Quarter 6-cubic honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
quarter 6-cubic honeycomb
(No image)
Type Uniform 6-honeycomb
Family Quarter hypercubic honeycomb
Schläfli symbol q{4,3,3,3,3,4}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
5-face type h{4,34}, 6-demicube t0 D6.svg
h4{4,34}, 6-demicube t04 D6.svg
{3,3}×{3,3} duoprism
Vertex figure
Coxeter group {\tilde{D}}_6×2 = [[31,1,3,3,31,1]]
Dual
Properties vertex-transitive

In six-dimensional Euclidean geometry, the quarter 6-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 6-demicubic honeycomb, and a quarter of the vertices of a 6-cube honeycomb.[1] Its facets are 6-demicubes, stericated 6-demicubes, and {3,3}×{3,3} duoprisms.

Related honeycombs

This honeycomb is one of 41 uniform honycombs constructed by the {\tilde{D}}_6 Coxeter group, all but 6 repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 41 permutations are listed with its highest extended symmetry, and related {\tilde{B}}_6 and {\tilde{C}}_6 constructions:

See also

Regular and uniform honeycombs in 5-space:

Notes

  1. Coxeter, Regular and Semi-Regular Polytopes III, (1988), p318

References

  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
  • Richard Klitzing, 6D, Euclidean tesselations#6D