Apache Mahout - Random Forests - #TokyoWebmining #8 Koichi Hamada
The document discusses social media, social graphs, personality modeling, data mining, machine learning, and random forests. It references social media, how individuals connect through social graphs, modeling personality objectively, extracting patterns from data through data mining and machine learning techniques, and the random forests algorithm developed by Leo Breiman in 2001.
Apache Mahout - Random Forests - #TokyoWebmining #8 Koichi Hamada
The document discusses social media, social graphs, personality modeling, data mining, machine learning, and random forests. It references social media, how individuals connect through social graphs, modeling personality objectively, extracting patterns from data through data mining and machine learning techniques, and the random forests algorithm developed by Leo Breiman in 2001.
オープンコミュニティ「要求開発アライアンス」(http://www.openthology.org)の2012年6月定例会発表資料です。
Open Community "Requirement Development Alliance" 2012/6 regular meeting of the presentation materials.
"Anime Generation with AI".
- Video: Generated Anime: https://youtu.be/X9j1fwexK2c
- Video: Other AI Solutions for Anime Production Issues: https://youtu.be/Gz90H1M7_u4
The document discusses recent advances in generative adversarial networks (GANs) for image generation. It summarizes two influential GAN models: ProgressiveGAN (Karras et al., 2018) and BigGAN (Brock et al., 2019). ProgressiveGAN introduced progressive growing of GANs to produce high resolution images. BigGAN scaled up GAN training through techniques like large batch sizes and regularization methods to generate high fidelity natural images. The document also discusses using GANs to generate full-body, high-resolution anime characters and adding motion through structure-conditional GANs.
「樹木モデルとランダムフォレスト(Tree-based Models and Random Forest) -機械学習による分類・予測-」。 Tree-based Model, Random Forest の入門的な内容です。機械学習・データマイニングセミナー 2010/10/07 。 hamadakoichi 濱田晃一
IoT Devices Compliant with JC-STAR Using Linux as a Container OSTomohiro Saneyoshi
Security requirements for IoT devices are becoming more defined, as seen with the EU Cyber Resilience Act and Japan’s JC-STAR.
It's common for IoT devices to run Linux as their operating system. However, adopting general-purpose Linux distributions like Ubuntu or Debian, or Yocto-based Linux, presents certain difficulties. This article outlines those difficulties.
It also, it highlights the security benefits of using a Linux-based container OS and explains how to adopt it with JC-STAR, using the "Armadillo Base OS" as an example.
Feb.25.2025@JAWS-UG IoT
12. 活動領域: ソーシャルメディアのデータマイニング
楽しさのマイニング
ユーザー体験へ還元
Data Mining
Machine Learning
of Fun
PatternMining Clustering
Classification Regression Recommendation
TimeSeriesAnalysis StatisticalAnalysis
NaturalLanguageProcessing ..etc
Social Media
Experience
Social Graph
Detailed Actions
Changes of Status
Social Communications
Personality ..etc
12
21. 数理解析手法の実ビジネスへの適用
2004年 博士号取得後
数理解析手法を実ビジネス適用の方法論構築
主な領域
◆活動の数理モデル化・解析手法
◆活動の分析手法・再構築手法
◆活動の実行制御・実績解析システム
…
内容抜粋
“Decoupling Executions in Navigating Manufacturing "Unified graph representation of processes
Processes for Shortening Lead Time and Its Implementation for scheduling with flexible resource
to an Unmanned Machine Shop”, assignment",
21
22. 数理解析手法の実ビジネスへの適用:活動例
活動の統一グラフモデルを構築・解析
Unified graphical model of processes and resources
青字:割付モデル属性
[ ] : Optional
Node ・priority(優先度) Edge
・duration(予定時間)
[・earliest(再早開始日時) ] Process Edge
Process [・deadline(納期) ]
[・or(条件集約数) ]
前プロセスの終了後に後プロセスが
プロセスを表す 開始できること表す
・attributes(属性)
preemptable(中断可否),
successive(引継ぎ可否)
Uses Edge
workload(作業負荷) Processが使用する
uses uses uses uses uses uses Assign Region を表す
Assign Region Assigns from Edge
同一Resourceを割付け続ける Assign Regionに
assigns from assigns from 指定Resourceの子Resource集合の
範囲を表す
assigns assigns 中から割付けることを示す
企業01 [process]
has has [startDate(開始日時)]
[endDate(終了日時)] Assigns Edge
製品01 組織A StartDateからEndDateまでの間
Resource has Assign RegionにResourceを
割付対象要素を表す has has has has has has 割付けることを表す
・capacity(容量)
・calender(カレンダー)
AAA01 AAB02 … 山田さん 田中さん 鈴木さん ・attributes(属性) Has Edge
東さん Resourceの所有関係を表す
22
26. ソーシャルメディアのデータマイニング
楽しさのマイニング
ユーザー体験へ還元
Data Mining
Machine Learning
of Fun
PatternMining Clustering
Classification Regression Recommendation
TimeSeriesAnalysis StatisticalAnalysis
NaturalLanguageProcessing ..etc
Social Media
Experience
Social Graph
Detailed Actions
Changes of Status
Social Communications
Personality ..etc
26
27. ソーシャルメディアのデータマイニング
2300万人以上の人々へ
各人のつながり・楽しみ・個性にあった適切なサービス配信
Data Mining
Machine Learning
of Fun
PatternMining Clustering
Classification Regression Recommendation
TimeSeriesAnalysis StatisticalAnalysis
NaturalLanguageProcessing ..etc
Social Media
Experience
Social Graph
Detailed Actions
Changes of Status
Social Communications
Personality ..etc
27
28. ソーシャルメディアのデータマイニング
ソーシャル・活動情報の活用により
より適切な情報・サービス配信される世界を実現したい
Data Mining
Machine Learning
of Fun
PatternMining Clustering
Classification Regression Recommendation
TimeSeriesAnalysis StatisticalAnalysis
NaturalLanguageProcessing ..etc
Social Media
Experience
Social Graph
Detailed Actions
Changes of Status
Social Communications
Personality ..etc
28