Newly produced platelets acquire a low activation state, but whether the megakaryocyte plays a role in this outcome has not been fully uncovered. Mesenchymal stem cells (MSCs) were previously shown to promote platelet production and lower platelet activation. We found that healthy megakaryocytes transfer mitochondria to MSCs, which is mediated by connexin 43 (Cx43) gap junctions on MSCs and leads to platelets at a low energetic state with increased LYN activation, characteristic of resting platelets with increased LYN activation, characteristic of resting platelets. On the contrary, MSCs have a limited ability to transfer mitochondria to megakaryocytes. Sickle cell disease (SCD) is characterized by hemolytic anemia and results in heightened platelet activation, contributing to numerous disease complications. Platelets in SCD mice and human samples had a heightened energetic state with increased glycolysis. MSC exposure to heme in SCD led to decreased Cx43 expression and a reduced ability to uptake mitochondria from megakaryocytes. This prevented LYN activation in platelets and contributed to increased platelet activation at steady state. Altogether, our findings demonstrate an effect of hemolysis in the microenvironment leading to increased platelet activation in SCD. These findings have the potential to inspire new therapeutic targets to relieve thrombosis-related complications of SCD and other hemolytic conditions.
Chengjie Gao, Yitian Dai, Paul A. Spezza, Paul Boasiako, Alice Tang, Giselle Rasquinha, Hui Zhong, Bojing Shao, Yunfeng Liu, Patricia A. Shi, Cheryl A. Lobo, Xiuli An, Anqi Guo, William B. Mitchell, Deepa Manwani, Karina Yazdanbakhsh, Avital Mendelson
Drug-induced autoimmune diseases are increasingly recognized, although mechanistic insight into disease causation is lacking. Hydralazine exposure has been linked to autoimmune diseases, including antineutrophil cytoplasmic autoantibody (ANCA) vasculitis. Our hypothesis posits that hydralazine covalently binds to myeloperoxidase (MPO), triggering the autoimmune response in ANCA vasculitis. In vitro, we observed formation of carbonyl derivatives on amine groups in the presence of acrolein. This facilitated the subsequent binding of hydralazine to heme-containing proteins, including MPO, via a Michael addition. Our studies demonstrated that carbonyl derivatives and hydrazone adducts induced conformational changes in the MPO heavy chain, potentially changing its immunogenicity. We identified hydrazone adducts on circulating MPO in patients with hydralazine-associated ANCA vasculitis. These patients exhibited elevated anti-MPO IgM levels, while anti-MPO IgG levels were comparable between hydralazine-associated and nonhydralazine-associated vasculitis patients. IgM isolated from patients with hydralazine-associated MPO ANCA demonstrated a heightened affinity to hydralazine-modified MPO and activated neutrophil-like HL-60 cells. Hydralazine-modified MPO was pathogenic, as demonstrated by splenocyte transfer in a mouse model of ANCA vasculitis. Our findings unveil a mechanism of drug-induced autoimmunity wherein stepwise chemical modifications of MPO lead to conformational changes and hydrazone adduct formation, producing a neoantigen that generates pathogenic autoantibodies.
Gang Xi, Elizabeth A. Mclnnis, Olivier Lardinois, Peiqi Hu, John S. Poulton, Meghan E. Free, Dhruti P. Chen, Evan M. Zeitler, Eveline Y. Wu, Nicole M. Orzechowski, Vimal K. Derebail, J. Charles Jennette, Ronald J. Falk
Genome-wide human genetic studies have identified inherited cis-regulatory loci variants that predispose to cancers. However, the mechanisms by which these germline variants influence cancer progression, particularly through gene expression and proteostasis control, remain unclear. By analyzing genomic data from a gastric cancer (GC) case-control study (2,117 individuals), focusing on the ubiquitin-specific protease (USP) family, we identify the SNP rs72856331 (G>A) in the promoter region of the proto-oncogene USP47 as a putative susceptibility allele for GC. Mechanistically, the risk allele G is associated with enhanced USP47 expression, mediated by altered recruitment of the transcription factor GLI3 and changes in the epigenetic status at promoter. CRISPR/Cas9-mediated single-nucleotide conversion into risk allele G results in increased GLI3 binding and subsequent USP47 upregulation. The depletion of GLI3 results in a reduction of cancer-related phenotypes, similar to those observed following USP47 knockdown. Furthermore, we identify Snai1 as a deubiquitination target of USP47, explaining USP47-dependent activation of the epithelial-mesenchymal transition pathway and tumor progression. Our findings identify an important genetic predisposition that implicates the perturbation of transcription and proteostasis programs in GC, offering insights into prevention and therapeutic strategies for genetically stratified patients.
