Energy Conversion Table
J
1 Joule (J)
= 1
1 eVolt (eV)
1 cm -1
=
1K
eV
K
6.24146· 10 18 5.03404. 1022 7.24290.1022
1.60219· 10- 19 1
8.06548· 103
1.98648. 10 -23 1.23985. 10 -4 1
1.16045 . 104
=
1.43879
23
5
1
= 1.38066.10- 8.61735.10- 6.95030.10- 1
Explanation
The energy E is quoted in Joule (J) or watt-seconds (Ws)
1J
= 1 Ws.
In spectroscopy, one frequently quotes the term values in wavenumbers
v=Elhc.
The conversion factor is
Elv = hc = 1.98648 . 10- 23 J/cm -1.
Another energy unit, especially in collision experiments, is the electron volt
(eVolt, eV). The voltage Vis given in volts, and the energy conversion factor is
obtained from E = eV:
EIV = e = 1.60219.10- 19 J/V .
In the case of thermal excitation with the heat energy kT, the absolute tem-
perature is a measure of the energy. From E
factor
EIT= k = 1.38066 .10- 23 J/K.
= kT we obtain the conversion
H. Haken H. C. Wolf
Atomic and
Quantum Physics
An Introduction to the Fundamentals
of Experiment and Theory
Translated by W D. Brewer
Second Enlarged Edition
With 265 Figures
Springer-Verlag Berlin Heidelberg New York
London Paris Tokyo
Professor Dr. Dr. h. c. Hermann Haken
Institut fiir Theoretische Physik, Universitiit Stuttgart, Pfaffenwaldring 57,
0-7000 Stuttgart 80, Fed. Rep. of Germany
Professor Dr. Hans Christoph Wolf
Physikalisches Institut, Universitiit Stuttgart, Pfaffenwaldring 57,
0-7000 Stuttgart 80, Fed. Rep. of Germany
Translator:
Professor Dr. William D. Brewer
Freie Universitiit Berlin, Fachbereich Physik, Arnimallee 14,
0-1000 Berlin 33
Title of the german original edition:
H. Haken, H. C. Wolf: Atom- und Quantenphysik.
Eine Einj'ahrung in die experimentellen und theoretischen Grundlagen.
(Oritte, iiberarbeitete und erweiterte Auflage)
© Springer-Verlag Berlin Heidelberg 1980, 1983, and 1987
ISBN-13: 978-3-540-17702-9
DOl: 10.1007/978-3-642-97014-6
e-ISBN-13: 978-3-642-97014-6
Library of Congress Cataloging-in-Publication Data. Haken, H. Atomic and quantum physics. Translation of: Atom- und
Quantenphysik. Bibliography: p. Includes index. 1. Atoms. 2. Quantum theory. I. Wolf, H.C. (Hans Christoph), 1929·.
II. Title. QC173.H17513 1987 539.7 87-9450
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under
the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee
must always be paid. Violations fall under the prosecution act of the German Copyright Law.
© Springer-Verlag Berlin Heidelberg 1984 and 1987
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general
use.
2153/3150-543210
Preface to the Second Edition
The excellent critique and very positive response to the first edition of this book have
encouraged us to prepare this second edition, in which we have tried to make improvements wherever possible. We have profited much from the suggestions of professors
and students as well as from our own experience in teaching atomic and quantum
physics at our university.
Following a widespread request, we have now included the solutions to the exercises
and present these at the end of the book. Among the major new sections to be found in
this second edition are the following:
We now include the derivation of the relativistic Klein-Gordon equation and of the
Dirac equation because the latter, in particular, appears in atomic physics whenever
relativistic effects must be taken into account. Our derivation of the Schrodinger equation allowed us to present this extension in a straightforward manner.
The high precision methods of modern spectroscopy allow the atomic physicist to
measure extremely small but important shifts of the atomic lines. A very important
effect of this kind is the Lamb shift, for which a detailed theoretical derivation is given
in a new section. In order to put this in an adequate framework, the basic ideas of the
quantization of the electromagnetic field as used in quantum electrodynamics are
given. Again it turned out that all the concepts and methods needed to discuss these
seemingly advanced theories had already been presented in previous chapters so that
again the reader may easily follow these theoretical explanations.
The section on photoelectron spectroscopy has been enlarged and revised. Furthermore, the two-electron problem has been made more explicit by treating the difference
between triplet and singlet states in detail. Finally, our previous presentation of nuclear
spin resonance has been considerably enlarged because this method is finding widespread and very important applications, not only in chemistry but also in medicine, for
instance in NMR tomography, which is an important new tool in medical diagnostics.
This is only one example of the widespread and quite often unanticipated application
of atomic and quantum physics in modern science and technology.
It goes without saying that we have not only corrected a number of misprints but
have also tried to include the most recent developments in each area. This second
English edition corresponds to the third German edition, which is published at about
the same time. We wish to thank R. Seyfang, J. U. von SchOtz and V. Weberruss for
their help in preparing the second edition. It is again a pleasure for us to thank
Springer-Verlag, in particular Dr. H. Lotsch and C.-D. Bachem for their always
excellent cooperation.
Stuttgart, March 1987
H. Haken
H. C. Wolf
Preface to the First Edition
A thorough knowledge of the physics of atoms and quanta is clearly a must for every
student of physics but also for students of neighbouring disciplines such as chemistry
and electrical engineering. What these students especially need is a coherent presentation of both the experimental and the theoretical aspects of atomic and quantum
physics. Indeed, this field could evolve only through the intimate interaction between
ingenious experiments and an equally ingenious development of bold new ideas.
It is well known that the study of the microworld of atoms caused a revolution of
physical thought, and fundamental ideas of classical physics, such as those on measurability, had to be abandoned. But atomic and quantum physics is not only a fascinating
field with respect to the development of far-reaching new physical ideas. It is also of
enormous importance as a basis for other fields. For instance, it provides chemistry
with a conceptual basis through the quantum theory of chemical bonding. Modern
solid-state physics, with its numerous applications in communication and computer
technology, rests on the fundamental concepts first developed in atomic and quantum
physics. Among the many other important technical applications we mention just the
laser, a now widely used light source which produces light whose physical nature is
quite different from that of conventional lamps.
In this book we have tried to convey to the reader some of the fascination which
atomic and quantum physics still gives a physicist studying this field. We have tried to
elaborate on the fundamental facts and basic theoretical methods, leaving aside all
superfluous material. The text emerged from lectures which the authors, an experimentalist and a theoretician, have given at the University of Stuttgart for many years.
These lectures were matched with respect to their experimental and theoretical contents.
We have occasionally included in the text some more difficult theoretical sections,
in order to give a student who wants to penetrate thoroughly into this field a self-contained presentation. The chapters which are more difficult to read are marked by an
asterisk. They can be skipped on a first reading of this book. We have included
chapters important for chemistry, such as the chapter on the quantum theory of the
chemical bond, which may also serve as a starting point for studying solid-state
physics. We have further included chapters on spin resonance. Though we explicitly
deal with electron spins, similar ideas apply to nuclear spins. The methods of spin resonance playa fundamental role in modern physical, chemical and biological investigations as well as in medical diagnostics (nuclear spin tomography). Recent developments
in atomic physics, such as studies on Rydberg atoms, are taken into account, and we
elaborate the basic features of laser light and nonlinear spectroscopy. We hope that
readers will find atomic and quantum physics just as fascinating as did the students of
our lectures.
The present text is a translation of the second German edition A tom- und Quantenphysik. We wish to thank Prof. W. D. Brewer for the excellent translation and the most
valuable suggestions he made for the improvement of the book. Our thanks also go to
VIII
Preface to the First Edition
Dr. J. v. Schutz and Mr. K. Zeile for the critical reading of the manuscript, to Ms. S.
Schmiech and Dr. H. Ohno for the drawings, and to Mr. G. Haubs for the careful
proof-reading. We would like to thank Mrs. U. Funke for her precious help in typing
new chapters. Last, but not least, we wish to thank Springer-Verlag, and in particular
H. Lotsch and G. M. Hayes, for their excellent cooperation.
Stuttgart, February 1984
H. Haken
H. C. Wolf
Contents
List of the Most Important Symbols Used ....... . . . . . . . . . . . . . . . . . . . . . . . . . .
xv
1. Introduction .......................................................
1.1 Classical Physics and Quantum Mechanics ..........................
1.2 Short Historical Review ..........................................
1
1
1
2. The Mass and Size of the Atom .......................................
2.1 What is an Atom? ...............................................
2.2 Determination of the Mass .......................................
2.3 Methods for Determining Avogadro's Number ......................
2.3.1 Electrolysis ...............................................
2.3.2 The Gas Constant and Boltzmann's Constant ..................
2.3.3 X-Ray Diffraction in Crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.4 Determination Using Radioactive Decay. .. . . . . . . . . . . . . . .. . . . . .
2.4 Determination of the Size ofthe Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 Application of the Kinetic Theory of Gases ....................
2.4.2 The Interaction Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3 Experimental Determination of Interaction Cross Sections .......
2.4.4 Determining the Atomic Size from the Covolume ...............
2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals. .
2.4.6 Can Individual Atoms Be Seen? ..............................
Problems ..........................................................
5
5
5
7
7
7
8
9
10
10
11
14
15
15
20
23
3. Isotopes ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 The Periodic System of the Elements ...............................
3.2 Mass Spectroscopy ..............................................
3.2.1 Parabola Method. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Improved Mass Spectrometers ...............................
3.2.3 Results of Mass Spectrometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.4 Modern Applications of the Mass Spectrometer ................
3.2.5 Isotope Separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problems ..........................................................
25
25
27
27
30
31
32
33
34
4. The Nucleus of the Atom ............................................
4.1 Passage of Electrons Through Matter ..............................
4.2 Passage of Alpha Particles Through Matter (Rutherford Scattering) . . . . .
4.2.1 Some Properties of Alpha Particles ...........................
4.2.2 Scattering of Alpha Particles by a Foil ........................
4.2.3 Derivation of the Rutherford Scattering Formula ...............
4.2.4 Experimental Results ................ . . . . . . . . . . . . . . . . . . . . . . .
4.2.5 What is Meant by Nuclear Radius? ...........................
Problems ..........................................................
35
35
37
37
37
39
44
45
46
x
Contents
5. The Photon ........................................................
5.1 Wave Character of Light ........................................
5.2 Thermal Radiation .............................................
5.2.1 Spectral Distribution of Black Body Radiation ................
5.2.2 Planck's Radiation Formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3 Einstein's Derivation of Planck's Formula. . . . . . . . . . . . . . . . . . . .
5.3 The Photoelectric Effect ........................................
5.4 The Compton Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1 Experiments .............................................
5.4.2 Derivation of the Compton Shift ............................
Problems ..........................................................
47
47
49
49
51
52
56
58
58
60
62
6. The Electron .......................................................
6.1 Production of Free Electrons ....................................
6.2 Size of the Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 The Charge of the Electron ......................................
6.4 The Specific Charge elm of the Electron ...........................
6.5 Wave Character of Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problems ..........................................................
65
65
65
66
67
70
74
7. Some Basic Properties of Matter Waves ................................
7 .1 Wave Packets .................................................
7.2 Probabilistic Interpretation ......................................
7.3 The Heisenberg Uncertainty Relation .............................
7.4 The Energy-Time Uncertainty Relation ............................
7.5 Some Consequences of the Uncertainty Relations for Bound States ....
Problems ..........................................................
77
77
81
83
85
86
89
8. Bohr's Model of the Hydrogen Atom ..................................
8.1 Basic Principles of Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 The Optical Spectrum of the Hydrogen Atom. . . . . . . . . . . . . . . . . . . . . . .
8.3 Bohr's Postulates ..............................................
8.4 Some Quantitative Conclusions ..................................
8.5 Motion of the Nucleus ..........................................
8.6 Spectra of Hydrogen-like Atoms .................................
8.7 MuonicAtoms ................................................
8.8 Excitation of Quantum Jumps by Collisions ........................
8.9 Sommerfeld's Extension of the Bohr Model and the Experimental
Justification of a Second Quantum Number ........................
8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change ........
8.11 Limits of the Bohr-Sommerfeld Theory. The Correspondence Principle.
8.12 Rydberg Atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
91
91
93
96
100
101
103
105
107
110
111
112
113
115
9. The Mathematical Framework of Quantum Theory ......................
9.1 The Particle in a Box ...........................................
9.2 The SchrOdinger Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3 The Conceptual Basis of Quantum Theory .........................
9.3.1 Observations, Values of Measurements and Operators... . ......
117
117
121
123
123
Contents
XI
9.3.2 Momentum Measurement and Momentum Probability ......
9.3.3 Average Values and Expectation Values ...................
9.3.4 Operators and Expectation Values. . . .. . .. . . . .. . . .. . . . . . . .
9.3.5 Equations for Determining the Wavefunction ..............
9.3.6 Simultaneous Observability and Commutation Relations. .. . .
9.4 The Quantum Mechanical Oscillator ............................
Problems. . . .. . .. . .. . .. . . . . .. .. . . . .. . . . .. . . . .. . .. . .. . . . . . .. . . . .. . .
124
125
128
129
131
134
140
10. Quantum Mechanics of the Hydrogen Atom ...........................
10.1 Motion in a Central Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Angular Momentum Eigenfunctions ............................
10.3 The Radial Wavefunctions in a Central Field * ....................
10.4 The Radial Wavefunctions of Hydrogen .........................
Problems .........................................................
145
145
147
153
155
161
11. Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms ..........
11.1 Shell Structure . .. . . .. . .. . . . .. . . . .. . . . .. . .. . .. . .. . . .. . . .. . .. . .
11.2 Screening...................................................
11.3 The Term Diagram ...........................................
11.4 Inner Shells .................................................
Problems .........................................................
163
163
165
166
171
171
12. Orbital and Spin Magnetism. Fine Structure ...........................
12.1 Introduction and Overview ....................................
12.2 Magnetic Moment of the Orbital Motion . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Precession and Orientation in a Magnetic Field ...................
12.4 Spin and Magnetic Moment of the Electron ......................
12.5 Determination of the Gyromagnetic Ratio
by the Einstein-de Haas Method. . . . ... . .. . . .. .. .. . .. . .. . . . . . . . .
12.6 Detection of Directional Quantisation by Stern and Gerlach ........
12.7 Fine Structure and Spin-Orbit Coupling: Overview ................
12.8 Calculation of Spin-Orbit Splitting in the Bohr Model. . . . . . . . . . . . . .
12.9 Level Scheme ofthe Alkali Atoms ..............................
12.10 Fine Structure in the Hydrogen Atom ...........................
12.11 The Lamb Shift..............................................
Problems .........................................................
173
173
174
176
178
13. Atoms in a Magnetic Field: Experiments and Their Semiclassical Description
13.1 Directional Quantisation in a Magnetic Field .....................
13.2 Electron Spin Resonance ......................................
13.3 The Zeeman Effect ...........................................
13.3.1 Experiments ..........................................
13.3.2 Explanation of the Zeeman Effect from the Standpoint of
Classical Electron Theory ...............................
13.3.3 Description of the Ordinary Zeeman Effect
by the Vector Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
13.3.4 The Anomalous Zeeman Effect ..........................
13.3.5 Magnetic Moments with Spin-Orbit Coupling ..............
13.4 The Paschen-Back Effect. . ... . . ... . . .. . .. . ... . .. ... .. . . .... . ..
180
181
183
184
188
189
190
194
197
197
197
200
200
202
204
206
207
209
XII
Contents
13.5 Double Resonance and Optical Pumping. . . . . . . . . . . . . . . . . . . . . . . . . .
Problems .........................................................
210
212
14. Atoms in a Magnetic Field: Quantum Mechanical Treatment .............
14.1 Quantum Theory of the Ordinary Zeeman Effect . . . . . . . . . . . . . . . . . . .
14.2 Quantum Theoretical Treatment ofthe Electron and Proton Spins. . ..
14.2.1 Spin as Angular Momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions . . . . . . .
14.2.3 The SchrOdinger Equation of a Spin in a Magnetic Field ......
14.2.4 Description of Spin Precession by Expectation Values ........
14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with
Spin-Orbit Coupling· .........................................
14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields,
One Constant and One Time Dependent ..........................
14.5 The Bloch Equations ..........................................
14.6 The Relativistic Theory of the Electron. The Dirac Equation .........
Problems .........................................................
213
213
215
215
216
218
220
222
226
231
233
239
15. Atoms in an Electric Field ...........................................
15.1 Observations of the Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
15.2 Quantum Theory ofthe Linear and Quadratic Stark Effects .........
15.2.1 The Hamiltonian .......................................
15.2.2 The Quadratic Stark Effect. Perturbation Theory Without
Degeneracy· ...........................................
15.2.3 The Linear Stark Effect. Perturbation Theory in the Presence of
Degeneracy· ...........................................
15.3 The Interaction of a Two-Level Atom with a Coherent Radiation Field
15.4 Spin- and Photon Echoes. . . . .. . . . . . . . . . . . . . .. . . . . . . . . . .. . . . .. . .
15.5 A Glance at Quantum Electrodynamics· . . . . . . . . . . . . . . . . . . . . . . . . . .
15.5.1 Field Quantization ......................................
15.5.2 Mass Renormalization and Lamb Shift. . . .. . . .. . . . . . . . . . . ..
Problems .........................................................
247
250
253
256
256
261
268
16. General Laws of Optical Transitions ..................................
16.1 Symmetries and Selection Rules .................................
16.1.1 Optical Matrix Elements .................................
16.1.2 Examples of the Symmetry Behaviour of Wavefunctions ......
16.1.3 Selection Rules .........................................
16.1.4 Selection Rules and Multipole Radiation· ..................
16.2 Linewidths and Lineshapes .....................................
271
271
271
271
276
279
282
17. Many-Electron Atoms ..............................................
17.1 The Spectrum of the Helium Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.2 Electron Repulsion and the Pauli Principle ........................
17.3 Angular Momentum Coupling ..................................
17.3.1 Coupling Mechanism. . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . ..
17.3.2 LS Coupling (Russell-Saunders Coupling) ..................
287
287
289
290
290
290
241
241
243
243
244
Contents
XIII
17.3.3 jj Coupling ............................................
17.4 Magnetic Moments of Many-Electron Atoms ......................
17.5 Multiple Excitations ...........................................
Problems .........................................................
294
296
296
297
18. X-Ray Spectra, Internal Shells .......................................
18.1 Introductory Remarks .........................................
18.2 X-Radiation from Outer Shells ..................................
18.3 X-Ray Bremsstrahlung Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.4 Emission Line Spectra: Characteristic Radiation ...................
18.5 Fine Structure of the X-Ray Spectra. .. . . .. . . .. . .. . . . . . . . . . . . . . . . .
18.6 Absorption Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
18.7 The Auger Effect (Inner Photoeffect) ............................
18.8 Photoelectron Spectroscopy (XPS), ESCA ........................
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
299
299
299
300
302
304
306
308
310
311
19. Structure of the Periodic System. Ground States of the Elements ..........
19.1 Periodic System and Shell Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.2 Ground States of Atoms .......................................
19.3 Excited States and Complete Term Scheme. . . . . . . . . . . . . . . . . . . . . . . .
19.4 The Many-Electron Problem. Hartree-Fock Method * ..............
19.4.1 The Two-Electron Problem ..............................
19.4.2 Many Electrons Without Mutual Interactions ...............
19.4.3 Coulomb Interaction of Electrons. Hartree and Hartree-Fock
Methods ..............................................
Problems .........................................................
313
313
320
322
323
323
328
20. Nuclear Spin, Hyperfine Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.1 Influence of the Atomic Nucleus on Atomic Spectra ................
20.2 Spins and Magnetic Moments of Atomic Nuclei ....................
20.3 The Hyperfine Interaction ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.4 Hyperfine Structure in the Ground States of the Hydrogen and Sodium
Atoms.......................................................
20.5 Hyperfine Structure in an External Magnetic Field,
Electron Spin Resonance .......................................
20.6 Direct Measurements of Nuclear Spins and Magnetic Moments,
Nuclear Magnetic Resonance ...................................
20.7 Applications of Nuclear Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . .
20.8 The Nuclear Electric Quadrupole Moment ........................
Problems .........................................................
335
335
336
338
329
332
342
344
348
352
357
359
21. The Laser ........................................................
21.1 Some Basic Concepts for the Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.2 Rate Equations and Lasing Conditions ...........................
21.3 Amplitude and Phase of Laser Light .............................
Problems .........................................................
361
361
364
367
370
22. Modem Methods of Optical Spectroscopy .............................
22.1 Classical Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2 Quantum Beats ...............................................
373
373
374
XIV
Contents
22.3 Doppler-free Saturation Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.4 Doppler-free Two-Photon Absorption ...........................
22.5 Level-Crossing Spectroscopy and the Hanle Effect .................
376
378
380
23. Fundamentals of the Quantum Theory of Chemical Bonding .............
23.1 Introductory Remarks .........................................
23.2 The Hydrogen-Molecule Ion Hi ................................
23.3 The Tunnel Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.4 The Hydrogen Molecule H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.5 Covalent-Ionic Resonance. ... . ... . . .... . ... . ... . ... . . . . . .. . ... .
23.6 The Hund-Mulliken-Bloch Theory of Bonding in Hydrogen .........
23.7 Hybridisation ................................................
23.8 The 1l'Electrons of Benzene, C~6
...............................
Problems .........................................................
383
383
383
389
391
398
399
400
402
404
Appendix ............................................................
A. The Dirac Delta Function and the Normalisation of the Wavefunction
of a Free Particle in Unbounded Space ...........................
B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions and
Its Eigenvalues ...............................................
405
Solutions to the Problems ..............................................
411
Bibliography of Supplementary and Specialised Literature .. . . . . . . . . . . . . . . . . .
441
Subject Index ................... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
445
Fundamental Constants of Atomic Physics (Inside Front Cover)
Energy Conversion Table (Inside Back Cover)
405
409
List of the Most Important Symbols Used
The numbers of the equations in which the symbols are defined are given in parentheses; the numbers in square brackets refer to the section of the book. The Greek symbols
are at the end of the list.
Vector potential
Amplitude or constant
Mass number (2.2) or area
Interval factor or fine struca
ture constant (12.28) and
hyperfine splitting (20.10)
Bohr radius of the H atom in
ao
its ground state (8.8)
Magnetic induction
B
b+,b Creation and annihilation operators for the harmonic oscillator
Constant, impact parameter
b
Constant
C
Velocity of light, series expanc
sion coefficient
Complex conjugate
c.c.
Dipole moment
D
Constant
d
Infinitesimal volume element
dV
Electric field strength
E
Energy, total energy, energy
E
eigenvalue
Kinetic energy
E kin
Potential
energy
Epot
Total energy
E tot
Proton charge
e
Electron charge
-e
Exponential function
e
Electric field strength (14.1)
F
Total angular momentum of an
F,F
atom, including nuclear angular momentum and corresponding quantum number (20.6)
Amplitude of the magnetic inF
duction [14.4, 14.5]
Spring
constant
f
Lande g factor (12.10, 16,21,
g
13.18,20.13)
A
A
A
h
Hamilton function,
Hamiltonian operator
Hermite polynomial
Planck's constant
h
=h12n
.Yf
Hn
Nuclear angular momentum
and corresponding quantum
number (20.1)
Abbreviation for integrals
I
[16.13] or intensity
i
Imaginary unit (i = V=l)
J,J Total angular momentum of an
electron shell and corresponding quantum number (17.5)
Total angular momentum of
j,j
an electron and corresponding
quantum number [12.7]
j
Operator for the total angular
momentum
Boltzmann's constant, force
k
constant
Wavevector
k
L,L Resultant orbital angular
momentum and corresponding
quantum number (17.3)
Laguerre polynomial (10.81)
Ln
Orbital angular momentum of
1, I
an electron and corresponding
quantum number
Angular momentum operator
i
m,mo Mass
Magnetic quantum number
m
- for angular momentum
m[
- for spin
ms
Magnetic
quantum number for
mj
total angular momentum
mo Rest mass, especially that of
the electron
1,1
XVI
List of the Most Important Symbols Used
Particle number, particle number density
N
Normalisation factor
n
Principal quantum number or
number of photons or an
integer
P
Spectral radiation flux density
(5.2) or probability
p? Legendre polynomial
P7' (m 0) Associated Legendre
function
p, jj Momentum, expectation value
of momentum
Q
Nuclear quadrupole moment
(20.20)
Q, q Charge
R(r). Radial part of the hydrogen
wavefunction
r
Position coordinate (three-dimensional vector)
r
Distance
S
Resultant spin (17.4)
S
Symbol for orbital angular
momentum L = 0
s, s Electron spin and corresponding quantum number (12.15)
s
Spin operator = (sx, sy. sz)
T
Absolute temperature
Tl
Longitudinal relaxation time
T2
Transverse relaxation time
t
Time
u
Spectral energy density (5.2),
atomic mass unit [2.2]
V
Volume, potential, electric
voltage
V
Expectation value of the
potential energy
v
Velocity, particle velocity
x
Particle coordinate (onedimensional)
x
Expectation value of position
Yt.m((J, ¢J) Spherical harmonic functions (10.10, 48 - 50)
Z
Nuclear charge
a
Fine structure constant [8.10]
or absorption coefficient (2.22)
f3
Constant
r
Decay constant
y
Decay constant or linewidth
gyromagnetic ratio (12.12)
N, n
*"
\12
Laplace operator
LJE
LJk
LJp
LJt
Energy uncertainty
Wavenumber uncertainty
Momentum uncertainty
Time uncertainty ( = finite
measurement time)
Finite volume element
Uncertainty in the angular frequency
Position uncertainty
Dirac delta function (see mathematics appendix)
Kronecker delta symbol:
J/J,v= 1 for f-l = V, J/J,v= 0 for
= 82/8x 2+ 82/8y2+ 82/8z 2
LJV
LJw
LJx
J(x)
J/J,v
f-l*"v
Dimensionless energy (9.83)
Energy contributions to perturbation theory
Permittivity constant of
eo
vacuum
(J
Angle coordinate (10.2)
Defined in (10.54)
K
Wavelength (exception: expanA.
sion parameter in [15.2.1, 2])
fI.,f-l Magnetic moment (12.1)
Reduced mass (8.15)
f-l
Bohr magneton (12.8)
f-lB
Nuclear magneton (20.3)
f-lN
Frequency [8.1]
v
v Wavenumber [8.1]
Dimensionless coordinate (9.83)
Charge density, density of
(!
states, mass density; or dimensionless distance
(J
Scattering coefficient, interaction cross section (2.16)
T
Torque (12.2)
f/J
Phase
¢J
Phase angle, angle coordinate
¢J(x) Wavefunction of a particle
¢Jr, ¢JL, ¢J Spin wavefunctions
If!
Wavefunction
If'
Wavefunction of several electrons
Q
Generalised quantum
mechanical operator
D
Frequency [14.4, 14.5, 15.3]
w
Angular frequency 2nv, or
eigenvalue [9.3.6]
~
means "corresponds to"
e
e(n)
e