Infinite-order pentagonal tiling

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Infinite-order pentagonal tiling
Infinite-order pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex figure 5
Schläfli symbol {5,∞}
Wythoff symbol ∞ | 5 2
Coxeter diagram CDel node.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node 1.pngCDel split1-55.pngCDel branch.pngCDel labelinfin.png
Symmetry group [∞,5], (*∞52)
Dual Order-5 apeirogonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

Symmetry

There is a half symmetry form, CDel node 1.pngCDel split1-55.pngCDel branch.pngCDel labelinfin.png, seen with alternating colors:

200px

Related polyhedra and tiling

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n).

Finite Compact hyperbolic Paracompact
Uniform polyhedron-53-t0.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 54-t0.png
{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 55-t0.png
{5,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 56-t0.png
{5,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 57-t0.png
{5,7}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 58-t0.png
{5,8}...
CDel node 1.pngCDel 5.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 25i-4.png
{5,∞}
CDel node 1.pngCDel 5.pngCDel node.pngCDel infin.pngCDel node.png

See also

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

External links