Identification of Inhibitors of ZIKV Replication
Abstract
:1. Introduction
2. Material and Methods
2.1. Cell Lines
2.2. ZIKV Strains
2.3. Compounds
2.4. Cell Viability Assays
2.5. Viral Inhibition Assays
2.6. Growth Inhibition Assays
2.7. Protection Against ZIKV-Induced Cytopathic Effect (CPE)
2.8. Apoptosis Assay
2.9. Statistical Analysis
3. Results
3.1. Antiviral Activity of Compounds Against ZIKV
3.2. Pre- and Co-Treatment Effect of Compounds on ZIKV Infection
3.3. Protection from ZIKV-Induced Cell Death
3.4. Effect of the Compounds on Old World and New World ZIKV Strains
3.5. Effect of the Compounds on ZIKV Infection in Human A549 Cells
4. Discussion
Group | Compound | Literature Findings | References | |
---|---|---|---|---|
A | Antimycin A | Viruses | Togaviridae (Venezuelan equine encephalitis virus, VEEV), Bunyaviridae (La Crosse virus, LACV), Picornaviridae (encephalomyocarditis virus, EMCV) Rhabdoviridae (vesicular stomatitis virus, VSV), Paramyxoviridae (Sendai virus, SeV), Flaviviridae (hepatitis C virus, HCV), Orthomyxoviridae (influenza A and B viruses) families | [17,21] |
B | OSU-03012 | Bacteria | Salmonella enterica and Francisella tularensis | [22,23] |
Fungi | Candida albicans, Cryptococcus neoformans, Fusarium sp., mucorales, Blastomyces dermatitidis, Histoplasma capsulatum, and Coccidioides immitis | |||
Parasite | Leishmania donovani | |||
Viruses | Lassa virus, LASV; Marburg virus, MARV; Ebola virus, EBOV; DENV; Junin virus, JUNV; rubella virus, RV; and human immunodeficiency virus, HIV | |||
Obatoclax | Viruses | Influenza A and B viruses, Bunyamwera virus (BUNV), and Sindbis virus (SINV), Chikungunya virus (CHIKV) and Semliki Forest virus (SFV) | [25,26] | |
C | Azaribine | Viruses | WNV and influenza A and B viruses | [17,28,29] |
Azauridine | Viruses | CHIKV, SFV, YFV, DENV, JEV, LCMV, parainfluenza 3 virus (HPIV-3), polyomavirus (PV), influenza A and B viruses, and WNV | [16,17,29,31,32,33] | |
Pyrazofurin | Viruses | Rhinovirus, Herpes simplex virus (HSV), vaccinia virus, WNV, Picornaviridae (polio and Coxsackie B4), SINV, YFV, Paramyxoviridae (measles virus, MV; and respiratory syncytial virus, RSV), Orthomyxoviridae (influenza A and B viruses), arenavirus (JUNV and Tacaribe virus, TCRV), and Rhabdoviridae (VSV) | [17,29,35,36] | |
D | Mycophenolate mofetil | Viruses | Influenza A and B viruses, foot-and-mouth disease virus (FMDV), and HPIV-2 | [17,37,39,40] |
Mycophenolic acid | Viruses | Influenza A and B viruses, camelpox virus, cowpox virus, monkeypox virus, vaccinia virus, reovirus, and HCV, among | [17,43,44,45,46,47] | |
AVN-944 | Viruses | FDMV, influenza A and B viruses, and JUNV | [17,37,50,51]. | |
E | Brequinar | Viruses | FMDV, HIV, DENV, WNV, YFV, Powassan virus (POW), Western equine encephalitis virus (WEEV), VSV, rotavirus, EBOV, and Cantagalo virus | [52,53,54,55,56,57] |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKenzie, J.S.; Gubler, D.J.; Petersen, L.R. Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med. 2004, 10, S98–S109. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Pérez, G.; Nogales, A.; Martín, V.; Almazán, F.; Martínez-Sobrido, L. Reverse Genetic Approaches for the Generation of Recombinant Zika Virus. Viruses 2018, 10, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, G.W.; Kitchen, S.F.; Haddow, A.J.; Zika Virus, I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Ioos, S.; Mallet, H.-P.; Goffart, I.L.; Gauthier, V.; Cardoso, T.; Herida, M. Current Zika virus epidemiology and recent epidemics. Med. Mal. Infect. 2014, 44, 302–307. [Google Scholar] [CrossRef]
- Duffy, M.R.; Chen, T.-H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; DuBray, C.; et al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef]
- Cao-Lormeau, V.-M.; Blake, A.; Mons, S.; Lastère, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, L.; Teissier, A.; Larre, P.; et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet 2016, 387, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.C.; Costa, F.; Garcia-Blanco, M.A.; Ko, A.I.; Ribeiro, G.S.; Saade, G.; Shi, P.-Y.; Vasilakis, N. Zika virus: History, emergence, biology, and prospects for control. Antivir. Res. 2016, 130, 69–80. [Google Scholar] [CrossRef]
- Baz, M.; Boivin, G. Baz Antiviral Agents in Development for Zika Virus Infections. Pharmaceuticals 2019, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Shuaib, W.; Stanazai, H.; Abazid, A.G.; Mattar, A.A. Re-Emergence of Zika Virus: A Review on Pathogenesis, Clinical Manifestations, Diagnosis, Treatment, and Prevention. Am. J. Med. 2016, 129, 879.e7–879.e12. [Google Scholar] [CrossRef] [Green Version]
- Gunawardana, S.A.; Shaw, R.H. Cross-reactive dengue virus-derived monoclonal antibodies to Zika virus envelope protein: Panacea or Pandora’s box? BMC Infect. Dis. 2018, 18, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbink, P.; Stephenson, K.E.; Barouch, D.H. Zika virus vaccines. Nat. Rev. Genet. 2018, 16, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Garg, H.; Mehmetoglu-Gurbuz, T.; Joshi, A. Recent Advances in Zika Virus Vaccines. Viruses 2018, 10, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArthur, M.A. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses 2017, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-G.; Ávila-Pérez, G.; Madere, F.; Hilimire, T.A.; Nogales, A.; Almazán, F.; Martínez-Sobrido, L. Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid. Front. Microbiol. 2019, 10, 718. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Cubitt, B.; Chen, E.; Hull, M.V.; Chatterjee, A.K.; Cai, Y.; Kuhn, J.H.; De La Torre, J.C. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antivir. Res. 2019, 169, 104558. [Google Scholar] [CrossRef]
