Minimum Error Entropy Filter for Fault Detection of Networked Control Systems
Abstract
:1. Introduction
2. System Description and Problem Formulation
- The actuators and sensors are time-driven, while the controller is event-driven;
- The data packets are transmitted in right order;
- The measurements and control signals are transmitted using single-packet with time-stamp;
- A is nonsingular and (A, C) is observable.
3. Design of MEE Filter
3.1. Performance Index
3.2. Filter Gain Design
4. Fault Detection
5. An Illustrative Example
6. Conclusions
Acknowledgments
References
- Hespanha, J.P.; Naghshtabrizi, P.; Xu, Y. A survey of recent results in networked control systems. Proc. IEEE 2007, 95, 138–162. [Google Scholar] [CrossRef]
- Baillieul, J.; Antsaklis, P.J. Control and communication challenges in networked real-time systems. Proc. IEEE 2007, 95, 9–28. [Google Scholar] [CrossRef]
- Zheng, Y.; Fang, H.; Wang, H.O. Takagi-Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays. IEEE Trans. Syst. Man Cybern. B Cybern. 2006, 36, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Jiang, B.; Shi, P. H∞ fault detection filter design for networked control systems modelled by discrete Markovian jump systems. IET Contr. Theor. Appl. 2007, 1, 1336–1443. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, H.; Ding, X.S.; Wang, G. Fault detection of networked control systems based on optimal robust fault detection filter. Acta Autom. Sin. 2008, 34, 1534–1539. [Google Scholar] [CrossRef]
- Fang, H.J.; Ye, H.; Zhong, M.Y. Fault diagnosis of networked control systems. Annu. Rev. Contr. 2007, 31, 55–68. [Google Scholar] [CrossRef]
- Wang, H. Bounded Dynamic Stochastic Systems: Modeling and Control; Springer-Verlag: London, UK, 2000. [Google Scholar]
- Yue, H.; Zhou, J.L.; Wang, H. Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems. IEEE Trans. Automat. Contr. 2003, 48, 118–122. [Google Scholar]
- Yue, H.; Wang, H. Minimum entropy of B-spline PDF systems with mean constraint. Automatica 2006, 46, 989–994. [Google Scholar] [CrossRef]
- Erdogmus, D.; Principe, J.C.; Kim, S.P.; Sanchez, J.C. A recursive Renyi’s entropy estimator. In Proceedings of the 12nd IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 4–6 September 2002; pp. 209–217.
- Chen, B.; Zhu, Y.; Hu, J.; Príncipe, J.C. Δ-Entropy: Definition, properties and applications in system identification with quantized data. Inf. Sci. 2011, 181, 1384–1420. [Google Scholar] [CrossRef]
- Haber, R.E.; del Toro, R.M.; Gajate, A. Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process. Inf. Sci. 2010, 180, 2777–2792. [Google Scholar]
- Ishii, H.; Okano, K.; Hara, S. Achievable sensitivity bounds for MIMO control systems via an information theoretic approach. Syst. Contr. Lett. 2011, 60, 111–118. [Google Scholar] [CrossRef]
- Guo, L.; Wang, H.; Chai, T. Fault detection for non-linear non-Gaussian stochastic systems using entropy optimization principle. Trans. Instit. Meas. Contr. 2006, 28, 145–161. [Google Scholar] [CrossRef]
- Yin, L.; Guo, L. Fault isolation for multivariate nonlinear non-Gaussian systems using generalized entropy optimization principle. Automatica 2009, 45, 2612–2619. [Google Scholar] [CrossRef]
- Guo, L.; Wang, H. Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises. IEEE Trans. Autom. Contr. 2006, 51, 695–700. [Google Scholar] [CrossRef]
- Gertler, J.J. Fault Detection and Diagnosis in Engineering Systems; Marcel Decker: New York, NY, USA, 1998. [Google Scholar]
- Chen, J.; Patton, R.J. Robust Model-Based Fault Diagnosis for Dynamic Systems; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control; Springer-Verlag: Berlin, Heidelberg, Germany, 2003. [Google Scholar]
- Erdogmus, D.; Pricipe, J.C. An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. Signal Process. 2006, 50, 1780–1786. [Google Scholar] [CrossRef]
- Pricipe, J.C.; Xu, D.; Fisher, J.W. Information theoretic learning. In Unsupervised Adaptive Filtering; Wiley: New York, NY, USA, 2000; pp. 265–319. [Google Scholar]
- Xu, J.W.; Erdogmus, D.; Principe, J.C. Minimum error entropy Luenberger observer. In Proceedings of the 2005 American Control Conference, Portland, OR, USA, 8–10 June 2005; pp. 1923–1928.
- Resendiz, J.; Yu, W.; Fridman, L. Two-stage neural observer for mechanical systems. IEEE Trans. Circuits Syst. II 2008, 55, 1076–1080. [Google Scholar] [CrossRef]
- Huang, S.N.; Tan, K.K.; Lee, T.H. Further result on a dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems. Automatica 2005, 41, 2161–2162. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, J.; Du, L.; Ren, M.; Hou, G. Minimum Error Entropy Filter for Fault Detection of Networked Control Systems. Entropy 2012, 14, 505-516. https://doi.org/10.3390/e14030505
Zhang J, Du L, Ren M, Hou G. Minimum Error Entropy Filter for Fault Detection of Networked Control Systems. Entropy. 2012; 14(3):505-516. https://doi.org/10.3390/e14030505
Chicago/Turabian StyleZhang, Jianhua, Lilong Du, Mifeng Ren, and Guolian Hou. 2012. "Minimum Error Entropy Filter for Fault Detection of Networked Control Systems" Entropy 14, no. 3: 505-516. https://doi.org/10.3390/e14030505
APA StyleZhang, J., Du, L., Ren, M., & Hou, G. (2012). Minimum Error Entropy Filter for Fault Detection of Networked Control Systems. Entropy, 14(3), 505-516. https://doi.org/10.3390/e14030505