Bolin Tao, Zhenning Wang, Xuanyi Wang, Aixia Song, Jiaxian Liu, Jianan Wang, Qin Zhang, Zhaolin Chen, Zixian Wang, Wenjie Xu, Menghong Sun, Yanong Wang, Ping Zhang, Tao Xu, Gong-Hong Wei, Fei Xavier Chen, Mengyun Wang
Tumor cells often employ many ways to restrain type I IFN signaling to evade immune surveillance. However, whether cellular amino acid metabolism regulates this process remains unclear, and its effects on antitumor immunity are relatively unexplored. Here, we found that asparagine inhibited IFN-I signaling and promoted immune escape in bladder cancer. Depletion of asparagine synthetase (ASNS) strongly limited in vivo tumor growth in a CD8+ T cell–dependent manner and boosted immunotherapy efficacy. Moreover, clinically approved L-asparaginase (ASNase),synergized with anti–PD-1 therapy in suppressing tumor growth. Mechanistically, asparagine can directly bind to RIG-I and facilitate CBL-mediated RIG-I degradation, thereby suppressing IFN signaling and antitumor immune responses. Clinically, tumors with higher ASNS expression show decreased responsiveness to immune checkpoint inhibitor therapy. Together, our findings uncover asparagine as a natural metabolite to modulate RIG-I–mediated IFN-I signaling, providing the basis for developing the combinatorial use of ASNase and anti–PD-1 for bladder cancer.
Wenjie Wei, Hongzhao Li, Shuo Tian, Chi Zhang, Junxiao Liu, Wen Tao, Tianwei Cai, Yuhao Dong, Chuang Wang, Dingyi Lu, Yakun Ai, Wanlin Zhang, Hanfeng Wang, Kan Liu, Yang Fan, Yu Gao, Qingbo Huang, Xin Ma, Baojun Wang, Xu Zhang, Yan Huang
Induction of durable protective immune responses is the main goal of prophylactic vaccines, and adjuvants play a role as drivers of such responses. Despite advances in vaccine strategies, development of a safe and effective HIV vaccine remains a significant challenge. Use of an appropriate adjuvant is crucial to the success of HIV vaccines. Here we assessed the saponin/MPLA nanoparticle (SMNP) adjuvant with an HIV envelope (Env) trimer, evaluating the safety and effect of multiple variables — including adjuvant dose (16-fold dose range), immunization route, and adjuvant composition — on the establishment of Env-specific memory T and B cell (TMem and BMem) responses and long-lived plasma cells in nonhuman primates (NHPs). Robust BMem were detected in all groups, but a 6-fold increase was observed in the highest- versus the lowest-SMNP-dose group. Similarly, stronger vaccine responses were induced by the highest SMNP dose in CD40L+OX40+ CD4+ TMem (11-fold), IFN-γ+ CD4+ TMem (15-fold), IL21+ CD4+ TMem (9-fold), circulating T follicular helper cells (TFH; 3.6-fold), BM plasma cells (7-fold), and binding IgG (1.3-fold). Substantial tier 2 neutralizing antibodies were only observed in the higher-SMNP-dose groups. These investigations highlight the dose-dependent potency of SMNP and its relevance for human use and next-generation vaccines.
Parham Ramezani-Rad, Ester Marina-Zárate, Laura Maiorino, Amber Myers, Katarzyna Kaczmarek Michaels, Ivan S. Pires, Nathaniel I. Bloom, Mariane B. Melo, Ashley A. Lemnios, Paul G. Lopez, Christopher A. Cottrell, Iszac Burton, Bettina Groschel, Arpan Pradhan, Gabriela Stiegler, Magdolna Budai, Daniel Kumar, Sam Pallerla, Eddy Sayeed, Sangeetha L. Sagar, Sudhir Pai Kasturi, Koen K.A. Van Rompay, Lars Hangartner, Andreas Wagner, Dennis R. Burton, William R. Schief, Shane Crotty, Darrell J. Irvine
RAS/MAPK pathway mutations often induce RASopathies with overlapping features, such as craniofacial dysmorphology, cardiovascular defects, dermatologic abnormalities, and intellectual disabilities. Although B-Raf proto-oncogene (BRAF) mutations are associated with cardio-facio-cutaneous (CFC) syndrome and Noonan syndrome, it remains unclear how these mutations impair cognition. Here, we investigated the underlying neural mechanisms using several mouse models harboring a gain-of-function BRAF mutation (K499E) discovered in RASopathy patients. We found expressing BRAF K499E (KE) in neural stem cells under the control of a Nestin-Cre promoter (Nestin;BRAFKE/+) induced hippocampal memory deficits, but expressing it in excitatory or inhibitory neurons did not. BRAF KE expression in neural stem cells led to aberrant reactive astrogliosis, increased astrocytic Ca2+ fluctuations, and reduced hippocampal long-term depression (LTD) in mice. Consistently, 3D human cortical spheroids expressing BRAF KE also showed reactive astrogliosis. Astrocyte-specific adeno-associated virus–BRAF KE (AAV-BRAF KE) delivery induced memory deficits and reactive astrogliosis and increased astrocytic Ca2+ fluctuations. Notably, reducing extracellular signal-regulated kinase (ERK) activity in astrocytes rescued the memory deficits and altered astrocytic Ca2+ activity of Nestin;BRAFKE/+ mice. Furthermore, reducing astrocyte Ca2+ activity rescued the spatial memory impairments of BRAF KE–expressing mice. Our results demonstrate that ERK hyperactivity contributes to astrocyte dysfunction associated with Ca2+ dysregulation, leading to the memory deficits of BRAF-associated RASopathies.
Minkyung Kang, Jihye Choi, Jeongho Han, Toshiyuki Araki, Soo-Whee Kim, Hyun-Hee Ryu, Min-Gyun Kim, Seoyeon Kim, Hanbyul Jang, Sun Yong Kim, Kyoung-Doo Hwang, Soobin Kim, Myeongjong Yoo, Jaegeon Lee, Kitae Kim, Pojeong Park, Ja Eun Choi, Dae Hee Han, Yujin Kim, Jeongyeon Kim, Sunghoe Chang, Bong-Kiun Kaang, Jung Min Ko, Keun-Ah Cheon, Joon-Yong An, Sang Jeong Kim, Hyungju Park, Benjamin G. Neel, Chul Hoon Kim, Yong-Seok Lee
Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency, and bony abnormalities with an increased risk of myeloid neoplasia. Almost all cases of SDS result from biallelic mutations in Shwachman-Bodian-Diamond syndrome (SBDS). SBDS interacts with elongation factor–like 1 (EFL1) to displace eukaryotic initiation factor 6 (EIF6) from the 60S ribosomal subunit. Released EIF6 permits the assembly of ribosomal large and small subunits in the cytoplasm. Decreased EIF6 levels due to haploinsufficiency or missense mutations, which lead to decreased protein expression, may provide a somatic genetic rescue and antileukemic effects. We observed accumulation of EIF6 protein in sbds-KO zebrafish models, confirmed this accumulation in patient-derived tissues, and correlated these with changes in ribosomal proteins and tumor protein p53 (TP53) pathways. The mechanism of action for this adaptive response is unknown. To address this, we generated eif6-KO zebrafish, which do not survive more than 10 days after fertilization. We also created 2 mutants with low Eif6 expression, i.e., 5%–25% of WT levels, that could survive until adulthood. We bred them with sbds-null strains and analyzed their phenotype and biochemical properties. Low Eif6 levels reduced Tp53 pathway activation but did not rescue neutropenia in Sbds-deficient zebrafish. Further studies elucidating the interplay between SBDS, EIF6, and TP53 and cellular stress responses offer promising insights into SDS pathogenesis, somatic genetic rescue, and therapeutic strategies.
Usua Oyarbide, Valentino Bezzerri, Morgan Staton, Christian Boni, Arish Shah, Marco Cipolli, Eliezer Calo, Seth J. Corey
Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, response rates and durability are limited due to the emergence of resistance, typically involving FGFR2 kinase domain mutations, and to suboptimal dosing, relating to drug adverse effects. Here, we develop biparatopic antibodies targeting the FGFR2 extracellular domain (ECD) as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of bivalent monospecific antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies targeting distinct epitope pairs in FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2 fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, we believe that biparatopic antibodies may serve as an innovative treatment option for patients with FGFR2-altered cholangiocarcinoma.
Saireudee Chaturantabut, Sydney Oliver, Dennie T. Frederick, Jiwan J. Kim, Foxy P. Robinson, Alessandro Sinopoli, Tian-Yu Song, Yao He, Yuan-Chen Chang, Diego J. Rodriguez, Liang Chang, Devishi Kesar, Meilani Ching, Ruvimbo Dzvurumi, Adel Atari, Yuen-Yi Tseng, Nabeel Bardeesy, William R. Sellers
Spontaneous clearance of hepatitis B virus (HBV) is frequent in adults (95%) but rare in infants (5%), emphasizing the critical role of age-related hepatic immunocompetence. However, the underlying mechanisms of hepatocyte-specific immunosurveillance and age-dependent HBV clearance remain unclear. Here, we identified PGLYRP2 as a hepatocyte-specific pattern recognition receptor with age-dependent expression, and demonstrated that phase separation of PGLYRP2 was a critical driver of spontaneous HBV clearance in hepatocytes. Mechanistically, PGLYRP2 recognized and potentially eliminated covalently closed circular DNA via phase separation, coordinated by its intrinsically disordered region and HBV DNA-binding domain (PGLYRP2IDR/209–377) in the nucleus. Additionally, PGLYRP2 suppressed HBV capsid assembly by directly interacting with the viral capsid, mediated by its PGRP domain. This interaction promoted the nucleocytoplasmic translocation of PGLYRP2 and subsequent secretion of the PGLYRP2/HBV capsid complex, thereby bolstering the hepatic antiviral response. Pathogenic variants or deletions in PGLYRP2 impaired its ability to inhibit HBV replication, highlighting its essential role in hepatocyte-intrinsic immunity. These findings suggest that targeting the PGLYRP2-mediated host-virus interaction may offer a potential therapeutic strategy for the development of anti-HBV treatments, representing a promising avenue for achieving a functional cure for HBV infection.
Ying Li, Huihui Ma, Yongjian Zhang, Tinghui He, Binyang Li, Haoran Ren, Jia Feng, Jie Sheng, Kai Li, Yu Qian, Yunfeng Wang, Haoran Zhao, Jie He, Huicheng Li, Hongjin Wu, Yuanfei Yao, Ming Shi
Colorectal cancer (CRC) remains a leading cause of cancer death because of metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice. We developed genetically modified mouse models with constitutively active Pik3ca that form intestinal tumors progressing to liver metastases with an intact immune system, addressing the limitations of previous Pik3ca-mutant models, including long tumor latency, mixed histology, and lack of distant metastases. The PI3Kα-specific inhibitor alpelisib reduced migration and invasion in vitro and metastasis in vivo. We present a comprehensive analysis of vertical inhibition of the PI3K/AKT pathway in CRC using the FDA-approved drugs alpelisib and capivasertib (an AKT inhibitor) in combination with LY2584702 (a ribosomal protein S6 kinase inhibitor) in CRC cell lines and mouse- and patient-derived organoids. Tissue microarrays from patients with CRC verified that LIN28B and PI3K/AKT pathway activation correlate with CRC progression. These findings highlight the critical role of the LIN28B-mediated PI3K/AKT pathway in CRC metastasis, the therapeutic potential of targeted inhibition, and the promise of patient-derived organoids in precision medicine in metastatic CRC.
Alice E. Shin, Kensuke Sugiura, Secunda W. Kariuki, David A. Cohen, Samuel P. Flashner, Andres J. Klein-Szanto, Noriyuki Nishiwaki, Dechokyab De, Neil Vasan, Joel T. Gabre, Christopher J. Lengner, Peter A. Sims, Anil K. Rustgi
No posts were found with this tag.