- Park, J.-G.; Ávila-Pérez, G.; Nogales, A.; Blanco-Lobo, P.; De La Torre, J.C.; Martínez-Sobrido, L. Identification and Characterization of Novel Compounds with Broad-Spectrum Antiviral Activity against Influenza A and B Viruses. J. Virol. 2020, 94. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Pérez, G.; Nogales, A.; Park, J.-G.; Márquez-Jurado, S.; Iborra, F.J.; Almazán, F.; Martínez-Sobrido, L. A natural polymorphism in Zika virus NS2A protein responsible of virulence in mice. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef]
- Márquez-Jurado, S.; Nogales, A.; Ávila-Pérez, G.; Iborra, F.J.; Martínez-Sobrido, L.; Almazán, F. An Alanine-to-Valine Substitution in the Residue 175 of Zika Virus NS2A Protein Affects Viral RNA Synthesis and Attenuates the Virus In Vivo. Viruses 2018, 10, 547. [Google Scholar] [CrossRef] [Green Version]
- Labs, M.; Rühle, T.; Leister, D. The antimycin A-sensitive pathway of cyclic electron flow: From 1963 to 2015. Photosynth. Res. 2016, 129, 231–238. [Google Scholar] [CrossRef]
- Raveh, A.; Delekta, P.C.; Dobry, C.J.; Peng, W.; Schultz, P.J.; Blakely, P.K.; Tai, A.W.; Matainaho, T.; Irani, D.N.; Sherman, D.H.; et al. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria. PLoS ONE 2013, 8, e82318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.; Zhu, Z.; Chu, H.; Yuan, S.; Chik, K.K.-H.; Chan, C.C.-S.; Poon, V.K.-M.; Yip, C.C.-Y.; Zhang, X.; Tsang, J.O.-L.; et al. The celecoxib derivative kinase inhibitor AR-12 (OSU-03012) inhibits Zika virus via down-regulation of the PI3K/Akt pathway and protects Zika virus-infected A129 mice: A host-targeting treatment strategy. Antivir. Res. 2018, 160, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Booth, L.; Roberts, J.L.; Ecroyd, H.; Tritsch, S.R.; Bavari, S.; Reid, S.P.; Proniuk, S.; Zukiwski, A.; Jacob, A.; Sepúlveda, C.S.; et al. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication. J. Cell. Physiol. 2016, 231, 2286–2302. [Google Scholar] [CrossRef] [PubMed]
- Rausch, K.; Hackett, B.A.; Weinbren, N.L.; Reeder, S.; Sadovsky, Y.; Hunter, C.A.; Schultz, D.C.; Coyne, C.B.; Cherry, S. Screening Bioactives Reveals Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus. Cell Rep. 2017, 18, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Kuivanen, S.; Bespalov, M.M.; Nandania, J.; Ianevski, A.; Velagapudi, V.; De Brabander, J.K.; Kainov, D.E.; Vapalahti, O. Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antivir. Res. 2017, 139, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Varghese, F.S.; Rausalu, K.; Hakanen, M.; Saul, S.; Kümmerer, B.M.; Susi, P.; Merits, A.; Ahola, T. Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Denisova, O.V.; Kakkola, L.; Feng, L.; Stenman, J.; Nagaraj, A.; Lampe, J.; Yadav, B.; Aittokallio, T.; Kaukinen, P.; Ahola, T.; et al. Obatoclax, Saliphenylhalamide, and Gemcitabine Inhibit Influenza A Virus Infection. J. Boil. Chem. 2012, 287, 35324–35332. [Google Scholar] [CrossRef] [Green Version]
- Shupack, J.L.; Grieco, A.J.; Epstein, A.M.; Sansaricq, C.; E Snyderman, S. Azaribine, Homocystinemia, and Thrombosis. Arch. Dermatol. 1977, 113, 1301. [Google Scholar] [CrossRef]
- Morrey, J.; Smee, D.F.; Sidwell, R.W.; Tseng, C. Identification of active antiviral compounds against a New York isolate of West Nile virus. Antivir. Res. 2002, 55, 107–116. [Google Scholar] [CrossRef]
