Green Satin radar
Green Satin was a doppler radar system developed by the Royal Air Force as an air navigation aid. The system provided direct measures of the drift speed and direction, and thereby allowed accurate calculation of the winds aloft. It was originally specified for the English Electric Canberra bomber, and subsequently used in a number of other aircraft, including much of the V bomber fleet. The name comes from an era when the Ministry of Supply used random combinations of colours and code words to prevent their code names being too literal. A version known as Blue Silk with lower top-speed limits was used in some marks of Canberra and Royal Navy aircraft.
Background
In air navigation there are six values of interest; airspeed, heading (the angle the nose is pointing), ground speed, course (or track), wind speed and wind direction. Using any four of these values and basic vector addition, the other values can be determined through the wind triangle. Once determined, the path of the aircraft can be accurately calculated using dead reckoning in comparison to an original fixed point.
Airspeed and heading can be measured with a fair degree of accuracy using onboard measurements, namely the airspeed indicator and gyrocompass. Since the aircraft flies within the air mass, it is not possible to directly measure wind values, so their determination must be carried out with reference to some external measure. For most of the history of air navigation, this was accomplished through a reverse dead reckoning process, timing the passage of objects on the ground to measure ground speed, and either estimating the drift or measuring it with simple optical instruments like the drift meter. Both are inherently inaccurate, with the US Navy suggesting such measures are accurate to only 10%.
Green Satin provided accurate and immediate measurements of the true ground speed and the drift angle. Combined with the airspeed and heading, air navigation complexity was greatly reduced. However, accurate dead reckoning also requires an accurate original "fix" from which future movements are determined. In practice, Gee would be used to take a fix after the aircraft reached cruise altitude and speed, and would be used to fine-tune the navigation until it passed out of Gee range, perhaps 300 to 450 nautical miles.
Development
Green Satin started life in Operational Requirement (OR) 3015 in 1949. This called for a device to provide an accurate measure of the groundspeed of an aircraft flying at any speed between 100 and 700 knots at all altitudes up to 60,000 feet. It also had to measure the drift angle up to 20 degrees on either side of the heading, with an accuracy of less than 0.1 degree.
The solution to measuring ground speed was already well understood at the time, using a doppler radar system to compare the returned frequency of two or more signals. Green Satin used a series of such measurements to determine both ground speed and drift angle, which were carried out simultaneously by a single cross-shaped antenna with four feeds. In its neutral position, facing forward, one set of antennas sent out a signal aligned fore-aft, while the other was perpendicular. Each signal was sent into a frequency comparator, with the output being the difference in frequencies. To determine the drift angle, the entire antenna was rotated left and right until the signal from the perpendicular antenna became zero. This meant the fore-aft antenna was now aligned directly along the direction of travel, and it's frequency difference was a direct measure of ground speed.[1]
Green Satin was a pulsed system, although it was not a pulse-doppler radar in the typical meaning. Pulses were used in order to allow a single antenna be used for both broadcast and reception, not to measure distance through pulse timing. Frequencies were compared within a single pulse (a monopulse radar), so the high frequency stability over longer multi-pulse times was not required. Green Satin was thus based on a simple cavity magnetron generator, rather than the more accurate traveling wave tube solutions like the klystron. The electronics were housed within two pressurized canisters (some of which maintained their pressurization decades after being decommissioned) mounted on large backplanes that included power supplies and various electrical connections. These were mounted above the cabin area on the rear bulkhead of the Canberra.
Data from the Green Satin was fed into the Navigation and Bombing System (NBS), a mechanical computer that calculated the current location of the aircraft through continual dead reckoning of the inputs. Most of these inputs were automatically fed from various aircraft instruments, but Green Satin data was normally fed in manually. The output of the NBS was the calculated latitude and longitude based solely on airspeed and heading, the values from the Green Satin were then added to these to produce the final outputs in the navigation computer. These outputs also drove correction circuits in the H2S Mk. IX bombing radars to adjust the predicted bomb trajectories.[1]
Testing
In order to determine the operational accuracy of Green Satin, a lengthy series of test flights over land and water were carried out from an early Canberra. However, for these tests the G4B gyrocompass proved far too inaccurate as it required constant correction for drift. Additionally, Gee was accurate enough, but taking a fix required manual calculation by the operator. The test program demanded additional equipment to solve both of these problems.
Accurate heading information was supplied by the Azimuth Datum Instrument (ADI), a star tracker mounted on a periscope so that it projected its display on a plate in front of the navigator. Using angle measurements similar to those taken with a sextant, the aircraft heading could be accurately determined. For initial position fixes, Gee was replaced with the Decca Navigator System, which directly output measurements on three dials.
By locating both the ADI and Decca output on the navigation console, along with the Green Satin outputs, a movie camera was able to record everything in real time for later data analysis on the ground. This consisted of taking a snapshot of the settings every six seconds and then averaging the instrument positions. Testing demonstrated that accuracy of Green Satin over land in straight and level flight was less than ±0.1% of distance flown, and less than ±0.1 of a degree in drift.
In use
The Green Satin was initially used with a simple display system with two large dials presenting true ground speed in knots on the left, and drift angle on the right. The output from this system was typically sent, along with the G4 compass' output, to the Mark 4 Ground Position Indicator (GPI). The GPI was a simple mechanical computer that integrated the inputs to produce an offset from a user-provided initial location (taken from Gee, for instance), and presented this as either latitude and longitude or grid reference numbers on two odometer-like displays.
Green Satin initially equipped the Canberra force, but was soon used on most larger RAF aircraft.
References
- Anandeep Pannu, "Canberra : Photo Reconnaissance Marks PR.57 and PR.67"
- Jack Furner, "Chapter 8: Experimental Flying"
- Malcolm Lambert, "Canberra PR.3 WF922 at Midland Aviation Museum", March 2005