Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cells in non-lymphoid tissues

Abstract

B cells have long been understood to be drivers of both humoral and cellular immunity. Recent advances underscore this importance but also indicate that in infection, inflammatory disease and cancer, B cells function directly at sites of inflammation and form tissue-resident memory populations. The spatial organization and cellular niches of tissue B cells have profound effects on their function and on disease outcome, as well as on patient response to therapy. Here we review the role of B cells in peripheral tissues in homeostasis and disease, and discuss the newly identified cellular and molecular signals that are involved in regulating their activity. We integrate emerging data from multi-omic human studies with experimental models to propose a framework for B cell function in tissue inflammation and homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamics of tissue B cell recruitment, differentiation and function.
Fig. 2: Organized structures in peripheral tissues support local B cell functions.
Fig. 3: Therapeutic targeting of tissue B cells.

Similar content being viewed by others

References

  1. Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2019). This is the first report (to our knowledge) to use parabiosis to provide definitive evidence of memory B cell residency following influenza virus lung infection.

    Article  CAS  PubMed  Google Scholar 

  2. Onodera, T. et al. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. Proc. Natl Acad. Sci. USA 109, 2485–2490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barker, K. A. et al. Lung-resident memory B cells protect against bacterial pneumonia. J. Clin. Investig. 131, e141810 (2021). The first study (to our knowledge) to demonstrate that bacterial lung infection induces lung BRM cells that are protective against lethal bacterial rechallenge.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, J. et al. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer. Genome Biol. 21, 152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trim, W. V. & Lynch, L. Immune and non-immune functions of adipose tissue leukocytes. Nat. Rev. Immunol. 22, 371–386 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geherin, S. A. et al. The skin, a novel niche for recirculating B cells. J. Immunol. 188, 6027–6035 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Baumgarth, N. The shaping of a B cell pool maximally responsive to infections. Annu. Rev. Immunol. 39, 103–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Shahaf, G., Zisman-Rozen, S., Benhamou, D., Melamed, D. & Mehr, R. B cell development in the bone marrow is regulated by homeostatic feedback exerted by mature B cells. Front. Immunol. 7, 77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rastogi, I. et al. Role of B cells as antigen presenting cells. Front. Immunol. 13, 954936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michaud, D., Steward, C. R., Mirlekar, B. & Pylayeva-Gupta, Y. Regulatory B cells in cancer. Immunol. Rev. 299, 74–92 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Laumont, C. M. & Nelson, B. H. B cells in the tumor microenvironment: multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 41, 466–489 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Upasani, V., Rodenhuis-Zybert, I. & Cantaert, T. Antibody-independent functions of B cells during viral infections. PLoS Pathog. 17, e1009708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan, H.-X. et al. Lung-resident memory B cells established after pulmonary influenza infection display distinct transcriptional and phenotypic profiles. Sci. Immunol. 7, eabf5314 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Inoue, T. & Kurosaki, T. Memory B cells. Nat. Rev. Immunol. 24, 5–17 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Chung, M. K. Y. et al. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol. Med. 15, e17341 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roco, J. A. et al. Class-switch recombination occurs infrequently in germinal centers. Immunity 51, 337–350.e337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bergqvist, P., Stensson, A., Lycke, N. Y. & Bemark, M. T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation. J. Immunol. 184, 3545–3553 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Horns, F. et al. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. eLife 5, e16578 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Laidlaw, B. J. & Cyster, J. G. Transcriptional regulation of memory B cell differentiation. Nat. Rev. Immunol. 21, 209–220 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., Li, Z. & Hu, F. Double-negative (DN) B cells: an under-recognized effector memory B cell subset in autoimmunity. Clin. Exp. Immunol. 205, 119–127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, J. et al. A blueprint for tumor-infiltrating B cells across human cancers. Science 384, eadj4857 (2024). Comprehensive multi-omic analysis of tumour-infiltrating B cells across 20 cancer types.