- Pascoalino, B.S.; Courtemanche, G.; Cordeiro, M.T.; Gil, L.H.V.G.; Freitas-Junior, L.H. Zika antiviral chemotherapy: Identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Research 2016, 5, 2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briolant, S.; Garin, D.; Scaramozzino, N.; Jouan, A.; Crance, J. In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: Synergistic effect of interferon-α and ribavirin combination. Antivir. Res. 2004, 61, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Crance, J.M.; Scaramozzino, N.; Jouan, A.; Garin, D. Interferon, ribavirin, 6-azauridine and glycyrrhizin: Antiviral compounds active against pathogenic flaviviruses. Antivir. Res. 2003, 58, 73–79. [Google Scholar] [CrossRef]
- Rada, B.; Dragúň, M. Antiviral action and selectivity of 6-azauridine. Ann. N. Y. Acad. Sci. 1977, 284, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Adcock, R.S.; Chu, Y.-K.; Golden, J.E.; Chung, N.-H. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antivir. Res. 2017, 138, 47–56. [Google Scholar] [CrossRef]
- Westhead, J.E.; Price, H.D. Quantitative Assay of Pyrazofurin a New Antiviral, Antitumor Antibiotic. Antimicrob. Agents Chemother. 1974, 5, 90–91. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, E. New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chem. Asian J. 2019, 14, 3962–3968. [Google Scholar] [CrossRef]
- Mei-Jiao, G.; Shi-Fang, L.; Yan-Yan, C.; Jun-Jun, S.; Yue-Feng, S.; Ting-Ting, R.; Yong-Guang, Z.; Hui-Yun, C. Antiviral effects of selected IMPDH and DHODH inhibitors against foot and mouth disease virus. Biomed. Pharmacother. 2019, 118, 109305. [Google Scholar] [CrossRef]
- Sievers, T.M.; Rossi, S.J.; Ghobrial, R.M.; Arriola, E.; Nishimura, P.; Kawano, M.; Holt, C.D. Mycophenolate mofetil. Pharmacotherapy 1997, 17, 1178–1197. [Google Scholar]
- Cho, J.; Yi, H.; Jang, E.Y.; Lee, M.-S.; Lee, J.-Y.; Kang, C.; Lee, C.H.; Kim, K. Mycophenolic mofetil, an alternative antiviral and immunomodulator for the highly pathogenic avian influenza H5N1 virus infection. Biochem. Biophys. Res. Commun. 2017, 494, 298–304. [Google Scholar] [CrossRef]
- Allison, A.C. Mechanisms of action of mycophenolate mofetil. Lupus 2005, 14, 2–8. [Google Scholar] [CrossRef]
- Dong, S.; Kang, S.; Dimopoulos, G. Identification of anti-flaviviral drugs with mosquitocidal and anti-Zika virus activity in Aedes aegypti. PLoS Neglected Trop. Dis. 2019, 13, e0007681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Q.; Van Vuuren, A.J.; Van Der Laan, L.J.W.; Peppelenbosch, M.P.; Janssen, H.L.A. Antiviral or proviral action of mycophenolic acid in hepatitis B infection? Hepatology 2012, 56, 1586–1587. [Google Scholar] [CrossRef]
