Tetramethylethylenediamine

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Tetramethylethylenediamine
Skeletal formula of tetramethylethylenediamine with some implicit hydrogens shown
Ball and stick model of tetramethylethylenediamine
Names
Other names
N,N,N′,N′-Tetramethylethane-1,2-diamine[1]
Identifiers
110-18-9 YesY
Abbreviations TMEDA, TEMED
1732991
ChEBI CHEBI:32850 N
ChemSpider 7746 N
EC Number 203-744-6
2707
Jmol 3D model Interactive image
MeSH N,N,N',N'-tetramethylethylenediamine
PubChem 8037
RTECS number KV7175000
UN number 2372
  • InChI=1S/C6H16N2/c1-7(2)5-6-8(3)4/h5-6H2,1-4H3 N
    Key: KWYHDKDOAIKMQN-UHFFFAOYSA-N N
  • CN(C)CCN(C)C
Properties
C6H16N2
Molar mass 116.21 g·mol−1
Appearance Colorless liquid
Odor Fishy, ammoniacal
Density 0.7765 g mL−1 (at 20 °C)
Melting point −58.6 °C; −73.6 °F; 214.5 K
Boiling point 121.1 °C; 249.9 °F; 394.2 K
Miscible
Acidity (pKa) 8.97
Basicity (pKb) 5.85
1.4179
Vapor pressure {{{value}}}
Related compounds
Related amines
Triethylenetetramine
Related compounds
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
N verify (what is YesYN ?)
Infobox references

Tetramethylethylenediamine (TMEDA or TEMED) is a chemical compound with the formula (CH3)2NCH2CH2N(CH3)2. This species is derived from ethylenediamine by replacement of the four N-H groups with four N-methyl groups. It is a colorless liquid, although old samples often appear yellow. Its odor is remarkably similar to that of rotting fish.[2]

As a reagent in organic and inorganic synthesis

TMEDA is widely employed as a ligand for metal ions. It forms stable complexes with many metal halides, e.g. zinc chloride and copper(I) iodide, giving complexes that are soluble in organic solvents. In such complexes, TMEDA serves as a bidentate ligand.

TMEDA has an affinity for lithium ions.[2] When mixed with n-butyllithium, TMEDA's nitrogen atoms coordinate to the lithium, forming a cluster of higher reactivity than the tetramer or hexamer that n-butyllithium normally adopts. BuLi/TMEDA is able to metallate or even doubly metallate many substrates including benzene, furan, thiophene, N-alkylpyrroles, and ferrocene.[2] Many anionic organometallic complexes have been isolated as their [Li(tmeda)2]+ complexes.[3] In such complexes [Li(tmeda)2]+ behaves like a quaternary ammonium salt, such as [NEt4]+.

TMEDA adduct of lithium bis(trimethylsilyl)amide. Notice that the diamine is a bidentate ligand.[4]

It is also worth noting that sBuLi/TMEDA is also a useful combination in organic synthesis. Utilization of this is useful in cases where the n-butyl anion is able to add into the starting material due to its weak nucleophilic nature. TMEDA is still capable of forming a metal complex with Li in this case as mentioned above.

Other uses

TMEDA is used with ammonium persulfate to catalyze the polymerization of acrylamide when making polyacrylamide gels, used in gel electrophoresis, for the separation of proteins or nucleic acids. Although the amounts used in this technique may vary from method to method, 0.1-0.2% v/v TMEDA is a "traditional" range. TMEDA can also be a component of Hypergolic propellants.

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 2.2 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. K. W. Henderson, A. E. Dorigo, Qi-Long Liu, P. G. Williard "Effect of Polydentate Donor Molecules on Lithium Hexamethyldisilazide Aggregation:  An X-ray Crystallographic and a Combination Semiempirical PM3/Single Point ab Initio Theoretical Study" J. Am. Chem. Soc. 1997, volume 119, pp. 11855. doi:10.1021/ja971920t