    Article  CAS  PubMed  Google Scholar 

  25. Zuccarino-Catania, G. V. et al. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Pape, K. A., Taylor, J. J., Maul, R. W., Gearhart, P. J. & Jenkins, M. K. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331, 1203–1207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mesin, L. et al. Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting. Cell 180, 92–106 e111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alsoussi, W. B. et al. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature 617, 592–598 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Turner, J. S. et al. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 586, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Dai, D. et al. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 383, 413–421 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, X. et al. Zeb2 drives the formation of CD11c+ atypical B cells to sustain germinal centers that control persistent infection. Sci. Immunol. 9, eadj4748 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Nellore, A. et al. A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity 56, 847–863.e848 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arroyo-Diaz, N. M. et al. Interferon-gamma production by Tfh cells is required for CXCR3+ pre-memory B cell differentiation and subsequent lung-resident memory B cell responses. Immunity 56, 2358–2372.e2355 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song, W. et al. Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers. Immunity 55, 290–307 e295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castleman, M. J. et al. Autoantibodies elicited with SARS-CoV-2 infection are linked to alterations in double negative B cells. Front. Immunol. 13, 988125 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sutton, H. J. et al. Atypical B cells are part of an alternative lineage of B cells that participates in responses to vaccination and infection in humans. Cell Rep. 34, 108684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bemark, M. et al. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat. Commun. 7, 12698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shang, L. et al. Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135, 529–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Silva-Sanchez, A. & Randall, T. D. in Mucosal Vaccines 2nd edn (eds Kiyono, H. & Pascual, D. W.) Ch. 2 (Academic Press, 2020).

  42. Hand, T. W. & Reboldi, A. Production and function of immunoglobulin A. Annu. Rev. Immunol. 39, 695–718 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

    Article  PubMed  Google Scholar 

  44. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Gribonika, I. et al. Skin autonomous antibody production regulates host-microbiota interactions. Nature https://doi.org/10.1038/s41586-024-08376-y (2024).

    Article  PubMed  Google Scholar 

  46. Randall, T. D. & Mebius, R. E. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol. 7, 455–466 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. MacFawn, I. P. et al. The activity of tertiary lymphoid structures in high grade serous ovarian cancer is governed by site, stroma, and cellular interactions. Cancer Cell 42, 1864–1881.e1865 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Allie, S. R. & Randall, T. D. Resident memory B cells. Viral Immunol. 33, 282–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, C. & Laidlaw, B. J. Development and function of tissue-resident memory B cells. Adv. Immunol. 155, 1–38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gray, J. I. & Farber, D. L. Tissue-resident immune cells in humans. Annu. Rev. Immunol. 40, 195–220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weisel, N. M. et al. Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood 136, 2774–2785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramirez, S. I. et al. Immunological memory diversity in the human upper airway. Nature 632, 630–636 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Oh, J. E. et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature 571, 122–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, C. M. & Oh, J. E. Resident memory B cells in barrier tissues. Front. Immunol. 13, 953088 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reusch, L. & Angeletti, D. Memory B-cell diversity: from early generation to tissue residency and reactivation. Eur. J. Immunol. 53, e2250085 (2023).

    Article  PubMed  Google Scholar 

  56. Madissoon, E. et al. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat. Genet. 55, 66–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Oh, J. E. et al. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci. Immunol. 6, eabj5129 (2021). Evidence of lung IgA+ BRM cell and IgA+ plasma cell requirements for protection against influenza virus infection independent of T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. MacLean, A. J. et al. Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites. Immunity 55, 718–733.e718 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. MacLean, A. J. et al. Regulation of pulmonary plasma cell responses during secondary infection with influenza virus. J. Exp. Med. 221, e20232014 (2024). This study demonstrates the presence of BRM cell subsets in lung niches and the mechanisms of their differences in recall response kinetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregoire, C. et al. Viral infection engenders bona fide and bystander subsets of lung-resident memory B cells through a permissive mechanism. Immunity 55, 1216–1233.e1219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poon, M. M. L. et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci. Immunol. 6, eabl9105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bowyer, G. S., Loudon, K. W., Suchanek, O. & Clatworthy, M. R. Tissue immunity in the bladder. Annu. Rev. Immunol. 40, 499–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Ichii, O. et al. Close association between altered urine-urothelium barrier and tertiary lymphoid structure formation in the renal pelvis during nephritis. J. Am. Soc. Nephrol. 33, 88–107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kawashima, K., Andreata, F., Beccaria, C. G. & Iannacone, M. Priming and maintenance of adaptive immunity in the liver. Annu. Rev. Immunol. 42, 375–399 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Mahanonda, R. et al. Human memory B cells in healthy gingiva, gingivitis, and periodontitis. J. Immunol. 197, 715–725 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Yenson, V. & Baumgarth, N. Purification and immune phenotyping of B-1 cells from body cavities of mice. Methods Mol. Biol. 2270, 27–45 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Wilson, E. & Butcher, E. C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med. 200, 805–809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Havervall, S. et al. Anti-spike mucosal IgA protection against SARS-CoV-2 Omicron infection. N. Engl. J. Med. 387, 1333–1336 (2022).