- Manchala, N.R.; Dungdung, R.; Trivedi, P.; Unniyampurath, U.; Pilankatta, R. Mycophenolic acid (MPA) modulates host cellular autophagy progression in sub genomic dengue virus-2 replicon cells. Microb. Pathog. 2019, 137, 103762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- To, K.K.-W.; Mok, K.-Y.; Chan, A.S.F.; Cheung, N.N.; Wang, P.; Lui, Y.-M.; Chan, J.F.; Chen, H.; Chan, K.-H.; Kao, R.Y.; et al. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans. J. Gen. Virol. 2016, 97, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Bray, M.; Huggins, J.W. Antiviral activity and mode of action studies of ribavirin and mycophenolic acid against orthopoxviruses in vitro. Antivir. Chem. Chemother. 2001, 12, 327–335. [Google Scholar] [CrossRef]
- Hermann, L.L.; Coombs, K.M. Inhibition of Reovirus by Mycophenolic Acid Is Associated with the M1 Genome Segment. J. Virol. 2004, 78, 6171–6179. [Google Scholar] [CrossRef] [Green Version]
- Henry, S.D.; Metselaar, H.J.; Lonsdale, R.C.; Kok, A.; Haagmans, B.L.; Tilanus, H.W.; Van Der Laan, L.J.W. Mycophenolic Acid Inhibits Hepatitis C Virus Replication and Acts in Synergy With Cyclosporin A and Interferon-α. Gastroenterology 2006, 131, 1452–1462. [Google Scholar] [CrossRef]
- Albulescu, I.C.; Kovacikova, K.; Tas, A.; Snijder, E.J.; Van Hemert, M.J. Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antivir. Res. 2017, 143, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Muñoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J.; et al. A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host Microbe 2016, 20, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Floryk, D.; Thompson, T.C. Antiproliferative effects of AVN944, a novel inosine 5-monophosphate dehydrogenase inhibitor, in prostate cancer cells. Int. J. Cancer 2008, 123, 2294–2302. [Google Scholar] [CrossRef] [Green Version]
- Dunham, E.C.; Leske, A.; Shifflett, K.; Watt, A.; Feldmann, H.; Hoenen, T.; Groseth, A. Lifecycle modelling systems support inosine monophosphate dehydrogenase (IMPDH) as a pro-viral factor and antiviral target for New World arenaviruses. Antivir. Res. 2018, 157, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-F.; Gong, M.-J.; Sun, Y.-F.; Shao, J.-J.; Zhang, Y.-G.; Chang, H. Antiviral activity of brequinar against foot-and-mouth disease virus infection in vitro and in vivo. Biomed. Pharmacother. 2019, 116, 108982. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.I.; Krpina, K.; Ianevski, A.; Shtaida, N.; Jo, E.; Yang, J.; Koit, S.; Tenson, T.; Hukkanen, V.; Anthonsen, M.W.; et al. Novel Antiviral Activities of Obatoclax, Emetine, Niclosamide, Brequinar, and Homoharringtonine. Viruses 2019, 11, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qing, M.; Zou, G.; Wang, Q.-Y.; Xu, H.Y.; Dong, H.; Yuan, Z.; Shi, P.-Y. Characterization of Dengue Virus Resistance to Brequinar in Cell Culture. Antimicrob. Agents Chemother. 2010, 54, 3686–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Ding, S.; Yin, Y.; Xu, L.; Li, P.; Peppelenbosch, M.P.; Pan, Q.; Wang, W. Suppression of pyrimidine biosynthesis by targeting DHODH enzyme robustly inhibits rotavirus replication. Antivir. Res. 2019, 167, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Luthra, P.; Naidoo, J.; Pietzsch, C.A.; De, S.; Khadka, S.; Anantpadma, M.; Williams, C.G.; Edwards, M.R.; Davey, R.A.; Bukreyev, A.; et al. Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antivir. Res. 2018, 158, 288–302. [Google Scholar] [CrossRef]
- Schnellrath, L.C.; Damaso, C.R. Potent antiviral activity of brequinar against the emerging Cantagalo virus in cell culture. Int. J. Antimicrob. Agents 2011, 38, 435–441. [Google Scholar] [CrossRef] [Green Version]
Compound | CC50 (MTT) (µM) | CC50 (XTT) (µM) | EC50 (µM) | SI (MTT) | SI (XTT) |
---|---|---|---|---|---|
Antimycin A | 51.28 | >1350.00 | 2.00 | 25.64 | >675.00 |
OSU-03012 | 6.39 | 132.50 | 8.40 | 0.76 | 15.77 |
Obatoclax | 17.57 | 60.44 | 0.63 | 27.89 | 95.94 |
Azauridine | 155.80 | >1350.00 | 4.29 | 36.32 | >314.69 |
Azaribine | 237.00 | >1350.00 | 1.62 | 146.29 | >833.33 |
Pyrazofurin | 270.60 | >1350.00 | 5.96 | 45.35 | >226.51 |
Mycophenolate mofetil | 166.30 | >1350.00 | 3.52 | 47.24 | >383.52 |
Mycophenolic acid | 275.40 | >1350.00 | 4.26 | 64.65 | >316.90 |
AVN-944 | 272.60 | >1350.00 | 0.98 | 278.16 | >1377.55 |
Brequinar | 237.70 | >1350.00 | 1.51 | 157.42 | >894.04 |
ATA | >1350.00 | >1350.00 | 25.00 | >54.00 | >54.00 |
Compound | CC50 (MTT) (µM) | CC50 (XTT) (µM) | EC50 (µM) | SI (MTT) | SI (XTT) |
---|---|---|---|---|---|
Antimycin A | 51.28 | >1350.00 | 8.95 | 5.73 | >150.84 |
OSU-03012 | 6.39 | 132.50 | 0.93 | 6.87 | 142.47 |
Obatoclax | 17.57 | 60.44 | 2.96 | 5.94 | 20.4 |
Azauridine | 155.80 | >1350.00 | 64.49 | 2.42 | >20.93 |
Azaribine | 237.00 | >1350.00 | 47.29 | 5.01 | >28.55 |
Pyrazofurin | 270.60 | >1350.00 | 313.00 | 0.86 | >4.31 |
Mycophenolate mofetil | 166.30 | >1350.00 | 8.11 | 20.51 | >166.46 |
Mycophenolic acid | 275.40 | >1350.00 | 7.58 | 36.33 | >178.10 |
AVN-944 | 272.60 | >1350.00 | 11.12 | 24.51 | >121.40 |
Brequinar | 237.70 | >1350.00 | 42.47 | 5.59 | >31.79 |
ATA | >1350.00 | >1350.00 | 9.86 | >136.92 | >136.92 |
Compound | CC50 (MTT) (µM) | CC50 (XTT) (µM) | EC50 (µM) | SI (MTT) | SI (XTT) |
---|---|---|---|---|---|
Antimycin A | 51.28 | >1350.00 | 3.50 | 14.65 | >385.71 |
OSU-03012 | 6.39 | 132.50 | 1.77 | 3.61 | 36.70 |
Obatoclax | 17.57 | 60.44 | 0.29 | 60.58 | 208.41 |
Azauridine | 155.80 | >1350.00 | 130.30 | 1.19 | >10.36 |
Azaribine | 237.00 | >1350.00 | 2.59 | 91.51 | >521.23 |
Pyrazofurin | 270.60 | >1350.00 | 39.07 | 6.93 | >34.55 |
Mycophenolate mofetil | 166.30 | >1350.00 | 2.27 | 73.26 | >594.71 |
Mycophenolic acid | 275.40 | >1350.00 | 41.75 | 6.59 | >32.33 |
AVN-944 | 272.60 | >1350.00 | 7.98 | 34.16 | >169.17 |
Brequinar | 237.70 | >1350.00 | 8.71 | 27.29 | >154.99 |
ATA | >1350.00 | >1350.00 | 1.73 | >780.34 | >780.34 |
Compound | CC50 (MTT) (µM) | CC50 (XTT) (µM) | EC50 (µM) | SI (MTT) | SI (XTT) |
---|---|---|---|---|---|
Antimycin A | 51.28 | >1350.00 | 0.03 | 1709.33 | >45,000.00 |
OSU-03012 | 6.39 | 132.50 | 0.81 | 7.89 | 163.58 |
Obatoclax | 17.57 | 60.44 | 0.37 | 47.49 | 163.35 |
Azauridine | 155.80 | >1350.00 | 0.76 | 205.00 | >1776.32 |
Azaribine | 237.00 | >1350.00 | 2.43 | 97.53 | >555.56 |
Pyrazofurin | 270.60 | >1350.00 | 0.89 | 304.04 | >1516.85 |
Mycophenolate mofetil | 166.30 | >1350.00 | 0.24 | 692.92 | >5625.00 |
Mycophenolic acid | 275.40 | >1350.00 | 0.15 | 1836.00 | >9000.00 |
AVN-944 | 272.60 | >1350.00 | 0.33 | 826.06 | >4090.91 |
Brequinar | 237.70 | >1350.00 | 0.05 | 4754.00 | >27,000.00 |
ATA | >1350.00 | >1350.00 | 8.08 | >167.08 | >167.08 |
Compound | CC50 (MTT) (µM) | CC50 (XTT) (µM) | EC50 (µM) | SI (MTT) | SI (XTT) |
---|---|---|---|---|---|
Antimycin A | 51.28 | >1350.00 | 7.32 | 7.01 | >184.43 |
OSU-03012 | 6.39 | 132.50 | 1.68 | 3.80 | 78.87 |
Obatoclax | 17.57 | 60.44 | 0.41 | 42.85 | 147.41 |
Azauridine | 155.80 | >1350.00 | 1.46 | 106.71 | >924.66 |
Azaribine | 237.00 | >1350.00 | 1.12 | 211.61 | >1205.36 |
Pyrazofurin | 270.60 | >1350.00 | 0.95 | 284.84 | >1421.06 |
Mycophenolate mofetil | 166.30 | >1350.00 | 0.12 | 1385.83 | >11,250.00 |
Mycophenolic acid | 275.40 | >1350.00 | 0.22 | 1251.82 | >6136.36 |
AVN-944 | 272.60 | >1350.00 | 0.38 | 717.37 | >3552.63 |
Brequinar | 237.70 | >1350.00 | 0.08 | 2971.25 | >16,875.00 |
ATA | >1350.00 | >1350.00 | 4.74 | >284.81 | >284.81 |
Compound | CC50 (MTT) (µM) | CC50 (XTT) (µM) | EC50 (µM) | SI (MTT) | SI (XTT) |
---|---|---|---|---|---|
Antimycin A | >50.00 | >50.00 | 1.71 µM | >29.24 | >29.24 |
OSU-03012 | >50.00 | >50.00 | 0.21 µM | >238.09 | >238.09 |
Obatoclax | >50.00 | >50.00 | 0.64 µM | >78.13 | >78.13 |
Azauridine | >50.00 | >50.00 | 0.44 µM | >113.64 | >113.64 |
Azaribine | >50.00 | >50.00 | 0.68 µM | >73.53 | >73.53 |
Pyrazofurin | >50.00 | >50.00 | 0.33 µM | >151.52 | >151.52 |
Mycophenolate mofetil | >50.00 | >50.00 | 0.83 µM | >60.24 | >60.24 |
Mycophenolic acid | >50.00 | >50.00 | 0.65 µM | >76.92 | >76.92 |
AVN-944 | >50.00 | >50.00 | 0.05 µM | >1000.00 | >1000.00 |
Brequinar | >50.00 | >50.00 | 0.02 µM | >2500.00 | >2500.00 |
ATA | >50.00 | >50.00 | 6.67 µM | >7.49 | >7.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales Vasquez, D.; Park, J.-G.; Ávila-Pérez, G.; Nogales, A.; de la Torre, J.C.; Almazan, F.; Martinez-Sobrido, L. Identification of Inhibitors of ZIKV Replication. Viruses 2020, 12, 1041. https://doi.org/10.3390/v12091041
Morales Vasquez D, Park J-G, Ávila-Pérez G, Nogales A, de la Torre JC, Almazan F, Martinez-Sobrido L. Identification of Inhibitors of ZIKV Replication. Viruses. 2020; 12(9):1041. https://doi.org/10.3390/v12091041
Chicago/Turabian StyleMorales Vasquez, Desarey, Jun-Gyu Park, Ginés Ávila-Pérez, Aitor Nogales, Juan Carlos de la Torre, Fernando Almazan, and Luis Martinez-Sobrido. 2020. "Identification of Inhibitors of ZIKV Replication" Viruses 12, no. 9: 1041. https://doi.org/10.3390/v12091041
APA StyleMorales Vasquez, D., Park, J.-G., Ávila-Pérez, G., Nogales, A., de la Torre, J. C., Almazan, F., & Martinez-Sobrido, L. (2020). Identification of Inhibitors of ZIKV Replication. Viruses, 12(9), 1041. https://doi.org/10.3390/v12091041