applicable to the C6 H 6 - CS2 system. To test the HildebrandScatchard model we use Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e G ex = x1V 12 x2V 22 2 aδ − δ f 2 2 x1V 1 + x2 V 2 1 2 at x1 = 0.5 we obtain G ex = (0.5) × 89 × (0.5) × 61 2 . cal mol = 48.45 J mol × (10 − 9.2) = 1158 0.5(89 + 61) compared with ≈ 105 J mol experimentally. Thus, we concluded that while the CCl4 - C6 H 6 system has Sex = 0 and thus may satisfy the regular solution model, it is not well represent by Scatchard-Hildebrand regular solution theory. (b) Since G ex is a symmetric function of composition for the CS 2 - C6 H 6 system, we will represent the composition dependence of G ex by the one-constant Margules expression Gex = Ax1 x2 with a f A = 1160 J mol , so that G ex = x1 = 05 . = 290 J mol , as is observed experimentally. For the one-constant Margules eqn., by eqn. (8.4-14), A 1160 TUC = = ≈ 70 K 2 R 2 × 8.314 Thus, if a liquid phase(s) were to exist at very low temperatures, it would exist as two phases below 70 K, and a single stable phase above 70 K. However, since 70 K is well below the melting points of either of the pure components, and, presumably, the eutectic point as well (see section 8.7), no liquid-liquid phase separation will be observed. [Note: we can improve our estimation of the upper consolute temperature by taking into account the temperature ∂ GT H dependence of the excess Gibbs free energy. In particular, from = − 2 we obtain ∂T T bg G ex T G ex T − T2 =− T1 z T2 T1 FG H H ex 1 ex 1 dT ≈ H − 2 T T2 T1 IJ K where we have assumed, for simplicity, that H ex is temperature independent. At x1 = 0.5 , H ex ≈ 525 J mol . Thus a f LMN 298290.15 + 525RST T1 − 2981.15UVWOPQ G ex x1 = 0.5, T2 = T2 2 and, at T2 = 80 K , a f G ex x1 = 05 . , 80 K ≅ 462 J mol , and A(T = 80 K) ≅ 1848 J mol implying an upper consolute temperature of A TUC = = 111 K 2R Guess again TUC = T2 = 105 K a f G ex x1 = 05 . , 105 K = 1056 . K , TUC = 106.4 K (which is close to guess) Since this temperature is still well below the melting points of the species, our conclusion does not change, there is no phase separation. We do, however, see the importance of accounting for the temperature dependence of the excess Gibbs free energy (and activity coefficients)!] (c) For vapor-liquid equilibrium we have fi L = fi V ⇒ xi γ i Pi vap = yi P at an azeotropic point xi = yi , so that γ i Pi vap = P for our system Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e A 1160 = = 0.4365 RT 8.314 × 319.65 also vap γ C 6 H 6 PCvap = P = γ CS 2 PCS 6H 6 2 or vap ln γ C 6 H 6 + ln PCvap = ln γ CS2 + ln PCS 6H6 2 or 2 0.4365xCS + ln 2 PCvap 6H 6 c = 0.4365 1 − xCS 2 vap PCS 2 h 2 This equation has, as its only solution, xCS 2 ≅ 182 . which is not between 0 and 1. Thus, we conclude that no azeotrope is formed. [Note: we could get a better estimate of G ex at the temperature of interest by talking into account the temperature dependence of G ex as was done in part b. Then we find that a f G ex T = 465 . ° C, x1 = 05 . = 273 J mol Thus, the solution becomes even less non-ideal, and an azeotrope will not be formed.] 8.4-4 (a) Starting from xiIγ Ii = xiI L Ac1 − x h OP exp M MN RT PQ = x γ I 2 i II II i i = xiII L Ac1 − x exp M MN RT h OP PQ II 2 i which we can solve for A e j A = RT c1 − x h − c1 − x h ln xiII xiI I 2 i II 2 i c h Using the data for benzene xBI = 0.48 and xBII = 0.94 yields A = 2.52 , while using the data RT A = 3.31 . Since the two values of A are different, we conclude RT that the one-constant Margules equation is not consistent with the experimental data. (b) Regular solution theory gives for perfluoro-n-heptane yields LV cφ h aδ − δ f OP = exp M RT MN PQ = x γ which, solving for aδ − δ f yields xiIγ Ii i xiI I 2 j 2 P B II II i i = xiII exp LMV cφ h aδ − δ f OP RT MN PQ i II 2 j 2 P B 2 P B aδ − δ f = V φ −e φj ; where φ = x V x +V x V {c h c h } RT ln 2 P B i I 2 j xiII xiI j II 2 j j j P P B B Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e From Table 7.6-1 V B = 89 cc mol ; V P = 0.226 m 3 mol from the problem statement. Thus φ IB = 0.2666 , φ IIB = 08605 . , φ IP = 07334 . and φ IIP = 01395 . a f Using the benzene data, we obtain δ P − δB 2 = 108 . cal mol or δP = δ B ± 3.3 = 12.5 or 5.9. Note that we can not choose between these two values solely on the basis of the data here. Activity coefficient data on perfluoro-n-heptane in other fluids would be needed to fix δ P . The value 5.9 is, however, quite close to the value of 6.0 given in Table 7.6-1. Doing a similar calculation to the one above, but not using the perfluoro-n-heptane data yields aδ f − δ B 2 = 7 .75 or δP = δ B ± 2 .8 = 12.0 or 6.4 Thus, regular solution theory is also not completely consistent with the experimental data! 8.4-5 P The condition for material stability is that d 2G > 0 for all variations at constant T and P. Here this implies FG ∂ G IJ H ∂x K 2 2 1 > 0 or equivalently T, P FG ∂ ∆G IJ H ∂x K 2 mix 2 1 T ,P > 0. Looking at the curve in the problem statement, we see that at points B and C this derivative is zero, and between points B and C it is negative. This implies phase instability or phase separation, with points B and C being the limits of stability. The condition of phase equilibrium is G1I = G1II and G2I = G2II Now from Chapter 6 we have FG ∂∆V IJ H ∂x K T, P FG ∂∆ H IJ H ∂x K T ,P FG ∂∆ G IJ H ∂x K T ,P ∆V mix − x1 and ∆H mix − x1 ∆G mix − x1 = H 2 − H2 mix 1 similarly we have = V2 −V2 mix 1 = G2 − G 2 mix 1 (1) (2) Therefore, the equilibrium conditions can be written as a f = ∆G d T , P , x i − x ∂ a ∆G f ∂x (3a) f = ∆ G dT, P, x i − x ∂a∆ G f ∂x (3b) d i ∂ ∆ G mix d i ∂ ∆ G mix ∆G mix T , P, x I − x2I and ∆G mix T , P, x II − x1I ∂x2I a ∂x1I II mix II mix Subtracting the second of these equations from the first yields II 2 II 1 mix II 2 mix II 1 Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e x1I a ∂ ∆ G mix ∂ x1I f − x ∂a∆ G f = x ∂a∆ G f − x ∂a∆ G f I 2 II 1 mix ∂x2I mix ∂ x1I II 2 mix ∂ x2II and using dx2 = −dx1 gives cx I 1 + x2I or, since x1i + x2i = 1 h ∂a∆∂Gx f = cx mix I 1 a ∂ ∆G mix ∂x1I II 1 + x2II h ∂a∆∂Gx f mix II 1 f = ∂a∆G f mix (4) ∂ x1II Thus, at the equilibrium state not only is Gi I = Gi II , but eqn. (4) is satisfied also. Using this last result in eqn. (3a) gives, at equilibrium i FGH ∂∆∂Gx IJK d ∆G mix T , P, x I − xiI d 1 i FGH ∂∆∂Gx IJK = ∆G mix T , P, xII − xiII mix mix 1 T ,P T ,P Now eqn. (4) implies that the slope of the ∆G mix curve must be the same at the two points at which the phases are in equilibrium. Further, from eqns. (1 and 2) we have that since Gi I = Gi II , the two lines have the same intercept. Since the two tangent lines have the same slope and the same intercept, the lines must be identical, i.e., the equilibrium points are on a common tangent line. 8.4-6 At the bubble point (assuming an ideal vapor phase) ∑ xiγ i Pivap = ∑ yi P = P . So xB γ B PBvap + xW γ W PWvap = P (a) (0.04)γ B (0.427 ) + ( 0.96)(1)(0.784 ) = 1.013 bar ⇒ γ B = 15.244 so yB = 15.244 × 0.04 × 0.427 0.784 = 0.257 and yW = 0.96 × 1 × = 0.743 1.013 1.013 (b) At γ IIW = (c) Since equilibrium I I xW γW xIIW xiIγ Ii = xBIγ IB = xBIIγ IIB ⇒ γ IIB = xIBγ IB 0.04 × 15244 . = II xB 0.4 or γ IIB = 1524 . ; also 0.96 × 1 = 1.60 0.6 = xiIIγ iII and ∑ xiIIγ IIi Pi vap = ∑ xiIγ Ii Pi vap = P . The second liquid phase will also have a bubble point pressure of 1.013 bar. 8.4-7 Though the overall composition is 50 mole % isobutane, in fact there are really two phases ... one liquid of composition 11.8 mole % isobutane and the other liquid of composition 92.5 mole % isobutane. Since, at liquid-liquid equilibrium xiIγ Ii = xiIIγ iII and Pbubble = ∑ xiIγ Ii Pi vap = ∑ xiIIγ iII Pi vap , we need to calculate the bubble point pressure for one phase since the other phase will have the same bubble point pressure. Also, since the pressures are not expected to be very high, we will assume an ideal vapor phase. So the equations we will use are xiγ i Pi vap = yi P and ∑ xiγ i Pivap = ∑ yi P = P Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e We will use the 92.5 mole % liquid for the calculations. a ax f = 0.925 f = ? γ isob xisob = 0.925 = 1019 . from the problem statement γ furf isob However, from the liquid-liquid equilibrium condition we have a f I II xfurf γ Ifurf = xfurf γ IIfurf ⇒ γ Ifurf xisob = 0.925 = xIIfurfγ IIfurf 0.882 × 1033 . = = 12.148 I xfurf 0.075 Therefore P = ∑ xi γ i P = 0.925 × 1019 . × 4 .909 + 12148 . × 0.075 × 4.93 × 10−3 = 4.632 bar yisob = 0.925 × 1019 . × 4.909 = 0.999 ; yfurf = 0.001 4.632 8.4-8 (a) At LLE xiIγ Ii = xiIIγ iII . Here this implies RS A c1 − x h UV = x expRS A c1 − x h UV T RT W T RT W and c1− x h expRST RTA cx h UVW = c1 − x h expRST RTA cx h UVW These equations are symmetric with respect to the interchange on the subscripts 1 and 2 (that is replacing x by x = 1 − x and x = a1 − x f by x yields exactly the same set of equations). I 2 1 x1I exp I 2 1 I 1 1 II 2 1 II 1 2 1 II 2 1 II 1 2 1 1 This suggests that the equilibrium is symmetric. Of course, that is exactly what we would expect with the one-constant Margules expression. Therefore, we have xHI = 0.0902 xIIH = 0.9098 and = 0.9098 I xEtOH xIIEtOH = 0.0902 (b) Here, as in the previous two problems, the bubble point pressure can be computed from either liquid phase since xiIγ Ii = xiIIγ iII . Assuming an ideal vapor phase, we have xiγ i Pi vap = yi P and P = ∑ xi γ i Pi vap where the activity coefficients and vapor pressure are given in the problem statement. The solution (putting all the equations into Mathcad) is P = 19657 . bar, yH = 0.5795 , yEtOH = 0.4205 8.4-9 The condition for liquid-liquid equilibrium is xiIγ Ii = xiIIγ iII using the one-constant Margules eqn. c we have RT ln γ Ii = A 1 − xiI a f h 2 . Now a f 0.097γ 1 x1 = 0.097 = 0.903γ 1 x1 = 0.903 ⇒ ln = a a f f γ 1 x1 = 0.097 0.903 = ln γ 1 x1 = 0.903 0.097 A A (1 − 0.097 ) 2 − (1 − 0.903) 2 ⇒ = 2 .768 RT RT Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e so that d a fi = expd 2.768 a1 − x f i γ 1 = exp 2.768 1 − x1 γ2 2 2 2 Now to compute the pressure in the one phase liquid region we use P = x1γ1 P1vap + x2γ 2 P2vap d a = x1 exp 2.768 1 − x1 xacet P( bar ) 0 0.00313 0.02 0.0507 0.04 0.0887 0.06 0.1186 0.08 0.1420 0.09 01517 . 0.097 Two 01577 . phase region 0.903 01577 . 0.92 0.1590 0.94 01607 . 0.96 0.1626 0.98 01647 . 10 . 0.167 8.4-10 f i 0.167 + a1 − x f expc2.768 x h3.13× 10 2 1 2 1 −3 Since we have the concentrations of the coexisting equilibrium liquid phase we can determine two binary parameters. Also, since we are interested in two different temperatures (LLE at 20°C and VLE at 734 . ° C ) we want an activity coefficient model with some built in temperature dependence (otherwise, we will get LLE with the same compositions at all temperatures.) Consequently, I will use the two constant Margules equation Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e a f aα + B x f ⇒ RT ln γ 1 = x22 α1 + B1 x2 RT ln γ 2 = x12 2 2 1 where αi = A + 3(−1)i +1 B ; Bi = 4(−1)i B . These equations are to be used with x1Iγ 1I = x1IIγ 1II ; x2Iγ 2I = x2IIγ 2II ; x1I = 00850 . ; x2I = 1 − x1I ; x1II = 0.6363 ; x2II = 1 − x2I . Putting all this into Mathcad, I find A = 48334 . J mol B = − 19802 . J mol Now using T = 734 . ° C , the same constants as above, I find xMEK P( bar) yMEK 0 0.3603 0 .1 0.7241 0.540 .2 0.8313 0.617 .3 0.8601 0.637 .4 0.8696 0.646 .5 0.8776 0.656 .6 0.8867 0.677 .7 0.8931 0.714 .8 0.8903 0.775 .9 0.8718 0.867 1.0 0.8337 1.000 Azeotrope is predicted to occur at xMEK ≈ 0.7287 and P = 08935 . bar Note: LLE does not occur at this higher temperature. If it did the calculated P − x diagram would have both an interior maximum and minimum as a function of temperature, and the predicted x-y diagram would be like a sideways S, with the x-y line crossing the x = y line twice. Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e 8.4-11 The Wilson model is LM∑ x Λ OP N Q L cλ − λ h OP expM − N RT Q G ex = − RT ∑ xi ln with V jL Λij = Vi L j ij j ij ji which, for a binary mixture, reduces to k a f a + RT a x ln x + x G ex = −RT x1 ln x1 + x2 Λ12 + x2 ln x1Λ21 + x2 and G IM = x1 G 1 + x2 G 2 so 1 FG H 1 2 ln x2 fp f IJ K x1 x2 + x2 ln x1 + x2 Λ12 x1Λ 21 + x2 G = x1 G 1 + x2 G 2 + RT x1 ln Now we look at the derivative of G FG ∂G IJ H ∂x K 1 = G 1 − G 2 + RT ln T, P x1 x1 + x2 Λ12 FG H x1 + x2 Λ12 ∂ x1 x1 ∂x1 x1 + x2 Λ12 + RTx1 − RT ln x2 x1Λ 21 + x2 = G 1 − G 2 + RT ln a + RT x1 + x2 Λ12 + RTx2 FG H IJ K x1Λ 21 + x2 ∂ x2 x2 ∂x1 x1Λ21 + x2 x1 x1 + x2 Λ12 fRST x + 1x Λ − axx a+1 −x ΛΛ ff UVW 1 12 2 1 − RT ln IJ K 2 12 1 2 12 x2 x1Λ 21 + x2 a + RT x1Λ21 + x2 fRST x Λ −1+ x − a xx ΛaΛ + −x1ff UVW 2 21 2 1 = G 1 − G 2 + RT ln 21 2 1 21 2 x1 x1 + x2 Λ12 x x + x Λ − x + x Λ p − RT ln k a f xΛ +x RT + ax Λ + x f k− x Λ − x − x Λ + x p + RT x1 + x2Λ 12 2 1 2 21 1 12 21 2 2 21 2 2 = G 1 − G 2 + RT ln − RT ln 1 1 1 1 12 x2 x1Λ 21 + x2 x1 RT Λ12 + x1 + x2 Λ12 x1 + x2Λ 12 − RT Λ21 x1Λ 21 + x2 21 2 Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e Then FG ∂ G IJ H ∂x K 2 2 1 FG IJ H K a f = a1 − Λ f xΛ +x ∂ F − RT G x IJ + RT Λ aΛ − 1f x ∂x H x Λ + x K a x Λ + x f RT = kax + x Λ f − x a1 − Λ fp x ax + x Λ f RT + kax Λ + x f + x aΛ − 1fp x ax Λ + x f = RT T, P x1 + x2 Λ12 ∂ x1 RTΛ12 − x1 ∂x1 x1 + x2 Λ12 x1 + x2 Λ 12 1 21 2 2 21 2 2 1 1 1 1 1 2 1 2 12 1 1 21 21 2 12 12 1 2 2 21 2 12 2 21 21 2 2 21 2 So FG ∂ G IJ H ∂x K 2 2 1 = RT LM Λ N x ax + x Λ f 2 12 1 T, P 1 2 2 + 12 a OP = 0 +x f Q Λ221 x2 x1Λ 21 2 2 at upper critical solution temperature Now 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1 ; in particular, neither x1 nor x2 is negative. Also, clearly FG Λ IJ Hx +x Λ K FG Λ IJ > 0 HxΛ +x K F ∂ G IJ = 0 is if T = 0 K . Thus, the upper So, for the Wilson model, the only way for G H ∂x K 12 1 2 2 2 > 0 and 12 21 1 21 2 2 2 1 T, P consolute temperature for the Wilson model is T = 0 K , and there is no liquid-liquid equilibrium. 8.4-12 (a) Clearly from RT ln γ i = 8163 . x 2j we have G ex = x1 RT ln γ 1 + x2 RT ln γ 2 = x18.163 x22 + x2 8.163 x12 a f kJ mol Therefore, the upper consolute temperature for this model is A 8163 Tuc = = = 490.9 K 2 R 2 × 8.314 First do the LLE calculation. At LLE xiIγ Ii = xiIIγ iII . Here this implies = x1 x2 8.163 x1 + x2 = x1 x2 8163 . RS A c1 − x h UV = x expRS A c1 − x h UV T RT W T RT W c1− x h expRST RTA cx h UVW = c1 − x h expRST RTA cx h UVW x1I exp and I 1 I 2 1 I 2 1 II 2 1 II 1 II 1 II 2 1 where A=8163. The results using the MATHCAD worksheet with this problem number are Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e T (K) xHI xHII 250 275 300 325 350 375 400 425 450 475 485 0.023 0.035 0.050 0.0688 0.0921 0.1206 0.1558 0.2001 0.2584 0.3461 0.4053 0.977 0.965 0.950 0.9312 0.9079 0.8794 0.8442 0.7999 0.7416 0.6539 0.5949 F GH Now do VLE calculation. Basis is xi exp − xH 0 0.01 0.02 0.025 0.03 0.04 0.05 0.06 0.07 0.075 0.08 0.09 0.10 0.125 0.15 0.175 0.825 0.85 0.875 0.9 0.91 0.92 0.925 0.93 0.94 0.95 0.96 0.97 0.975 0.98 0.99 1.00 IP RT JK Ax 2j vap i = yi P and that F H ∑ xi exp G − i IP RT JK Ax2j vap i The results using the MATHCAD worksheet with this problem number are P=0.1013 bar P=1.013 bar P=10.13 bar yH T K yH T K yH 0 300.18 0 351.56 0 0.4276 290.08 0.6305 282.65 0.3185 342.29 0.1578 0.7359 277.28 0.7959 273.22 0.4892 335.70 0.2642 0.5867 331.07 0.6197 329.31 0.3376 0.6457 327.84 0.6827 325.60 0.5818 327.24 0.6110 328.39 0.6540 330.06 0.7503 0.7898 274.67 275.60 0.7188 332.50 0.8409 0.9083 1.0 276.75 278.22 280.10 0.8216 0.8973 1.0 336.15 338.66 341.86 =P T K 424.17 418.62 414.45 411.36 0.3888 0.4250 0.4505 0.4683 0.4568 0.4718 0.4934 0.5249 409.09 407.45 406.29 405.49 405.41 406.44 407.95 410.17 0.5717 413.43 0.6444 418.30 0.7661 425.85 0.885 1.0 432.58 438.59 Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e 550 500 LLE Temperature, oC 450 Vapor 400 P = 10.13 bar Liquid 350 Vapor P = 1.013 bar Liquid 300 Vapor Liquid P = 0.1013 bar 250 200 0.0 0.2 0.4 0.6 Mole fraction of n-hexane 0.8 1.0 Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e 360 Vapor 340 VLE Region VLE Region Temperature, oC VLLE Line 320 L2 L1 300 LLE Region 280 260 240 0.0 0.2 0.4 0.6 0.8 1.0 Mole fraction of n-hexane 8.4-13(a) Bubble point pressure. Assume vapor phase is ideal. Then xiγ i Pi vap = yi P Solvent LM N x1 exp ln F H OP Q I K LMF NH I K LMF NH I K OP Q φ1 1 1 + 1− φ2 + xφ22 P1vap = y1 P ⇒ φ1 exp 1 − φ2 + xφ22 P1vap = y1 P x1 m m Polymer LM N x2 exp ln OP Q OP Q φ2 1 − (m − 1)φ1 + xφ12 P2vap = y2 P ⇒ φ2 exp 1 − φ2 + xφ22 P2vap = y2 P x2 m but for the polymer P2vap ~ 0 ⇒ y2 ~ 0, y1 ~ 1 Therefore, from eqn. (1) LMF NH P = Pbubble = φ1 exp 1 − point I K OP Q 1 φ2 + xφ22 P1vap m (1) Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e (b) Liquid-liquid equilibrium LM N x1I exp ln F H I K φI1 1 I + 1− φ2 + x φI2 m x1I c h OPQ P 2 vap 1 LM φ + F1 − 1 I φ + x cφ h OP P N x H mK Q 1I L F O LF 1 I O ⇒ φ exp 1 − NMH mK φ + xcφ h QP = φ expNMH 1 − mK φ + xcφ h QP = x1II exp ln II 1 II 1 I 1 I 2 Similarly c h φI2 exp (1 − m)φ1I + x φ1I 2 II 2 II 2 2 I 2 2 II 1 vap 1 II 2 2 II 2 c h = φ2II exp (1 − m)φ1II + x φ1II 2 Data needed (a) bubble point volume of solvent volume of polymer solvent-polymer χ parameter vapor pressure of solvent (b) liquid-liquid equilibrium volume of solvent volume of polymer solvent-polymer χ parameter 8.4-14 Consider the condition for liquid-liquid phase equilibrium of a solute assuming that undissolved solute is also present I d i II d i f i T , P, x I = f i T , P, xII = fi L ( T , P) or d i d i xiIγ T , P, xI fi L ( T , P) = xiIIγ T , P , x II f i L ( T , P) = f i L ( T , P) and then d i d i xiIγ T , P, xI = xiIIγ T , P, x II = 1 Therefore, if the activity of a species in solution is ever greater than unity, a separate phase pure (or very concentrated) in that species will form and reduce the activity of the species in the other phases to unity. 8.4-15 (also available as a MATHCAD worksheet) 8.4-15 V1 1.6 . 10 5 1.5 . 10 5 V2 m V2 1895 chi( T ) V1 phi11( x11) phi12( x12) x11 0.01 x11. V1 x11. V1 (1 x11) . V2 x12. V1 x12. V1 (1 x12 x12) . V2 0.99 x21 1 T phi21( x11) 1 phi11( x11) phi22( x12) 1 phi12( x12) x11 x22 1 x12 Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e T ln 600 Given phi11( x11) phi11( x11) ) . 1 ( phi12( x12) phi12( x12) ln 1 chi( T ) . phi21( x11) 2 phi22( x12) 2 0 2 phi12( x12) 2 0 m phi21( x11) phi12( x12) ) . ( 1 ( phi11( x11) m) chi( T ) . phi11( x11) phi22( x12) find( x11, x12) v T 700 0.94392 Given phi11( x11) ln 0.05979 v= 1 phi11( x11) ) . 1 ( phi12( x12) phi12( x12) 2 phi22( x12) 2 0 2 phi12( x12) 2 0 2 0 2 0 m phi21( x11) ln chi( T ) . phi21( x11) phi12( x12) ) . ( 1 ( phi11( x11) m) chi( T ) . phi11( x11) 1 chi( T ) . phi21( x11) phi22( x12) find( x11, x12) v T ln 800 v= 0.11360 0.89956 Given phi11( x11) phi11( x11) ) . 1 ( phi12( x12) phi12( x12) ln 2 phi22( x12) 2 phi12( x12) m phi21( x11) phi12( x12) ) . ( 1 ( phi11( x11) m) chi( T ) . phi11( x11) phi22( x12) v T ln find( x11, x12) 825 phi11( x11) v= 0.21265 0.83659 Given ( phi12( x12) phi11( x11) ) . 1 phi12( x12) ln phi21( x11) find( x11, x12) chi( T ) . phi21( x11) 2 phi22( x12) 2 0 2 phi12( x12) 2 0 m ( phi11( x11) phi12( x12) ) . ( 1 phi22( x12) v 1 v= 0.25958 0.81687 m) chi( T ) . phi11( x11) Section 8.4 Solutions to Chemical and Engineering Thermodynamics, 3e T ln 835 Given phi11( x11) ( phi12( x12) phi11( x11) ) . 1 phi12( x12) ln phi21( x11) 1 chi( T ) . phi21( x11) 2 phi22( x12) 2 0 2 phi12( x12) 2 0 m ( phi11( x11) phi12( x12) ) . ( 1 chi( T ) . phi11( x11) m) phi22( x12) find( x11, x12) v T ln 843 phi11( x11) v= 0.28957 0.80795 Given ( phi12( x12) phi11( x11) ) . 1 phi12( x12) ln phi21( x11) 1 chi( T ) . phi21( x11) 2 phi22( x12) 2 0 2 phi12( x12) 2 0 m ( phi11( x11) phi12( x12) ) . ( 1 m) chi( T ) . phi11( x11) phi22( x12) v find( x11, x12) v= 0.34590 0.79783 The temperature 843 K is the highest at which a nontrivial solution is obtained. At higher temperature on the trivial solution of both phases being equal is obtained. Thus, the FH model predicts that LLE will occur up to this temperature. That is, 916.2 is the UCST for SAN and PMMA. Of course, at this high temperature the polymers are likely to decompose. 8.4-16 There are many different algorithms that could be used. One is a sequential one of first testing for LLE, if LLE does not occur then test for VLE. If LLE occurs, one must also test for VLLE, etc. In all the possibilities that must be tested for are only a liquid phase as stable phase, only a vapor as the stable phase, VLE with a liquid rich in component 1 as the equilibrium phases, VLE with a liquid rich in component 2 as the equilibrium phases, or VLLE. 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  )ROORZLQJ,OOXVWUDWLRQZHKDYH   OQ [ [ ZKHUH I  0 5    G  I      u    9 [9   [9  %HQ]HQH9   FF PRO  G   FDOFF   E\LWHUDWLRQZHILQGWKDW [   H[S W  7ROXHQH9    G   E\LWHUDWLRQZHILQGWKDW [   H[S W  &DUERQWHWUDFKORULGH9    G   E\LWHUDWLRQZHILQGWKDW [   H[S W  &KORUREHQ]HQHLVDVRPHZKDWPRUHFRPSOLFDWHGFDOFXODWLRQLQWKDWWKHUHJXODUVROXWLRQSDUDPHWHUV DUHQRWDYDLODEOH)URP3HUU\ V&KHPLFDO(QJLQHHU V+DQGERRNWKHIROORZLQJGDWDLVREWDLQHG PROHFXODUZHLJKW  VSHFLILFJUDYLW\   3 YDS 3D 7 q&                8VLQJWKLVGDWDZHILQG9   '8   9  YDS   G    FF PRO  0 '+ YDS 57  .   '8 YDS  - PRO DQG 5  FDO FF   ZLWKWKHVHSDUDPHWHUVE\LWHUDWLRQZHILQG [  H[S W  7KXVWKHRUGHURIRXUSUHGLFWLRQVLVFRUUHFWEXWRXUSUHGLFWLRQVDUHEHWZHHQ DQGWRRKLJK  :HZLOODJDLQXVHUHJXODUVROXWLRQWKHRU\)ROORZLQJLOOXVWUDWLRQZHKDYH OQ [    G  I     IRUDVLQJOHVROYHQW  DQG 0 OQ [ 5 2    G  7    IRUPL[HGVROYHQWV  ZKHUH G ¦I G M M DQG I M [9 M M ¦ M [9 O O O DQGWKHVXPVH[WHQGRYHUDOOVROYHQWDQGVROXWHVSHFLHV7KHSDUDPHWHUVXVHGLQWKHFDOFXODWLRQ DUHOLVWHGEHORZ 0 9 FF PRO Q  KH[DQH  5 G 0FDO FF5     &&O 6LQFHWKHPROHIUDFWLRQRIQDSKWKDOHQHDSSHDUVRQWKHULJKWKDQGVLGHRIHTQV  DQG  WKURXJK WKHYROXPHIUDFWLRQDQGVROXELOLW\SDUDPHWHUWHUPVWKHVHHTXDWLRQVPXVWEHVROYHGE\WULDODQG HUURU7KHUHVXOWVDUHJLYHQEHORZ 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H &RPSRVLWLRQRILQLWLDO (TXLOLEULXPVROXELOLW\ PL[WXUH [+ [&&/      (TXLOLEULXPFRPSRVLWLRQ RIQDSKWKDOHQH [1$  RIPL[WXUH [+ [&&/                              ,QWKHERRN7KH3URSHUWLHVRI*DVHVDQG/LTXLGVWKHGLWLRQE\5HLG3UDXVQLW] 3ROLQJ 0F*UDZ+LOO ZHILQGWKHIROORZLQJSURSHUWLHVIRUELSKHQ\O 7& .  3& EDU  Z   7% . 7KHYDSRUSUHVVXUHLVJLYHQE\ YDS OQ 3 3&  [    [   [   [   [   ZKHUH [   7  OLTXLGUDQJH 7& $OVRWKHOLTXLGGHQVLW\LV  J FF DQG 0:  7KH+DQGERRNRI&KHPLVWU\DQG 3K\VLFVJLYHVWKHIROORZLQJIRUWKHVXEOLPDWLRQSUHVVXUHRIELSKHQ\O   IRU q & d 7 d q & ORJ 3 PP+J   7 1HLWKHURIWKHVHH[SUHVVLRQLVJRRGIRUWKHWHPSHUDWXUHUDQJHRILQWHUHVWWRXVKHUHEXWZHZLOOXVH WKHH[SUHVVLRQDERYH,QWKLVZD\WKHIROORZLQJUHVXOWVDUHREWDLQHG  7 q & 3%YDS u     3 EDU   33R\QWLQJ I % EDU   u    \% H[S \% FDOF          u    u         u              u    u          u     q&  7         u   u       u           u      u  7         q &      u      u        6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  "# 7RSURFHHGZHQRZPXVW 3  3%9 7 ˜ 2 +HUHWKH3R\QWLQJIDFWRUZDVFDOFXODWHGIURP H[S  ˜7 #$ !    FKRRVHD N N &2  % &2  % q & LVRWKHUP YDOXH,KDYHQRWGRQHDQH[WHQVLYHVWXG\EXWEDVHGRQWKH 7  VHHPVOLNHDUHDVRQDEOHFRPSURPLVHYDOXH7KLVYDOXHZDVXVHGWRREWDLQWKH SUHGLFWHGYDSRUPROHIUDFWLRQVE\XVLQJ9/08 VSHFLHVIXJDFLW\RSWLRQ DQGE\WULDODQGHUURU FKRLFHVRIWKHFRPSRVLWLRQVPDWFKLQJWKHELSKHQ\OIXJDFLW\>1RWHLI\RXRU\RXUVWXGHQWVREWDLQ DEHWWHUFRUUHODWLRQSOHDVHOHWPHNQRZ@&OHDUO\WKHRYHUDOODJUHHPHQWLVQRWYHU\JRRG,WLV TXDOLWDWLYHO\EXWQRWTXDQWLWDWLYHO\FRUUHFW  D )URPWKHGDWDLQWKHSUREOHPVWDWHPHQWWKHIXJDFLW\RIVROLGQDSKWKDOHQHDW q & DQGEDULV  u  EDU u  I1 %K (K  u  7 u   EDU ˜ P NPRO 2   &K  )  EDU ˜ FP NPRO u   P FP u   PRO NPRO K* '    . u   H[S      u  EDU   7KHIXJDFLW\FRHIILFLHQWIRUWKHYLULDOHTXDWLRQRIVWDWHLV 3 OQI L ¦ \ M %LM  % ZLWK % ¦ ¦ \L \ M %LM 57 1RZ ZH ZLOO DVVXPH WKDW \ 1  LV VPDOO VR WKDW \ 1 |    ,Q WKLV FDVH % # %&2   DQG 2 7  ¦ \ %  % 2 u %  M M LM  % OQ I &  u     ' 1  &2    Ÿ I1 7  %&2   &2  VR P EDU u  PRO P NPRO   . u  NPRO u  u  EDU PRO . K() K*  VR I 1VDW H[S \1 9 3 3573 8 "# $ ! I1  VDW u      u   E 1RZXVLQJWKH3HQJ5RELQVRQ(TXDWLRQRIVWDWH:HXVHWKHSURJUDP9/08 VSHFLHVIXJDFLW\   DV LQ LOOXVWUDWLRQ  DQG DGMXVWWKH RSWLRQ DWWKH VSHFLILHG 7 DQG 3 ZLWK N&2   1  FRPSRVLWLRQ RI QDSKWKDOHQH XQWLO D YDSRU SKDVH IXJDFLW\ RI QDSKWKDOHQH RI   u  EDU  LV REWDLQHG%\WULDODQGHUURU,ILQG \1  ZKLFKLVPXFKORZHUWKDQWKHYLULDOHTXDWLRQ UHVXOW6LQFHDWVRPHZKDWGLIIHUHQWWHPSHUDWXUHVDQGSUHVVXUHVWKH3HQJ5RELQVRQPRGHOZDV LQUHDVRQDEO\JRRGDJUHHPHQWZLWKH[SHULPHQWDOGDWD,KDYHPRUHFRQILGHQFHLQWKLVUHVXOW 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 1RWDWLRQ   1L WRWDOQXPEHURIPROHVRIVSHFLHVL  1L1 - QXPEHURIPROHVRIVSHFLHVLLQSKDVH- ¦ 1L- WRWDOQXPEHURIPROHVLQSKDVH- L [L- 1L¦ 1 M- PROHIUDFWLRQRIVSHFLHVLLQSKDVH - M D 7ZROLTXLGSKDVHV (TXLOLEULXPFRQGLWLRQV IL , 7  3 [ , , IL ,, 7  3 [ ,, ,, 1L  1L 0DVVEDODQFHFRQVWUDLQWV 1L      L      L 7KXVZHKDYHVL[HTXDWLRQVIRUWKHVL[XQNQRZQV 1L-  [,  [,  [,,  [,,  1 , DQG , ,, L      ,, $OWHUQDWLYHO\ZHFDQWUHDW 1 DVWKHVL[XQNQRZQV E 7ZROLTXLGSKDVHVEXWVSHFLHVDQGFRPSOHWHO\LPPLVFLEOH (TXLOLEULXPFRQGLWLRQ I, 7  3 [ , I,, 7  3 [ ,, 1, 0DVVEDODQFHFRQVWUDLQW 1  1,,   $OVR 1 1 , 1, 1,  1 , [, 1 1 ,, 1 ,, 1,,  1 ,, [,, 1,  1 , 1,, ,, 1  1,, 1, %DVLFDOO\ZHKDYHWZRHTXDWLRQV>  DQG  @IRUWKHWZRXQNQRZQV 1, DQG 1,, 7KHRWKHU F HTXDWLRQVPHUHO\UHODWHWKHXQNQRZQ 1, DQG 1,, WRWKHPROHIUDFWLRQVWKDWDSSHDULQHTQ   7KUHHOLTXLGSKDVHV HTXLOLEULXPFRQGLWLRQV %K I 37 3 [ 8 &K I 37 3 [ 8 ' L , , , , L IL ,, 7  3 [ ,, IL ,,, 3 8 37 3 [ 8 1L,  1L,,  1L,,, PDVVEDODQFHFRQVWUDLQWV 1L ,,, L L      L           7KXV ZH KDYH  HTXDWLRQV IRU WKH  XQNQRZQ 1L-  L       - [,  [,  [,,  [,,  [,,,  [,,,  1 ,  1 ,,  1 ,,,   3UHOLPLQDU\FDOFXODWLRQV 0:&  + 2  J PRO  && + 2   PRO OLWHU SK\GUR[\EHQ]RLFDFLG 0:&  + 2   J PRO  && + 2   PRO OLWHU 1RWDWLRQ ,, DTXHRXVSKDVH , GLHWK\OHWKHUSKDVH &L, { .L RU &L,, &L,, &L, .L $OVR &L,9 ,  &L,,9 ,, RUXVLQJHTQ  1L LQLWLDOQXPEHURIPROHVRIVSHFLHVL        RU 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H , , , &9  L &9 . ,, L 1 L L 7KXV & 1 9  . 9 , L 2 L ,  ,, L 7 DQG & . & ,,  L L . 1 9  . 9  , L L 2 L  , ,, L 7 6LQFHGLHWK\OHWKHUDQGZDWHUDUHVRLQVROXEOHDQGVLQFHUHODWLYHO\VPDOODPRXQWVRIJDOOLFDFLG DQGSK\GUR[\EHQ]RLFDFLGZLOOEHWUDQVIHUUHG,ZLOODVVXPHWKDW 9 DQG9 DUHXQFKDQJHG GXULQJWKHSDUWLWLRQLQJSURFHVV )LQDOO\ 1 9 u & ZKHUH & FRQFHQWUDWLRQRIVSHFLHVLQWKHZDWHUSKDVHEHIRUHLW LVFRQWDFWHGZLWKWKHGLHWK\OHWKHU  D +HUH 9   9   &     PRO OLWHU   , ,,   L ,, L L , , ,, & + 2   & ,, & , & + 2 & + 2 & ,,   PRO OLWHU   & & , & + 2         PRO OLWHU   , & + 2  &  + 2      PRO OLWHU  EDQGF 8VLQJEDWFKHVRIGLHWK\OHWKHUHDFKRIOLWHUV VWEDWFK &    , & + 2    & , & + 2 & + 2   & ,,      &   , & + 2    & &      , & + 2  ,, & + 2          $IWHUVHFRQGEDWFK & & ,, &  + 2 , &  + 2        &&, +2  .&+2   &&+2 .&+2 1  6      RULQJHQHUDO & & , & + 2    Q . Q & ,, & + 2    Q & 9  9 ,, .&+2 ,  &  + 2  &  &  + 2     9,  9 ,, .&+2 &  + 2   . &  & + 2 . &  + 2   &  + 2  . Q Q  &  + 2  Q  &  + 2  . 9, Q 9 ,, & + 2    9, Q 9 ,, ZLWK D VLPLODU H[SUHVVLRQ IRU SK\GUR[\EHQ]RLF DFLG  8VLQJ WKHVH HTXDWLRQV ZH REWDLQ WKH IROORZLQJUHVXOWV 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H LQLWLDO&  + 2 LQLWLDO& + 2  LQDT SKDVH LQDTSKDVH       OLWHUEDWFK Q  9 ,     OLWHUEDWFKHV  Q  9 ,   OLWHUEDWFKHV Q  9 ,   1RWHWKHKXJHSXULILFDWLRQLQILYHVWDJHV  5HJXODUVROXWLRQWKHRU\ 0G OQJ  9 I   G 5  9 I   OQJ  57 0G  G 5  57 +HUH 9 /%U / 9 &&O  0 5  &&/   %U  &&/   %U %U %U     u   u        J &&O %U 2 J+ %U  5   [ "#    u   ! u [   [ #$   0  [ 5    [  0  [ 5 OQ J %U 7KXV [%U 0   FDO FF     FDO FF   G %U  FF PRO  FF PRO G &&O  &&O  &&O  J %U [%U + 2 [%U                      5HJXODUVROXWLRQSDUDPHWHUV %U 9/ &6 9 / 0 5 G 0FDO FF5 2G  G 7  FF PRO G  FF PRO 57 OQJ %U    FDO FF    9 /%U I &6 %U &6   ,Q &6 SKDVHOHW [ PRO &6 OLWHURIVROXWLRQ  \ PRO %U OLWHURIVROXWLRQ $VVXPLQJQRYROXPHFKDQJHRQPL[LQJZHWKHQKDYH   \ \  [  RU [  1RZDW H[WUHPHVRI%U FRQFLQ&6 \  \  Ÿ [  Ÿ [  [%U  [%U   u    u   I &6 |  I &6 |  6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 7KXVZHFDQWDNH I &6 | RYHUWKHZKROHFRPSRVLWLRQUDQJHDQG        u     |   RYHUZKROHFRPSRVLWLRQUDQJH1RZ  OQ J &6 %U  RU J &6 %U  u  u J ,, J , [, [,, . ZKHUH , DTXHRXVSKDVH ,, RUJDQLFSKDVH ,,  J . Ÿ J , ZKHUH PROHV %U PROHV %U  PROHV + 2 PROHV %U PROHV %U  PROHV &6  [%U LQDTXHRXVSKDVH . [%U LQRUJDQLFSKDVH 1RZZHH[SHFW PROHV+ 2 !! PROHV%U Ÿ.| PROHV&6 !! PROHV%U PROHV %U PROHV +  2 PROHV %U PROHV &6  'DWDJLYHQLQSUREOHPVWDWHPHQWLVIRU PROHV %U OLWHU DTXHRXV VROXWLRQ PROHV %U OLWHU &6  VROXWLRQ .c 7KXV  .c . OLWHUV  . c  PRO ZDWHU   u OLWHUV PRO &6  $OVR J J + 2 &6  %U  %U  . c )URPZKLFKZHREWDLQWKHIROORZLQJ + 2 J %U \ [%U    P   P   P  u       u           u            u   u            u      u    7RLQIHUDUHODWLRQVKLSEHWZHHQ J  + 2 %U   DQGWKHVDOWPRODULW\P,SORWWHG OQJ YDULRXVSRZHUVRIPXVLQJWKHGDWDDW \ + 2 %U  ,IRXQGWKDWWKHH[SUHVVLRQ OQ YHUVXVOQPDQG + 2 %U &P   JDYHDYHU\JRRGILWRIWKHGDWD7KHSDUDPHWHU&LVDZHDNO\LQFUHDVLQJIXQFWLRQRIWKHEURPLQH PROHIUDFWLRQ,GLGQRWDWWHPSWWRGHWHUPLQHWKLVGHSHQGHQFH  &RQVLVWHQF\UHODWLRQEHWZHHQ 3 YDS +DQGVROXELOLW\ [ + 3 [ J 3 YDS [ J f 3 YDS + J f 3 YDS L L L L L L L L L L L L 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H )RUDVXEVWDQFHDERYHLW©VPHOWLQJSRLQW OLTXLGDVDSXUHFRPSRQHQW EXWRQO\RIOLPLWHGVROXELOLW\ 3 YDS  Ÿ +  [ VDW [ VDW 1RZLQ7DEOHGDWDDUHIRU+LQ & + c   J f [ VDWJ f L L L L L L L L +c + &: L L +c L &: [ + c 3 L L L L    0 5 2 7 0 5    EDU P PRO  FRPSDUHGWR      u     ([DPSOH7ULFKORUREHQ]HQH 0:& + &O       L  N3D  PJ / u J PJ u / P u PRO J   N3D P PRO  L [ + VR L  +c L L &: [ VDW &VDW ([DPSOHEXWDGLHQH 0:&  +  L L 3 YDS 3 YDS  u        N3DP PRO   u   N3DP PRO   u   EDUP PRO  FRPSDUHGWR u  2 7 ([DPSOH$QLOLQH  u  EDU 3 YDS N3D  L 6ROXELOLW\ +c L  u  SSP   PJ /  u  EDU   u   PJ / u J PJ u  / P u PRO  0 5 1 6 0 5   u   u    EDU PPRO   u   EDU PPRO  VRPHWKLQJZURQJLQWKLVFDVH FRPSDUHZLWK   u   ([DPSOH'LFKORUREHQ]HQH 3 YDS 6ROXELOLW\  PJ /  0:  +c L   u  EDU N3D    u  EDU  PJ / u J PJ u  / P u PRO  0  5 2 2  7 0   u   EDU P PRO  FRPSDUHGWR u  5  7 ([DPSOH(WK\OEHQ]HQH 3   N3D   u  EDU  0:  u    u  u     u   EDU PPRO +c     YDS   L  2FRPSDUHGWR u  7 ([DPSOH1DSWKDOHQH 3 YDS    u  N3D   u  EDU  0:     u  u    u   EDU PPRO FRPSDUHGWR u   EDU PPRO   ([DPSOH6W\UHQH 3 YDS N3D    u  EDU  0:     u  u     u   EDU PPRO  FRPSDUHGWR  u   EDU PPRO +c  +c L L 2 7 1 6 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  /HW 71% QRUPDOERLOLQJWHPSHUDWXUHRIWKHVROYHQW 7% DFWXDO HOHYDWHG ERLOLQJWHPSHUDWXUH RIVROYHQW$WWKHDFWXDOERLOLQJWHPSHUDWXUH I/ 7%  3 [ 0 I9 7  3 \ 5 2 I9 7%  3 0 7 5 6LQFHWKHYDSRUDWWKHYDSRUOLTXLGLQWHUIDFHRIHLWKHUDSXUHERLOLQJVSHFLHVRUDVKHUHDOLTXLG ZLWKDQRQYRODWLOHVROXWLRQLVWKHSXUHVROYHQWVSHFLHV1RZ I/ 7%  3 [ 0 5 6RWKDW [  [ I/ 7%  3 0 I 9 07%  35 I / 07%  35 [  5  [  DQG OQ [  OQ [ I9 7%  3 I/ 7%  3 0 0 5 5 *9 7%  3  */ 7%  3 57% 0 5 0 5 1RZIROORZLQJWKHFRQVWDQWSUHVVXUHSDWKEHORZ 7 7% 7 71% /LTXLG 9DSRU /LTXLG 9DSRU ZHREWDLQ ' + YDS 7%  3 0 ' 6 YDS 7%  3 0 5 I 0 5 ' 6 YDS 71%  5 7% ' + YDS 71%  0 5 ZKHUH '&3 '&3G7 71% 7% '&3 G7 71% 7 I &39  &3/ 6LQFH '* YDS 71%  3 ' + YDS 71%  71% ' 6 YDS 71%  %\HTXLOLEULXPUHTXLUHPHQWIRUSXUH IOXLGDWWKHQRUPDOERLOLQJSRLQW ' + YDS 71% ' 6 YDS 71% 71% DQG 7% 7% '&3 7 '* YDS 7%  3 ' + YDS 71%   %  '&3G7  7% G7 71% 71% 7 71% VRWKDWZHREWDLQ 0 0 5 5 0 5 0 5! "#$ I 0 [ 5 ' + 57071% 5 !  77% "#$  57 I77 % 1% % 0  I 5 YDS OQ [ 0 5 0 5  % 1% '&3G7  FRPSDUHZLWKHTQ   ,I '&3 LVLQGHSHQGHQWRIWHPSHUDWXUHZHREWDLQ  7% '&3 G7 5 71% 7 I 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H OQ [  ' + YDS 71% '&3 7 7 7  %    1%  OQ % 57% 71% 5 7% 71%   ! "# $ 0 5 ! 0[ 5 "# $ )XUWKHUPRUHIRUVPDOOVROXWHFRQFHQWUDWLRQV OQ   [ |  [  [ |  DQG OQ [ VRWKDW 0 5 0 5 ' + 071% 5  7 " '&  71% 7 "  OQ % #  % #   57% 7 5 7 7 ! % 1% $ ! 1% $ YDS  [ 3 DQGZKHQWKH '&3 WHUPVPD\EHQHJOHFWHG  [ ' + YDS 71% 571% 0 5  71%  7%   7%  RU 07%  71% 5 # '7%  ERLOLQJ SRLQW HOHYDWLRQ  57%71% [ 571% [ | YDS YDS '+ '+ 71% 71% 0 5 0 5 FRPSDUHZLWKIUHH]LQJSRLQWGHSUHVVLRQHTXDWLRQ 7 7 P I '7  IUHH]LQJ SRLQW GHSUHVVLRQ # 57  [ ' + IXV 7 P 0 5 P 6LQFH ' + YDS ! ' + IXV LWIROORZVWKDWWKHDGGLWLRQRIDVROXWHGHSUHVVHVWKHIUHH]LQJSRLQWWRD JUHDWHUH[WHQWWKDQLWUDLVHVWKHERLOLQJSRLQW  6LQFHPHWKDQROHWKDQROJO\FHURODQGZDWHUDOOKDYH2+JURXSVWKH\DUHLQVRPHVHQVHVLPLODU $OVRVLQFHQRDFWLYLW\FRHIILFLHQWGDWDDUHJLYHQZHZLOODVVXPHWKDWWKHPL[WXUHVLQYROYHGDUH LGHDO>2QHUHDOO\VKRXOGJRWRWKHOLEUDU\DQGWU\WRILQGDFWLYLW\FRHIILFLHQWGDWDIRUWKHVH V\VWHPVRUGDWDIURPZKLFKDFWLYLW\FRHIILFLHQWVFDQEHFRPSXWHGRUXVHWKHYDQ/DDUFRQVWDQWVLQ 7DEOH@$VVXPLQJLGHDOVROXWLRQEHKDYLRUZHREWDLQIURPHTQ    OQ [ '+ 07 5  7  7 "#  '&   7 5 ! 77 $ 5 ! 7 IXV P P P 1RZ '+ IXV 7KXVIRU 7P 7KXV [+2 I P I  OQ 7 7 P I "# $  - PRO DQGIURP3UREOHP '&3 OQ [ 3 I &3/  &36   . DQG 7I q &       - Jq & u  J PRO  ! "# $ q &  !   - PROq &                 OQ        u     "# $     WRFDXVHDIUHH]LQJSRLQWGHSUHVVLRQWR q & WKDWLVZHPXVWDGG PROHIUDFWLRQRIVROXWH /HW \ JUDPVRIVROXWHWKDWQHHGEHDGGHGWRJUDPV + 2  P PROHFXODUZHLJKWRI VROYHQW 7KXVZHQHHG 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H [   \ P \  RU \ P   P 1RZIRU PHWKDQRO P  \   J HWKDQRO P  \   J JO\FHURO P  \  J DUHQHHGHGSHUJUDPV + 2 WRORZHUIUHH]LQJSRLQWWR q & 1RWHVXSSRVHZHWRRNLQWRDFFRXQWVROXWLRQQRQLGHDOLWLHVVLQFHWKHYDQ/DDU FRHIILFLHQWVIRUWKHVHV\VWHPV VHH7DEOH DUHSRVLWLYHWKHDFWLYLW\FRHIILFLHQWVZLWKEH  ZHZLOOKDYH JUHDWHUWKDQXQLW\DQG OQ +  2 !  7KXVLQVWHDGRI OQ [+2  OQ [+2 + 2   RU OQ [+2    OQ + 2 VRWKDW [+  2 ZLOOEHOHVVWKDQKHUHDQGPRUH VROXWHPXVWEHDGGHG )RUWKHVHVROXWLRQVWKHHIIHFWVRIQRQLGHDOLWLHVDUHQRWWRRODUJH8VLQJYDQ/DDU SDUDPHWHUVLQ7DEOHIRUPHWKDQRO + 2 DW q & ZHILQG [ |    LQVWHDGRI KHUH VRWKDW \PHWK #   JUDPV J + 2  LQVWHDGRIJUDPVKHUH %HORZDUHIUHH]LQJ SRLQWGHSUHVVLRQGDWDIRUYDULRXVDTXHRXVVROXWLRQV PHWKDQRODQGHWKDQROGDWDIURPWKH +DQGERRNRI&KHPLVWU\DQG3K\VLFVJO\FHUROGDWDIURP*O\FHURO HGLWHGE\&60LQHUDQG 11'DOWRQ5HLQKROG3XEOLVKLQJ1HZ<RUNS )URPWKHVHGDWDZHILQGWKDWWR ORZHUVROXWLRQIUHH]LQJWHPSHUDWXUHWR q & ZHQHHGZWPHWKDQRO YVZWLQRXU FDOFXODWLRQV ZWHWKDQRO YVZWFDOFXODWHG DQGZWJO\FHURO ZW FDOFXODWHG  6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  $VVXPHLGHDOVROXWLRQVWREHJLQDOVRQHJOHFW '&3 WHUP OQ [+2  '+ IXV 07 5  7  7   77  P 5 P I P I     7       u7 I I   6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H [+,' 2 [+5($/ 2 7 7                                                   OQ [(*  &DOFDW¤R& (*)UHH]LQJ + 2 IUHH]LQJRXW I    7       u7 I I I [+  2 + 2 (*                         )RUQRQLGHDOVROXWLRQV [ LGHDO    LGHDODQGUHDO UHDO LGHDO 7 I. [  (* IUHH]HV RXW  ZDWHU IUHH]HV RXW        [+2                 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  '+  -PRO I [ 7 FRPSRQHQW I                  7 FRPSRQHQW I                              //( 7  .     $ 5 //( 7& [ [,,          7 JLYHQ [ \   u  [,       [ JLYHQ \      7 ˜ H[S      ˜7    "# 7 ILQG 7 7    $ !      7 " ˜ H[S  7 ILQG 7 7      ˜ 7  #$ !  )RUFRPSDULVRQZHDOVRVKRZWKHUHVXOWVIRU '+ I  PRO 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  '+   I  &RPSRQHQW IUHH]HVRXWILUVW  7HPSHUDWXUH.       //(UHJLRQ GRHVQRW LQWHUVHFW 6/(UHJLRQ   &RPSRQHQW IUHH]HV RXW ILUVW        [  6/( //(  7HPSHUDWXUH. 6/(  //(  6/(  '+  -PRO  I      [   6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  6\VWHP 3 3 6\VWHP HQHUJ\EDODQFH G8 G9 , G9 ,,  3 ,, 4  :6  3 , GW GW GW HQWURS\EDODQFH G6 4   6JHQ GW 7  V\VWHPLVLVRWKHUPDO 3 , DQG 3 ,, DUHFRQVWDQWWKXV &RQVWUDLQWV :6 4 7 G6  76JHQ GW G 76  76JHQ GW DQG G8 GW G9 ,, G9 , G  3 ,, 76  76JHQ  3, GW GW GW G G G 3,,9 ,, 3,9 ,  76  76JHQ  GW GW GW G* G Ÿ 76JHQ 8  76  3,9 ,  3,,9 ,, GW GW 2 7 2 7 7 8  76  3,9 ,  3,,9 ,,  ZKHUHZHKDYHGHILQHG * WREH * &RQVHTXHQWO\ G* GW 2 76JHQ d  Ÿ * PLQLPXPDWHTXLOLEULXP DQG * 8  76  3,9 ,  3,,9 ,, 28 ,  8 ,,  7 6 ,  6 ,,  3,9 ,  3,,9 ,, * , 7  3,  1 ,  * ,, 7  3,,  1 ,, 2 7 2 7 2 7 7 , RQO\V\VWHPYDULDWLRQSRVVLEOHLVLQ 1L DQG 1L,, IRUDOOVSHFLHVLZKLFKFDQSDVVWKURXJKWKH PHPEUDQH+RZHYHUVLQFH 1L,  1L,, FRQVWDQW G1L,, G1L, 7KXV ¦ 1 ,M * M, 37  3,  [, 8  ¦ 1 ,,M * M,, 37  3,,  [,, 8 * DQG  w*   w1L  7 3 1 ,    w* M 37  3  [ 8 *L 37  3  [ 8  ¦ 1 M   w1L  7 3 1   w* M 37 3  [ 8  *L 37  3  [ 8  ¦ 1 M   w1L  7 3 1 ! , M zL , , , , , , ,   ,, ,, ,, ,, ,, M zL , ,,   PLQXVVLJQDULVHVIURP G1 ,, L G1 M zL "# ##$ , L 1RZERWKVXPPDWLRQWHUPVYDQLVKXSRQDSSOLFDWLRQRIWKH*LEEV'XKHPHTXDWLRQWRHDFKSKDVH 7KXVZHKDYHDWHTXLOLEULXPWKDW 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H  w*   w1  7 3 1 ,   L *L, 7  3,  [ ,  *L,, 7  3,,  [ ,, 3  M 8 3 Ÿ *L, 7  3,  [ , 3 8 *L,, 7  3,,  [ ,, 3 IRUHDFKSHUPHDEOHLVSHFLHVRUHTXLYDOHQWO\ IL , 7  3,  [ , IL ,, 7  3,  [ ,, 3 /HW  8 zL 8 3 8 8 & QXPEHURIFRPSRQHQWV &S QXPEHURIFRPSRQHQWVWKDWFDQSDVVWKURXJKPHPEUDQH FOHDUO\ & t &S 7KHV\VWHPFRQVLVWVRIWZRKRPRJHQHRXVUHJLRQV WKDWFDQEHWKRXJKWRIDVWZRSKDVHV DQGWKHUH DUHQRFKHPLFDOUHDFWLRQVRFFXUULQJ 6LQFH &  YDULDEOHVDUHQHHGHGWRIL[WKHWKHUPRG\QDPLFVWDWHRIDVLQJOHSKDVHWKHUHDUH  &   DSSDUHQWXQNQRZQVKHUH+RZHYHUZHKDYHWKHIROORZLQJHTXLOLEULXPFRQGLWLRQV 7, *L 7 ,, , *L UHODWLRQ ,, IRUL      &S 2&SUHODWLRQV7 :HDOVRNQRZWKHQXPEHURIPROHVRIWKHLPSHUPHDEOHVSHFLHVLQHDFKFHOO WKH\DUHWKHVDPHDV LQWKHLQLWLDOVWDWH +RZHYHUVLQFHWKLVLVQRWLQIRUPDWLRQDERXWDQLQWHQVLYHSURSHUW\LWLVQRWRI KHOSKHUH7KXVWKHDFWXDOQXPEHURIGHJUHHVRIIUHHGRPDUH )  &      &S &  &S   2 7 )RUDELQDU\V\VWHPZLWKDPHPEUDQHSHUPHDEOHWRRQO\RQHRIWKHVSHFLHVZHKDYH )  ˜       GHJUHHVRIIUHHGRP 7KXVLIZHVSHFLI\WHPSHUDWXUHWKHWZRSUHVVXUHVDQGRQHSKDVHFRPSRVLWLRQZHFDQLQ SULQFLSDOFRPSXWHWKHFRPSRVLWLRQRIWKHRWKHUSKDVH$OWHUQDWLYHO\DVLQWKHLOOXVWUDWLRQLQWKLV VHFWLRQZHFDQVSHFLI\7 [  [ DQG 3 DQGWKHQFRPSXWHWKHYDOXHRI 3 QHHGHGWR PDLQWDLQHTXLOLEULXP ,  D , ,,  * 7  3  I 57 OQ [ * 7  3 [ L L V L Ÿ I OQ [ L V 1 RU I L L V *  57 OQ J [ L OQ [  OQ J L L   OQ [ OQ J 6 ,,  L L L L   L E PRODULWLHVRIWKHVDOWVLQVHDZDWHUDUHLQWKHIROORZLQJUDWLRV P 1D&O P .&O P PJ&O  P 0J62        VLQFHWKHPDMRUVDOW FRPSRVLWLRQ LV 1D&O ZH ZLOO IRU VLPSOLFLW\ DVVXPH RQO\ 1D&O LV SUHVHQW :KHQFRQYHUWLQJWRPROHIUDFWLRQIURPLRQLFVWUHQJWKWKDWLVZHZLOODVVXPHDOO ]  $OVR ZH ZLOO DVVXPH WKDW WKH DGGLWLRQ RI VHD VDOW LQFUHDVHV WKH GHQVLW\ RI WKH ZDWHU VROXWLRQ EXW OHDYHVWKHZDWHUPRODUFRQFHQWUDWLRQXQFKDQJHGDW   PROHV OLWHU ,QWKLVFDVH L [ V      ,  ZKHUH , LRQLFVWUHQJWK 8VLQJWKHGDWDLQWKHSUREOHPVWDWHPHQWDQGHTQV  DQG  ZHREWDLQWKHUHVXOWVLQWKH WDEOHEHORZ 7RJHWWKHRVPRWLFSUHVVXUHZHXVHHTQ  RUWKHHTXLYDOHQWUHODWLRQ 6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H 2 7 * 27  3  [ 7 07 3 [ 5 * 7 3  I 57 OQ [ 27  3 7  * 27 3 7 9 2 3 *VROYHQW 7  3,,  [ ,, , 1RZ *VROYHQW * VROYHQW V , VROYHQW V V V VROYHQW ,, V , ,, VROYHQW VROYHQW  3, 7 ZKHUH ZH KDYH DVVXPHG WKH OLTXLG VROYHQW KHUH ZDWHU LV LQFRPSUHVVLEOH  DQG ZH ZLOO WDNH [ ,  7KXVZHREWDLQ V 2 7 2 * VROYHQW 7  3,,  I 57 OQ [ ,, V 7 * VROYHQW 7  3, Ÿ I 57 OQ [ ,, V 2 2  * VROYHQW 7  3 V ,, 7* V 27 3 77 2 , VROYHQW 9 VROYHQW 3,,  3, 7 RU [ ,, I OQ [ ,, EDU 9 VROYHQW 7KHRVPRWLFSUHVVXUH '3 LVJLYHQLQWKHWDEOHEHORZ 3,,  3, '3 V V V , [ ,, OQ [     OQ J  '3 EDU                        V  V I 57 OQ V V J V I L                     7KHSURJUDP9/08LVXVHGIRUWKHFDOFXODWLRQVLQWKLVVROXWLRQ1RYDOXHRIWKHELQDU\ LQWHUDFWLRQSDUDPHWHUN IRUK\GURJHQFRQWDLQLQJPL[WXUHVDUHJLYHQLQ7DEOH7KHUHIRUHD QXPEHURIGLIIHUHQWYDOXHVZLOOEHWULHG7KHUHVXOWVDUHJLYHQEHORZ +\GURJHQSURSDQHV\VWHPDW q & DQGEDU LM [+         I   H[S         I FDOF N+  & N+  &       N+  &                +\GURJHQSURSDQHV\VWHPDW q & DQGEDU                  [+  I H[S I FDOF N+  & N+  &        N+  &     N+  &               6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H +\GURJHQPHWKDQHV\VWHPDW q & DQGEDU                  [+  I H[S I FDOF        N+  &     N+  &     N+  & N+  &           7KHPRVWREYLRXVFRQFOXVLRQIURPWKHVHUHVXOWVLVWKDWWKH3HQJ5RELQVRQHTXDWLRQRIVWDWHGRHV QRWILWWKHGDWDYHU\ZHOOXQOHVVYHU\ODUJHYDOXHVRIWKH N M SDUDPHWHURUELQDU\LQWHUDFWLRQ L SDUDPHWHUVDUHXVHG,QGHHGXQUHDOLVWLFDOO\ODUJHYDOXHVPXVWEHXVHG LHRIWKHRUGHURI UDWKHUWKDQWKHRUOHVVIRUPDQ\RWKHURIWKHV\VWHPVZHKDYHFRQVLGHUHG 7KHPRVWSUREDEOH UHDVRQIRUWKLVLVWKDWWKHWHPSHUDWXUHIXQFWLRQLQWKHD 7 WHUPRIWKH3HQJ5RELQVRQHTXDWLRQRI VWDWHGRHVQRWUHSUHVHQWYHU\VXSHUFULWLFDOFRPSRQHQWVVXFKDVK\GURJHQDWWKHFRQGLWLRQVKHUH YHU\ZHOO,QSDUWLFXODUWKHWHPSHUDWXUHIXQFWLRQ  D7   5 7F D 7  D 7 3F N  7 7F       Z  Z  ZDVREWDLQHGE\  ILWWLQJGDWDDORQJWKHYDSRUOLTXLG     VDWXUDWLRQFXUYH LH 7U d   7KLVLVDQ  ZKLOHIRUK\GURJHQZHKDYH 7U   HQRUPRXVH[WUDSRODWLRQDQGXQGRXEWHGO\JUHDWO\LQHUURU6HFRQGWKHDFHQWULFIDFWRUGHSHQGHQFH RINZDVIRXQGE\XVLQJYDSRUSUHVVXUHGDWDIRUDUJRQDQGPHWKDQH Z |  DQGWKHQRUPDO ZLWKN SDUDIILQV Z !  7KHUHIRUHWKHXVHRIWKLVIXQFWLRQZLWKK\GURJHQ Z  DOVRUHSUHVHQWV DQH[WUDSRODWLRQ6LQFHK\GURJHQLVSUREDEO\VRSRRUO\UHSUHVHQWHGE\WKH3HQJ5RELQVRQ HTXDWLRQLWLVQRWVXUSULVLQJWKDWK\GURJHQFRQWDLQLQJPL[WXUHVDUHSRRUO\GHVFULEHG,IWKLV VXJJHVWLRQLVWUXHWKHQWKHK\GURJHQPHWKDQHV\VWHPVKRXOGEHPRUHSRRUO\UHSUHVHQWHGWKDQWKH K\GURJHQSURSDQHV\VWHPVLQFHLQWKHIRUPHUV\VWHPPHWKDQHLVDOVRVXSHUFULWLFDO        7U  )LQDOO\ZHQRWHWKDWWKHVHQVLWLYLW\RIWKHIXJDFLW\FRHIILFLHQW RUWKHVSHFLHVIXJDFLW\ WR WKHELQDU\LQWHUDFWLRQSDUDPHWHUVLVUHODWLYHO\ORZIRUWKHPL[WXUHVFRQVLGHUHGKHUHLQWKDWODUJH YDULDWLRQVLQNSURGXFHUDWKHUVPDOOYDULDWLRQVLQ I       +  7KHVROYHQWLVXQVSHFLILHGEXWZHZLOOFRQVLGHULWWREHZDWHUVLQFHZDWHULQWKHPRVWFRPPRQ VROYHQWIRUPROHFXODUZHLJKWGHWHUPLQDWLRQV$VVXPHZHSXWJVROXWHLQJRIZDWHU 7KHQ  0:VROXWH [ VROXWH  0:VROXWH ZKHUH 0: VROXWH    PROHFXODUZHLJKWRIVROXWH7KHUHIRUH 0: [ VROXWH VROXWH   u      u      u    6HFWLRQ  6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H L )UHH]LQJSRLQWGHSUHVVLRQXVLQJHTQ  '7 57P [VROXWH '+ I 0:VROXWH     u  [VROXWH  7KXV '7  . LL      u     u  %RLOLQJSRLQWHOHYDWLRQ IL : $VVXPH OQ 3:YDS   EDU [: 3:YDS 7 % $ VR 7 & OQ 3:YDS 7 OQ [: OQ [: 3:YDS 7 q & q &  OQ 3 YDS 7 % %      % 5 07  &5 7  & ! 7  & 7  7  &  7  & "# | %07  7 5 % ! 7  & 07  &5 $ 07  &5 0 OQ   [6 |  [6    &   Ÿ  [6   "# $   $VVXPLQJ '7 LVVPDOOVR7DQG 7 DUHQRWYHU\GLIIHUHQWDQG 0 [6 7  & % )RUZDWHUIURP5HLG3UDXVQLW]DQG6KHUZRRG 7  7 '7 OQ 3:YDS PP+J    0:6  VR '7 7 .      '7  .    u  LLL 2VPRWLFSUHVVXUH '3 Ÿ '3  5 [6            u  57[VROXWH HTQ  9VROXWH  u   EDUP PRO. ˜   . ˜ [6 ˜  PP+J EDU  FP PRO u   P FP 0:6 '3 PP+J        6XPPDU\ )UHH]LQJ SRLQWGHSUHVVLRQ FDQ HDVLO\ EH XVHG IRU 0:   PD\ EH SRVVLEOH IRU GHSUHVVLRQ 0:  QRWOLNHO\WREHXVDEOHIRU 0:   %RLOLQJ SRLQW PD\ EH SRVVLEOH IRU 0:   GLIILFXOW RU LPSRVVLEOH HOHYDWLRQ IRU 0:  QRWSRVVLEOHIRU 0:  2VPRWLFSUHVVXUH0HDVXUDEOH '3 IRUDOOFDVHV3RVVLELOLW\RIILQGLQJDVXLWDEOHPHPEUDQHYHU\ GRXEWIXO IRU D VXEVWDQFH RI 0:   RU  YHU\ HDV\ IRU D SURWHLQ RU SRO\PHU RU RWKHU VXEVWDQFHRI 0:   LHILOWHUSDSHU  Section 8.9 Solutions to Chemical and Engineering Thermodynamics, 3e 8.9-1 (also available as a Mathcad worksheet) 8.9-1 kow 5.5 10 0.4 . 0.05 . 1.3 . kow ksedw ksw 3 ksedw = 8.221922 10 0.0001 250 xs xs = 7.2 10 1000 3 ksw = 3.794733 10 equilibrium solubility 9 0.4 . 0.02 . 1.5 . kow 1 gam 8 gam = 1.388889 10 xs 18 7 2 . 10 . 1.013 . gam H H 0.2164 . kaw H = 28.138889 kaw = 0.020423 298.15 cw 0.3 . 10 cb 0.05 . kow. cw cb = 4.743416 ca kaw. cw ca = 6.127039 10 cs ksw. cw cs 9 g/g water or cs 1.5 . 10 1.3 . 10 6 g/m^3 of water g/m^3 of air 6 g/m^3 of soil 7 csed = 2.466577 csed 3 g/m^3 water or 4743 ppb by weight cs = 7.589466 10 ksedw. cw csed 0.3 . 10 cw cs = 1.13842 6 csed bar/mol frac g/g soil or 0.7589 ppm by wt. g/m^3 of sediment csed = 1.897367 10 6 g/g sediment or 1.897 ppm by wt. (also available as a Mathcad worksheet) 8.9-2 8.9-2 i 0 .. 3 LKow0 S0 Si Ci 5.52 LKow1 27 S1 Si . 10 9 140 solubility in g/liter LKow i 0.05 . Si . 10 5.16 LKow2 S2 7000 3.66 LKow3 S3 3.31 40000 Section 8.9 Solutions to Chemical and Engineering Thermodynamics, 3e 4.47 10 C= 4 1.012 10 1.6 10 Fish concentration in g/liter 3 4.083 10 CPi 3 3 0.447 Ci . 1000 CP = 1.012 Fish concentration in ppm 1.6 4.083 8.9-3 (also available as a Mathcad worksheet) Water = 4 m3 ; fish = 200 cm3 = 2 × 102 cm3 × 10−6 m3 cm3 = 2 × 10− 4 m3 Soil = 3 m3 air = 10 − 4 − 3 − 0.0002 = 29998 . m3 (a) Benzene vapor pressure (25°C) = 0127 . bar solubility in water (25°C) = 0.0405 mol % 1 xBsatγ ∞B ~ 1 ⇒ γ ∞ = = 2.469 × 103 0.000405 H B = γ ∞ Pi vap = 0127 . × 2 .469 × 10 3 = 313.6 bar mol fraction 0.2164 = 0.2276 298.15 = 2.13; K0W = 135; KBW = 0.05 × 135 = 6.75; KAW = 313.6 × log 10 K0W KSW = 0.4 × 0.02 × 135 = 1.08 By a mass balance 10 × 10−3 g = 4 m3H 2 O CB,H 2 O + 3 m 3soilCB,soil + 2 .9998 m3 air × CB,air +2 × 10−4 m 3fish × CB,fish c h c h = 4CB,H 2 O g m3 + 3KSW CB,H 2O g 106 g soil 15 . +2.9998 m3 air × KAW CB,H 2O c +2 × 10−4 m 3f KBW CB,H 2 O g m3 B −3 10 × 10 h g c h = CB,H 2 O 4 + 3 × 108 . × 15 . + 2.9998 × 0.2276 + 2.4 × 10 −4 × 6.75 CB,H 2 O = 1.048 × 10 −3 g m = 1.048 ppb ; in water 1 g m =1 ppm 3 CB,soil = 1.08 × 1.048 × 10 −3 = 3 1132 . × 10−3 g 106 g soil = 1698 . × 10−3 g m3 CB,air = 0.2276 × 1048 . × 10− 3 = 0.239 × 10−3 g m3 CB,fish = 6.75 × 1048 . × 10 −3 = 7.074 × 10 −3 g m 3 Section 8.9 Solutions to Chemical and Engineering Thermodynamics, 3e (b) DDT KAW, DDT = 9.5 × 10 −4 K0W, DDT = 1549 . × 10 6 Proceeding the same way CDDT,H 2 O = 1.793 × 10 −7 g m3 = 17.93 ppt CDDT,air = 3.332 × 10− 3 g m 3 CDDT,fish = 13883 . × 10−3 g m3 = 1388 . ppb 8.9-4 (also available as a Mathcad worksheet). 8.9-4 Kow 224 3. Pvap 10 2 bar S 440 mg/liter MW 157.5 750 0.440 157.5 x x = 5.029 10 1000 5 mole fraction of ClNO2benzene 18 Gam 1 4 Gam = 1.989 10 x H Pvap . Gam H = 0.795 bar/mole fr Mass balance: 100 kg = CW*7*10^6 + CA*6*10^9 + CS*4.5*10^4 + Csed*2.1*10^4 Equilibrium relations: CA=Kaw*CW CS=Ksw*CW Csed=Ksedw*Cw Ksw 0.02 . 0.4 . Kow. 1.5 Ksw = 2.688 Cw 3 7 . 10 9 6 . 10 . Kaw H 298.15 Kaw = 5.773 10 4 4 4.5 . 10 . Ksw 4 2.1 . 10 . Ksedw g/m^3 or 9.339 ppb by wt Kaw. Cw Ca = 5.392 10 Cs Ksw . Cw Cs = 0.025 Ksedw. Cw 0.2164 . Kaw ( 100 . 1000 ) Ca Csed 0.05 . 0.4 . Kow. 1.3 Ksedw Ksedw = 5.824 6 Cw = 9.339 10 Kaw=0.2164*H/298.15 Ksw=0.02*0.4*Kow*1.5 (g/m^3)/(g/m^3) Ksedw=0.05*0.4*Kow*1.3 6 Csed = 0.054 g/m^3 g/m^3 or Cs Cs . 1000 Cs = 16.736 1.5 g/m^3 or Csed Csed . 1000 1.3 Csed = 41.84 ppb by wt ppb by wt Section 8.10 Solutions to Chemical and Engineering Thermodynamics, 3e 8.10-1 This is a simple algebraic exercise, so the details will not be given. 8.10-2 The starting point for the liquidus line is c h expLM ∆ H bT g RS1 − T UVOP γ cx h N RT T T WQ = γ cx h L ∆ H bT g RS1 − T UVOP − γ cx h expLM ∆ H bT exp M γ cx h N RT T T WQ γ cx h N RT γ L2 x1L 1− x1L L 1 S 1 L 1 S 1 S 2 fus 1 fus 2 m ,2 S 1 m ,2 L 2 S 2 m,1 m ,1 L 1 S 1 fus 2 m, 2 g RS1 − T T T m ,2 UVOP WQ and for the solidus line is c h expLM− ∆ H bT g RS1− T UVOP cx h N RT T T WQ = γ cx h L ∆ H bT g RS1 − T UVOP − γ c x h expLM− ∆ H bT g RS1 − T UVOP exp M− γ cx h N RT T T WQ γ c x h N RT T T WQ 1− x1S S 1 L 1 S 1 L 1 γ S2 x1S γ 2L fus 1 fus 2 m ,2 L 1 m ,2 m ,1 m,1 S 2 L 2 S 1 L 1 fus 2 m ,2 m ,2 a) Regular solution model for the liquid, the solid phase is ideal the liquidus line is F Ωc1 − x h I L ∆ H bT g R T UO 1 − expG GH RT JJK expMN RT ST1 − T VWPQ = F Ωc1 − x h I L ∆ H bT g R T UO F Ωcx h I L ∆ H bT g R T UO expG GH RT JJK expMN RT ST1 − T VWPQ − expGGH RT JJK expMN RT ST1 − T VWPQ L 2 1 x1L fus 2 m, 2 m ,2 L 2 1 fus 1 L 2 1 m ,1 fus 2 m, 2 m,1 m, 2 and for the solidus line is F Ωcx h I L ∆ H bT g R T UO 1 − expG − GH RT JJK expMN− RT ST1 − T VWPQ h IJ expLM− ∆ H bT g RS1 − T UVOP − expFG − Ωcx h IJ expLM− ∆ H bT g RS1− T UVOP JK N RT T T WQ GH RT JK N RT T T WQ L 2 1 x1S = F Ωc1 − GG RT H exp − fus 2 m ,2 m ,2 2 x1L fus 1 L 2 1 m ,1 fus 2 m ,2 m ,1 m ,2 So these nonlinear equations must be solved simultaneously for the liquidus and solidus lines, together with the equations for the second component, and that the sum of the mole fractions in each phase must be unity. b) Regular solution model for the solid, and the liquid phase is ideal the liquidus line is F Ωc1− x h I L ∆ H bT g R T UO GG RT JJ expM RT ST1 − T VWP Q H K N = F Ωc1 − x h I L ∆ H bT g R T UO F Ωcx h I L ∆ H bT g R T expG − GH RT JJK expMN RT ST1 − T VWPQ − expGGH − RT JJK expMN RT ST1 − T S 2 1 1 − exp − x1L fus 2 m ,2 m ,2 S 2 1 fus 1 S 2 1 m ,1 m ,1 fus 2 m ,2 m ,2 UVOP WQ Section 8.10 Solutions to Chemical and Engineering Thermodynamics, 3e and for the solidus line is F Ωcx h I L ∆ H bT g R T UO 1 − expG GH RT JJK expMN − RT ST1 − T VWPQ = F Ωc1 − x h I L ∆ H bT g R T UO F Ωcx h I L ∆ H bT g R T expG GH RT JJK expMN− RT ST1 − T VWPQ − expGGH RT JJK expMN− RT ST1− T S 2 1 x1S fus 2 m, 2 m, 2 S 2 1 fus 1 S 2 1 m ,1 fus 2 m ,2 m ,1 m ,2 UVOP WQ So these nonlinear equations must also be solved simultaneously for the liquidus and solidus lines, together with the equations for the second component, and that the sum of the mole fractions in each phase must be unity. c) Regular solution model for the liquid and the solid phases, but with different values of Ω. The liquidus line is F Ω c1 − x h − Ω c1 − x h I L ∆ H bT g R T UO GG JJ expM RT ST1 − T VWP RT Q H K N h − Ω c1− x h IJ expLM ∆ H bT g RS1 − T UVOP − expFG Ω c x h − Ω cx h IJ expLM ∆ H bT g RS1 − T UVOP JK N RT T T WQ GH JK N RT T T WQ RT RT x1L = F Ω c1− expG GH L L 2 1 L 1 − exp S S 2 1 fus 2 m, 2 m, 2 2 x1L S 2 1 S fus 1 L 2 1 L m ,1 S 2 1 S fus 2 m ,2 m ,1 m ,2 and for the solidus line is F Ω cx h − Ω cx h I L ∆ H bT g R T UO GG JJ expM− RT ST1 − T VWP RT Q H K N = F Ω c1 − x h − Ω c1 − x h I L ∆ H bT g R T UO F Ω cx h − Ω cx h I L ∆ H bT g R T expG JJ expM− RT ST1 − T VWP − expGG JJ expM− RT ST1 − T GH RT RT Q H K N K N 1 − exp x1S S 2 1 S L L 2 1 fus 2 m ,2 S S 2 1 m ,2 S 2 1 S L 2 1 L fus 1 m,1 L L 2 1 fus 2 m ,1 m ,2 Again, we have a set of nonlinear equations that must be solved simultaneously for the liquidus and solidus lines, together with the equations for the second component, and that the sum of the mole fractions in each phase must be unity. 8.10-3 (also available as a Mathcad worksheet). Problem 8.10-3 x11 File: 8-10-3.MCD 0.1 x12 0.9 T 225 TUC Given x11. exp 5000 . ( 1 x11) 8.314 . T 5000 . ( x11) 8.314 . T (1 x11) . exp v find( x11, x12) 2 x12. exp 2 (1 v= 5000 . ( 1 x12) . exp 0.111 0.889 x12) 2 8.314 . T 5000 . ( x12) 8.314 . T 2 m ,2 5000 2 . 8.314 TUC = 300.698 UVOP WQ Section 8.10 Solutions to Chemical and Engineering Thermodynamics, 3e T 250 x11. exp Given 5000 . ( 1 5000 . ( x11) 8.314 . T x11) . exp v find( x11, x12) 5000 . ( 1 find( x11, x12) 285 2 5000 . ( x12) 8.314 . T 2 0.169 0.831 2 x12. exp 2 (1 v= 5000 . ( 1 x12) 2 8.314 . T x12) . exp 5000 . ( x12) 8.314 . T 2 0.256 0.744 Given 5000 . ( 1 x11) 2 8.314 . T 5000 . ( x11) 8.314 . T (1 x11) . exp v find( x11, x12) 290 x11. exp x11) 5000 . ( x11) 8.314 . T v T x12) 8.314 . T x12) . exp (1 8.314 . T x11) . exp x11. exp 2 5000 . ( 1 Given (1 T x12. exp v= 275 x11. exp 2 8.314 . T (1 T x11) x12. exp 2 (1 v= 5000 . ( 1 x12) 2 8.314 . T x12) . exp 5000 . ( x12) 8.314 . T 2 0.306 0.694 Given 5000 . ( 1 x11) 8.314 . T 5000 . ( x11) 8.314 . T (1 x11) . exp v find( x11, x12) 2 x12. exp 2 (1 v= 5000 . ( 1 x12) . exp 0.339 0.661 x12) 2 8.314 . T 5000 . ( x12) 8.314 . T 2 Section 8.10 Solutions to Chemical and Engineering Thermodynamics, 3e T 298 x11. exp Given 5000 . ( 1 5000 . ( x11) 8.314 . T x11) . exp v find( x11, x12) 5000 . ( 1 x12. exp 2 x12) 2 8.314 . T x12) . exp (1 v= 300 x11. exp 2 8.314 . T (1 T x11) 5000 . ( x12) 8.314 . T 2 0.418 0.582 Given 5000 . ( 1 x11) 2 x12. exp 8.314 . T 5000 . ( x11) 8.314 . T (1 x11) . exp v find( x11, x12) 2 (1 v= 5000 . ( 1 x12) 2 8.314 . T 5000 . ( x12) 8.314 . T x12) . exp 2 0.458 0.542 8.10-4 (also available as a Mathcad worksheet) Solid-liquid phase diagram: Given: Ω S = 10,000 , Tm,1 = 800 K , Tm, 2 = 600 K ; ∆H 1f = 6200 J mol ; ∆H f2 = 4900 J mol . liquid phase ideal: → solidus line RS T 1 − γ S2 exp − x1S = RS− ∆ H F 1− T I UV − γ T RT GH T JK W f 1 γ 1s exp F GH ∆ H f2 T 1− RT Tm2 s 2 m1 I UV JK W R ∆ H F1 − T I UV expS T RT GH T JK W f 2 (1) m2 liquidus line RS F I UV T GH JK W FG 1− T IJ UV − 1 expRS ∆ H FG1 − T IJ UV H T K W γ T RT H T K W 1− x1L = RS T 1 ∆ H 1f exp γ S1 RT ∆ H f2 1 T exp 1− RT Tm 2 γ S2 f 2 m1 S 2 (2) m2 Start with Equation (1); pick x1S , find T so that (1) is satisfied. Use T, x1S in (2). Section 8.10 Solutions to Chemical and Engineering Thermodynamics, 3e LM Ω cx h OP N RT Q L Ω cx h OP = exp M N RT Q S γ S1 = exp γ S2 S S 2 2 S 2 1 To find solid-solid equilibrium, use S,II S,II f1S,I = f1S,II → x1S,Iγ 1S,I = x1S,IIγ 1S,II and x2S,I ⋅ γ S,I 2 = x2 γ 2 Ω = 10000 x TS TL 0.0001 599.95 599.73 T x1I x1II 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.9999 573.39 543.92 480.02 418.14 378.88 393.54 458.60 545.01 635.78 722.65 762.83 799.93 476.34 387.62 350.42 366.34 376.07 372.61 351.32 290.99 300 350 400 450 500 550 600 575 601.4 0.021 0.041 0.070 0.111 0.169 0.256 0.458 0.322 0.979 0.959 0.930 0.889 0.831 0.744 0.542 0.678 595.06 799.59 0.975 0.925 781.83 743.08 698.52 472.85 10000 = 601.40 2 × 8.314 Tuc = x1Iγ 1I = x1IIγ 1II c1− x hγ = c1 − x hγ I 1 I 2 II 1 II 2 Liquid – Liquid Eq. 0.5 Section 8.10 Solutions to Chemical and Engineering Thermodynamics, 3e L L S1LE S1 S2LE S2 S1S2E 8.10-5 F H Ω RT G ex = x1 x2 Ω 1 − x1x2 I K so that IJ Ω f K a f ZRT FG ∂N G IJ = LM N − N N OPΩ − LM 2 N N − 3N N OP Ω H ∂N K N N + N aN + N f Q N a N + N f a N + N f Q ZRT Ω Ω = a x − x x fΩ − 2 x x − 3 x x = x a1 − x fΩ − x x 2 − 3 x ZRT ZRT F ∂N G IJ = x Ω − x x 2 − 3x Ω RT ln γ = G H ∂N K ZRT NG = ex FG H a N1 N2 N1 N2 Ω 1− N1 + N 2 N1 + N2 2 Ω N1 N 2 N12 N22 = Ω− ZRT N1 + N2 N1 + N 2 ex 2 1 2 2 2 1 2 1 1 T , P, N2 2 1 2 1 2 3 2 2 3 2 1 2 4 2 1 2 2 2 2 1 2 1 2 2 ex 1 2 1 2 2 2 2 1 1 2 2 2 1 2 2 1 2 1 T , P , N2 and by symmetry FG ∂N G IJ H ∂N K ex RT ln γ 2 = 2 = x12Ω − x2 x12 2 − 3x2 T , P, N1 Ω2 ZRT 8.10-6 (also available as a Mathcad worksheet). 8.10-6 Treat as freezing point depression problem and use Eqn. 8.5-12. i 0 , 1 .. 9 xi 1 0.1 . i 1 Section 8.10 Solutions to Chemical and Engineering Thermodynamics, 3e T 1410 0 T6 T1 1261 ∆ Cp ( T ) ∆H 1385 T7 26.606 1350 1242 T8 Tm T3 1215 3 2.469 . 10 . T 23.932 50626 1316 T9 1290 T5 1090 R 8.314 1410 ∆ Cp ( x) d x Tm i T4 5 2 4.142 . 10 . T Ti 1 . R. T Term2 i T2 Term3 i Ti 1. R ∆ Cp ( x) dx x Tm Term1 i ∆H . 1 8.314 . T i γ i 1. xi Ti Tm Term2 i Term3 i exp Term1 i γ i 1 1.029 1.041 1.074 1.158 1.341 1.592 2.005 2.774 3.809 4 γi 2 0 0 0.5 x i 1 1278 Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e 8.11-1 Clearly, it is only water that condenses out at the dew point, since O 2 and N 2 are far above their critical temperatures. Thus, at the dew point PHvap = yH 2O P = PH 2 O = partial pressure of H 2 O in air. 2O [In writing this expression, all fugacity coefficients have been assumed equal to unity.] From the data in Problem 5.12 we have, at the dew point, 54328 . vap ln PH 2 O = 26.3026 − = 7.8086 27315 . + 256 . and PHvap = (dew point) = PH 2 O = 24618 . Pa 2O at the air conditions PHvap ( T = 25.6° C) = 33549 . 2O ⇒ relative humidity = 8.11-2 ( T = 20.6° C) PH 2 O = PHvap 2O PHvap ( T = 25.6° C) 2O × 100% = 73.38% Equilibrium condition for V-L-S equilibrium: fHV2 O = f HL2O = f HS2 O where fHV2 O = yH 2O Patm f HL2 O = vapor pressure of liquid water f HS2 O = vapor (sublimation) pressure of ice. [Here, again, we have neglected all fugacity coefficient departures from unity.] Now, in fact, we know that at normal pressures the liquid is the stable phase above 0°C and the solid at temperatures below 0°C. Thus, liquid droplets will stable at saturation conditions above 0°C, and water (ice) crystals will be stable at saturation conditions below 0°C. At –25°C (248.15 K) and P = 1 2 bar, we have, for equilibrium with the liquid L yeq, H2O = fHL2 O Patm = Pvap ( water) = 1.644 × 10− 3 0.5 bar [from equating f HV2 O = fHL2 O ] For equilibrium with the solid eq, S yH 2 O = P vap(ice) = 1268 . × 10−3 0.5 bar [from equating f HV2 O = fHS2 O ] Thus, if the relative humidity (with respect to equilibrium with the liquid) is only . × 10 c1268 −3 h 1.644 × 10 −3 × 100% ~ 77.1% the ice crystals will be stable. At higher relative humidities it is possible to have water vapor in equilibrium with liquid droplets in a metastable state, at lower relative humidities the ice crystals will sublime. Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e 8.11-3 We will assume, since Hydrochloric acid is a strong acid, that the HCl molecule will be completely ionized at all concentrations. Let y = wt% HCl ; 100 − y = wt% of H 2 O . y 36.5 100 − y mol H 2 O 100 grams solution = 18.0 2y mol H + , Cl− ions 100 grams solution = 365 . (100 − y ) 18.0 2.0278(100 − y ) mole fraction of water = = (100 − y ) 18.0 + 2 y 36.5 2.0278(100 − y) + 2 y mol HCl 100 grams solution = Mole fractions for each solution are given in the table below. Next, we use the partial pressure (vapor-liquid equilibrium) data. For water, we have fWL = fWV ⇒ xWγ W PWvap = PW , where, again, we have neglected all fugacity coefficient corrections. Using, from Problem 5.12, that for ln PWvap = 263026 . − 5432.8 T in Pa; for bar ln PWvap = 14.7898 − 54328 . T and from the problem statement that F H ln PW = 2.3026 A − we obtain B T I K a f ln xW γ W − ( 2.3026 A − 1.47898) + 1 (54328 . − 2 .3026B) T From which we obtain the following results: y 10 20 30 40 xW 0.9012 0.8022 0.7029 0.6033 a f ln xW γ W –0.19172 –0.53917 –1.16719 –2.12638 xWγ W 0.82554 0.5832 0.31124 0.11927 γ W = xWγ W xW 0.9160 0.7270 0.4428 0.1977 (0.8707) (0.6472) (0.3770) (0.1585) Note that the activity coefficient for water is significantly less than unity. [Numbers in parentheses are γ W calculated assuming HCl not ionized.] 8.11-4 Equilibrium between water in air and water in aqueous solution requires that f HL2 O = fHV2 O . Neglecting fugacity coefficient corrections, we have Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e fHL2 O = xH 2 O γ H 2 O PHvap = 4 .24 xH 2 Oγ H 2 O 2O Aentry in table for bar 0 wt% Na 2 CO 3 fHV2 O f = yH 2O P( ) = yH 2 O P = PH 2 O P =1 ⇒ γ H2O = PH 2 O 4 .24 xH 2 O , for PH 2 O in bar Let W = wt% Na 2 CO 3 ; MWNa 2CO 3 = 106 g mol W 106 3W assuming Na 2 CO 3 is moles ions 100 g solution = 106 completely ionized moles Na2 CO 3 100 g solution = FG H IJ K 100 − W 18 (100 − W ) 18 100 − W mole fraction water = = (100 − W ) 18 + 3W 106 100 − 0.4906W moles H 2 O 100 g solution = Thus γ H2O = PH 2 O (100 − 0.4906W ) 4.24(100 − W ) Values of γ H 2 O calculated from above equation are listed below: W PH 2 O (kPa ) 0 4.24 γ H2O 1.00 1.007 1.010 1.015 1.021 1.023 1.011 xH 2 O 1.0 0.974 0.946 0.918 0.887 0.855 0.821 γ H 2 O (assuming 1.0 0.990 0.974 0.959 0.944 0.924 0.891 5 4.16 10 4.05 15 3.95 20 3.84 25 3.71 Na 2 CO3 did not ionize) 8.11-5 xair = mole fraction of air in water (liquid) xair = Pair H = Henry’s law constant 01333 . kPa × 103 Pa kPa ≅ 0.3 × 10 −7 4.3 × 104 bar × 105 Pa bar ⇒ xH 2 O = 1 (Do not have to consider air trapped in water) At equilibrium fHL2 O = f HS 2O = f HV2 O ; ⇒ xH 2O PHvap = PHsub = yH 2 O P = PHvap since xH 2 O = 1 2O 2O 2O 30 3.52 Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e [Note: Because of the low pressures involved, we have neglected f P terms and Poynting corrections.] For comparison, in an air-free measurement, we have PHvap = PHsub = PTP 2O 2O where PTP is the true triple point temperature. Since PHvap = PHsub has to be satisfied in both cases, we would obtain the same 2O 2O triple point temperature in both the air-free experiment, and the measurement with air. In the air-free experiment we measure P = PH 2 O and get the triple point pressure. In the experiment with air we measure P = PH 2O + Pair and, mistakenly, assume this is the triple point pressure; actually PH 2 O is the triple point pressure. The error, ∆P , is equal to the partial pressure of air; here 0.1333 kPa. Thus, we have ∆P 01333 . × 100 = × 100 = 218% . 0.6113 PHTP2 O % error = [Note: From the Steam Tables, triple point pressure is 0.6113 kPa.] 8.11-6 S ex = − =− FG ∂G IJ H ∂T K ex ∂ ∂T =− P, x ∂ ∂T mx G ex 1 1 + x2 G2ex r P, x k RT x1 ln γ 1 + x2 ln γ 2 P, x = − R ∑ xi ln γ i − RT ∑ xi p FG ∂ln γ IJ H ∂T K i P, x LM ∂dG Ti OP = − RT ∂ x lnγ ∑ ∂T MN ∂ T PQ F ∂ln γ IJ = − RT ∑ x G H ∂P K F ∂G IJ = ∂ ∑ x RT ln γ = RT ∑ x FG ∂ln γ IJ V =G H ∂P K H ∂P K ∂P F ∂ ln γ IJ − PRT ∑ x FG ∂ lnγ IJ U = H − PV = − RT ∑ x G H ∂T K H ∂P K L ∂ lnγ I + F ∂ lnγ I OP = − RT ∑ x MF NH ∂ln T K H ∂ ln P K Q F ∂H IJ = −2 RT ∑ x FG ∂ lnγ IJ − RT ∑ x FG ∂ ln γ IJ C =G H ∂T K H ∂T K H ∂T K ex H ex = − T 2 2 i 2 i P, x P, x i i P ,x ex ex i ex ex i i i T ,x T ,x ex i T ,x i 2 i i i i P, x i i T, x i i P, x i T, x ex 2 ex P 2 i i P, x i i P, x 2 P, x 8.11-7 (a) Since tartaric acid is a weak acid, we will assume it is not ionized. Letting z = grams of tartaric acid per 100 grams of water, we obtain Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e xT = mole fraction of tartaric acid = z 150 ; xW = 1 − xT . z 150 + 100 18 xWγ W PWvap = PW = 1013 . bar . At the boiling point we have γ W =1013 . xW PWvap Thus, . The results of the computations appear below. z xT 0.0945 0.1752 0.2461 87 177 272 xW 0.9055 0.8248 0.7539 γW 0.9445 0.8744 0.8105 Thus, solution is not ideal. (b) Now we use Eqn. (8.7-2) a f ln γ W xW = − a f LM T − T OP − ∆C LM1 − T N TT Q R N T ∆ H fus Tm R m f P m f From Problem 5.26 CP (liquid ) = 4.22 J g ° C CP (solid ) = 2.1 J g ° C m + ln f Tm Tf OP Q ⇒ ∆CP = 3816 . J mol ° C Also, from the Chemical Engineers Handbook ∆H fus = 6008.2 J mol . Let y = Tm Tf , we obtain LM T − 1OP − 3816 . . L T a f 8.314− 60082 1− × 27316 . NT Q 8.314 MN T lna x γ f = −2.6457 y − 1 + 4.590 1 − y + ln y ln xW γ W = m m f f + ln Tm Tf OP Q W W Procedure is to use the data tabulated above to obtain the product xWγ W , and then compute y by trial and error. Below are the results of solving the equation above, and also of neglecting the ∆CP term, i.e., solving a f ln xW γ W = −2 .6457 y − 1 T f also T f also z xw 87 0.9055 ∆ T with ∆ CP term -15.95° C ∆T without ∆CP term −15.25° C 177 0.8248 −33.76 −30.03 272 0.7539 –49.99 –42.88 8.11-8 (a) Imagine the separation process to occur continuously, as below: x1 moles of pure species 1 1 mole of mixture Separator x2 moles of pure species 2 Q W Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e Mass balance: 0 = 1 − x1 − x2 Energy balance: 0 = H mix − x1 H 1 − x2 H 2 + Q + W Entropy balance: 0 = S mix − x1 S 1 − x2 S 2 + Q +S gen T 0 Subtracting the product of temperature and the entropy balance from the energy balance yields a f a f a f − x G − x G p = −∆G = − RT ∑ x ln x − G 0 = H mix − TS mix − x1 H1 − TS1 − x2 H 2 − TS 2 + W or k W = − G mix 1 2 1 2 mix i = 1, 2 i i Thus W = − RT x1 ln x1 + x2 ln x2 − Ax1 x2 and Q = −W H mix − x1 H 1 − x2 H 2 = −W − H ex However, d ∂ G ex T i ∂T =− P , xi ⇒ H ex = − T 2 ∂ ∂T FG IJ H K ex ex H ∂ G ⇒ H ex = − T 2 2 T ∂T T RS Ax x UV = Ax x T T W 1 2 1 2 Therefore Q = −W − H ex = + RT = G ex ⇒ S ex = 0 ∑ xi ln xi + G ex − G ex i =1, 2 or k Q = RT x1 ln x1 + x2 ln x2 a p f (b) W = 0 ⇒ RT x1 ln x1 + x2 ln x2 = − Ax1 x2 or T W =0 = − Ax1x2 . R x1 ln x1 + x2 ln x2 Upper consolute temperature: T UC = For an equimolar mixture T W =0 = A 2R a fa f a fa f −A 1 2 1 2 A T UC = = R 1 2 ln 1 2 × 2 4 R ln 2 2 ln 2 and, for this case Q = − R ln 2 ⋅ T UC 1 A = − RT UC = − 2 ln 2 2 4 (c) If A is a function of temperature, then ∂ Ax1 x2 Ax x ∂A ex H = −T 2 = T 2 12 2 − Tx1x2 ∂T T T ∂T P, x = G ex I K F ∂ A IJ − x x TG H∂T K FG IJ H K F H 1 2 P ,x P, x ex Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e a f W = − RT x1 ln x1 + x2 ln x2 − Ax1 x2 as before but a f Q = RT x1 ln x1 + x2 ln x2 + x1 x2 T FG ∂ A IJ H ∂T K P, x and, for W = 0 , we have, as before T= but T UC is no longer equal to 8.11-9 d i A 4R ln 2 A . 2R d i i d At equilibrium Gi I T , P, x I = Gi II T , P, xII ; i =1, 2 and along the equilibrium curve d i dGi I T , P , xI = dGi II T , P, xII ; i =1, 2 Treating T, P and one mole fraction as the independent variables in this binary system, we obtain FG ∂ G IJ dx U| H ∂ x K |V i = 1, 2 F ∂ G IJ dy | dP + G H ∂ y K |W I dGi I = −S iI dT + Vi IdP + i 1 1 dGi II = − S iII dT + Vi II II i 1 1 Equating dGi I and dGi II , −S iI dT + Vi I dP + FG ∂ G IJ H ∂x K I dx1 = − Si IIdT + Vi IIdP + i 1 FG ∂ G IJ H ∂y K II 1 T, P dy1 ; i =1, 2 i T, P Now multiplying by yi , summing and rearranging gives 2 c h IJ K c h −∑ yi SiI − S iII dT + ∑ yi Vi I − Vi II dP i =1 = ∑ yi ⇒ FG ∂G H ∂y i II 1 T, P = 0 by the GibbsDuhem equation dy1 − ∑ yi FG ∂ G IJ H ∂x K I i 1 dx1 T, P F ∂ G IJ K ∑ yi cVi I − Vi II hdP = ∑ yi cSiI − SiII hdT − ∑ yi GH ∂ xi I dx1 1 T, P Since x’s and y ’s are mix ed, the Gibbs- Duhem equation does not apply c h Since Gi I = Gi II , Hi I − TSi I = Hi II − TSiII or SiI − S iII = H iI − Hi II T . For vapor-liquid equilibrium, with phase I = liquid, and phase II = vapor, we have, at low and moderate pressures, that Vi II >> Vi I , and Vi II ≈ RT P Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e Therefore FG IJ H K 2 2 RT 1 2 ∂ Gi −∑ yi dP = ∑ yi HiI − HiII dT − ∑ yi T i =1 ∂ x1 142P 1i =4 44 3 144 42444 3 i =1 c − RTd ln P 8.11-10 (a) dx1 T ,P ∆ H vap for y1 moles component 1 and y2 =1 − y1 moles of component 2 from solution. ⇒ − RTd ln P = − FG ∂ ln P IJ H ∂T K h = x FG IJ H K 2 1 ∂ Gi ∆ H vapdT − ∑ yi T ∂ x1 i =1 dx1 T ,P ∆ H vap RT 2 Start from the Gibbs-Duhem equation for each phase − S K dT + V K dP + ∑ xiK dGi K = 0 where K designates the phase, and is equal to I, II or III here. The criterion for equilibrium is Gi I = Gi II = Gi III = Gi (no need to designate phase on Gi ) Along the equilibrium coexistence line dGi I = dGi II = dGi III = dGi Also, the pressures are equal in each phase as are the temperatures. Thus, we have the three equations dP dG + x1I 1 + x2I dT dT dP dG1 V II + x1II + x2II dT dT dG III dP V + x1III 1 + x2III dT dT V I dG2 I =S dT dG2 = S II dT dG2 III =S dT However, d G = H K − T S K = ∑ xiK Gi ⇒ T S K = H K − ∑ xiK Gi = H K − Gi Using this result gives VK FG H IJ K dP dGi 1 1 + ∑ xiK + Gi = ∑ xiK HiK ; K = 1, 2, 3 dT dT T T i or, in matrix form i Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e LM V MMV NV I II III OP dP LM x PP dT + MM x Q Nx I 1 II 1 III 1 OPF dG 1 I LM x PPGH dT + T G JK + MM x Q Nx 1 I 2 II 2 III 2 1 OP F dG G I 1 LM ∑ x H PP GH dT + T JK = T MM ∑ x H Q N∑ x H 2 I i II i III i 2 I i II i III i OP PP Q Thus, we have 3 algebraic equations for the three unknowns dG1 G1 dG 2 G2 dP , + and + dT T dT T dT dP Using Cramer’s rule and solving for gives dT F I FG H K H IJ K FG H IJ K 1 ∑ xiI HiI x1I x2I T 1 ∑ xiII HiII x1II x2II T 1 ∑ xiIII HiIII x1III x2III dP T = dT VI x1I x2I V II x1II xII2 V III x1III x2III This type of relationship was first derived by Gibbs. (b) The Gibbs Phase Rule is F = C − P − M + 2 i) For liquid-liquid miscibility (only one liquid phase) P = 2 (vapor, liquid), C = 2 and M = 0 F = 2 − 2 − 0 + 2 = 2 degrees of freedom. Thus if, at fixed temperature, the liquid phase mole fraction is varied, the total pressure will change. ii) liquid-liquid immiscibility (two liquid phases) P = 3 (vapor + 2 liquids) Thus F = 2 − 3 − 0 + 2 = 1 degree of freedom Consequently, at fixed temperature the two phase compositions and the pressure are fixed. Varying the average mole fraction would change the mass distribution between the two phases, but would not change the composition of either phase or the total pressure. That is, when two liquid phases and a vapor phase exist in a binary mixture, the equilibrium pressure depends only on temperature and not on average composition. 8.11-11 Types of equilibrium that could occur are: i) solid-liquid ii) liquid-vapor iii) solid-liquid-vapor iv) solid-vapor We will assume i) Ideal solutions ⇒ fi L = xi Pi vap ii) Ideal gas phase ⇒ fi V = yi P Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e iii) That oxygen and nitrogen are immiscible in the solid phase. fi S = fi S = Pi sub . Thus For vapor-liquid equilibrium, we have fi V = fi L ⇒ xi Pi vap = yi P For solid-liquid equilibrium we have fi S = fi L ⇒ Pi sub = xi Pi vap Calculation of solid-liquid equilibrium: 1) Assume N 2 is the solid phase in equilibrium with the liquid Choose T, use data in the problem statement to calculate PHsub and PHvap , and 2 2 2) xN 2 = PNsub PNvap 2 2 Repeat calculation for other values of T Repeat calculation assuming O 2 is the solid phase, and calculating 3) 4) xO 2 = POsub POvap 2 2 5) At each composition, determine which solid freezes out by determining which results in the highest melting temperature. [In this calculation, the tabulated vapor pressure and sublimation pressure data were plotted as ln P vs 1 T , and this graph was used for interpolation.] Some results are shown below: T(K) PNsub (T ) PNvap (T ) 2 2 = xN 2 T(K) POsub POvap 2 2 = xO 2 34 38 42 46 50 54 58 62 63.2 0.126/0.4467 1.806/4.7867 15.427/32.2533 89.827/154.80 390.93/572.93 1356.8/1733.7 3934.7/4471.2 9873.3/10136.5 0.282 0.377 0.478 0.580 0.682 0.783 0.880 0.974 1.0 45.46 47.62 50.0 52.6 54.35 3.8933/5.5733 10.560/13.733 29.867/34.000 78.667/84.000 0.699 0.769 0.878 0.937 1.0 Since the sublimation and vapor pressures below the normal melting point are so far below the total system pressure of 1 atm (1.013 bar), we do not have to consider either solid-vapor or solid-liquid-vapor equilibrium. For the calculation of vapor-liquid equilibrium we use xi Pi vap = yi P and . bar . ∑ xi Pivap = 1013 Thus c h c P = xN2 PNvap + 1 − xN2 POvap ⇒ P − POvap = xN2 PNvap − POvap 2 2 2 2 2 h Therefore xN2 = P − POvap 2 PNvap − POvap 2 2 and yN2 = xN2 PNvap 2 P and the procedure is to choose T, calculate PNvap and POvap , and then xN 2 and 2 2 yN 2 . The results are given below: Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e T vap N2 P 75.5 1.013 77.5 1.333 80 1.849 82.5 2.467 85 3.284 87.5 4.200 0.2187 0.3147 0.4267 0.5867 0.7600 POvap 2 90.1 K bar 1.013 bar xN 2 1.0 0.713 0.455 0.288 0.158 0.074 0 yN 2 1.0 0.938 0.830 0.700 0.512 0.305 0 Below is the vapor-liquid-solid phase diagram for O 2 and N 2 determined by experiment (B.F. Dodge and A. K. Dunbar, J. Amer. Chem., Soc. 49, 501 (1927); B. F. Dodge, Chem. & Met. Eng. 35, 622 (1928); M. Ruhemann and B. Ruhemann, “Low Temperature Physics”, Cambridge Univ. Press, London, 1937, p. 100; and R.B. Scott, “Crogenic Engineering”, Van Nostrand, Princeton, 1959, p. 286). The main difference between this figure and our calculations is that O 2 and N 2 actually form mixed solids on freezing, which we presumed would not occur. [I am grateful to my former colleague at the University of Delaware, Prof. K. Bischoff for bringing these data to our attention.] Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e 8.11-12 Note: Error in Problem statement in 1st printing vapor pressure of isobutane is 490.9 kPa not 4.909 kPa. Based on Illustration 8.4-2 this is a problem in vapor-liquid-liquid (3 phase) equilibrium. Also, from Problem 8.9-10, we have that the coexistence pressure is constant over the whole range of average (or total) mole fractions for which two liquid phases exist. From Illustration 8.4-2, one liquid phase is present for xisobutane = x1 ≤ 0.1128 and x1 ≥ 0.9284 . For overall mole fractions in the range 0.1128 ≤ x1 ≤ 0.9284 , two liquid phases exist. To compute the V-L-L coexistence pressure in the one-liquid phase region, we use (neglecting fugacity coefficient corrections) x1γ 1 P1vap + x2 γ 2 P2vap = P where P1vap = 490.9 kPa , and P2vap = 0493 . kPa , and γ 1 and γ 2 (or x1γ 1 and x2γ 2 ) are given in Table in Illustration 8.4-2. Also, the van Laar constants are given there, so γ 1 and γ 2 can be computed at other compositions. Results are given below x1 0 0.025 0.05 0.075 0.10 0.1128 ↓ 0.9284 0.95 0.975 1 x1γ 1 P1vap + 0 0.3068 × 490.9 05491 . × 490.9 0.7384 × 490.9 08843 . × 490.9 0.945 × 4909 . + + + + + 0.9582 × 490.9 0.9771 × 490.9 + + ↓ 490.9 P x2γ 2 P2vap 1 × 0493 . 0.493 kPa 0.9764 × 0.493 151.1 0.9555 × 0493 . 270.0 0.9371 × 0.493 362.9 0.9231 × 0.493 434.6 0.914 × 0.493 464.4 ↓ 0.7325 × 0493 . 0.4318 × 0493 . ↓ 464.4 470.7 479.9 490.9 Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e 8.11-13 The vapor pressure of water is 1.013 bar at 100°C. To compute the vapor pressure of acetone, we fit the data in the problem statement to ln Pvap = A T + B and find A = −36189 . , B = 109930 . and vap PAC (100° C) = 3650 . bar . (a) To compute activity coefficients, we will use the van Laar model with α = 2.05 , β = 150 . , as given in Table 7.5-1. Thus ln γ AC = α aa 1 + αxAC β 1 − xAC ff = 2 2.05 a a 1 + 1.3667 xAC 1 − xAC ff 2 ⇒ γ AC = 1.050 at xAC = 0.8 and ln γ W = β aa 1 + βxW α 1 − xW ff 2 = 1.50 a a 1 + 0.7317 xW 1 − xW ff 2 ⇒ γ W = 2.921 at xW = 0.2 At vapor-liquid equilibrium vap xWγ W PWvap + xACγ AC PAC =P Substituting the results for γ i , Pi vap above yields P = 3658 . bar Thus, for all pressure above 3.658 bar only a liquid of composition xW = 0.2 , xAC = 0.8 will be present. (b) This calculation is more difficult, since we can not calculate the dew point “pressure” (at fixed temperature) until the liquid phase composition and activity coefficients are known. Thus the problem involves a trial-and-error solution of the equations vap xWγ W PWvap = yW P ; xACγ AC PAC = yAC P , and xAC + xW = 1 where xW , xAC and P are the unknowns (The γ i can be calculated from the xi using the van Laar equations). By repeated guesses, I find P = 3601 . bar; xW = 0.295 and xAC = 0.705 Thus, for all pressures below 3.601 bar, only the vapor (of composition yW = 0.20 , yAC = 0.80 ) is present. Note: One should check the conditions of both parts (a) and (b) to the above problem for the possible occurrence of two coexisting liquid phases. 8.11-14 Using the program VLMU with kCO 2 − n C6 = 011 . (Table 7.4-1) results in no solution at 140 bar and 75°C. However, trying the bubble point and dew point pressure programs we obtain the following results (at T = 34815 . K) Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e Program doesn’t converge at higher 0.001 0.05 0.1 0.3 0.4 0.5 0.6 0.7 0.73 0.75 0.78 0.80 dew point P, bar 1.21 1.28 1.35 1.76 2.07 2.51 3.17 4.31 4.83 5.25 6.03 6.70 CO 2 concentrations 0.82 7.56 xCO 2 0.1 0.3 0.5 0.7 0.72 0.74 0.76 0.78 0.80 bubble point P, bar 12.96 37.93 64.15 89.14 91.36 93.49 95.52 97.43 99.17 yCO 2 yCO 2 0.9 0.92 0.93 0.94 0.945 0.947 0.949 0.9495 dew point P, bar 15.06 20.25 24.64 32.02 38.56 42.62 49.39 52.75 Program doesn’t converge at higher CO 2 concentrations Since the program doesn’t converge at higher concentrations of CO 2 along either the bubble point or dew point curves, we have to make an estimate of the CO 2 concentration based on the data above. There are two possibilities: (1) The CO 2 Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e saturation of the liquid at 140 bar is in the retrograde region at somewhere between xCO 2 of 0.8 and 0.95 [Note, simple equation of state programs, such as VLMU typically do not converge in the retrograde region, and more sophisticated algorithms and numerical methods must be used]; (2) at 140 bar only the vapor exists, that is, all the hexane vaporizes. An alternative is to use the activity coefficient approach. We do this here using regular solution theory and corresponding states for the fugacity coefficients. The starting point is the equilibrium condition xiγ i fi L = yi fi V which, for hexane translates to xH γ H FfI H PK PHvap exp sat, H R|V cP − P S| RT T L H vap H hU|V = y PF f I W| H P K H H while for CO 2 , which is considerable above its critical point, we have xCO 2 γ CO 2 FG f H L ( P = 1013 . bar ) PC IJ K PC , CO 2 CO 2 |RV expS T| L CO 2 ( P − 1.013 bar ) |UV = y PF f I H PK W| CO 2 RT CO 2 Also, fitting vapor pressure data for n-hexane in “The Chemical Engineers Handbook” we find PHvap (T = 75° C) = 1226 . bar . Also T = 75° C = 34815 . K Next, we have n-hexane CO 2 n-hexane CO 2 Thus TC ( K) PC ( bar ) 507.4 304.2 29.69 73.76 a δ cal cc 7.3 6.0 a f ←Table 7.6-1→ ←Table 8.3-1→ a f Pf c f Tr Pr 0.686 1.144 4.715 1.898 sat L PC h 0.732 132 55 cf V −6 P h ~0.08←Fig. 5.4-1 0.65←Fig. 8.3-1 ~1.15 R| 55 × 10 m mol × (140 − 1013 bar U |Vγ ST| 348.15 K × 8.314 × 10 cbar m. h ()mol K) W | xCO 2 × 115 . × 73.76 × exp f V L cc mol 12 3 −5 3 CO 2 = yCO 2 × 0.650 × 140 ⇒ xCO 2 γ CO 2 = 0.8238 yCO 2 and RS132 × 10 × (140 − 1226 . )U T 348.15 × 8.314 × 10 VWγ xH × 0.732 × 1226 . × exp −6 ⇒ xH γ H = 6.628 yH −5 H = yH × 0.08 × 140 Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e a f The ideal mixture γ i = 1 solution is yCO 2 = 0.9696 xCO 2 = 07988 . (Easily solved using yH = 0.0304 xH = 0.2012 Mathcad) To obtain a more accurate solution, regular solution theory will now be used to compute the γ i ’s ln γ H = c V LHφ2CO 2 δ H − δ CO 2 2 RT and ln γ CO 2 = h c V LCO φ2H δ H − δCO 2 2 h 2 RT using the ideal solution as a first guess and iterating, or using Mathcad and solving directly, I obtain the following yCO 2 = 0.9620 xCO 2 = 07747 . Qualitatively in agreement yH = 0.0380 xH = 0.2253 with the P-R e.o.s. results. Note the enormous solubility of carbon dioxide in hexane and, indeed, in reservoir crude! That is why carbon dioxide has been used in enhanced oil recovery (crude oil swells so more is recovered, and viscosity drops so the trapped oil in the earth matrix flows more easily.) 8.11-15 Possibilities: 1 liquid phase 1 vapor phase 2 phases vapor + liquid 2 phases liquid + liquid 3 phases liquid + liquid + vapor We will assume that only one liquid phase exists and show that this assumption is correct. From the data in the problem statement vap vap PEAC = 09475 . bar and PEOH = 08879 . bar The bubble point pressure of an equimolar mixture is P = ∑ xi γ i Pi vap = 0.5 exp 0.896 × 0.52 (0.9475 + 0.8879) = 1148 . bar c h Since the applied pressure is 1.8 bar, no vapor is in equilibrium with an equimolar mixture at the specified temperature of 75°C. Now we have to check to see whether one or two liquids are present at equilibrium. To determine this we start with A 2 RT ln γ i = Ax2j ⇒ ln γ i − x j = A′ x2j RT with A′ = 0.896 given in the problem statement. Therefore A = A′RT = 0.896 RT . Now from eqn. 8.4-14 we have that the upper consolute temperature (the highest temperature at which two liquids exist) for the one-constant Margules equation is Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e A 0.896 RT = = 0.448 T = 155.97 K 2R 2R TUC = This temperature is so much below the system temperature of 348.15 K, that the single liquid phase is the stable phase. Therefore, the equimolar mixture at 75°C and 1.8 bar is stable, and the only phase present. 8.11-16 For an azeotropic mixture, from eqn. (8.1-3) γ i = P / Pi vap a γ ax f 00.2747 = 11167 . .246 0.2747 = 0.51f = = 11258 . 0.244 γ C xC = 0.51 = B C Since the two activity coefficients are so close, and the azeotrope occurs near 0.5 mole fraction, so I will use the one-constant Margules equation. a f G ex xC = 0.51 = xC ln γ C + xB ln γ B = 0.51 ln(11167) . + 0.49 ln(11258 . ) = 0.11435 RT = AxC xB = A(0.51)(0.49) = 0.11435 A = 0.4576 therefore Gex =8.314×(273.15+40) ×0.4576 = 1191xCxB RT ln γ C = 1191xB2 or γ C = exp 0.4576x2B b g RT ln γ = 1191x or γ = expb0.4576x g Pa x f = x expc0.4576a1 − x f h0.246 + (1 − x ) expb0.4576x g0.244 2 C B 2 C B 2 C C C Also yC ( xC ) = c a xC exp 0.4576 1 − xC a f 2 C B f h0.246 2 P xC 1 0.28 P y i 0.5 P i 0.26 i 0 0.24 0 0.5 x i 1 b) The LLE upper consolute temperature is A 0.4576 × 31315 . × 8.314 TUC = = = 71.65 K 2R 2 × 8.314 which is much below the freezing point of each compound. 0 0.5 x ,y i i 1 Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e c) Freezing point depression fus ∆ H Tm,solvent 1 1 ln xSγ S = − − R T Tm,solvent g FG H b a f g a f 1 1 R = − ln xSγ S T Tm, solvent ∆ H fus Tm,solvent b Tm,solvent RTm,solvent T= 1− ∆H fus bT IJ K or or g lnax γ f S S m, solvent For cyclohexane freezing 27315 . + 6.6 279.75 = 8.314 × ( 27315 . + 6.6) 1 0 . 8844 ln xBγ B − 1− ln xBγ B 2630 For benzene freezing T= T= a f a f 27315 . + 5.53 278.68 = 8.314 × ( 27315 . + 5.53) 1 − 0.2378 ln xCγ C 1− ln xCγ C 9953 a f a f 400 Tc Tb i 200 k 0 0 0.5 x ,x i k 1 8.11-17 c a) h C1 Do ∇ µo + RT ln x1γ 1 = CD∇ x1 RT 1 ∂ ln γ 1 x1 Do ∇ ln x1 + ∇ ln γ 1 = D∇ x1 = x1 Do + x1 ∂x1 j1 = − LM N D = Do 1 + ∂ ln γ 1 ∂ ln x1 LM N OP Q RT ln γ 1 = A(1 − x1 ) 2 b) ∂ ln γ 1 ∂ ln γ1 ∂ ln γ 1 = x1 = − x1 = − x1 ∂ ln x1 ∂x1 ∂ x2 LM N D = Do 1 + c) OP Q FH ∂ ln γ1 2A = Do 1 − x1 x2 ∂ ln x1 RT FH A x IK RT = −2 Ax x ∂ IK 1) Infinite dilution x1 → 0 and D → Do OP Q 2 2 ∂ x2 1 2 Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e 2) At LLE critical point TUC = LM N D = Do 1 − OP Q A at x1 = x2 = 0.5 2R 2 × 2 × R × TUC =0 R × TUC 3) Negative deviations from Raoult’s law ⇒ A is negative F H D = Do 1 − I K 2A x1x2 with A negative, D > Do RT 8.11-18 (also available as a Mathcad worksheet). 8.11-18 γ Pinf γ Hinf 16 6.34 PvapP 20.277 PvapH 28.022 Using the van Laar equation α i γ Pi ln ( γ Pinf) β 1 , 2 .. 99 ln ( γ Hinf) 0.01 . i xi α exp 1 xi α β 1 γ Hi 2 β exp 1 xi β 1 α xi 2 Pi xi . PvapP. γ Pi 1 xi . PvapH. γ Hi xi 50 40 P yPi i 30 20 0 0.920522 yP i 0.097206 0.5 x i 1 1 0.5 0 0 0.01 0.5 x i 1 0.99 xi . PvapP. γ Pi Pi Section 8.11 Solutions to Chemical and Engineering Thermodynamics, 3e So this system exhibits either azeotropy or LLE. Test for LLE x11 0.01 x12 0.90 Given α x11. exp 1 (1 α x11 β 1 y 1 x11 β x11) . exp 1 α x12. exp 2 β 1 α (1 x11 α β 1 2 x12 x12 β x12) . exp 2 1 x11 β 1 α x12 2 x12 find( x11, x12) x11 y0 x11 = 0.113 x21 1 x11 x12 y1 x12 = 0.684 x22 1 x12 x12 = 0.684 So there is LLE x21 = 0.887 x22 = 0.316 9 Note that many of the problems in this chapter can be solved relatively easily with two programs. The first is CHEMEQ which makes the calculation of the chemical equilibrium constant at any temperature very easy. The second is an equation solving program, such as Mathcad, for solving the nonlinear algebraic equation(s) which result. It is advisable that students know how to use both. [I have used Mathcad for many of the problem solutions reported here.] 9.1 From Equation 9.1-18 ln Ka (T = 25° C) = − ∆ G °rxn (25° C) −17,740 = RT 8.314 × 29815 . ⇒ ln Ka = − 7.1566 and Ka (T = 25° C) = 7.7967 × 10 −4 Next using Eqn. 9.1-23b with ∆a = 16.736 J mol K ; ∆b = ∆c = ∆ d = ∆e = 0 gives [Note: Error in problem statement of first printing. ∆CP = 16.736 J mol K not kJ/mol K] ln Ka ( T = 500 K ) ∆a 500 = ln Ka ( T = 298.15 K ) R 298.15 1 o − ∆ H rxn (298 .15) + ∆ a × 298.15 500 − 1 − 298.15−1 R 16.736 500 = ln 8.314 298.15 1 1 1 + −55,480 + 16.736 × 298.15 − 8.314 500 298.15 = 10407 . + 8.2228 = 9.2635 ln Ka (T = 500 K ) = ln Ka (T = 298 .15) + 9.2635 = −7 .1566 + 9.2635 = 2 .107 + F H ⇒ Ka (T = 500 K) = 8.225 I K Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Mass Balance Table Species In Out yi yi ( X = 0.9436) IPOH 1 1− X (1 − X ) (1 + X ) 0.0290 Prop 0 X X (1 + X ) 0.4855 H2 0 X X (1 + X ) Now Ka = 0.4855 → calculated after X was found below 1+ X Total a H2 a Prop aIPOH = a a f X 2 P = 1013 . bar 1 bar X2 = . (1 + X )(1 − X ) 1− X 2 f b a g f X = Ka (1 − X ) ; 1+ Ka X = Ka or X = Ka 1 + Ka ; 2 2 2 Ka = 8.225 ⇒ X = 0.9436 ⇒ 94.36% of alcohol is converted. 9.2 Reaction: CaC2 O 4 = CaCO3 + CO Ka = T (° C) 375 Pdiss = PCO ( kPa ) Ka = PCO 100 ln Ka a CaCO 3 aCO a CoC2 O 4 388 403 = aCO = PCO 410 416 418 1.09 4.00 17.86 33.33 78.25 91.18 0.0109 0.0400 0.1786 0.3333 0.7825 0.9181 –4.5282 –32.315 –1.7356 –1.1112 –0.2581 –0.1052 T(K) 648.15 661.15 676.15 683.15 689.15 691.15 24.401 − RT ln Ka = ∆G °rxn 17.763 9.757 6.3113 1.4788 0.6351 kJ / mol CaC2O 4 reacted Now b o d ∆G rxn RT dT g = − d ln K dT a =− o ∆H rxn RT 2 (1) o o ∆H rxn − ∆G rxn (2) T Plot the data for ln Ka vs. T. It falls on a reasonably straight line of slope ~ 0.106. o and ∆S rxn = d ln Ka o ~ 0.103 . Thus, ∆Hrxn ≅ 0.103 RT 2 , which follows from Eqn. (1). Once dT o ∆Horxn is evaluated, Eqn. (2) can be used to get ∆Srxn . The results are given i.e., below: Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e T (° C) 375°C 403°C 418°C ∆Horxn 358.7 390.4 409.9 kJ/mol CaC2 O 4 reacted o ∆Srxn 0.5159 0.5630 0.5984 kJ/mol K CaC2 O 4 reacted 0 ln Ka 2 4 6 640 650 660 670 680 690 700 Temperature (K) 9.3 Reactions: C + CO 2 ( g ) = 2CO( g ) (1) 2CO( g ) = 2C + O 2 ( g ) (2) Mole balance table Species Initial yi Final C CO 2 — 1 1 − X1 CO 0 2 X1 − 2 X 2 O2 0 X2 a1− X f a1+ X − X f 2 a X − X f a1 + X − X f X a1 + X − X f 1 1 1 2 2 1 2 1 2 2 1 + X1 − X 2 yi P = yi since P = 1 bar 1 bar (a) From the program CHEMEQ we find that Ka,1( T = 2000 K ) = 39050 ai = at T = 2000 K Ka ,2 = 2.445 × 10 −19 ⇒ Ka ,2 ~ 0 , X 2 ~ 0 and Ka ,1 = 39050 Ka ,1 = a f 2 a f f a fa f 2 2 Ka ,1 aCO 4 X1 − X 2 4 X1 = ≅ ⇒ X 12 = =1 a CaCO 2 1 − X1 1 + X1 − X 2 1 − X 1 1 + X1 4 + Ka ,1 a fa (as one would expect with such a large equilibrium constant) (b) At 1000 K using CHEMEQ Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Ka ,1( T = 1000 K ) = 1835 . Ka , 2 (T = 1000 K) = 3.984 × 10−23 X1 = 1835 . = 0.561 4 + 1835 . Thus, the composition of the gas leaving the graphite bed is Species CO 2 2000 K CO O2 9.4 RS T Ka = exp − = 1000 K 0.283 2.594 × 10−5 1.0 0 UV W 0.717 0 RS T UV W o ∆Grxn −2866 = exp = 0.3147 RT 8.314 × 298.15 RS TA UV W a diamond fi (T , P ) Vi ; where ai = = exp ( P − 1 bar ) agraphite fi (T , P = 1 bar ) RT k n p s R|d S| T Poynting correction terms assu med incompressible solid i V dim − V gr ( P − 1 bar ) adiamond exp V dim ( P − 1 bar) RT = = exp agraphite RT exp V gr ( P − 1 bar) RT U| V| W where V diam = 12 g mol = 3.4188 cc mol = 3.4188 × 10 −6 m 3 mol 3.51 g cc V graph = 12 g mol = 5.3333 cc mol = 5.3333 × 10−6 m3 mol 2.25 g cc o ( 3.4188 − 5.3333)( P − 1) cc - bar − ∆ G rxn −2866 = = J mol RT RT R 2866 J mol ⇒ P − 1 bar = = 14970 . J cc = 14970 bar 19145 . cc mol ln 0.3147 = or P = 14971 bar . Thus for P < 14971 bar ; adiam > Ka and graphite is stable phase agraph for P > 14971 bar ; adiam < Ka and diamond is stable phase agraph ⇒ Need a hydraulic press capable of exerting 14971 bar to convert pencil leads to diamonds. (Also, should consider a higher temperature!) 9.5 For convenience, write reaction as N 2 + O 2 = 2NO 2 Species balance table Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Initial Final yi O2 1 (1 − X ) 4.762 N2 0.79 0.21 = 3.762 NO 0 1− X 3762 . −X 2X Species (3.762 − X ) 4.762 2 X 4.762 4.762 yi P 1 bar ( 2 X )2 = which has the solution (1 − X )(3.762 − X ) Since P = 1013 . bar ; a i = 2 yNO yN 2 yO 2 Ka = X= −2.381 + 19073 . + 15048 . Ka 4 Ka − 1 a f Using the program CHEMEQ and its data base the following results are obtained (which agree with Figure 9.1-2) T (° C) 1500 0.9795 ×10 X 0.00954 T (° C) 0.2154 × 10 0.0438 T (° C) Ka X 01924 . ×10 2000 −3 05861 . × 10 01455 . × 10−2 0.0231 2200 −2 X 1800 −3 0.0133 2100 Ka 9.6 1600 −4 Ka 0.0361 2400 −2 0.3077 × 10 0.0520 2500 −2 05718 . ×10 0.007487 0.0701 0.0796 2600 2800 2900 3000 0.009539 0.01450 0.01732 0.02028 0.0893 0.1086 0.118 0.1269 (a) From Appendix IV ∆H of ∆G of Na 2SO 4 ⋅ 10H 2 O –4322.5 –3642.3 kJ/mol Na 2SO 4 –1382.8 –1265.2 H2O –241.8 –228.6 ⇒ ∆H rxn(T = 25° C) = (− 43225 . ) − ( −13828 . ) − 10(− 228.6 ) = −521.7 kJ mol ∆G rxn(T = 25° C) = −911 . kJ mol ⇒ ln Ka ( T = 25° C) = +91100 , = +36.751 (8.314 × 29815 . ) Ka ( T = 25° C) = 9 .139 × 1015 Now Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Ka = a Na 2SO 4 ⋅10H 2 O a Na2 SO 4 ⋅ a 10 H2O F 1 bar I =G H P JK 10 = 0.9139 × 1015 H 2O ⇒ PH 2 O ( 25° C) = 2.503 × 10 −2 bar = 0.0253 bar (b) At 15°C. Since 15°C is near 25°C we will correct Ka for temperature using only o the ∆H rxn term, i.e. ln F H I K o Ka ( T = 15° C) ∆H rxn 1 1 =− − = 7.3438 Ka (T = 25° C) R 288 .15 29815 . Ka ( T = 15° C) = Ka (T = 25° C) exp( 7.304 ) = 1358 . × 1019 PH2O (15° C) = 1.221 × 10− 2 bar = 0.01221 bar Experimental data (Baxter and Lansing, J.A.C.S. 42, 419 (1920)) PH 2 O (0° C) = 0.003693 bar PH 2 O (15° C) = 0.01228 bar PH 2 O ( 25° C) = 0.0256 bar 9.7 (also available as a Mathcad worksheet) aCS 2 yCS2 Ka = = . Since a C = 1 (solid), and aC aS2 yS2 P = 1 bar = standard state pressure. Species balance table: Species Initial Final C S2 — 1 1− X CS 2 0 X — Ka = X (1 − X ) yi — (1− X ) ⇒ or X = Ka (1 + Ka ) X 1 Using CHEMEQ I find Ka (750 ° C) = 8.478 and Ka (1000° C) = 6.607 . Therefore X (750 ° C) = 0.894 and X (1000° C) = 0.869 . X = yCS 2 is the percentage equilibrium conversion of sulfur. 9.8 a f (a) Ba NO 3 2 solution ∑ m 1 1 ( 2) 2 CBa + (1)2 CNO3 + (1)2 CAg + (1) 2 CCl zi2Ci = 2 2 1 = 4 CBa + CNO3 + CAg + CCl 2 I= m r but CAg = CCl = CAgCl ; CBa = CBa aNO 3 f 2 ; CNO 3 = 2CBa a NO 3 f2 r Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e I= CBaa NO 3 f2 n s 1 4 CBaa NO 3 f2 + 2 CBa a NO3 f2 + 2 CAgCl = 3CBaa NO 3 f 2 + CAgCl 2 I CAgCl I ln Ks , where 2 Ks = CAgCl 2111 . × 10−4 7.064 × 10−4 44.02 × 10−4 560 . × 10−4 (mol/liter) a f (b) La NO 3 2 01309 . ×10−4 6.4639 × 10−4 2.542 × 10−2 01339 . ×10−4 213259 . × 10−4 4.618 × 10−2 01450 . × 10−4 132.21 × 10−4 11498 . ×10−2 01467 . ×10−4 168147 . ×10−4 12.967 × 10−2 –22.4873 –22.4420 –22.2827 –22.2594 (mol/liter) solution Using similar analysis to that above yields I = 6CLa aNO 3 f 3 + CAgCl . CLa aNO 3 f 2 I CAgCl I ln Ks , where 2 Ks = CAgCl 1438 . × 10−4 5780 . × 10−4 166 . × 10−4 2807 . × 10−4 (mol/liter) 01317 . ×10−4 87597 . × 10−4 01367 . ×10−4 348167 . × 10−4 01432 . ×10−4 99.7432 ×10−4 01477 . ×10−4 168.568 ×10−4 2.9597 × 10−2 59006 . × 10−2 9.9872 × 10−2 12.983 × 10−2 –22.4751 –22.4006 –22.3077 –22.2458 (mol/liter) I ( mol / liter) 1 2 Except for the single point or high ionic strength (AgCl in KNO 3 ), all the data fall on a straight line. Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.9 For BaSO4 = Ba+ + + SO4 − − , we have I= 1 2 ∑z M 2 i i ≅ o t 1 2 2 CBa ++ + 2 2 CSO −− = 4 CBaSO 4 = 4 S 4 2 where S = solubility of BaSO 4 in moles/liter also Ks = CBa + + CSO −− 4 = S 2 . Note we have neglected the difference between M and C. Thus T (° C) α(Table 7.6) 5 10 15 20 25 Ks = S 2 S −6 156 . ×10 1.140 1..149 1.158 1.167 1.178 16.7 18.3 19.8 21.6 Ka = Ka (1 molal)ν + +ν − Ks ° (1 molal)ν + +ν − Ks = and γ ν±+ +ν − 7.9 × 10−3 2.43 × 10 2.789 3.349 3.920 4.666 (mol/liter) Now Ks = I =2 S −10 8.173 8.556 8.900 9.295 amol liter f amol literf 2 Ks ° ν + +ν − γ± . 12 Ks ° = Ka (1 molal)ν + +ν − or and ln Ks = ln Ks °− lnν±+ + ν − e = ln Ks °+ νBa ++ + νSO −− 4 jz z Ba ++ SO 4 −− α I = ln Ks °+ 2 ⋅ (2 × 2)α I = ln Ks °+ 16α I d i d i or Ks ° = Ks exp −16α S = S 2 exp −16α S . Note that Ka is the equilibrium constant for the reaction a f a BaSO4 (s) = Ba+ + aq, ideal 1 molal + SO4− − aq, ideal 1 molal ∆Grxn = − R ln Ka . Thus we have T ∆Grxn T (° C) Ks ° ln Ks ° = − R ln Ka T 5 184.654 2.261 × 10− 10 –22.2100 10 2.587 –22.0754 183.535 15 3.094 –21.8964 182.047 20 3.607 –21.7430 180.771 25 4.275 –21.5731 179.359 J mol lit 2 mol K f and a f F H I K ∆H rxn ∆Grxn 20490 51,362 21234 51,968 21991 52,457 22760 52,993 23543 53,476 (J/mol) (J/mol) ∆Srxn –110.99 –108.54 –105.73 –103.13 –100.40 (J/mol) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e ∆Grxn T is essentially a linear function of T as can be seen by plotting the data. Also, from the plot we have a f a f ∂ ∆Grxn T ∆ ∆Grxn T ~ ~ −0.26485 J mol K 2 ∂T ∆T However a f a f ∂G T H ∂ ∆Grxn T = − 2 ⇒ ∆H rxn = −T 2 = T 2 ( 0.26485) ∂T ∂ T T Finally ∆S = ∆H − ∆G ∆H rxn − ∆Grxn ⇒ ∆S rxn = T T Both ∆H rxn and ∆Srxn are given in the table on previous page. 9.10 (also available as a Mathcad worksheet) (a) Using the program CHEMEQ, the following results are obtained rxn 1 C3 H 8 + 3H 2 O = 3CO + 7H 2 rxn 2 C3 H 8 + 6H 2 O = 3CO2 + 10H 2 Ka rxn ∆Horxn Ka o ∆Grxn ∆Horxn o ∆Grxn 1000 K 1100 K 1000 K 1000 K 1100 K 12 14 1 537.260 –213.030 538.140 01343 . × 10 0.4806 × 10 2 0.3332 × 1012 0.3851× 1014 432.380 –220.590 436.440 All energies in kJ/mol of C3H8 3 3 a H7 2 a CO a10 H 2 aCO 2 (b) Ka,1 = and K = where, since P = 1 bar a,2 aC 3 H 8 a H3 2 O aC 3H 8 a H6 2O yi P = yi . 1 bar Species balance table ai = Species In yi Out C3 H 8 1 1 − X1 − X 2 H2O 10 10 − 3 X1 − 6 X 2 a1− X + X f ∑ a f CO 0 3 X1 3 X1 ∑ CO 2 0 3 X2 3 X2 ∑ H2 0 7 X1 + 10 X 2 1 a ∑ = 11 + 6 X 1 + X 2 2 10 − 3 X1 − 6 X 2 ∑ a7 X + 10X f ∑ 1 f 2 Thus Ka,1 = a 27 X 13 7 X 1 + 10 X 2 f 7 a1 − X − X fa10 − 3X − 6 X f a11+ 6 X + 6 X f 3 1 2 1 2 1 2 6 1100 K –288.11 –286.09 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Ka,2 = a 27 X 23 7 X 1 + 10 X 2 f 10 a1 − X − X fa10 − 3X − 6 X f a11+ 6 X + 6 X f 6 1 2 1 2 1 6 2 Also Ka,1 Ka ,2 a X 13 10 − 3 X 1 − 6 X 2 = a X 23 7 X1 + 10 X 2 f f 3 3 In view of the very large numerical values of the equilibrium constants, we expect X1 + X 2 ~ 1 . Using this approximation we get Ka,1 = a f a1 − X − X fa7 − 3X f (17) 7 27 X 13 7 + 3 X 2 3 1 2 6 ; Ka,2 = 2 a f a1 − X − X fa7 − 3X f (17) 27 X 23 7 + 3 X 2 10 1 2 6 2 6 and Ka,1 Ka ,2 a f ⇒ FG K IJ = X a7 + 3X f HK K X 13 7 − 3 X 2 3 2 3 13 a ,1 3 2 a ,2 = a a f a fa f a X1 7 − 3 X2 1 − X 2 7 − 3X 2 = X2 7 + 3 X2 X2 7 + 3 X2 f f Note that this last equation is a simple quadratic equation for X 2 given Ka,1 and Ka ,2 . Also, then X1 = 1 − X 2 . (c) at 1000 K: X1 = 0.527 ; X 2 = 0.473 at 1100 K: X1 = 0.603 ; X 2 = 0.397 Thus we obtain Species yi (1000 K ) yi (1100 K ) C3 H 8 0 0 H2O 0.328 0.342 CO CO 2 0.093 0.083 0.106 0.070 H2 0.495 0.482 9.11 (also available as a Mathcad worksheet) 1 Reaction: SO 2 + O 2 = SO 3 2 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Species balance table yi Species Initial Final SO2 1 1− X 1 2 1 0.79 × = 188 . 2 0.21 1 (1 − X ) 2 0 X O2 N2 SO3 1.88 3.38 − Since P = 1013 . bar ; a i = Ka = 1− X 3.38 − 0.5 X 1 2 (1 − X ) 3.38 − 0.5 X 1.88 3.38 − 0.5 X X 3.38 − 0.5 X 1 X 2 yi P = 1013 . yi 1 bar a SO 3 aSO 2 a 1O 22 = ySO 3 ySO 2 y1O 22 = X ( 3.38 − 0.5 X )1 2 1.0131 2 (1 − X )3 2 ( 05 . )1 2 The chemical equilibrium constant for this problem was calculated using the program CHEMEQ and then the problem was solved using Mathcad. The results appear below T (° C) Ka X ySO 2 yO 2 ySO 3 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1016 . × 1014 08625 . × 109 01012 . × 107 01265 . × 105 05903 . × 103 0.6188 × 102 01104 . × 102 0.2847 ×101 0.9566 0.3951 0.1863 0.09969 0.05862 0.03722 0.02518 ~1 ~1 0.9998 0.9967 0.9750 0.8935 0.7090 0.4569 0.2467 0.1252 0.0655 0.0366 0.0220 0.0141 0.0096 ~0 ~0 ~0 ~0 6.148 × 10 −5 0.001139 0.008635 0.0363 0.0962 0.1723 0.2313 0.2637 0.2792 0.2866 0.2903 0.2923 0.2934 3.074 × 10 −5 0.000569 0.0004317 0.0182 0.0481 0.0862 0.1157 0.1319 0.1396 0.1433 0.1451 0.1462 0.1467 0.3472 0.3472 0.3472 0.3459 0.3371 0.3046 0.2343 0.1450 0.0757 0.0377 0.0196 0.0109 0.00652 0.00418 0.00285 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 1 1 X i YSO2 i 0.5 YO2 i YSO3 i 0 0 0 0 500 1000 T 1500 3 1.4 .10 i 9.12 Reaction: C2 H 4 + Cl2 = C2 H 4 Cl2 However, C2 H 4 Cl2 is a liquid at 50°C — 2 phase reaction! Some physical property data Species Normal boiling point P vap (50° C) TC PC bar C2 H 4 Cl2 83.47°C C2 H 4 –88.63°C 0.288 bar 122.5 bar‡ 9.2°C 50.36 Cl2 –34.6°C 14.87 bar ‡ Since ethylene is above its critical temperature, its “liquid-phase” vapor-pressure will have to be estimated if we are to do the vapor-liquid equilibrium calculation. However, since we need only a moderate extrapolation (from T = 9.2° C to T = 50° C ), we will do an extrapolation of the vapor-pressure data, and not use Shair’s correlation. Using vapor-pressure equation in the Handbook of Chemistry and Physics, we find Pvap (50° C) ~ 1225 . bar for ethylene. Note: To be consistent, all vapor pressure data for this problem have been taken from the Handbook of Chemistry and Physics. The data differs, in many cases by ±20% from The Chemical Engineers’ Handbook. I believe the latter may be more accurate. Species balance table Species Initial Final C2 H 4 1 1− X = yC 2 H 4 V + xC 2 H 4 L Cl2 1 1− X C2 H 4 Cl2 0 X = yCl 2V + xCl 2 L = yC 2 H 4 Cl 2V + xC2 H 4 Cl 2 L yi P = yi for species whose standard state is a vapor. 1 bar Note: An obvious first guess is that no C2 H 4 Cl2 is present in the vapor phase, Also, since P = 1 bar , ai = and no Cl2 or C2 H 4 is present in the liquid phase. Since the standard states of Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e C2 H 4 and Cl2 are as pure vapors and C2 H 4 Cl2 is as a liquid, this would result in an equilibrium relation of the form Ka = a C 2 H 4 Cl 2 aC 2 H 4 a Cl 2 = 1 =4 1 2 ⋅1 2 which clearly can not be true! Therefore, to obtain the correct solution to this problem we must consider the possibility that all species may be present in all phases! In the table above, L and V are the total number of moles in the liquid and vapor phases, respectively. L + V = 1 Phase equilibrium: f1V = fi L ⇒ yi P = xi γ i Pi vap Chemical equilibrium: (standard state: C2 H 4 and Cl2 = vapor; C2 H 4 Cl2 = pure liquid) Ka = xC 2 H 4Cl 2 γ C 2 H 4Cl 2 yC2 H 4 yCl 2 Now using data in Appendices II and IV, and Eqn. 9.1-23b we obtain Ka (T = 50° C) ~ 11 . × 1023 a huge number. c h ⇒ yC 2 H 4 Cl 2 yCl 2 × 11 . × 1023 = xC2 H 4 Cl 2 γ C2 H 4 Cl 2 ⇒ Reaction goes, essentially, to completion. Vapor-liquid equations yC 2H4 Cl2 = xC2 H4Cl 2 γ C2 H4Cl 2 (0.284 ); yC2 H4 = xC 2H4 γ C2 H4 (121); yCl 2 = xCl 2 γ Cl 2 (14.68) Now going back to chemical equilibrium relation xC 2 H 4 γ C 2 H 4 xCl 2 γ Cl 2 × (14.68)(121) 11 . × 10 23 = xC 2 H 4 Cl 2 γ C2 H 4 Cl 2 c hc h c h Since, for this system, we expect all the activity coefficients to be of reasonable size (less than, say, 10), it is clear that the only solution is xC2 H 4 Cl 2 ~ 1 , xC2 H 4 = xCl 2 = 0 [actually, these latter mole fractions will be of the order 10−13 ] Plugging these values back into the vapor-liquid equilibrium equation, we find ∑ yi < 1 . ⇒ No vapor phase! Thus, the solution to this problem is that there is no vapor phase present at equilibrium, only a liquid phase. The reaction goes to completion in the liquid phase, so that xC2 H 4 Cl 2 = 1 , xC2 H 4 = 0 , xCl 2 = 0 . 9.13 Gi = G i + RT ln γ i xi = G i + RT ln γ i÷ xi÷ where xi = apparent mole fraction = xi÷ = actual mole fraction = N i° ∑ N j° Ni ∑N j In the model, γ ÷i = 1 , since the ternary mixture is ideal. ⇒ γi = xi÷ Ni N + NB° N NA + NB° = × A = i × xi N A + N B + N B2 Ni ° N i ° N A + N B + N B2 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e NA + NB° N A + N B + N B2 ⇒ γA = γB = and NB N A + NB° = N B ° N A + N B + N B2 Now consider the chemical equilibrium: Initial Number moles Final number moles Mole fraction xi A NA NA NA N A + N °B − N B 2 B N °B N B° −2 X B2 — X N B° − 2 N B 2 N A + N °B − N B 2 N B2 N A + N °B − N B 2 N A + N °B − X = N A + N B° − N B2 Ka = a B2 = a 2B c cN N B2 N A + N °B − N B 2 ° B − 2 N B2 h h 2 Solving this equation gives N B2 cN = h cN ° B + NA k − ° B + NA k h 2 c h 2 − 4 K A N °B k 2 where k = 4 Ka + 1 , and 2 kN B 2 NA + N °B c kx2B c = xa + kx B − kxB2 + 2 kxa x B + xa2 h 12 = 2 kxa + 2 kxB − δ = 2 k − δ and δ = (2 k − 1) xa + kxB + Also we obtain N B2 = cN + 2 kxa xB + xa2 h 12 h 2k − δ ; N = N − c N + N h 2k − δ 2k k δ N +N ° 2k + N = a N + N °fF I H 2k K N + N + N = δ A + N B° ° B B NA + NB B2 A A and B ° B A A B B B2 Thus γA = γB = LM N c N A + N °B 2k = and N A + N B + N B2 δ N B N A + N B° N °B = 1− cN A h + N B + N B2 OP Q h ( 2 k − δ) 2 k 2 = x Bk δ x Bδ {c x 2 A + 2 kxA xB + kx2B h 12 − xA } Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.14 (also available as a Mathcad worksheet) 1 O 2 = CH 3CHO + H 2 O 2 C2 H 5OH = CH 3 CHO + H 2 Reactions: C2 H 5OH + rxn 1 rxn 2 Species balance table: Species C2 H 5OH In 1 Out 1 − X1 − X 2 O2 0.75 0.75 − 0.5 X 1 H2O 0.79 × 0.75 = 2.8214 0.21 0 CH 3 CHO 0 X1 + X 2 H2 0 X2 N2 Σ 2.8214 X1 4 .571 + 1 X1 + X2 2 Using the program CHEMEQ we obtain Ka,1 = 7.228 × 1013 aerobic reaction Ka, 2 = 6.643 is greatly favored! With these values of the equilibrium constant we obtain X1 ~ 1 and X 2 ≅ 0 [all ethyl alcohol used up in first reaction]. Therefore, yC 3 H 5OH ~ 0 , yO 2 ~ 0.049 , yN 2 ~ 0556 . , yCH 3CHO ~ 0197 . and yH 2 ~ 0 . 9.15 (also available as a Mathcad worksheet) C3 H 8 = C3H 6 + H 2 rxn 1 C3 H 8 = C2 H 4 + CH 4 Species balance table rxn 2 Species Initial Final yi C3 H 8 1 1 − X1 − X 2 1 − X1 − X2 1 + X1 + X2 C3 H 6 0 X1 H2 0 X1 C2 H 4 0 X2 X2 1 + X1 + X2 CH 4 0 X2 X2 1 + X1 + X2 Σ In general, we have a i = 1 + X1 + X 2 yi P , thus 1 bar X1 1 + X1 + X2 X1 1 + X1 + X2 yH 2 O ~ 0197 . , Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Ka,1 = a C3 H 6 a H 2 = aC 3H 8 F P I= P H 1 barK 1 bar a1 − X yC 3 H 6 yH 2 yC 3 H 8 X12 1 − X 2 1 + X1 + X 2 fa f Similarly Ka,2 = Also Ka ,2 Ka ,1 = a C2 H4 a CH 4 = aC 3H8 P X 22 1 bar 1 − X1 − X 2 1 + X1 + X 2 a X X 22 , so define α = 2 = 2 X1 X1 Ka,1 = fa Ka , 2 Ka ,1 f . Thus a P 1 barf X aP 1 barf X = a1 − (1 + α) X fa1 + (1 + α) X f 1 − (1+ α) X 2 1 1 2 1 2 2 1 1 (a) Constant pressure case: P 1 bar = 1 ⇒ X1 = 1+ d Ka ,1 Ka1,12 + i 2 Ka1, 22 and X 2 = 1+ d Ka ,2 Ka1 ,12 i 12 2 + Ka ,2 Results are given in table below. (b) Constant volume case: Assume gas is ideal PV = NRT ⇒ Pf = N f Tf Ni Ti LMa N = 1 + X1 + X 2 f 298T.15OPQ bar or 1 + (1 + α) X1 T . 29815 X 12T 1 + (1 + α) X 1 T 298.15 X12 = ⇒ Ka ,1 = 1 + (1 + α) X1 1 − (1 + α) X 1 298.15 1 − (1 + α) X 1 Pf = a ⇒ X1 = 298.15 1 2 Ka,1 T ⇒ X2 = 298.15 1 2 Ka ,2 T RS T RS T f 2 4T − K1a,21 + Ka1,22 298 .15 2 4T − Ka1,12 + Ka1,22 . 29815 Ka1,12 + Ka1,22 + Ka1,21 + Ka1,22 + UV W UV W Results are given in table below. T(K) Ka,1 1000 2.907 1200 38.88 1400 246.0 1500 512.6 1600 972.4 1800 2809 2000 6511 Ka,2 534.3 2581 7754 11950 17350 31900 50870 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Part a yC 3 H 8 0 0 yC 3H 6 = yH 2 0.034 yC 2 H 4 = yCH 4 0.465 0.055 0 0.076 0 0.086 0 0.096 0 0.114 0 0.132 0.445 0.424 0.414 0.404 0.386 0.368 Part b yC 3 H 8 0.003 0.001 0.000 0.000 0.000 0.000 0.000 yC 3H 6 = yH 2 0.034 0.055 0.076 0.086 0.096 0.114 0.132 yC 2 H 4 = yCH 4 0.464 0.445 0.424 0.414 0.404 0.386 0.368 P bar 6.69 8.045 9.389 10.061 10.732 12.074 13.416 As usual, all equilibrium constant were computed using the program CHEMEQ and Mathcad. 9.16 (also available as a Mathcad worksheet) Reaction: N 2 + O 2 = 2NO Species balance table Since P = 1 bar , ai = Species Initial Final N2 1 1− X O2 1 1− X NO Σ 0 2X yi 1− X 2 1− X 2 X 2 yi P = yi . Thus 1 bar a NO 4X2 = 2 a N2 aO2 (1 − X ) Ka = or K1a 2 = Ka 2X ⇒X = 1− X 2 + Ka (1) Now, the energy balance for the adiabatic reactor, Eqn. (9.7-10b) is a f 0 = ∑ Ni z Tout in a f CP,i dT + ∆ H rxn Tout X Tin or zm Tout X =− Tin r CP, N 2 + CP, O 2 dT a f ∆ H rxn Tout (2) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Using the program CHEMEQ and the data in Appendix II, together with eqns. (1 and 2), the following results are obtained. T(K) Ka ∆H rxn 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000 0.008002 0.008406 0.008822 0.009251 0.009691 0.01014 0.01060 0.01108 0.01156 0.01206 0.01256 (kJ/mol) 162.26 161.38 160.48 159.54 158.58 157.58 156.55 155.49 154.39 153.26 152.10 X eq X energy 0.0428 0.0438 0.0449 0.0459 0.0469 0.0955 0.0865 0.0773 0.0681 0.0587 0.0493 0.0397 0.0300 0.0201 0.0101 0.0 0.0479 0.0490 0.0500 0.0510 0.0521 0.0531 The solution is T ~ 29025 . . . K and X = 00482 . so that yNO = 0.0482 , yN 2 = yO 2 = 04759 9.17 Suppose we start with 1 mole of hydrogen and z moles of nitrogen. The species balance table is: Species Initial Final H2 1 1− 3X N2 z z−X NH 3 0 2X yi 1 − 3X 1+ z −2X z− X 1+ z −2X 2X 1+ z −2X ∑ = 1+ z −2 X and Ka = cP cP NH 3 N2 ⇒ Ka 1 bar hc h 2 h 1 bar PH 2 1 bar F PI H 1 barK 2 = 3 = y2NH 3 yN 2 yH3 2 F 1 bar I H PK 2 4 X 2 (1 + z − 2 X ) 2 ( z − X )(1 − 3 X )3 (1) Note: We are assuming P is low enough that no f P corrections are needed! Now we want to know how X changes with z, so we will look at the derivative dX dz at constant T and P. Starting from Eqn. (1) we obtain Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 0= − ⇒ F H 2 dX 8 X (1 + z − 2 X ) dX 8 X 2 (1 + z − 2 X ) 1− 2 + 3 3 dz ( z − X )(1 − 3 X ) dz ( z − X )(1 − 3 X ) F H I K dX 4 X 2 (1 + z − 2 X ) 2 12 X 2(1 + z − 2 X ) 2 − 1 − dz ( z − X )(1 − 3 X )4 ( z − X )2 (1 − 3 X )3 I K F −3 dX I H dz K dX 1 ( z − X ) − 2 (1 + z − 2 X ) = dz 2 X − 4 (1 + z − 2 X ) + 1 ( z − X ) + 9 (1 − 3 X ) a f where X must be equal to, or smaller than, the smallest of 1/3 and z. z− X For yN 2 = 0.5 = ⇒ z = 1 . Let z = 1 + δ where δmay be either + or –. 1+ z − 2X 1 (1 + δ − X ) − 2 (2 − 2 X + δ) dX = 2 X − 4 (2 − 2 X + δ) + 1 ((1 − X ) + δ) + 9 (1 − 3 X ) dz a f Since X ≤ 1 3 , the denominator is always positive, so we need only look at the numerator to determine the sign of dX dz . Num = 1 1 − 1+δ− X 1− X + δ 2 a f Now do Taylor series expansions in Num = F H δ δ and . 1− X 2(1 − X ) IJ K FG H I K 1 1 −δ δ δ 1− 1− = − 1− X 1− X 1− X 2(1 − X ) 2 (1 − X )2 Thus, the sign of dX dz is the same as the sign of ( −δ) . If δ > 0 , i.e., more N 2 is added than is required for yN 2 = 05 . , dX dz < 0 , so that NH 3 decomposes, and N 2 is produced. . , the addition of N 2 causes If, however, δ < 0 , i.e., less N 2 is added than is needed for yN 2 = 05 more NH 3 to be formed. Note: If, instead of N 2 addition at constant pressure, the nitrogen was added at constant total volume, so that partial pressure of either species were unaffected, and the partial pressure of N 2 increased, then, from Ka = cP cP NH 3 H2 1 bar hc h 2 h 1 bar PH 2 1 bar 3 it is clear that the reaction would always go in the direction of increased ammonia production. This is an important distinction between reactions at constant volume and at constant pressure in this case. 9.18 (also available as a Mathcad worksheet) Reactions: C4 H10 = C4 H 8 + H 2 C4 H 8 = C 4 H 6 + H 2 rxn 1 rxn 2 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Species balance table Species Initial Final C4 H 10 1 1 − X1 C4 H 8 0 X1 − X 2 C4 H 6 0 X2 H2 0 X1 + X 2 yi 1 − X1 1 + X1 + X2 X1 − X 2 1 + X1 + X2 X2 1 + X1 + X2 X1 + X 2 1 + X1 + X2 1 + X1 + X 2 Σ yi P = yi . Thus 1 bar Since pressure =1 bar , a i = Ka,1 = a X − X fa X + X f a1 − X fa1 + X + X f − X − X X h= X − X yC 4 H 8 yH 2 c yC 4 H 10 ⇒ Ka, 1 1 + X 2 = 1 2 1 1 2 1 1 2 1 2 2 1 2 2 2 (1) and Ka,2 = yC 4 H 6 yH 2 c yC 4 H 8 ⇒ Ka,2 X1 + X aX + X f a X − X fa1 + X + X f − X − X h= X X + X = 2 1 X 12 2 1 2 2 2 2 1 1 2 2 2 2 (2) Using CHEMEQ (for equilibrium constants) and Mathcad (for solution) I obtain T 900 1000 Ka,1 Ka,2 0.9731 0.1191 5.814 0.5575 X1 X2 yC 4 H 10 yC 4 H 8 yC 4 H 6 yH 2 0.724 0.951 0.147 0.464 0.147 0.020 0.308 0.202 0.079 0.192 0.466 0.586 9.19 This problem can be solved graphically, as shown here, or analytically as seen in the Mathcad worksheet. 1 O 2 = H 2O 2 Using the program CHEMEQ, the equilibrium constant can be computed at each temperature. The yP bar ai = i = yi × 1013 results are given on the next page. Also, since P = 1013 . . . 1 bar Reaction: H 2 + Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e (a) Stoichiometric amount of pure oxygen Species In Out H2 1 1− X O2 0.5 1 (1 − X ) 2 H2O 0 X Σ ⇒ Ka = 1 (3 − X ) 2 aH2O = a H 2 aO1 2 (1.013)1 2 2 = yi 2(1 − X ) 3− X 1− X 3− X 2X 3− X ( 3 − X )1 2 2X 3− X ⋅ ⋅ 3 − X 2 (1 − X ) (1 − X )1 2 (1013 . )1 2 12 X (3 − X ) 32 (1 − X ) (1.013)1 2 or Ka (1 − X )3 2 (1013 . )1 2 − X (3 − X )1 2 = 0 This will be solved using Mathcad. From the energy balance we obtain the following T(K) X Eng (Part a) X Eng (Part b) X Eng (Part c) 1000 1200 1300 1400 1500 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 0.129 0.167 0.194 0.226 0.207 0.279 0.246 0.286 0.328 0.370 0.412 0.455 0.498 0.542 0.585 0.629 0.674 0.333 0.388 0.443 0.500 0.557 0.615 0.674 0.733 0.792 0.852 0.911 0.509 0.658 0.734 0.811 0.899 0.968 1.127 and, from Eqn. (9.7-10b), we get z Ted C a f X = − ∑ Ni i =1 in CP , i dT Tin ∆ H rxnaT ed f Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e ∑ a Ni f inCP , i = CP , H C where i =1 2 + 1 . K. CP ,O 2 and Tin = 29815 2 (b) 100% excess oxygen Species In Out H2 1 1− X O2 1 H2O 0 1− yi 1− X 2 − 0.5 X 1 − 0.5 X 2 − 0.5 X X 2 − 0.5 X 1 X 2 X 2− 1 X 2 ⇒ Ka (1 − X )(1 − 05 . X )1 2 − X (2 − 05 . X )1 2 = 0 and, for energy balance ∑ a Ni fin CP ,i = CP ,N C i =1 2 + CP, O 2 (c) 100% excess oxygen in air Species In Out H2 1 1− X O2 1 . X 1 − 05 N2 0.79 × 1 = 3.762 0.21 3.762 H2O 0 X yi 1− X 5.762 − 0.5 X 1 − 0.5 X 5.762 − 0.5 X 3.762 5.762 − 0.5 X X 5.762 − 0.5 X 5762 . − 05 . X ⇒ Ka (1 − X )(1 − 05 . X )1 2 − X (5762 . − 05 . X )1 2 = 0 and ∑ a Ni f inCP , i = CP , H C i =1 2 + CP ,O 2 + 3.762 CP, N 2 From the intersections of the equilibrium and energy balance curves, we obtain the following solutions [curves on following page] (or directly by solving the equations using MATHCAD) (a) Tad = 3535 K yH 2 = 0291 . X = 0.659 yO 2 = 0146 . . yH 2 O = 0563 (b) Tad = 3343 K X = 0835 . yH 2 = 0104 . yO 2 = 0.368 . yH 2 O = 0528 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e (c) Tad = 1646 K yH 2 ~ 0 X ≅ 10 . yO 2 = 0.095 . yH 2 O = 0190 yN 2 = 0715 . 9.20 Using the data in the problem statement, Tables 2.4 and A6.1, I find Ka,1( 750 K ) = a CaOSiO2 aCO 2 a CaCO3 aSiO2 = 148.1 = a CO 2 = yCO 2 P 1 bar , (1) since the activity of all the solids are unity. Ka,2 (750 K ) = 3 aSiO a a 2 Fe3 O 4 CO a 3FeO⋅SiO2 aCO 2 = 0.0277 = aCO y = CO , a CO 2 yCO 2 (2) and Ka,3 ( 750 K ) = 3 a Fe3 O 4 aSiO 2 3 a FeOSiO a1 2 2 O = 0.8973 × 10 = 2 ⇒ yO 2 P 1 bar 14 1 a 1O 2 2 F 1 bar I =G H y P JK 12 O2 . = 1242 × 10−28 From eqn. (2) we have yCO y ~ 0.0277 , while from spectroscopic observations CO ≅ 10 −4 yCO 2 yCO 2 (3) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Also, from eqn. (1), PCO 2 ~ 148 bar , while from the probe, the total atmospheric pressure is only between 75 and 105 bar. Finally, from Eqn. (3), we conclude there is no O2 in the atmosphere, compared to a trace from spectroscopic observations. Conclusions? Somewhat ambiguous! Calculations and data are not in quantitative agreement, but are certainly in qualitative agreement. Consider the uncertainty in all the measurements, the atmospheric model is undoubtedly a reasonable one, and can not be rejected. 9.21 (a) The condition for chemical equilibrium is F −∆G I = a GH RT JK a a ; vapor phase (1) F − ∆G I = a GH RT JK a a ; liquid phase (2) KaV = exp V rxn V EB V V S H or KaL = exp L rxn L EB L L S H where ∆G irxn is the standard state Gibbs free energy change on reaction in phase i. The phase equilibrium requirements are L V fEB = fEB , fSL = fSV and fHL = fHV (3) From problem statement ∆G Vrxn = −830 . kJ mol , and KiV = 3482 . ×1014 . This implies that the reaction will go, essentially, to completion in the gas phase. Now G = H − TS , and for most liquids neither ∆H vap or T∆ S vap is more than several kJ/mol. Also, since, for hydrogen, the vapor is the stable phase, G LH 2 > G VH 2 . Therefore, it seems likely that ∆G Lrxn will be of about the same size and sign as ∆G Vrxn . Consequently, the liquid phase chemical equilibrium constant will also be large, and the hydrogenation reaction will essentially go to completion in the liquid phase. ⇒ mole fraction of styrene will be very small in both phases. The problem then reduces to determining the solubility of the excess hydrogen in the liquid ethyl benzene, and determining the amount of ethyl benzene in the vapor. Thus, the equations to be solved are L V L fEB = fEB ⇒ xEBγ EB fEB = yEB P and fHL = f HV ⇒ xHγ H f HL = yH P Here we have assumed that the vapor phase is ideal. As a first guess, we will assume that very little hydrogen is dissolved in the liquid phase. Thus, γ EB = 1 , φEB = 1 , and, using regular solution theory a V H δ EB − δH RT L ln γ H = f 2 . cc mol × (8.8 − 3.25) cal cc × 4.184 J / cal 31 = 0.1612 8.314 J mol K × 298.15 K 2 = ⇒ γ H = 1175 . Next we have to estimate the fugacity of hydrogen in the liquid phase. An obvious way to proceed is to use Shair’s correlation, in Sec. 8.5. However, hydrogen was not used in developing this correlation, and Prausnitz warns against its use for light gases such as hydrogen and helium; since experimental data are not available, we have little choice but to use this Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e correlation. Note, however, that for hydrogen, TC = 332 . K and PC = 12.97 bar , so that Tr = T TC = 8.98 , which is off the scale of Fig. 8.3-1. If we extrapolate this correlation to c Tr = 8.98 (a very serious assumption), then we obtain f L PC h 1.013 bar ~ 4 , and f L (1013 . bar, 25° C) = 4 × 1297 . bar = 5188 . bar [Note the the Poynting pressure correction of this result to 3 bar total pressure is negligible.] As a first guess, we will assume that the gas-phase is essentially pure hydrogen. Therefore, y P 3 bar = 0.049 , and xEB = 1 − xH = 0.951 . xH = H L = γ H f H 1.175 × 51.88 bar Using the vapor pressure data for ethyl benzene, plotted in the form of ln P vap vs 1 T , we find vap that PEB = 1273 . kPa at 25°C. vap xEBγ EB PEB 0.951 × 1 × 1.273 ≅ 0.004 = P 3 × 100 kPa and yH = 0.996 [Since the gas phase is almost pure hydrogen, as assumed, there is no need to yEB = iterate to a solution]. xH = 0.049 yH = 0.996 at T = 25° C ⇒ xEB = 0.951 and yEB = 0.004 and P = 3 bar xS ≅ 0 yS ≅ 0.0 An alternative calculation is to use the Peng-Robinson equation of state. The critical properties of hydrogen are given in Table 4.6-1. The values for ethylbenzene are TC = 617.2 K, PC = 36 bar, ω=0.302, and TB=409.3 K. There is no binary interaction parameters for hydrogen with other components in Table 7.4-1, so we will assume that its value is zero. Using the isothermal flash calculation in the program VLMU we obtain the following results xH = 0.0018 yH = 0.9952 at T = 25° C xEB = 0.9982 and yEB = 0.0048 and P = 3 bar xS ≅ 0 yS ≅ 0.0 This may be a more accurate calculation than using regular solution theory which required an extrapolation of the Prausnitz-Shair correlation.. However, the result is based on the assumption that k ij = 0. It would be better to have some experimental data to get a better estimate of this parameter. (b) At 150°C and 3 bar. Using the data in the Problem statement, Appendices II and IV we find Ka (T = 150° C) = 31 . × 10 . So again we can presume that all the styrene in the vapor and liquid 8 phases is converted to ethyl benzene. As a first approximation (iteration), we will assume that the liquid phase is essentially pure ethyl benzene. Thus we obtain 31 . ( 3.25 − 8.8)2 . = 112 γ H = exp 1987 . × 423.15 Here again, we find, extrapolating Fig. 8.3-1, that 3 = 0.052 fHL ~ 5188 . bar ⇒ xH = 5188 . × 112 . and xEB = 1 − 0.052 = 0.948 . RS T UV W vap Now, however, PEB ~ 1303 . bar 1.303 × 0.948 = 0.412 3 Now using these values for another iteration, we obtain ⇒ yEB = Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e xH = 0.029 yH = 0.586 T = 150° C xEB = 0.971 yEB = 0.414 3 bar xST ~ 0 yST = 0.0 Again using the Peng-Robinson equation of state, the program VLMU and the assumption that kij = 0, we obtain the following xH = 0.0016 yH = 0.5034 T = 150° C xEB = 0.9984 yEB = 0.4966 3 bar xST ~ 0 yST = 0.0 In both parts a and b we see that the results of the equation of state calculation are in qualitative, but not quantitative agreement with the Prausnitz-Shair correlation. However, the latter predicts much higher solubilities of hydrogen in the liquid phase. The equation of state calculation is much easier to do (given the availability of the program VLMU). If some experimental data were available for hydrogen solubility in ethylbenzene (or other aromatics), the value of k ij could be adjusted to reproduce that data. Then we would have more confidence in the equation of state predictions for the problem here. If such experimental data were available, it is not clear how one would adjust the Prausnitz-Shair correlation to match that such data. 9.22 (a) Energy balance on a fixed mass of gas dU = Q& − P dt but CV = dV 0 dt FG ∂U IJ FG IJ H ∂ T K H K Q& ∂T ∂t = + . W 0 FG IJ = FG ∂U IJ FG ∂T IJ H K H ∂T K H ∂t K ∂U ⇒ Q& = ∂t V V V . V V Now U = ∑ N iUi = ∑ Ni U i , since we will assume the gas is ideal at the temperatures and a f z T pressures encountered here. Also N i = Ni ,0 + νi X and U i ( T ) = U i TR + CV dT where TR is TR some convenient reference temperature. FG ∂U IJ = FG ∂ IJ ∑ N U H ∂T K H ∂ T K F ∂ X IJ + ∑ N C = ∑ν U G H ∂T K CV ,eff = i V i i V i V ,i i V FG ∂ N IJ U + ∑ N FG ∂U IJ H ∂T K H ∂T K F ∂ X IJ + ∑ N C (T) = ∆U (T )G H ∂T K =∑ i i i i V V i V ,i rxn V where ∆U rxn = ∑ ν i U i = internal energy change on reaction. Species balance table Species In Out N2O4 1 1− X NO 2 0 2X Σ 1+ X yi 1− X 1+ X 2X 1+ X Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Ka = cy = cy 2 aNO 2 1 bar NO 2 P a N 2O 4 N 2O4 P h 2 1 bar h By the ideal gas law PV = NRT ⇒ conditions ⇒ P = P0 or 2 yNO P 2 yN 2O 4 (1 bar ) but V f 0 denotes the initial 0 4 X (1 + X )T ⋅ 1013 . 4 ⋅ 1013 . ⋅ X 2T = (1 − X ) T0 (1 − X )(1 + X )T0 2 X2 T0 Ka = =α 1 − X 4 ⋅ 1.013 ⋅ T = a 4 X 2 P 1 bar (1 − X )(1 + X ) P P = 0 where the subscript NT N 0T0 X + αX − α = 0 ⇒ X = F dX I H dT K = . bar(1 + X )T FG N IJ FG T IJ = 1013 H N KHT K 300 0 ⇒ Ka = = X 2 − α (1 − X ) = 0 RS T α 2 1+ LM RS 1 + 4 − 1UVOP = LM X − N T α WQ N d α dT 2 UV W 4 −1 α (1) OP d lnα 1 + a 4 αf Q dT 1 d ln α d ln Ka 1 ∆U rxn = − = . Also dT dT T RT 2 a f ∆U rxn = ∑ ν i U i = ∑ ν i Hi − RT = ∆ H rxn − RT ∑ ν i ∑ νi = 1 ⇒ ∆U rxn = ∆ H rxn − RT a∆U f LM X − RT N 2 ⇒ CV ,eff = (1 − X )CV , N 2 O 4 + XCV , NO 2 + rxn 2 (2) OP 1 + a 4 αf Q 1 (3) First two terms give the composition (mole fraction) – weighted heat capacity of the individual components; the last term is the enhancement of the heat capacity due to the chemical reaction. This term has one ∆U rxn dependence since that amount of energy is absorbed as the reaction equilibrium shifts, and a second ∆U rxn dependence, since this determines the extent of a shift in the equilibrium with temperature. (b) Using CHEMEQ and the data in Appendix II (for CP* ), ln Ka was determined at each temperature along with CV for both NO 2 and N 2 O 4 . Then, from Eqns. (1) and (3) X and CV ,eff as well. These are tabulated and plotted below. T (K) 300 350 400 450 500 550 600 700 α X 0.044275 0.1891 1.0016 0.6177 10.0613 0.9163 58.883 0.9835 236.25 0.9958 721.36 0.9986 1796.25 0.9994 7220.4 0.99986 P (bar) CV ,NO 2 CV , N 2 O 4 CV ,eff 1.205 1.912 2.588 3.014 3.370 3.712 4.051 4.727 37.11 38.94 40.65 42.22 43.67 45.00 46.23 48.36 78.83 84.47 89.55 94.06 98.01 101.39 104.20 108.12 J/mol K 410.5 546.9 195.9 69.11 49.23 46.49 46.71 48.45 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.23 This is a very difficult problem. I used the NASA chemical equilibrium program, referenced in Sec. 9.4, in the solution of this problem. I will describe here how this problem could be solved without this program. First we need to identify the independent chemical reactions among the components. Starting from 2C + 2H = HCCH 2O = O 2 and first using C + O = CO 2H = HCCH − 2C 2H + O = H 2 O to eliminate H, and then 1 O = O2 2 to eliminate O C + 2O = CO2 2H = H 2 yields 1 O 2 = CO 2 1 HCCH + O 2 = H 2 O + 2C 2 C + O 2 = CO 2 C+ HCCH = H 2 + 2C a f temperature range (i.e., K = Oc10 h at 1000 K and Oc10 h at 3000 K). Since O is present in excess, this implies that their will be no solid carbon present. Thus, we will eliminate C using the reaction equation C = CO − a1 2 fO ⇒ From Fig. 9.1-2 we have that Ka for the reaction C + 1 2 O 2 = CO is very large over the whole 10 a 6 2 2 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 3 1) HCCH + O 2 = H 2 O + 2CO 2 1 2) CO + O 2 = CO 2 2 3) HCCH + O 2 = H 2 + 2CO The three equations above form a set of independent reactions that can be used for the description of this reaction system. In fact, since eqns. (1) and (3) are both expected to go to completion, I used the following reaction sequence for the description of this system: 5 O 2 = H 2 O + 2CO 2 2 1 CO + O 2 = CO 2 2 1 H2 + O2 = H 2O 2 HCCH + rxn 1 rxn 2 rxn 3 The first step in the numerical solution of this problem is the calculation of the equilibrium constants and heats of reaction for the reactions above. Using the program CHEMEQ I obtained: T ∆Hrxn,1 3000 –1310 3100 –1320 3200 –1332 159 . × 10 2.90 × 10 3300 –1345 3400 –1361 kJ 582 . × 10 127 . × 10 ∆H rxn,2 256.2 251.2 245.5 238.8 221.0 Ka,2 0.3246 0.4507 0.6092 0.8027 1.033 ∆H rxn,3 261.9 264.9 266.9 269.9 273.5 Ka,3 0.0476 0.0668 0.0922 0.1252 0.1675 3500 –1378 3600 –1398 3700 –1419 3800 –1444 3900 –1470 Ka,1 T ∆Hrxn,1 Ka,1 16 15 14 14 2.97 × 10 13 kJ kJ kJ 7.45 × 1012 198 . × 1012 554 . × 1011 1633 . × 1011 5006 . ×1010 ∆H rxn,2 222.2 212.1 200.6 187.6 173.0 Ka,2 1.299 1.598 1.926 2.274 2.633 ∆H rxn,3 277.6 282.2 287.5 293.5 300.2 Ka,3 0.2213 0.2891 0.3738 0.4793 0.6098 kJ kJ Clearly, with such a large value of the equilibrium constant, reaction (1) must go essentially to completion. I will assume it does. Thus, the reaction stoichiometry is 5 HCCH + O 2 = H 2 O + 2CO2 2 1 CO 2 = CO + O 2 2 1 H2O = H2 + O2 2 U| | reactions are the = ?V || inverses of = ? reactions 2 and 3 above. |W X1 = 1 Note: These X2 X3 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 1 15 4 After rxn 1 goes to completion 0 5 4 0 5 1 1 + X 2 + X3 4 2 2 CO 2 0 2 2 − X2 H2O 0 1 1 − X3 H2 0 0 X3 CO 0 0 X2 Species Initially HCCH O2 Equilibrium ∑= b g ⇒ Ka,2 −1 = = a 17 1 X2 + X3 + 4 2 a CO a 1O 2 = 2 a CO 2 yi F H 0 5 1 1 + X2 + X3 4 2 2 2 − X2 ∑ 1 − X3 ∑ X3 ∑ X2 ∑ I K ∑ f yCO yO1 2 2 yCO 2 a f a f a f a2 − X fa17 4f + a1 2f X + a1 2f X X2 5 4 + 1 2 X2 + 1 2 X3 2 12 2 (1) 12 3 (where for simplicity I have assumed that the standard state and atmospheric pressures were the same) and bK g −1 a,3 12 = aH 2 aO 2 aH2O 12 = yH 2 yO 2 yH 2 O = a f a f a f a1 − X fa17 4f + a1 2fX + a1 2f X X3 5 4 + 1 2 X2 + 1 2 X3 1 2 3 2 12 (2) 3 where the equilibrium constants Ka,2 and Ka,3 are the ones whose numerical values are given in the table above. Instead of solving these nonlinear algebraic equations, I used the NASA Gibbs free energy minimization program to find the equilibrium mole fractions. Since this package uses a different set of thermodynamic data, the computed mole fractions do not agree with eqns. (1 and 2) and the table of equilibrium constants given above. The results are: T (K) 3000 3200 3400 3600 3800 4000 yCO 0.1530 0.2126 0.2605 0.2940 0.3154 0.3284 yCO 2 0.2777 0.2017 0.1395 0.0945 0.0642 0.0442 yH 2 0.0153 0.0254 0.0384 0.0539 0.0705 0.0869 yH 2 O 0.2001 0.1818 0.1616 0.1404 0.1193 0.0995 yO 2 0.3539 0.3785 0.4000 0.4173 0.4307 0.4410 X2 1.3017 1.5126 1.6609 1.7614 X3 0.1920 0.2771 0.3710 0.4658 ∆H rxn( kJ) –1006 z TAD Tin CP dT ( kJ) 616.3 691.2 775.7 –987.8 –997.0 871.9 981.1 –1025 1106 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e In the table above, the mole fractions were computed using the NASA program, X 2 and X 3 were then computed from the mole fractions using yH 2 = X 3 ∑ and yCO = X 2 ∑ where ∑ = a f 17 1 X 2 + X 3 . ∆H rxn and the integral + 4 2 z TAD CP dT were computed using Eqn. (9.1-19a) Tin and the ∆H rxn data in Table A6.1 and CP data in Table 2.4. Also, ∆ H rxn(T) = ∆H rxn,1 (T ) + X 2 ∆ H rxn,2 (T ) + X 3∆ H rxn, 3 (T) and z FHC TAD P, HCCH Tin I K 15 + CP ,O 2 dT = 4 z TAD CP dT . Tin Finally, from eqn. (9.7-10a) we have, at the adiabatic reaction (flame) temperature that C a f 0 = ∑ Ni i =1 in z TAD M Tin j =1 a f CP ,i dT + ∑ ∆Hrxn, j TAD X j or, in the notation here z TAD a f CP dT + ∆H rxn TAD = 0 Tin z TAD Plotting up the results in the previous table, i.e. CP dT vs T and ∆H rxn vs T, leads to the solution Tin TAD = 3830 K X 2 = 1.680 X 3 = 0.387 yCO 2 = 0.0606, yCO = 0.3180, yH 2O = 0.1160 yH 2 = 0.0732 and yO 2 = 0.4322. Comment: The solution above considered only O 2 , H 2 O , CO 2 , CO, H 2 and HCCH as possible reaction species. At the high temperatures involved here, other reactions and other species are possible. This is obvious in the results below. The dashed lines result from the chemical equilibrium program of NASA with only the species mentioned above as allowed species, and the solid lines result from the Chemical Equilibrium Program with all species allowed. Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Note how different the two solutions are! The actual (unrestricted) solution has O and H (not ions, but atoms) as important reaction products, but these species have not even been considered in the adiabatic reaction temperature calculation. The conclusion is that restricting over consideration to just the species in the problem statement is unjustified! 9.24 (also available as a Mathcad worksheet) C 6 H6 C 2 H4 C 6 H6 C 2 H4 C 6 H5C2 H5 Using the program CHEMEQ we obtain that at 600 K, Ka = 345.0 and ∆Hrxn = −103.94 kJ/mol for the reaction C6 H 6 ( g ) + C2 H 4 ( g ) = C6 H 5C2 H 5 ( g ) . Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e To find the extent of reaction we use Species Initial Final C6 H 6 1 1− X C2 H 4 1 1− X C6 H 5 C3H 5 0 X yi 1− X 2− X 1− X 2− X X 2− X F H F H F H 2− X Ka = 345.0 = a C6H5C 2H5 a f X ( 2 − X ) P 1 bar 2 (1 − X ) (2 − X ) P 1 bar = a C6 H6 ⋅ aC 2H4 ai 1− X 2− X 1− X 2− X X 2− X a IF P I K H 1 bar K IF P I K H 1 bar K IF P I K H 1 bar K f 2 X (2 − X ) (1 − X ) 2 P 1 bar 2−X Total of moles Now P = Pinitial × = 1.013 bar × = 2 Initial # of moles = a f ⇒ Ka = 345.0 = 2 ⋅ X ⋅ (2 − X ) 1.013 ⋅ (1 − X ) (2 − X ) 2 = 2⋅ X 1013 . ⋅ (1 − X ) 2 which has the solution X = 0.927 and P = 05434 . bar . Heat which must be removed to keep reactor isothermal is 0.927 × 103,940 = 96,352 J ( removed) . 1 1 H 2 ( g) + I 2 (g ) and I 2 (g ) = I 2 ( s) . 2 2 Using the data in the Chemical Engineer’s Handbook we have 9.25 The two “reactions” are HI(g ) = ° = 1.95 kcal = 8.159 kJ ∆Grxn,1 ° = −4.63 kcal = -19.37 kJ ∆G rxn,2 RS − ∆G UV = 3.72 × 10 = a a a T RT W R− ∆G UV = 2478.3 = a (s) = exp S a (g ) T RT W ° rxn,1 Ka ,1 = exp −2 12 12 H 2 I2 HI Ka ,2 ° rxn,2 I2 I2 Solid precipitation of one tiny crystal is just like a dew-point problem, that is, at the pressure at which the first bit of solid appears the vapor composition is unchanged. Therefore, the first step is to compute the vapor composition due to reaction 1 only. Species Initial Final yi HI 1 1− X 1− X ai (1 − X ) P 1 atm 1 2 XP 1 atm 1 2 XP 1 atm a f a f 1 1 X X 2 2 1 1 I2 0 X X 2 2 1 Σ Note: standard state pressure in the Chemical Engineers Handbook is 1 atm. H2 0 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e a1 2f X aP 1 atmf (1 − X )a P 1 atmf 12 2 ⇒ 3.72 × 10−2 = = X = Ka ,1 2(1 − X ) or x= 2 Ka , 1 2 Ka , 1 + 1 = 0.069248 (independent of pressure!) Thus at all pressures (low enough that nonideal vapor phase corrections can be ignored) we have . ; yHI = 0.93075 yH 2 = yI2 = 003462 which is the composition of the vapor when the first precipitation of solid I2 occurs. Now consider the second reaction: aI 2( s) = 1 a I 2 ( g ) = yI 2 ⇒ Ka , 2 = 2478.3 = P= yI 2 a F PI H 1 atmK 1 1 atm ⇒P= P 1 atm Ka , 2 yI 2 f 1 atm = 0.01166 atm = 0.01181 bar. 0.03462 × 2478.3 Thus, if P > 001181 . bar precipitation of solid I 2 will occur. 9.26 (a) 2 NaHCO 3 ( s) = NaCO3 (s) + CO 2 ( g ) + H 2 O ( g ) Ka = a NaCO 3 aCO 2 a H 2O a NaHCO2 but 3 ⇒ Ka = a H 2 O a CO 2 = but Pi = yi P = NH 2 O = NCO 2 UV W a NaHCO 3 = 1 solids a NaCO 3 = 1 PH 2 O PCO 2 ⋅ 1 bar 1 bar Ni P where N = total moles in gas phase, Ni = moles of i in gas phase and N 1 ⇒ PH 2 O = PCO 2 = P . 2 Therefore Ka = LM a1 2fP OP N 1 bar Q 2 and LM a1 2f × 0.826 kPa OP = 1706 N 100 kPa Q . × 10 a1 2f × 166.97 kPa K (110° C) = L MN 100 kPa OPQ = 0.697 Ka (30° C) = 2 −5 2 a ln Ka (30° C) = −10.979; ln Ka (110 ° C) = −0.3610 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Now ln a f af FG H Ka T2 ∆H rxn 1 1 = ln Ka T2 − ln Ka T1 = − − R T2 T1 Ka T1 a f a f IJ K (1) This assumes that ∆H rxn is independent of T, the only assumption we can make with the limited data in the problem statement ⇒ ∆H rxn = 128.2 kJ (b) Going back to Eqn. (1) above we have g FH F H II KK F H F H II KK 1 1 1 ∆H rxn 1 = 1.706 × 10− 5 exp −15420 − − R T 30315 T 303.15 . 15420 15420 ln Ka = −10.9788 − + 50.8659 = 39.8871 − T T b Ka (T ) = Ka T = 30o C exp − (c) PCO 2 = 10 . bar ⇒ PH 2 O = 10 . bar ⇒ Ka (T ) = LM a1 2f × 2.0OP N 1 Q 2 P = 20 . bar =1 ⇒ T = 386.6 K = 113.45° C for PCO 2 = 1 bar. 9.27 Reaction C + 2H 2 = CH 4 Using the program CHEMEQ we have Ka (T = 1000 K) = 0.09838 Species Initial (gas) Final (gas) yi H2 1 1− 2X CH 4 0 X 1−2 X 1− X X 1− X C Σ Ka = aCH 4 a Ca H2 2 1− X = a CH 4 a 2H 2 = F H (1 − X )2 1 bar XP ⋅ (1 − X )1 bar (1 − 2 X )2 P I K 2 X (1 − X ) 1 bar X (1 − X ) = (1 − 2 X )2 P (1 − 2 X ) 2 . and X = 09231 . . The solutions to this equation are X = 00769 With such a small value of the equilibrium constant, the X = 00769 . solution is the correct one. This implies yH 2 = 0917 . and yCH 4 = 0.083 = 01004 . This is (probably within experimental and calculational error) essentially the same as the equilibrium composition. Therefore, the reaction process is thermodynamically limited, not mass transfer limited. Consequently increasing the equilibration time by slowing the hydrogen flow will have no effect on the process. Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.28 (also available as a Mathcad worksheet) Reactions C + H 2 O = CO + H 2 C + 2H 2 O = CO2 + 2H 2 CO 2 + C = 2CO CO + H 2 O = CO2 + H 2 For simplicity, let’s write reactions 1, 2 and 4 in reverse CO + H 2 = C + H 2 O CO 2 + 2H 2 = C + 2H 2 O CO 2 + C = 2CO CO2 + H 2 = CO + H 2 O Now need to identify the independent chemical reactions. Start by writing C + O = CO Eliminate 2H + O = H 2 O reaction 4 C + 2O = CO 2 since no 2H = H 2 Now use O = C + O = CO ⇒ H2 + O = H 2O C + 2O = CO 2 H present 1 1 CO 2 − C to eliminate O since no atomic oxygen present. 2 2 1 1 CO 2 = C + CO 2 2 1 1 H 2 + CO 2 = C + H 2 O 2 2 C+ or UV This is one set of = C + 2H O W independent reactions. C + CO 2 = 2CO 2H 2 + CO 2 2 Add these two 2H 2 + C + 2CO 2 = 2CO + C + 2H 2 O ⇒ H 2 + CO2 = CO + H 2 O We will use H 2 + CO 2 = CO + H 2 O UV as the W 2H 2 + CO 2 = C + 2H 2 O independent reactions. Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Species Initial Final yi CO 2 1 1 − X1 − X 2 H2 1 1 − X1 − 2 X 2 CO 0 X1 1 − X1 − X 2 ∑ 1 − X1 − 2 X 2 ∑ X1 ∑ H2O 0 X1 + 2 X 2 C 0 X2 (not in gas phase) ∑ = 2 − X2 Ka,2 = a CO a H 2 O = aCO 2 a H 2 aa = 1fa C 2 H 2O = aH2 2 aCO 2 LM1 − X − X OP P N ∑ Q 1 bar LM1 − X − 2 X OP P N ∑ Q 1 bar LM X OP P N ∑ Q 1 bar LM X + 2 X OP P N ∑ Q 1 bar 1 a 2 1 1 f X1 X1 + 2 X 2 1 − X1 − X2 1 − X1 − 2 X2 a 2 1 X1 + 2 X2 ∑ 0 a f Ka,1 = ai fa 2 f a X + 2 X f a2 − X f 1 bar a1 − X − 2 X f a1 − X − X f P 2 1 2 2 2 1 2 1 2 Using the program CHEMEQ, I find the following T(K) Ka,1 Ka,2 −1 0.3665 ×10 600 700 800 900 1000 758.6 48.43 5.950 1.137 0.2974 0.1110 0.2493 0.4596 0.7387 (a) No carbon deposits X 2 = 0 Ka,1 = X12 a1 − X f 2 and Ka,2 = 1 X12 ⋅ 2 1 bar 3 P 1 − X1 a f Solving these equations, I find T(K) 600 700 800 900 1000 P( bar ) 1151 . × 10 6111 . × 10 If the pressure for a given temperature is above the pressure calculated, carbon will deposit. −4 −3 0.126 1.357 9.237 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Exactly 30% of carbon is deposited X 2 = 0.3 (b) Ka,1 = 9.29 a f a f 2 X1 X1 + 0.6 x1 + 0.6 (1.7 ) and Ka,2 = 0.7 − X 1 0.4 − X1 0.7 − X 1 0.4 − X1 a fa f a fa f 2 1 bar P T(K) 600 700 800 900 1000 X1 0.0157 0.0410 0.0750 0.1104 0.1427 P( bar ) 0.0084 0.170 1.972 15.266 85.419 The reaction the engineer is concerned about is Ti(s) + SiO2 (s) = TiO2 (s) + Si(s) This is equivalent to the first reaction in the problem statement minus the second reaction. Therefore kJ kJ J ∆G orxn = −674 − ( −644) = −30 = −30,000 mol mol mol and the equilibrium constant for this re action is F GH Ka = exp − o I JK F H I K ∆ G rxn 30000 = exp = 17.02 R⋅T 8.314 ⋅ 1273 Consequently, as the engineer fears, the titanium purity will be effected by high temperature contact with silicon dioxide. 9.30 From Eqns. (9.1-8 and 9.9-6) we have that o nFE o = RT ln Ka = −∆ Grxn Consequently, by measuring the zero-current cell potential we obtain the standard state Gibbs free energy change on reaction (if all the ions are in their standard states). Now if we continue further and measure how the zero-current standard state cell potential varies as a function of temperature, we have FG ∂E IJ H ∂T K o nF =− P FG ∂∆ G IJ H ∂T K o rxn o ≡ ∆S rxn P Consequently by knowing the zero - current, standard state cell potential o and its temperature derivative we can calculate ∆H rxn from o o o o o o ∆Grxn = ∆H rxn − T∆S rxn or ∆H rxn = ∆Grxn + T ∆S rxn Similarly starting fromnFE = −∆Grxn and the measured zero-current potentials, we can calculate the enthalpy and entropy changes for the reaction when the ions are not in their standard states. 9.31 The chemical reaction is CH3 -CHOH-CH3 = CH3 -CO-CH3 + H2 Assuming we start with pure acetone, the mass balance table with all species as vapors (given the high temperature and low pressure) is Species i-prop acetone hydrogen Σ in 1 0 0 out 1-X X X 1+X y (1-X)/(1+X) X/(1+X) X/(1+X) a (1-X)×95.9/(1+X) )×100 X×95.9/(1+X) )×100 X×95.9/(1+X) )×100 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e But X = .564, so a I-P =0.2673, and a ace = a H =0.3458. Therefore Ka = F GH o a acea H 0.3458 × 0.3458 ∆G rxn = = 0.4474 = exp − ai− P 0.2673 RT −0.8043 = − 9.32 I JK ∆ G orxn J ; so ∆G orxn = 8.314 × 452 .2 × 0.8043 = 30238 . RT mol The reactions are C6 H6 + H2 = 1,3-cyclohexadiene C6 H6 + 2H2 = cyclohexene C6 H6 + 3H2 = cyclohexane The Gibbs free energy of formation data needed to solve this problem kJ kJ o o ∆G f ( benzene) = 124.5 ∆G f ( cyclohexene) = 106.9 mol mol kJ kJ o o ∆G f ( cyclohexane) = 26.9 ∆ G f (1,3 − cyclohexdiene) = 178.97 mol mol The Gibbs free energy of formation for 1,3-cyclohexadiene is not available in Appendix IV, Perry’s The Chemical Engineer’s Handbook or the Handbook of Chemistry and Physics. The value was found using data on the WWW site http://webbook.nist.gov/chemistry. This Web site contains the National Institute of Standards and Technology (NIST) chemistry data book. The values found on this Web site are kJ ∆H of (1,3 − cyclohexdiene, 298.15 K) = 7141 . mol J S (1,3 − cyclohexdiene, 298.15 K) = 197 .3 mol ⋅ K J S ( C,graphite, 298.15 K) = 588 . mol ⋅ K J S ( H 2 , 298.15 K) = 130.68 mol ⋅ K Note that these entropies are with respect to the entropy equal to zero for the pure component and 0 K. Also, the entropy change of reaction at 0 K is zero for all reactions. Therefore ∆S of (1,3 − cyclohexdiene, 298.15 K) = S (1,3 − cyclohexdiene, 298.15 K) − 6 ⋅ S (C, 298.15 K) − 4 ⋅ S ( H 2 , 298.15 K) J mol ⋅ K ∆G of (1,3 − cyclohexdiene, 298.15 K) = ∆ H of − T ∆ S of = 71410 − 29815 . ⋅ ( −360.75) = 197 .3 − 6 ⋅ 588 . − 4 ⋅ 130.68 = −360.75 = 178967 J kJ = 178.97 mol mol The mass balance table assuming all the organics are present only in the liquid phase, and that the hydrogen is present in great excess to keep its partial pressure fixed at 1 bar. Also, since all the organics are so similar, we will Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e assume they form an ideal liquid mixture, and that there is no hydrogen in the liquid phase. Mass balance table for liquid phase: Species In Out x activity Benzene 1,3-cyclohex cyclohexene cyclohexane Total 1 0 0 0 1-X1 -X2 -X3 X1 X2 X3 1 1-X1 -X2 -X3 X1 X2 X3 1-X1 -X2 -X3 X1 X2 X3 The equilibrium relations are a1,3 − cyc X1 (178970 − 124500) Ka,1 = = = exp − a benz aH 2 1 − X1 − X 2 − X 3 8.314 × 29815 . F H I K = exp( −21973 . ) = 2 .866 × 10 −10 a cychene X2 (106900 − 124500) Ka,2 = = = exp − abenz a H2 2 1 − X 1 − X 2 − X 3 8.314 × 298.15 F H I K = exp(7 .1002) = 1212.2 Ka,3 = a cychane = a benz aH3 2 F H ( 26900 − 124500 ) X3 = exp − 1 − X1 − X 2 − X 3 8.314 × 298.15 I K = exp( 39.374) = 1.2587 × 1017 By examining the values of the equilibrium constants, or more directly by taking ratios of these equations, we see that X3 is about equal to unity. Then by taking the ratio of the first of these equations to the third, we have X1 2 .866 × 10 −10 = = 2 .27 × 10−27 ≈ X 1 X 3 12587 . × 1017 and by taking the ratio of the second of these equations to the third X2 12122 . = = 9.63 × 10 −15 ≈ X 2 X 3 1.2587 × 1017 This suggests that X3 ~ 1, X2 is of the order or 10-17, and X1 is of order 10-27. Thus the benzene will react to form essentially all cyclohexane. 9.33 The process is . N1 , IN 5 × 10-3 mol/kg . N2 , IN 5 × 10-3 mol/kg . . N1 , OUT 5 × 10-6 mol/kg N2 , OUT 5 × 10 mol/kg -5 Assume all other component concentrations are unchanged since the glucose concentration is so low. The mass balance is Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e N& 1, in + N& 2 , in = N& 1,out + N& 2,out & is the rate of glucose transported, then If δ & N& = N& +δ b g b N& g b g = b N& g G 1,out G 1,in G 2,out G 2,in & −δ The energy balance is 0 = ∑ N& i H i + ∑ N& i H i c h c 1,in h − c∑ N& H h i i 2,in 1,out − c∑ N& H h i i 2,out + Q& + W& and the entropy balance is Q& & + S gen 1,in 2,in 1,out 2,out T The kidney operates reversibly, and minimum work implies S&gen = 0 . 0= c∑ N& S h + i i c∑ N& S h i − i c∑ N& S h i − i c∑ N& S h i + i Subtracting T times the entropy balance form the energy balance gives 0 = ∑ N& i G i + ∑ N& i G i − ∑ N& i G i − ∑ N& i G i + W& c h c h 1,in or W& = 2,in c h c 1,out h 2,out c∑ N& G h + c∑ N& G h − c∑ N& G h − c∑ N& G h = c N& G h + c N& G h − c N& G h − c N& G h & cG h & cG h = eb N& g + δ + e b N& g − δ − c N& G h − c N& j j i i G G G G 1,out G G 1,in i i 1,out G 2,out i i 2,out G 1,in G G 2,in 1,out i 1,in G 2,out G i 2,in 2,in G G 1,in h G G G 2,in Now since the concentrations are very low, and have not changed significantly, GG = GG and G G = GG c h c h 1,in c h 1,out Therefore 2,in c h 2,out c h c h & GG − G G W& = δ 1 2 (since, from the previous equation, we can eliminate the subscripts in and out). Then fG W& 1 &δ = G G 1 − G G 2 = RT ln f c h c h Fc h I GH c h JK G 2 Now assuming ideal solutions (or that the activity coefficients of glucose in blood and urine are the same) fG x CG 1 W& 1 = RT ln G 1 = RT ln &δ = RT ln f x C Fc h I GH c h JK G 2 FG a f IJ Ha f K G 2 FG a f IJ Ha f K G 2 where we have assume that both blood and urine, being mostly water, have about the same molar concentration. Therefore FG a f IJ = RT lnFG 5 × 10 IJ = RT ln(100) Ha f K H 5 × 10 K W& CG &δ = RT ln C G = 8.314 −3 1 −5 2 J J kJ × 310.1 K × ln( 100) = 11873 = 11873 . mol K mol mol Note that body temperature is 98.6o F = 310.1 K Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.34 (also available as a Mathcad worksheet). 9.34 Given: T 298.15 . K M1 0.0001 . mole M2 liter 0.01 . mole liter 1 α 1.178 . 2 mole R 8.31451 . liter joule K . mole Using eqn 9.9-10 and the Debye-Huckel limiting law of eqn 7.11-15: ln ( γ ) α . 4 . 4 . M CuSO4 γ M CuSO4 ∆ G 2moles α . 8 . M CuSO4 exp 2 . R. T . ln M1 M2 2 . R. T . ln γ M1 γ M2 The change is Gibb's Free Energy calculated above is for two moles of electrons (n=2). The number of moles of electrons in this problem is calculated below: n 2. 0.01 . mole 0.0001 . mole 2 ∆G Wmax n = 9.9 10 3 mole n . ∆ G 2moles 2 ∆G Wmax = 92.204 (for a process at constant temperature and pressure) joule 9.35 (also available as a Mathcad worksheet). From the Steam Tables Pvap = 12.349 kPa From CHEMEQ Ka = 171.2 HNH3 (from problem statement) = 384.5 kPa/mole fraction The solution at various pressures is Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e P (kPa) 0.10 0.25 0.50 1.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 18.40 18.50 19.00 20.00 25.00 30.00 35.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 104.50 X 0.0899 0.2017 0.3467 0.5478 0.7868 1.0322 1.1670 1.2559 1.3204 1.3701 1.4099 1.4429 1.4707 1.4757 1.4797 1.4996 1.5339 1.6437 1.7063 1.7488 1.7806 1.8267 1.8602 1.8869 1.9093 1.9291 1.9472 1.9449 f 0 0 0 0 0 0 0 0 0 0 0 0 0 2.02×10-05 0.0114 0.0680 0.1589 0.3989 0.5068 0.5713 0.6162 0.6792 0.7261 0.7661 0.8030 0.8388 0.8745 0.8908 2.5 X and f 2.0 1.5 X, molar extent of reaction f, fraction liquid 1.0 0.5 0.0 0 20 40 60 Pressure, kPa 80 100 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.36 (also available as a Mathcad worksheet). 9.36 Rxn: C8H18 + 25/2*O2 = 9*H2O + 8*CO2 Given: 0. ∆ Hf N2 joule ∆ Hf O2 mole 393500 . ∆ Hf CO2 joule Cp N2( T ) Cp H2O( T ) joule 22.243 . 28.883 . mole . K joule ∆ Hf C8H18 mole 285800 . joule 5 2 3.499 . 10 . T . mole . K 2 joule mole joule 9 3 7.464 . 10 . T . mole . K 3 5 2 0.808 . 10 . T . mole . K joule mole . K mole . K 5 2 1.055 . 10 . T . 2 joule mole . K 4 9 3 2.871 . 10 . T . 3 joule 2 0.192 . 10 . T . joule joule 2 mole . K 255100 . mole joule 2 5.977 . 10 . T . 2 0.157 . 10 . T . mole . K 32.218 . joule ∆ Hf H2O mole Cp CO2( T ) 0. joule mole . K 4 joule mole . K 3 9 3 3.593 . 10 . T . joule mole . K Mass Balance Table: Species C8H18 O2 N2 CO2 H2O Total Nin C8H18 Nout CO2 In 1 25/2 (25/2)*(0.71/0.21) = 42.26 0 0 55.76 1 . mole 8 . mole Nin O2 25 . Nout H2O mole 2 Out 0 0 42.26 8 9 59.26 N N2 42.26 . mole 9 . mole Energy Balance at Steady State: k N i. H i 0 i= 1 Q Pd V W (where Hi is the partial molar enthalpy of species i) 4 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Assuming no heat flow, no change in volume of the engine, and an ideal gas mixture yields: k N i. H i W (where is Hi is the molar enthalpy of species i) i= 1 At 150 C: 423.15 . K ∆ Hf N2 H N2 298.15 . K Cp N2( T ) d T 423.15 . K ∆ Hf H2O H H2O 298.15 . K Cp H2O( T ) d T 423.15 . K ∆ Hf CO2 H CO2 W 298.15 . K Nout CO2 . H CO2 6 W = 5.233 10 Cp CO2( T ) d T Nout H2O . H H2O N N2 . H N2 Nin C8H18 . ∆ Hf C8H18 ∆ Hf N2 Nin O2 . ∆ Hf O2 joule This work obtained is per mole of n-octane. 9.37 (also available as a Mathcad worksheet). 9.37 Given: T1 298.15 . K 24300 . ∆ G C3H8 P1 joule mole ∆ H C3H8 104700 . joule mole 5 10 . Pa T2 650 . K 50500 . ∆ G CH4 joule mole ∆ H CH4 74500 . joule mole R 6 10 . Pa P2 68500 . ∆ G C2H4 8.31451 . joule mole ∆ H C2H4 52500 . joule mole Mass Balance Table: Species In Out C3H8 CH4 C2H4 Total 1 0 0 1-X X X 1+X joule K . mole y (1-X)/(1+X) X/(1+X) X/(1+X) (at 298.15 K) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Calculation of mole fractions and activities: yC3H8 ( X ) 1 X 1 X 1 P yC3H8( X ) . aC3H8( X , P ) X yCH4( X ) 10 Pa aC2H4( X , P ) 1 X P yCH4( X ) . aCH4( X , P ) 5. X yC2H4( X ) X 5. 10 Pa P yC2H4( X ) . 5. 10 Pa ∆ G rxn ∆ G C2H4 ∆ G CH4 ∆ G C3H8 4 1 ∆ G rxn = 4.23 10 mole joule ∆ H rxn ∆ H C2H4 ∆ H CH4 ∆ H C3H8 4 1 ∆ H rxn = 8.27 10 mole joule Ka 298.15 exp ∆ G rxn Part (a): Given Ka 298.15 = 3.885 10 R. T1 X Ka 298.15 10 4 (initial guess) aC2H4( X , P1 ) . aCH4( X , P1 ) aC3H8( X , P1 ) yC2H4( Xa ) = 1.971 10 yC3H8( Xa ) = 1 8 4 Xa Xa = 1.971 10 Find( X ) yCH4( Xa ) = 1.971 10 4 Part (b): From equation 9.1-22b: Ka 650 X .5 Given Ka 298.15 . exp ∆ H rxn R . 1 T2 1 Ka 650 = 2.704 T1 (initial guess) Ka 650 yC3H8( Xb ) = 0.079 aC2H4( X , P1 ) . aCH4( X , P1 ) aC3H8( X , P1 ) yC2H4( Xb ) = 0.461 Xb Find( X ) yCH4( Xb ) = 0.461 Xb = 0.854 4 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Part (c): X (initial guess) .5 Given aC2H4( X , P2 ) . aCH4( X , P2 ) Ka 650 Xc aC3H8( X , P2 ) yC3H8( Xc ) = 0.369 yC2H4( Xc ) = 0.316 Find( X ) Xc = 0.461 yCH4( Xc ) = 0.316 9.38 (also available as a Mathcad worksheet). 9.38 R 8.31451 . joule K . mole G rxn a A xA, γ A x A .γ A a C xA, γ C 1 Ka joule x A .γ C T 298.15 . K V 4 . liter mole aB G rxn exp 2400 . 1 a D( P ) P 5 10 . Pa Ka = 2.633 R. T Part (a): xA (initial guess) 0.5 Given xC Ka 1 5 a D 0.5 . 10 . Pa . a C x A , 1 a B. a A x A , 1 xA Find x A xA x A = 0.16 x C = 0.84 Part (b): Recognizing that the partial molar Gibb's excess is in the form of the one constant Margules expression yields: 2 γ A exp 0.3 . x C 2 γ C exp 0.3 . x A Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Given xC Ka 1 5 2 a D 0.5 . 10 . Pa . a C x A , exp 0.3 . x A a B. a A x A , exp 0.3 . 1 xA xA 2 Find x A xA x A = 0.132 x C = 0.868 Part (c): Mass Balance Table: Species A B C D In 1 2 0 0 Out 1-X 2-X X X Assuming that D is an ideal gas: P=(n*R*T)/V X P( X ) X .R .T V (initial guess) 0.5 aD Given Ka X . R. T . mole . a C( X , 1 ) V a B. a A ( 1 X , 1 ) X Find( X ) X = 0.425 NA xA 1 1 X NB 2 X X N A = 0.575 xC N B = 1.575 x A = 0.575 9.39 NC Without dissociation: Amount_Adsorbed_Without K1 . a H2 X ND PD X X . R. T . mole V N C = 0.425 N D = 0.425 x C = 0.425 5 P D = 2.633 10 Pa (also available as a Mathcad worksheet). 9.39 X Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Assuming the activity of molecular hydrogen gas is equal to the pressure of hydrogen gas: Amount_Adsorbed_Without K1 . P H2 With dissociation: Amount_Adsorbed_With K1 . a H2 1. 2 K3 . a H Using the equilibrium constant for the reaction H2 = 2H, the activity of atomic hydrogen can be solved for in terms of the activity of molecular hydrogen: 2 Given K2 aH Find a H a H2 Using the positive root for the activity of hydrogen yields: Amount_Adsorbed_With K1 . a H2 1. 2 K3 . K2 . a H2 Assuming the activity of molecular hydrogen gas is equal to the pressure of hydrogen gas: Amount_Adsorbed_With K1 . P H2 1. 2 K3 . K2 . P H2 If the amount adsorbed varies linearly with the partial pressure of molecular hydrogen then no dissociation is occurring. If the amount adsorbed varies as the square root of the partial pressure, then dissociation is occurring. 9.40 (also available as a Mathcad worksheet). 9.40 Since this is a combustion reaction, the reaction can be assumed to go to completion. Rxn: C4H10 13 . 2 O2 0.79 . 13 . N2 4 . CO2 0.21 2 5 . H2O 0.79 . 13 . N2 0.21 2 Given: ∆ Gf C4H10 16600 . joule mole (The values for the Gibbs free energy of formation are given at one bar. The difference in Gibbs free energy between one bar and one atmosphere will be ignored because it is insignificant in this calculation.) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e ∆ Gf O2 0. ∆ Gf N2 0. joule mole joule mole 1 394400 . ∆ Gf H2O 237100 . gm 4 . 12.001 . MW C4H10 NI ∆ Gf CO2 0.71 . 13 2 0.21 2 T 298.15 . K R 8.31451 . mole joule mole joule K . mole gm 10 . 1.0079 . mole 13 joule mole NF 4 5 0.71 . 13 (Total number of moles) 0.21 2 13 GI ∆ Gf C4H10 13 . 2 0.79 . 13 . ∆ Gf O2 0.21 2 ∆ Gf N2 1 13 . NI 2 R. T . ln ln 0.79 . 13 2 0.79 . 13 . NI 0.21 2 ln 0.21 2 NI 0.79 . 13 GF 4 . ∆ Gf CO2 4 G I = 6.067 10 6 G F = 2.82 10 mole mole From eqn 9.8-5: W 0.79 . 13 . 5 . ∆ Gf H2O 1 1 0.21 2 GF GI 8 W = 9.515 10 9.41 (also available as a Mathcad worksheet). 9.41 Process #1: Ka 1 N2(gas) = N2(metal) aN2 metal H N2 . xN2 metal aN2 gas xN2 metal Ka 1 . P N2 H N2 P N2 5 . ln NF N C4H10 joule 4 R. T . 4 . ln joule W molar N C4H10 . W molar ∆ Gf N2 R. T . N F joule 20000 . gm MW C4H10 NI 5 0.79 . 13 . NF 0.21 2 ln 0.21 2 NF Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e wt%nitrogen A . P N2 Process #2: 2 . Ka 1 H N2 aN metal H N . xN metal aN2 gas P N2 xN metal A N2(gas) =2*N(metal) 2 Ka 2 where 2 Ka 2 . P N2 HN wt%nitrogen B. P N2 where Ka 2 B HN The empirical expression given in the problem is supported by process #2. 9.42 (also available as a Mathcad worksheet). Rxn: CH4 + 2*O2 = CO2 + 2*H2O R 8.31451 ∆ Hf H2O 241800 ∆ Hf CO2 393500 ∆ Hf O2 0 ∆ Hf N2 0 ∆ Hf CH4 74500 ∆ Gf H2O 228600 ∆ Gf CO2 394400 ∆ Gf O2 0 ∆ Gf N2 0 ∆ Gf CH4 50500 Heat capacity: Cp CH4( T ) Cp O2( T ) 19.875 28.167 2 5.021 . 10 . T 2 0.630 . 10 . T 5 2 1.268 . 10 . T 5 2 0.075 . 10 . T 9 3 11.004 . 10 . T Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Cp N2 ( T ) 2 0.623 . 10 . T 27.318 5 2 0.095 . 10 . T Cp H2O( T ) 29.163 2 1.449 . 10 . T 5 2 0.202 . 10 . T Cp CO2( T ) 75.464 4 1.872 . 10 . T 661.42 T Defining z as the methane to air ratio: Mass Balance Table: Species CH4 O2 N2 CO2 H2O Total ∆ Hrxn 25 In 9.524*z 2 7.524 0 0 9.524*(z+1) ∆ Hf CO2 2 . ∆ Hf H2O ∆ Hf CH4 Out (9.524*z)-X 2-2*X 7.524 X 2*X 9.524*(z+1) 2 . ∆ Hf O2 5 ∆ Hrxn 25 = 8.026 10 If z<0.105, then methane is the limiting reactant and X=9.524*z If z>0.105, then oxygen is the limiting reactant and X=1 X( z) if( z< 0.105 , 9.524 . z, 1 ) Cp out1( z, T ) ( 9.524 . z Cp out2( z, T ) 7.524 . Cp N2( T ) Cp out ( z, T ) X( z) ) . Cp CH4( T ) Cp out1( z, T ) (2 X( z) . Cp CO2( T ) 2 . X( z) ) . Cp O2( T ) 2 . X( z) . Cp H2O( T ) Cp out2( z, T ) Using equation 9.7-10b: Tout 2500 (initial guess) Tout T ad( z) Cp out ( z, T ) d T root 298.15 z 0.01 , 0.02 .. 1 ∆ Hrxn 25 . X( z) , Tout Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 2500 2000 T ad( z ) 1500 1000 500 0 0.1 0.2 0.3 0.4 0.5 z 0.6 0.7 0.8 0.9 The solution is approximate because the range for the heat capacity of methane used is only valid between 273 K and 1500 K. 9.43 (also available as a Mathcad worksheet). 9.43: From eqn 3.3-4: W Q 1. T1 dW dQ 1 . T2 W T2 (for a Carnot cycle) T1 T1 T2 T1 T1 T2 T1 dQ1 T1 dQ 1 Cp out . dT 1 T ad( z) W Carnot ( z ) T1 298.15 T1 298.15 . Cp out z, T 1 d T 1 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e W Carnot ( z ) Wobtained Carnot ( z ) (Dividing by 9.524 gives the work per mole of air) 9.524 The work obtained by the Carnot cycle is plotted versus z at the end of Problem 9.44 9.44 (also available as a Mathcad worksheet). 9.44 Nout N2 7.524 Nout CO2( z) X( z) 2 . X( z) Nout H2O( z) 9.524 . z Nin CH4( z) T Nout CH4( z) Nin O2 2 9.524 . z (from the mass balance table) X( z) 2 . X( z) N( z) Gin N2( z) ∆ Gf N2 R. T . ln Gin O2( z) ∆ Gf O2 R. T . ln Nout O2( z) Nin N2 2 9.524 . ( z 7.524 298.15 Partial Molar Gibb's Free Energy: Gout N2( z) ∆ Gf N2 R. T . ln Gout O2( z) ∆ Gf O2 R. T . ln Nout N2 N( z) Nout O2( z) N( z) Gout H2O( z) ∆ Gf H2O R. T . ln Gout CO2( z) ∆ Gf CO2 R. T . ln Gout CH4( z) ∆ Gf CH4 R. T . ln Gin CH4( z) ∆ Gf CH4 Nout H2O( z) N( z) Nout CO2( z) N( z) Nout CH4( z) N( z) R. T . ln Nin CH4( z) N( z) Nin N2 N( z) Nin O2 N( z) From eqn 9.7-16b: Out1( z ) Nout N2 . Gout N2 ( z ) Nout O2 ( z ) . Gout O2 ( z ) Nout CH4 ( z ) . Gout CH4 ( z ) 1) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Out2( z ) Nout H2O ( z ) . Gout H2O ( z ) Nin N2 . Gin N2 ( z ) In ( z ) W FuelCell ( z ) Out1( z ) Wobtained FuelCell ( z ) Nout CO2 ( z ) . Gout CO2 ( z ) Nin O2 . Gin O2 ( z ) Out2( z ) Nin CH4 ( z ) . Gin CH4 ( z ) In ( z ) W FuelCell ( z ) 9.524 The work obtained has units of joules per mole of air. (also available as a Mathcad worksheet). 9.45 9.45 Given: 108700 . ∆ G AgCl ∆ G TlCl R joule mole 186020 . 8.31451 . joule mole joule K . mole ∆ G Ag 77110 . ∆ G Tl 32450 . T joule mole 298.15 . K joule mole ∆ G Cl 131170 . joule mole Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Part (a): ∆ Grxn AgCl K AgCl exp ∆ G Ag ∆ G Cl 4 1 ∆ Grxn AgCl = 5.464 10 mole ∆ G AgCl ∆ Grxn AgCl K AgCl = 2.676 10 R. T joule 10 The solubility product given in illustration 9.3-2 is 1.607E-10. This experimental value is of the same order of magnitude as the theoretical value calculated above. Part (b): ∆ Grxn TlCl K TlCl exp ∆ G Tl ∆ G Cl ∆ G TlCl ∆ Grxn TlCl = ∆ Grxn TlCl joule K TlCl = R. T The solubility product given in illustration 9.3-2 is 1.116E-2. This experimental value is two orders of magnitude greater than the theoretical value calculated above. 9.46 a) From Table 9.1-4, we have that kJ kJ ∆G of , Ag + = 77.11 and ∆G o . −− = − 741991 f , SO 4 mol mol Also, from Perry' s Handbook, kJ mol Now consider the reaction Ag 2 SO4 = 2Ag+ + SO4 — The chemical equilibrium relation for this reaction is (2 × 77110 − 741991 − ( −641210 ) 53439 Ka = exp − = exp − 8.314 × 298.15 8.314 × 298.15 ∆G of , Ag 2SO 4 = 614 .21 F H = exp( −215580 . ) = 4.3388 × 10−10 = I K a 2Ag + aSO −− 4 a AgSO 4 F H = Kso Now from eqn. (9.2-7), assuming the simple Debye-Hückel equation I K Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e a f ln Ks = ln Kso + ν+ + ν− z + z− α = ln Kso + (2 + 1) 1 × 2 α = ln Kso + 3 × 2α But M SO −− = 4 1 ∑ zi2 Mi 2 e 1 MAg + + 4 MSO −− 4 2 e 1 M Ag + + 4 M SO −− 4 2 j j 1 M + so that 2 Ag e j 2 M Ag + MSO −− 3 4 ln Ks = + 6α M Ag + = ln = ln M Ag + 2 (1 molal)3 This has the solution mol mol MAg + = 8.224 × 10−4 and MSO −− = 4.112 × 10−4 4 liter liter Therefore, ln Kso F H Ks = 8.224 × 10−4 mol liter I K 2 × 4.112 × 10−4 e j 3 F I H K mol mol = 2.781 × 10 −10 liter liter 3 b) Note that there is a error in the problem statement of the first printing of the text. The solution should be 0.5 M CuSO4 and saturated with AgSO4 . The The half-cell reactions are Ag + + e → Ag( s) for which E o = +0.80 volts Cu(s) → Cu ++ + e for which E o = −0.34 volts Therefore for the reaction 2Ag + + Cu(s) → 2Ag (s) + Cu ++ E o = +0.80 − 0.34 = 0.46 volts Next we have from eqn. (9.9-7) that c h c h e j e j F c M h aγ f I = 0.46 − 0.0257G ln GH e M j + ln aγ f JJK F (0.5) aγ f IJ = 0.46 − 0.0257G ln + ln GH e M j aγ f JK a ++ a ++ RT RT E =E − ln Cu 2 = E o − ln Cu 2F F aAg + aAg + o 0 .5 Cu ++ Ag + 0.5 c a f h e a f j MCu ++ γ ± Cu + + RT =E − ln F M Ag + γ ± Ag + o 0.5 0.5 ± Cu ++ ± Cu ++ 0 .5 0.5 ± Cu ++ Ag + ± Cu ++ To proceed further, we have to compute the solubility of AgSO4 in the 0.5M CuSO4 solution. For this and all the calculations that follow, we will use the fact that since the CuSO4 concentration is so much higher than that of AgSO4 , we will neglect the contribution of AgSO4 to the total solution ionic strength. Also, because of the high ionic strength of the solution, we will use Eqn. (7.11-18) to compute the mean ionic activity coefficient, as follows: Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e ln γ ± = − 1178 . z+ z− where I = I 1+ I + 0.3 I c h 1 2 1 2 × 0.5 + 2 2 × 0.5 = (2 + 2 ) = 2 2 2 Therefore, a f lnaγ f ln γ ± Ag 2SO 4 ± Ag 2SO 4 =− =− 1178 . 1×2 2 1+ 2 1178 . 2 ×2 2 1+ 2 + 0.3 × 2 = −0.7801 + 0.3 × 2 = −2.1602 So now we have ln Ks = ln Kso + ν+ + ν− ( −0.7801) a = ln Kso f + (2 + 1)( −0.7801) = −215580 . − 2.3403 = −23.8983 so eM j M = 2 −11 Ks = 4.1793 × 10 Ag + e M j 0.5 = 2 SO 4−− 3 (1 molal) Ag + (1 molal) 3 and MAg + = 4.1793 × 10−11 = 91425 . × 10 −6 molal 0.5 F (0.5) + 0.5 × (−2.1602) − 1 × (−0.7801)I GH c9.1425 × 10 h JK 0 .5 E = 0.46 − 0.0257 ln −6 = 0.46 − 0.0257(11256 . − 10801 . + 0.7801) = 0.46 − 0.2816 = 0.178 volt Since this is positive, it is the potential that is produced by the cell (rather than must be applied) for metallic silver to form. 9.47 (also available as a Mathcad worksheet). 9.47 R Given (Ka and Hrxn were calculated on CHEMEQ): Ka 345.0 Hrxn 103940 . joule P 5 10 . Pa T 600 . K 8.31451 . Ni mole Mass Balance Table: Species In Out y C6H6 C2H4 C6H5C2H5 Total 1 1 0 1-X 1-X X 2-X (1-X)/(2-X) (1-X)/(2-X) X/(2-X) joule K . mole 2 . mole Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e aC6H6( X ) 1 X 2 X aC2H4( X ) KaX( X ) aC6H5C2H5( X ) aC6H6( X ) . aC2H4( X ) X (initial guess) 0.9 Given KaX( X ) Ka X = 0.946 X XX 1 X 2 X X aC6H5C2H5( X ) 2 X Find( X ) X . mole Assuming the contents of the reactor behave as an ideal gas: Ni . R. T Vi Nf (2 X ) . mole P Vf Nf . R. T P Nf = 1.054 mole An energy balance on the reactor yields: Q Vf XX . Hrxn Pd V Vi 5 Q = 1.031 10 joule (Heat must be removed because Q is negative) 9.48 (also available as a Mathcad worksheet). 9.48 Part (a): Using equation 9.1-20b: ln ( Ka ) ∆ Grxn R. T 57.33 R. T d dT 0.17677 ∆ Hrxn R R. T 57.33 ∆ Hrxn R. T 2 R. T 2 ∆ Hrxn 57.33 . kJ mole 2 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Part (b): ∆ G rxn ( T ) Ka ( T ) 57330 . exp joule 176.77 . mole joule mole . K .T 8.31451 . R joule K . mole ∆ G rxn ( T ) R. T Mass Balance Table: Species N2O4 NO2 Total In 1 0 1 Out 1-X 2*X 1+X Calculation of mole fractions and activities: y N2O4( X ) a N2O4( X , P ) KaX( X , P ) X 0.7 Given Xb 0.1 1 X 1 X y NO2( X ) y N2O4( X ) . a NO2( X , P ) P a NO2( X , P ) 5 10 . Pa 2.X 1 X y NO2( X ) . P 5 10 . Pa 2 a N2O4( X , P ) (initial guess) Ka ( T ) KaX( X , P ) 4 X 323.15 . K , 10 . Pa X( T , P ) Xb 1 Find( X ) 5 X 323.15 . K , 10 . Pa Xb 10 6 X 323.15 . K , 10 . Pa y NO2 Xb 0.1 = 0.91 y NO2 Xb 1 = 0.605 y NO2 Xb 10 = 0.261 y N2O4 Xb 0.1 = 0.09 y N2O4 Xb 1 = 0.395 y N2O4 Xb 10 = 0.739 Part (c): Xc 0.1 4 X 473.15 . K , 10 . Pa y NO2 Xc 0.1 = 1 y N2O4 Xc 0.1 = 1.246 10 Xc 1 5 X 473.15 . K , 10 . Pa y NO2 Xc 1 = 0.999 4 y N2O4 Xc 1 = 1.243 10 Xc 10 6 X 473.15 . K , 10 . Pa y NO2 Xc 10 = 0.988 3 y N2O4 Xc 10 = 0.012 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.49 (also available as a Mathcad worksheet). 9.49 Given: 58620 . ∆ H rxn Ta joule ∆ S rxn mole 298.15 . K Tb 373.15 . K 138.2 . joule R K . mole 4 10 . Pa P1 P2 8.31451 . 5 10 . Pa joule K . mole P3 6 10 . Pa Mass Balance Table: Species In Out y M D Total 2 0 2-2*X X 2-X (2-2*X)/(2-X) X/(2-X) Activities, Equilibrium Constant, and Equilibrium Expression: 2.X . P X 5 10 . Pa a M( X , P ) 2 ∆ G rxn ( T ) ∆ H rxn KaX( X , P ) 2 T . ∆ S rxn 0.999 Given Ka ( T ) X . P 2 X 105 . Pa exp ∆ G rxn ( T ) R. T a D( X , P ) a M( X , P ) X a D( X , P ) 2 (initial guess for solver) KaX( X , P ) Ka ( T ) Part (a): DegreeOfDimerization( Ta , P1 ) = 0.953 DegreeOfDimerization( Ta , P2 ) = 0.985 DegreeOfDimerization( Ta , P3 ) = 0.995 X 1 DegreeOfDimerization( T , P ) Find( X ) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Part (b): DegreeOfDimerization ( Tb , P1 ) = 0.547 DegreeOfDimerization( Tb , P2 ) = 0.842 DegreeOfDimerization( Tb , P3 ) = 0.949 Part (c): Nomenclature N = initial number of moles before dimerization Nm = number of moles of monomer after dimerization = N-2X Nd = number of moles of dimer = X Total # of moles = N-X yM=(N-2X)/(N-X) yD=X/(N-X) P = (Nm + Nd)*R*T/V P ( Nm Nd ) . ( R. T ) ( Nm Nd ) . ( N . R. T ) ( N X ) . ( N . R. T ) V N V N V ( X.( N yd Ka P 2 ym . X) ) 1 bar 1 bar P 4 . Ka . X N N. 2 2 which has the solution P 2 2 X) . (N or 1 bar 1 P 4 . Ka . X 1. 1 N 2 1 1 (N X) X 1 N 1 0.5 . 0.5 N 4 . Ka . P 1 0.5 . 1 1 4 . Ka . 1 bar P 1 0.5 . 1 4 . Ka . P 1 1 1 bar 1 bar and P 4 . Ka . . . . ( N R T) V P 1 1 bar where Ka exp ( ∆ Hrxn T∆ Srxn ) . RT 1 bar Note that the EOS goes to the ideal gas limit as Ka goes to zero, and 1/2 the ideal gas limit when Ka goes to infinity (all dimer). Also, the equation of state will have an other than linear dependence on temperature due to the temperature dependence of Ka. Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.50 (also available as a Mathcad worksheet). 9.50 Given (All Units are SI): T1 267 T2 255 2 . 10 6 P1 CH4 P2 CH4 Activities: a hydrate 1 a H2O 1 a CH4 P CH4 1.5 . 10 6 R 8.31451 P CH4 5 10 Part (a): a hydrate Ka P CH4 5.75 . a H2O ∆ G rxn T , P CH4 R. T . ln Ka P CH4 a CH4 P CH4 3 ∆ G rxn T1, P1 CH4 = 6.65 10 3 ∆ G rxn T2, P2 CH4 = 5.742 10 Part (b): ∆ H rxn 3 ∆ S rxn 10 ∆ G rxn T1, P1 CH4 Given ans (initial guesses) 10 Find ∆ H rxn , ∆ S rxn 4 ∆ H rxn = 1.357 10 T1. ∆ S rxn ∆ H rxn ∆ H rxn ans 0 ∆ G rxn T2, P2 CH4 ∆ S rxn ans 1 ∆ S rxn = 75.737 Part (c): Ka 273 P273 CH4 Given Ka P1 CH4 . exp 6 10 R 1 1 273 T1 . Ka 273 = 0.044 (initial guess) Ka P273 CH4 6 P273 CH4 = 2.288 10 ∆ H rxn Ka 273 P273 CH4 Find P273 CH4 ∆ H rxn T2. ∆ S rxn Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.51 The reactions are iA1 ⇔ Aij jB1 ⇔ B ji iA1 + jB1 ⇔ Ai B j and The overall mass balance on species A NA = initial number of = moles of A1 ∑ iN + ∑ ∑ iN Ai i i Ai Bj = j F ∑ GH iN +i Ai i I ∑ N JK Ai Bj j Overall mass balance on species B NB = initial number of moles of B1 = ∑ jN + ∑ ∑ jN Bj j j F I ∑ jGH N + ∑ N JK = Ai Bj Bj i Ai Bj j i At equilibrium c h G Bi − iG B1 = 0 ; GAi B j − iGA1 + jGB1 = 0 ; G Ai − iG A1 = 0 ; and G total = ∑ N Ai G Ai + ∑ N B j G B j + ∑ ∑ N Ai B j G Ai B j i j i j At equilibrium dGtotal = 0 with respect to each extent of reaction. dG total ∑G A i dN A i + ∑ G B i dN + ∑N A id G A i + ∑N = Bi Bi d G B i + ∑ ∑ G A iB j dN + ∑∑N A iB j A i B j d G A iB j =0 0 by the GibbsDuhem equation Also, using the equilibrium equations b g dGtotal = 0 = ∑ iG A1 dN Ai + ∑ iG B1dN Bi + ∑ ∑ iG A1 + jGB 1 dN Ai B j = 0 = G A1 ∑ idN Ai + GB 1 ∑ idN Bi + ∑ iG A 1 ∑ dN Ai B j + ∑ jGB 1 ∑ dN Ai B j = GA1 LM F idN N∑ GH i Ai i + i ∑ dN Ai B j j I OP + G LM e jdN JK Q N∑ B1 j j j + j ∑ dN Ai B j jOPQ = G A 1dN A + GB 1dN B FG ∂ G IJ H ∂N K ≡ G A = G Ai . Also total A N BT , P FG ∂ G IJ H ∂N K ≡ GB = GBi total B NA , T, P Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e Therefore G A 1 = G A and G B1 = GB Also, we have that, by definition ∂ Gi ∂P FG IJ H K (1) = RT T FG ∂ln f IJ H ∂P K i (2) T Thus, integrating between any two states, we have a f a f Gi T , P2 − Gi T , P1 = RT ln a f a f fi T , P2 fi T , P1 (3) Now using Eqn. (3) with Eqns. (1), and recognizing that Eqns. (1) must be satisfied at all T and P implies that f A (T, P ) = f A1 (T, P ) and f B (T, P) = f B1 (T, P) Alternatively we could integrate Eqn. (2) between P = 0 and the pressure P and note that Eqn. (1) must be satisfied at all T and P. This implies that f A1 ( P) f A ( P) = f A1 ( P = 0) f A ( P = 0) but as P→0 only A1 will be present (LeChatelier’s principle) ⇒ f A (P = 0) = f A 1( P = 0) so that f A 1( P) = f A ( P) . 9.52 A1 + A1 ⇔ A2 A1 + A2 ⇔ A3 M A1 + An ⇔ An +1 etc. N0 = Total moles of A1 initially = NT ∑ i NN i = NT T ⇒ N0 = NT = N1 + 2 N2 + 3 N3 + L + nAn + L = ∑ ix where N i T ∑ iN i = total number of moles in system ∑ ix i Now b = ∑ xi bi = ∑ ixi b1 = b1 ∑ ixi and a= which implies that ∑∑ x x i j aii a jj = ∑ ∑ ix jx a i j 1 d∑ ix i = a1 2 i Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e (a) FG N IJ HN K a = a1 0 2 and b = b1 T FG N IJ HN K 0 T Also K j +1 = K = a j +1 a j a1 = a f φ φ x x a P 1 bar f φj +1 x j +1 P 1 bar 2 = j 1 j 1 φ j +1 x j +1 (1 bar ) φ j φ1 x j x1 P Then φ jφ1 P φ j +1 = x j +1 x j x1 K or φ j +1 φ jφ1 P = x j x1 K x j +1 For the moment we will assume that φ jφ1 P φ j+ 1 = x j +1 x j x1 K =α is independent of the index j and then show that this is indeed the case. Then x12α K = x2 a f a f a f x1 x2α K = x3 = x1α K x2 = x1α K x12α K = x13 α K 2 Similarly a f x4 = x14 α K M a f 3 j− 1 x j = αK x1j M etc. Then NT = N 0 ∑ ixi = N0 ∑ i( Kα) i −1 x1i . ∑ x j = 1 = ∑ ( Kα) j−1 x1j Also =1 Now from the properties of geometric sums ∞ 1 ∑ θi = 1 − θ i =0 we have ∞ ∞ ∞ j =1 j =1 j =0 ∑ ( Kα) j−1 x1j = x1∑ aKαx1f j−1 = x1 ∑a Kαx1f j = 1 − K1αx x 1 =1 (*) Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e so that x1 = 1 − Kαx1 or x1 (1 + Kα) = 1 ; Kα = 1 −1 x1 Also F I ∑ iθi− 1 = dθ GH ∑θi JK = dθ FH 1 − θIK = (1 − θ) 2 = ∑ iθi −1 ∞ d i =0 ∞ d 1 ∞ 1 i= 0 i =1 so that ∞ ∞ ∞ i =1 i =1 i= 0 ∑ i( Kα)i− 1x1i = x1∑ia Kαx1fi −1 = x1∑ iaKαx1fi −1 = x1 a1 − Kαx f 1 2 FG H N 1 x1 = T = N0 x1 1 − Kαx1 from Eqn. (*) above FG IJ H K IJ K FG IJ H K N 1 N0 N0 ⇒ T = and b = b1 = x1b1 ; a = a1 N0 x1 NT NT 2 = 1 2 1 x1 2 = x12 a1 For the van der Waals equation of state we have P= RT a NRT N 2a − 2 = − V −b V V − Nb V and ln φi = 2∑ x j aij Bi − ln (Z − B) − Z−B RTV which here becomes ln φi = 2 ∑ x j ija1 iB1 iB1 2 iai − ln(Z − B) − = − ln( Z − B) − Z−B RTV Z−B RTV ln φi = so that iBi 2ia1 N0 − ln( Z − B ) − Z− B RTV NT ∑ jx j Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e ln φ j φ1 φ j +1 = ln φ j + ln φ1 − ln φj +1 = ( j + 1 − ( j + 1)) B1 + (− 1 − 1 + 1) ln( Z − B) z−B 2a1 N0 ( j + 1 − ( j + 1)) RTV NT − = − ln( Z − B ) φ j φ1 φ j +1 (b) or Pφ jφ1 φ j +1 = = 1 RT P = Z − B V −b RT RT NT RT = = =α V − b V − b1 N0 N T NT V − N 0b1 a f which is independent of the index j as was assumed. Now that we know that αis independent of the index j. We can use x1 (1 + αK) = 1 and α = FG H x1 1 + IJ K NT RT RT RT = = NT V − N0b1 V − N 0 N T b V − x1b a f a f RTK = 1 ⇒ x1 V − x1b1 + RTK = V − x1b1 V − x1b1 a f − x12b1 + x1 V + RTK + b1 − V = 0 a f b x − x1 V + RTK + b1 + V = 0 2 1 1 aV + RTK + b f ± aV + RTK + b f − 4b V 2 (c) x1 = 1 1 1 (**) 2 b1 Also P= RT a RT x2 a − 2 = − 1 21 V −b V V − x1b V (***) Equations (**) and (***) are the set which forms the equation of state for the associating van der Waals fluid. Notice that to solve for V we need x1 which depends on V ; therefore, the equation is no longer cubic. Note that if the fluid is non-associating, then K = 0 in this limit x1 = aV + b f ± dV 2 1 − 4b1V + b12 2b1 i = aV + b f − aV − b f = 1 so that P= RT a − 1 V − b1 V 2 which is the usual van der Waals equation. 1 1 2 b1 Chapter 9 Solutions to Chemical and Engineering Thermodynamics, 3e 9.53 The description of HF containing systems is described in the article “Collection of Phase Equilibrium Data for Separation Technology” by William Schotte in Ind. Eng. Chem. Process Des. Dev. (1980), 19, 432–439. By a careful examination of the density and other data, he proposed that HF associates in the vapor phase according to the reactions 2HF ⇔ ( HF) 2 6HF ⇔ ( HF) 6 8HF ⇔ ( HF)8 and, over the temperature range of 195 to 240 K, the equilibrium constants are LM OP N Q 211009 . = exp L MN T − 69.7292OPQ 252245 . OP = exp L . MN T − 834689 Q K2 = f2 6429.4 = exp − 241456 . f12 T K6 = f6 f16 K8 = f8 f18 where Kn has units of (atm)n −1 , and fi is the fugacity of species i. Next, Schotte used a (questionable) argument by Tamir and Wisniak [Chem. Eng. Sci (1978), 33, 651] that the fugacity coefficients φ i = fi xi P of the monomers, dimers, hexamers and octamers are all aproximately equal, and can be calculated from the fugacity of pure HF. This alleviated the need to specify the molecular parameters for the association complexes. Using this model, Schotte obtained very good agreement for the association factor (density) of pure HF and an HF-Freon mixture using a simple equation of state such as Peng-Robinson (which must be solved iteratively since chemical equilibrium is superimposed on the phase equilibrium calculation). An alternative, instead of using the Tamir-Wisniak assumption of equality of fugacity coefficients is to use the model in Problem 9.52 a j = j2 a1 and bj = jb1 and then treat HF as a chemical reaction system with HF, ( HF)2 , ( HF)6 and ( HF)8 . Similarly, HF + non-associating component would be treated as a five component system: non-associating component + HF, ( HF)2 , ( HF)6 and ( HF)8 . In each of these cases the compositions of the HF components change as the equilibrium changed. The problem with this proposal is that the a parameters for the association complexes become unrealistically large. For example, a 8 = 64 × a1 . Consequently, no completely theoretically-correct model for the HF associating system exists, though the models now in use are probably satisfactory for engineering calculations.