    Article  PubMed  Google Scholar 

  69. Pisanic, N. et al. Early, robust mucosal secretory IgA but not IgG response to SARS-CoV-2 spike in oral fluid is associated with faster viral clearance and COVID-19 symptom resolution. J. Infect. Dis. https://doi.org/10.1093/infdis/jiae447 (2024).

    Article  PubMed Central  Google Scholar 

  70. Yel, L. Selective IgA deficiency. J. Clin. Immunol. 30, 10–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Silva-Sanchez, A. & Randall, T. D. Role of iBALT in respiratory immunity. Curr. Top. Microbiol. Immunol. 426, 21–43 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Matsumoto, R. et al. Induction of bronchus-associated lymphoid tissue is an early life adaptation for promoting human B cell immunity. Nat. Immunol. 24, 1370–1381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moyron-Quiroz, J. E. et al. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25, 643–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Landsverk, O. J. et al. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214, 309–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Robinson, M. J., Webster, R. H. & Tarlinton, D. M. How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunol. Rev. 296, 87–103 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Trivedi, N. et al. Liver is a generative site for the B cell response to Ehrlichia muris. Immunity 51, 1088–1101.e1085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cai, Y. & Yin, W. The multiple functions of B cells in chronic HBV infection. Front. Immunol. 11, 582292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burton, A. R. et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J. Clin. Investig. 128, 4588–4603 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Suchanek, O. et al. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat. Commun. 14, 7081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stark, A. K. et al. PI3Kδ hyper-activation promotes development of B cells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner. Nat. Commun. 9, 3174 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mutnal, M. B., Hu, S. & Lokensgard, J. R. Persistent humoral immune responses in the CNS limit recovery of reactivated murine cytomegalovirus. PLoS ONE 7, e33143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cohen, S. B., Gern, B. H. & Urdahl, K. B. The tuberculous granuloma and preexisting immunity. Annu. Rev. Immunol. 40, 589–614 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Khader, S. A. et al. IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J. Immunol. 187, 5402–5407 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Krause, R. et al. B cell heterogeneity in human tuberculosis highlights compartment-specific phenotype and functional roles. Commun. Biol. 7, 584 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Swanson, R. V. et al. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. Nat. Immunol. 24, 855–868 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stewart, P. et al. Role of B cells in Mycobacterium tuberculosis infection. Vaccines 11, 955 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davis-Porada, J. et al. Maintenance and functional regulation of immune memory to COVID-19 vaccines in tissues. Immunity 12, 2895–2913.e8 (2024).

    Article  Google Scholar 

  88. Gao, X. & Cockburn, I. A. The development and function of CD11c+ atypical B cells — insights from single cell analysis. Front. Immunol. 13, 979060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Adachi, Y. et al. Distinct germinal center selection at local sites shapes memory B cell response to viral escape. J. Exp. Med. 212, 1709–1723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raso, F. et al. Antigen receptor signaling and cell death resistance controls intestinal humoral response zonation. Immunity 56, 2373–2387.e2378 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Etesami, N. S. et al. B cells in the pneumococcus-infected lung are heterogeneous and require CD4+ T cell help including CD40L to become resident memory B cells. Front. Immunol. 15, 1382638 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Swarnalekha, N. et al. T resident helper cells promote humoral responses in the lung. Sci. Immunol. 6, eabb6808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, J. et al. Turbinate-homing IgA-secreting cells originate in the nasal lymphoid tissues. Nature 632, 637–646 (2024).

    Article  PubMed  Google Scholar 

  94. Lowe, M. M. et al. Tertiary lymphoid structures sustain cutaneous B cell activity in hidradenitis suppurativa. JCI Insight 9, e169870 (2024).

    PubMed  PubMed Central  Google Scholar 

  95. Lowe, M. M. et al. Immunopathogenesis of hidradenitis suppurativa and response to anti-TNF-α therapy. JCI Insight 5, e139932 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gudjonsson, J. E. et al. Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis. JCI Insight 5, e139930 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yadav, R. et al. IL-12/IL-23 blockade reveals patterns of asynchronous inflammation in pyoderma gangrenosum. J. Investig. Dermatol. https://doi.org/10.1016/j.jid.2024.08.040 (2024).

  98. Han, D. et al. Microenvironmental network of clonal CXCL13+CD4+ T cells and Tregs in pemphigus chronic blisters. J. Clin. Investig. 133, ejci166357 (2023).

    Article  Google Scholar 

  99. Carmona-Rivera, C. et al. Autoantibodies present in hidradenitis suppurativa correlate with disease severity and promote the release of proinflammatory cytokines in macrophages. J. Investig. Dermatol. 142, 924–935 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Sabat, R. et al. Neutrophilic granulocyte-derived B-cell activating factor supports B cells in skin lesions in hidradenitis suppurativa. J. Allergy Clin. Immunol. 151, 1015–1026 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    Article  PubMed  Google Scholar 

  102. Farahnak, K. et al. B cells mediate lung ischemia/reperfusion injury by recruiting classical monocytes via synergistic B cell receptor/TLR4 signaling. J. Clin. Investig. 134, e170118 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, G. et al. Lymphotoxin β receptor and tertiary lymphoid organs shape acute and chronic allograft rejection. JCI Insight 9, e177555 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lehmann-Horn, K., Wang, S. Z., Sagan, S. A., Zamvil, S. S. & von Büdingen, H. C. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 1, e87234 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang, Y. et al. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor. Rev. 64, 57–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Pröbstel, A. K. et al. Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis. Sci. Immunol. 5, eabc7191 (2020).

  108. Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624.e618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hägglöf, T. et al. T-bet+ B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab. 34, 1121–1136.e1126 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. He, Y. & Vinuesa, C. G. Germinal center versus extrafollicular responses in systemic autoimmunity: who turns the blade on self? Adv. Immunol. 162, 109–133 (2024).

    PubMed  PubMed Central  Google Scholar 

  112. Allard-Chamard, H. et al. Extrafollicular IgDCD27CXCR5CD11c DN3 B cells infiltrate inflamed tissues in autoimmune fibrosis and in severe COVID-19. Cell Rep. 42, 112630 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dunlap, G. et al. Clonal associations between lymphocyte subsets and functional states in rheumatoid arthritis synovium. Nat. Commun. 15, 4991 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yeo, L. et al. Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis. Ann. Rheum. Dis. 74, 928–935 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Elsner, R. A., Smita, S. & Shlomchik, M. J. IL-12 induces a B cell-intrinsic IL-12/IFNγ feed-forward loop promoting extrafollicular B cell responses. Nat. Immunol. 25, 1283–1295 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020). This study, together with Petitprez et al. 2020 and Helmink et al. 2020, shows that the presence and maturation state of TLSs is strongly associated with prognosis and immunotherapy response of patients with cancer.

    Article  CAS  PubMed  Google Scholar 

  118. Laumont, C. M., Banville, A. C., Gilardi, M., Hollern, D. P. & Nelson, B. H. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e525 (2022). This study applied spatial transcriptomics to definitively demonstrate that tumour-reactive plasma cells are derived from intratumoural TLSs.

    Article  CAS  PubMed  Google Scholar 

  120. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu, C. et al. Tertiary lymphoid structure-associated B cells enhance CXCL13+CD103+CD8+ tissue-resident memory T-cell response to programmed cell death protein 1 blockade in cancer immunotherapy. Gastroenterology 166, 1069–1084 (2024).

    Article  CAS  PubMed  Google Scholar 

  123. Ruffin, A. T. et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 12, 3349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gao, J. et al. Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat. Med. 26, 1845–1851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Engblom, C. et al. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 382, eadf8486 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mei, Y. et al. Single-cell analyses reveal suppressive tumor microenvironment of human colorectal cancer. Clin. Transl. Med. 11, e422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hu, Q. et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat. Commun. 12, 2186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, Y. et al. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 187, 4790–4811.e4722 (2024). Comprehensive multi-omic analysis of tumour-infiltrating B cells across 649 patients and 19 cancer types.

    Article  CAS  PubMed  Google Scholar 

  130. Lu, Y. et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell 180, 1081–1097.e1024 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Zhu, H. et al. Intratumoral CD38+CD19+B cells associate with poor clinical outcomes and immunosuppression in patients with pancreatic ductal adenocarcinoma. EBioMedicine 103, 105098 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Meylan, M. et al. Early hepatic lesions display immature tertiary lymphoid structures and show elevated expression of immune inhibitory and immunosuppressive molecules. Clin. Cancer Res. 26, 4381–4389 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Gunderson, A. J, et al. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology 10, 1900635 (2021).

    Article  PubMed  Google Scholar 

  134. Gong, L. et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat. Commun. 12, 1540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e1236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Olalekan, S., Xie, B., Back, R., Eckart, H. & Basu, A. Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell Rep. 35, 109165 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, W. et al. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin. Transl. Med. 11, e253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, S., Liu, Z., Wu, D., Chen, L. & Xie, L. Single-cell RNA-seq analysis reveals microenvironmental infiltration of plasma cells and hepatocytic prognostic markers in HCC with cirrhosis. Front. Oncol. 10, 596318 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wieland, A. et al. Defining HPV-specific B cell responses in patients with head and neck cancer. Nature 597, 274–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Cillo, A. R. et al. immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52, 183–199.e189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hao, D. et al. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov. 12, 2626–2645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xia, J. et al. Single-cell landscape and clinical outcomes of infiltrating B cells in colorectal cancer. Immunology 168, 135–151 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. King, H. W. et al. Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci. Immunol. 6, eabe6291 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Ehrhardt, G. R. et al. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med. 202, 783–791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bruno, T. C. et al. Antigen-presenting intratumoral B cells affect CD4+ TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol. Res. 5, 898–907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Centuori, S. M. et al. Double-negative (CD27IgD) B cells are expanded in NSCLC and inversely correlate with affinity-matured B cell populations. J. Transl. Med. 16, 30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wouters, M. C. A. & Nelson, B. H. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin. Cancer Res. 24, 6125–6135 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Biswas, S. et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591, 464–470 (2021). This study of a cohort of 534 patients with ovarian cancer demonstrates a protective role for locally produced IgA through a transcytosis mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mazor, R. D. et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 185, 1208–1222.e1221 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Ng, K. W. et al. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 616, 563–573 (2023). This paper demonstrates that tumour-expresssed endogenous retrovirus proteins are a dominant antigenic driver of tumour-infiltrating B cell anticancer immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Montfort, A. et al. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin. Cancer Res. 23, 250–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Blixt, O. et al. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res. 13, R25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rodriguez, A. B. et al. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep. 36, 109422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schlößer, H. A. et al. B cells in esophago-gastric adenocarcinoma are highly differentiated, organize in tertiary lymphoid structures and produce tumor-specific antibodies. Oncoimmunology 8, e1512458 (2019).

    Article  PubMed  Google Scholar 

  158. Kasikova, L. et al. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat. Commun. 15, 2528 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  PubMed  Google Scholar 

  160. Deguchi, S. et al. Clinical relevance of tertiary lymphoid structures in esophageal squamous cell carcinoma. BMC Cancer 22, 699 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e1111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620.e617 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Moreau, J. M. et al. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation. Sci. Immunol. 6, eabg2329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wilson, R. P. et al. IgM Plasma cells reside in healthy skin and accumulate with chronic inflammation. J. Investig. Dermatol. 139, 2477–2487 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Palma, J., Tokarz-Deptuła, B., Deptuła, J. & Deptuła, W. Natural antibodies — facts known and unknown. Cent. Eur. J. Immunol. 43, 466–475 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Penny, H. A. et al. Rhythmicity of intestinal IgA responses confers oscillatory commensal microbiota mutualism. Sci. Immunol. 7, eabk2541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Luck, H. et al. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat. Commun. 10, 3650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Conrey, P. E. et al. IgA deficiency destabilizes homeostasis toward intestinal microbes and increases systemic immune dysregulation. Sci. Immunol. 8, eade2335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Metze, D., Kersten, A., Jurecka, W. & Gebhart, W. Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. J. Investig. Dermatol. 96, 439–445 (1991).

    Article  CAS  PubMed  Google Scholar 

  171. Baldan, A. et al. ABCG1 is required for pulmonary B-1 B cell and natural antibody homeostasis. J. Immunol. 193, 5637–5648 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Investig. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, P. et al. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat. Commun. 15, 4232 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Nishimura, S. et al. Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab. 18, 759–766 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Shen, L. et al. B-1a lymphocytes attenuate insulin resistance. Diabetes 64, 593–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zehentmeier, S. & Pereira, J. P. Cell circuits and niches controlling B cell development. Immunol. Rev. 289, 142–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dwyer, L. J. et al. B cell treatment promotes a neuroprotective microenvironment after traumatic brain injury through reciprocal immunomodulation with infiltrating peripheral myeloid cells. J. Neuroinflammation 20, 133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sîrbulescu, R. F. et al. B cells support the repair of injured tissues by adopting MyD88-dependent regulatory functions and phenotype. FASEB J. 35, e22019 (2021).

    Article  PubMed  Google Scholar 

  180. Huang, F. et al. B cell subsets contribute to myocardial protection by inducing neutrophil apoptosis after ischemia and reperfusion. JCI Insight 9, e167201 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Jiao, J. et al. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res. Cardiol. 116, 46 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Frede, A. et al. B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 55, 2336–2351.e2312 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Lynall, M. E. et al. B-cells are abnormal in psychosocial stress and regulate meningeal myeloid cell activation. Brain Behav. Immun. 97, 226–238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Adamo, L. et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight 5, e134700 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Bashford-Rogers, R. J. M. et al. Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574, 122–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Croitoru, D. et al. Clinical manifestations and treatment outcomes of pyoderma gangrenosum following rituximab exposure: a systematic review. J. Am. Acad. Dermatol. 87, 655–656 (2022).

    Article  PubMed  Google Scholar 

  188. Americo, J. L., Cotter, C. A., Earl, P. L., Liu, R. & Moss, B. Intranasal inoculation of an MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 119, e2202069119 (2022). This study describes a tissue-targeted vaccine strategy to drive mucosal immunity through the application of intranasal boosters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wellford, S. A. et al. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 55, 2118–2134.e2116 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Iwasaki, A. Immune regulation of antibody access to neuronal tissues. Trends Mol. Med. 23, 227–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang, M. et al. Development of an ICOSL and BAFF bispecific inhibitor AMG 570 for systemic lupus erythematosus treatment. Clin. Exp. Rheumatol. 37, 906–914 (2019).

    PubMed  Google Scholar 

  192. Benschop, R. J. et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs 11, 1175–1190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tur, C. et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2024-226142 (2024).

    Article  PubMed  Google Scholar 

  194. Zhao, R. et al. cGAS-activated endothelial cell-T cell cross-talk initiates tertiary lymphoid structure formation. Sci. Immunol. 9, eadk2612 (2024).

    Article  CAS  PubMed  Google Scholar 

  195. Chelvanambi, M., Fecek, R. J., Taylor, J. L. & Storkus, W. J. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J. Immunother. Cancer 9, e001906 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Ramachandran, M. et al. Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer Cell 41, 1134–1151.e1110 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. An, D. et al. LTβR agonism promotes anti-tumor immune responses via modulation of the tumor microenvironment. Cancer Res. https://doi.org/10.1158/0008-5472.can-23-2716 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their valuable suggestions and the Oregon Health & Science University Immunology Journal Club and Research in Progress for helpful discussion. Research support is provided by the National Institutes of Health (NIH) T32GM142619, Melanoma Research Alliance, LEO Foundation and the Knight Cancer Institute and Department of Molecular Microbiology & Immunology at Oregon Health & Science University (OHSU).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and G.C. contributed equally to all aspects of the article. All authors contributed to literature searching, writing and discussion of manuscript content. J.M.M. and L.B.R. developed the overall concept and provided supervision.

Corresponding authors

Correspondence to Lauren B. Rodda or Joshua M. Moreau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Ziv Shulman and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiea, A., Celis, G., Yadav, R. et al. B cells in non-lymphoid tissues. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01137-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01137-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing