Distance-transitive graph

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
The Biggs-Smith graph, the largest 3-regular distance-transitive graph.
Graph families defined by their automorphisms
distance-transitive \boldsymbol{\rightarrow} distance-regular \boldsymbol{\leftarrow} strongly regular
\boldsymbol{\downarrow}
symmetric (arc-transitive) \boldsymbol{\leftarrow} t-transitive, t ≥ 2 skew-symmetric
\boldsymbol{\downarrow}
(if connected)
vertex- and edge-transitive
\boldsymbol{\rightarrow} edge-transitive and regular \boldsymbol{\rightarrow} edge-transitive
\boldsymbol{\downarrow} \boldsymbol{\downarrow} \boldsymbol{\downarrow}
vertex-transitive \boldsymbol{\rightarrow} regular \boldsymbol{\rightarrow} (if bipartite)
biregular
\boldsymbol{\uparrow}
Cayley graph \boldsymbol{\leftarrow} zero-symmetric asymmetric

In the mathematical field of graph theory, a distance-transitive graph is a graph such that, given any two vertices v and w at any distance i, and any other two vertices x and y at the same distance, there is an automorphism of the graph that carries v to x and w to y.

A distance transitive graph is vertex transitive and symmetric as well as distance regular.

A distance-transitive graph is interesting partly because it has a large automorphism group. Some interesting finite groups are the automorphism groups of distance-transitive graphs, especially of those whose diameter is 2.

Distance-transitive graphs were first defined in 1971 by Norman L. Biggs and D. H. Smith, who showed that there are only 12 finite trivalent distance-transitive graphs. These are:

Graph name Vertex count Diameter Girth Intersection array
complete graph K4 4 1 3 {3;1}
complete bipartite graph K3,3 6 2 4 {3,2;1,3}
Petersen graph 10 2 5 {3,2;1,1}
Graph of the cube 8 3 4 {3,2,1;1,2,3}
Heawood graph 14 3 6 {3,2,2;1,1,3}
Pappus graph 18 4 6 {3,2,2,1;1,1,2,3}
Coxeter graph 28 4 7 {3,2,2,1;1,1,1,2}
Tutte–Coxeter graph 30 4 8 {3,2,2,2;1,1,1,3}
Graph of the dodecahedron 20 5 5 {3,2,1,1,1;1,1,1,2,3}
Desargues graph 20 5 6 {3,2,2,1,1;1,1,2,2,3}
Biggs-Smith graph 102 7 9 {3,2,2,2,1,1,1;1,1,1,1,1,1,3}
Foster graph 90 8 10 {3,2,2,2,2,1,1,1;1,1,1,1,2,2,2,3}

Independently in 1969 a Russian group led by Georgy Adelson-Velsky showed that there exist graphs that are distance-regular but not distance-transitive. The only graph of this type with degree three is the 126-vertex Tutte 12-cage. The smallest distance-regular graph that is not distance-transitive is the Shrikhande graph. Complete lists of distance-transitive graphs are known for some degrees larger than three, but the classification of distance-transitive graphs with arbitrarily large vertex degree remains open.

The simplest asymptotic family of examples of distance-transitive graphs is the Hypercube graphs. Other families are the folded cube graphs and the square rook's graphs. All three of these families have arbitrarily high degree.

References

Early works
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found..
Surveys
  • Lua error in package.lua at line 80: module 'strict' not found., chapter 20.
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found., chapter 7.
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found., section 4.5.
  • Lua error in package.lua at line 80: module 'strict' not found..

External links