[スポンサーリンク]

化学者のつぶやき

配位子が酸化??触媒サイクルに参加!!

[スポンサーリンク]

C(sp3)Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。ピリジンスルホンアミド配位子の酸化により、長寿命の触媒活性種が生じる。

C(sp3)–Hヒドロキシ化における配位子と触媒活性との構造活性相関

C(sp3)–H結合の直截的なヒドロキシ化は、アルコールやケトンを迅速に合成できる強力な手法である。これまで、目的の化学選択性や位置選択性を実現するために、さまざまな触媒が開発されてきた[1]。特に、Whiteらによって報告された非ヘム型鉄(II)触媒は、一般的に三級C–H結合を優先的に酸化するが、ピリジン配位子上にアリール基を導入することで、基質は限られるものの、二級C–H結合を優先的に酸化することも可能である(図1A)[2]。このように、配位子の部分構造を変化させることで、基質に依存せずにさまざまな選択性を制御する触媒の開発は理想的である。しかし、配位子の構造を容易に改変できる触媒は依然として少なく、配位子の自由度が限られている。そのため、配位子の設計と触媒活性の関係を明確に解明できる触媒の開発が望まれている。これにより、触媒の機構解明とさらなる性能向上が期待できる。
本論文の著者であるDu Bois教授らは、ホモレプティックなルテニウム(II)プレ触媒を用いることで、N-オキシドを副生せず、化学選択的に含窒素化合物の三級C–H結合を酸化することに成功した(図1B)[3]。さらに、構造活性相関研究を含む機構解明にも取り組み、ビピリジン配位子が酸化されることで触媒が失活する経路を明らかにした[4]。しかし、二種類の配位子を組み合わせたヘテロレプティックなルテニウム(II)触媒を合成できれば、ホモレプティックな触媒よりも多くの誘導体が得られる可能性があった。
今回、同著者らは、ビピリジン配位子とピリジン–スルホンアミド配位子を有する新規ルテニウム(II)プレ触媒の合成法を確立し、三級C–H結合およびベンジル位C–H結合のヒドロキシ化に成功した(図1C)。さらに、配位子と触媒活性との構造活性相関を調査することで、ピリジン–スルホンアミド配位子の酸化が本触媒の活性化に重要な役割を果たしていることを明らかにした。

図1 (A) 配位子に基づく位置選択性の制御 (B) ホモレプティックなルテニウム触媒による化学選択的なC(sp3)–H酸化 (C) 今回の研究

 

“Ligand Oxidation Activates a Ruthenium(II) Precatalyst for C–H Hydroxylation”
Lauridsen, P. J.; Kim, Y. J.; Marron, D. P.; Zhu, J. S.; Waymouth, R. M.; Du Bois, J. Am. Chem. Soc. 2024, 146, 23067–23074.
DOI: 10.1021/jacs.4c04117

論文著者の紹介

研究者:Justin Du Bois (研究室HPケムステ)
研究者の経歴:
1992                               B.S., University of California, Berkeley, USA (Prof. Kenneth N. Raymond)
1997                               Ph.D., California Institute of Technology, USA (Prof. Erick M. Carreira)
1997–1999                  Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
1999–2005                  Assistant professor, Stanford University, USA
2005–                             Associate professor, and then Professor, Stanford University, USA
研究内容:C(sp3)–H官能基化反応の開発、天然物合成、および、ケミカルバイオロジー

論文の概要

著者らは、シメン配位子を有する1にアセトニトリル中、NaOTfおよびdtbpyを添加し、70 °Cに加熱することで、ビピリジン配位子とピリジン–スルホンアミド配位子を有する2aの合成に成功した(図2A)。次に、合成したプレ触媒(2a2h)を用い、イソアミルベンゾエート3aのC–Hヒドロキシ化における、配位子と触媒活性の関係を調査した(図2B)。その結果、ビピリジン配位子L1においては、嵩高いアルキル置換基を有する2aが最適であることが判明した。また、ピリジン–スルホンアミド配位子L2では、ピリジン上の置換基R2は触媒活性にほとんど影響しない一方で、ベンゼン環上の置換基R3は電子求引基であることが触媒活性に重要であることが明らかになった。以上より、最適触媒を2hとし、基質適用範囲を調査した。本反応は、3a以外にも、電子不足な芳香族化合物や三級アミンにも適用可能であり、高収率で三級C–H結合が選択的に酸化された4b4cを与えた。
2hを用いた速度論解析の結果、2hから長寿命の活性種が生成することが判明した。また、HRMS測定により、ピリジン–スルホンアミド配位子のベンジル位および中心金属が酸化された5の存在が確認され、このことから、配位子の酸化が触媒の活性化に必要であることが示唆された。さらに、2hのベンジル位を重水素化したd2–2hを用いて再度速度論解析に取り組んだ(図2C)。その結果、d2–2hの方が触媒の活性化に時間がかかることが分かったが、あらかじめ酸化剤を加えた場合、2hd2–2hは同様の触媒活性を示した。この結果から、配位子の酸化が触媒の活性化に不可欠であることが裏付けられた。これらの結果に基づき、著者らは触媒活性化の機構を次のように推定した(図2D)。まず、2hの中心金属が酸化され、その後、ピリジン–スルホンアミド配位子のベンジル位C–H結合が開裂し、イミン2h’が形成される。続いて、水和と酸化を経てルテニウム(III)触媒5が生成される。この機構は、CV測定および種々の対照実験によっても支持されている(詳細は論文を参照されたい)。

図2. (A) ヘテロレプティックなプレ触媒の合成 (B) 配位子検討および基質適用範囲 (C) 速度論的同位体効果実験 (D) 触媒活性化の推定機構

以上、ヘテロレプティックなルテニウム(II)プレ触媒の合成法と、それを用いた三級およびベンジル位C(sp3)–Hヒドロキシ化が報告された。今後は、配位子構造に基づいて選択性を制御できる新たな触媒の開発が期待される。

参考文献

  1. Davies, H. M. L.; Du Bois, J.; Yu, J.-Q. C–H Functionalization in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 1855–1856. DOI: 10.1039/c1cs90010b
  2. Gormisky, P. E.; White, M. C. Catalyst-Controlled Aliphatic C–H Oxidations with a Predictive Model for Site-Selectivity. J. Am. Chem. Soc. 2013, 135, 14052–14055. DOI: 10.1021/ja407388y
  3. Mack, J. B. C.; Gipson, J. D.; Du Bois, J.; Sigman, M. S. Ruthenium-Catalyzed C–H Hydroxylation in Aqueous Acid Enables Selective Functionalization of Amine Derivatives. J. Am. Chem. Soc. 2017, 139, 9503–9506. DOI: 10.1021/jacs.7b05469
  4. Mack, J. B. C.; Walker, K. ; Robinson, S. G.; Zare, R. N. Sigman, M. S.; Waymouth, R. M.; Du Bois, J. Mechanistic Study of Ruthenium-Catalyzed C−H Hydroxylation Reveals an Unexpected Pathway for Catalyst Arrest. J. Am. Chem. Soc. 2019, 141, 972–980. DOI: 10.1021/jacs.8b10950
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. NHC銅錯体の塩基を使わない直接的合成
  2. 女性科学者の卵を支援―「ロレアル・ユネスコ女性科学者 日本奨励賞…
  3. U≡N結合、合成さる
  4. 水を還元剤とする電気化学的な環境調和型還元反応の開発:化学産業の…
  5. ある動脈硬化の現象とマイクロ・ナノプラスチックのはなし
  6. 鴻が見る風景 ~山本尚教授の巻頭言より~
  7. 第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世…
  8. 金属原子のみでできたサンドイッチ

注目情報

ピックアップ記事

  1. 3Dプリンタとシェールガスとポリ乳酸と
  2. 第44回ケムステVシンポ「未来を切り拓く半導体材料科学の最前線」を開催します!
  3. 脱酸素的フッ素化 Deoxofluorination
  4. カネボウ化粧品、バラの香りの秘密解明 高級香水が身近に?
  5. 千葉大など「シナモンマスク」を商品化 インフル予防効果に期待
  6. 触媒的syn-ジクロロ化反応への挑戦
  7. 第七回 巧みに非共有結合相互作用をつかうー Vince Rotello教授
  8. η6配位アルキルベンゼンで全炭素(3+2)環化付加
  9. 鉄の新たな可能性!?鉄を用いたWacker型酸化
  10. マンガでわかる かずのすけ式美肌化学のルール

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP