Portal:Star

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Shortcut:
The Star Portal

Template:/box-header

A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth. Other stars are visible from Earth during the night, when they are not obscured by atmospheric phenomena, appearing as a multitude of fixed luminous points because of their immense distance. Historically, the most prominent stars on the celestial sphere were grouped together into constellations and asterisms, and the brightest stars gained proper names. Extensive catalogues of stars have been assembled by astronomers, which provide standardized star designations.

Sun, our nearest star.

For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen in its core releasing energy that traverses the star's interior and then radiates into outer space. Almost all naturally occurring elements heavier than helium were created by stars, either via stellar nucleosynthesis during their lifetimes or by supernova nucleosynthesis when stars explode. Astronomers can determine the mass, age, chemical composition and many other properties of a star by observing its spectrum, luminosity and motion through space. The total mass of a star is the principal determinant in its evolution and eventual fate. Other characteristics of a star are determined by its evolutionary history, including diameter, rotation, movement and temperature. A plot of the temperature of many stars against their luminosities, known as a Hertzsprung–Russell diagram (H–R diagram), allows the age and evolutionary state of a star to be determined.

Sun Star.svg More about... stars: their formation, evolution, namings, structure and diversity

Template:/box-footer

Selected star - show another

Comparison of VY Canis Major and Sun
Photo credit: User:Mysid

VY Canis Majoris (VY CMa) is a red hypergiant star located in the constellation Canis Major. One of the largest stars and also one of the most luminous of its type, it has a radius of approximately 1,420 ± 120 solar radii (equal to a diameter of 13.2 astronomical units, or about 1,976,640,000 km), and is situated about 1.2 kiloparsecs (3,900 light-years) from Earth. VY CMa is a single star categorized as a semiregular variable and has an estimated period of 2,000 days. It has an average density of 5 to 10 mg/m3. If placed at the center of the Solar System, VY Canis Majoris's surface would extend beyond the orbit of Jupiter, although there is still considerable variation in estimates of the radius, with some making it larger than the orbit of Saturn.

The first known record of VY Canis Majoris is in the star catalogue of Jérôme Lalande, on March 7, 1801. The catalogue listed VY CMa as a 7th magnitude star. Further studies on its apparent magnitude during the 19th century showed that the star has been fading since 1850.

Since 1847, VY CMa has been known to be a red star. During the 19th century, observers measured at least six discrete components to VY CMa, suggesting the possibility that it is a multiple star. These discrete components are now known to be bright areas in the surrounding nebula. Visual observations in 1957 and high-resolution imaging in 1998 showed that VY CMa does not have a companion star.

Read more...

Selected article - show another

An artists conception of the birth of star L1014
Photo credit: NASA

A protostar is a large mass that forms by contraction out of the gas of a giant molecular cloud in the interstellar medium. The protostellar phase is an early stage in the process of star formation. For a one solar-mass star it lasts about 100,000 years. It starts with a core of increased density in a molecular cloud and ends with the formation of a T Tauri star, which then develops into a main sequence star. This is heralded by the T Tauri wind, a type of super solar wind that marks the change from the star accreting mass into radiating energy.

Observations have revealed that giant molecular clouds are approximately in a state of virial equilibrium—on the whole, the gravitational binding energy of the cloud is balanced by the thermal pressure of the cloud's constituent molecules and dust particles. Although thermal pressure is likely the dominant effect in counteracting gravitational collapse of protostellar cores, magnetic pressure, turbulence and rotation can also play a role (Larson, 2003). Any disturbance to the cloud may upset its state of equilibrium. Examples of disturbances are shock waves from supernovae; spiral density waves within galaxies and the close approach or collision of another cloud. If the disturbance is sufficiently large, it may lead to gravitational instability and subsequent collapse of a particular region of the cloud.

The British physicist Sir James Jeans considered the above phenomenon in detail. He was able to show that, under appropriate conditions, a cloud, or part of one, would start to contract very swiftly as described above. He derived a formula for calculating the mass and size that a cloud would have to reach as a function of its density and temperature before gravitational contraction would begin. This critical mass is known as the Jeans mass. The existence of 'protostars' was first proposed and postulated by Soviet-Armenian scientist, Viktor Ambartsumian.

Read more...

Selected biography - show another

Subrahmanyan Chandrasekhar, FRS (Listeni/ˌʌndrəˈʃkɑːr/; Tamil: சுப்பிரமணியன் சந்திரசேகர்; October 19, 1910 – August 21, 1995) was an Indian-American astrophysicist who, with William A. Fowler, won the 1983 Nobel Prize for Physics for key discoveries that led to the currently accepted theory on the later evolutionary stages of massive stars. Chandrasekhar was the nephew of Sir Chandrasekhara Venkata Raman, who won the Nobel Prize for Physics in 1930.

Chandrasekhar's most notable work was the astrophysical Chandrasekhar limit. The limit describes the maximum mass of a white dwarf star, ~ 1.44 solar mass, or equivalently, the minimum mass above which a star will ultimately collapse into a neutron star or black hole (following a supernova). The limit was first calculated by Chandrasekhar in 1930 during his maiden voyage from India to Cambridge, England, for his graduate studies. In 1999, the NASA named the third of its four "Great Observatories" after Chandrasekhar. The Chandra X-ray Observatory was launched and deployed by Space Shuttle Columbia on July 23, 1999. The Chandrasekhar number, an important dimensionless number of magnetohydrodynamics, is named after him. The asteroid 1958 Chandra is also named after Chandrasekhar. American astronomer Carl Sagan, who studied Mathematics under Chandrasekhar, at the University of Chicago, praised him in the book The Demon-Haunted World: "I discovered what true mathematical elegance is from Subrahmanyan Chandrasekhar." From 1952 to 1971 Chandrasekhar also served as the editor of the Astrophysical Journal.

He was awarded the Nobel Prize in Physics in 1983 for his studies on the physical processes important to the structure and evolution of stars. Chandrasekhar accepted this honor, but was upset that the citation mentioned only his earliest work, seeing it as a denigration of a lifetime's achievement. He shared it with William A. Fowler.


Read more...

Selected picture - show another

A historical depiction of Andromeda constellation
Photo credit: Urania's Mirror (Sidney Hall/Adam Cuerden)

Andromeda as depicted in Urania's Mirror, set of constellation cards published in London c.1825.

Read more...

Template:/box-header

  • ... Sirius's name probably comes from a Greek word meaning “sparkling”, or “scorching”?
  • ... the Great Red Spot — a storm on Jupiter that has been going on for 300 years — is so big that dozens of Earths would fit into it?

Template:/box-footer

Template:/box-header Template:/Categories Template:/box-footer

Template:/box-header

Star   Sun   Galaxy   Black hole   Supernova    
More related topics...

Template:/box-footer

Template:/box-header

Star on Wikibooks  Star on Wikimedia Commons Star on Wikinews  Star on Wikiquote  Star on Wikisource  Star on Wikiversity  Star on Wiktionary 
Manuals and books Images and media News Quotations Texts Learning resources Definitions

Template:/box-footer

Purge server cache