ステルス‐ぎじゅつ【ステルス技術】
ステルス性




ステルス性(ステルスせい、英: stealth)とは、軍用機、軍艦、戦闘車両等の兵器をレーダー等のセンサー類から探知され難くする軍事技術の総称である。単にそれらの技術を取り入れて開発された兵器を指してステルスと呼ぶ事もある。ステルス性という言葉は「ある兵器がセンサー類からどの程度探知され難いか」という事を相対的に表す。正式な軍事用語としては低観測性 (low observable) と言い、略してLO特性などと呼ぶ。[2][3]
概要
ステルスの本来の意味は「こっそり」「隠れる」などである。ステルス性を実現するための軍事技術が「ステルス技術」であり、電波の反射、赤外線の放射、地球の磁力線の変形、音響的被探知、視覚的発見の抑制などである。レーダーが発達した近代においては、非常に重要な技術であり、最新の兵器(特に車両や船舶、航空機)は多かれ少なかれ、ステルスを意識して設計されている。
妨害電波(ジャミング)やチャフ、フレアなどの能動型電子対抗手段(電子的に欺瞞すること)は、ステルスではなく「ソフトキル」と呼ぶ。
人間の感覚器官による発見を防ぐための手段は、古くより行われてきた。例としては、忍者が足音を忍ばせたり、騎兵が馬の嘶きを消すこと、槍兵が穂先の反射光を消すこともステルス技術である。低騒音技術、低視認技術(カムフラージュ・代表例は迷彩)など、環境全般に影響を減らし発見されるのを防ぐ行為もまた、広義のステルスといえる。
ステルス兵器といえど、絶対に発見されないわけではない。自ら通信用の電波を発信したりレーダーを照射した場合およびレーダーに近付いた場合、または飛行機雲によって発見される恐れもある。
電波ステルス
原理
まずレーダーが物体を探知する仕組みについて説明する。
- レーダーが電波を飛ばす
- その電波が物体に当たり、誘導電流が発生する
- 誘導電流から電波が発生することで反射波となる
- レーダーがその反射波を拾う
- 発信と受信の時間差から物体との距離が、アンテナの放射特性から大体の方向が判る
ステルスで議題となるレーダーとは全て一次レーダーである。航空交通管制に使用しているトランスポンダと情報を交換するような二次レーダーが議題となることはない。
電波が物体に当たっても反射波が戻ってこなかったり、反射波をレーダーが拾えなければ、レーダーは物体を探知出来ない。レーダーは反射波を捉えることによって物体の存在を探知している。そこで、以下の2点を工夫することでステルス性を向上できる。
- 電波が来た方向へ電波を反射しない(あらぬ方向へ受け流す)
- 金属は電波を反射し易いので、電波を反射し難い・吸収する物質に換える
それぞれは「形状制御技術」と「電波吸収体技術」によって実現化が図られている[1]。
レーダー反射断面積

電波に対し、どれだけのステルス性を持っているかを表す値としてRCS(Radar cross section, レーダー反射断面積)という言葉が使われる。この値が小さければそれだけレーダーに探知される距離が短くなる。特に断らない限りはRCSが最小となる正面での値が、書籍などでのRCS値となるが、RCS値は全ての方向からのものが存在する。
戦闘の際に相手のセンサー類に捕捉され難いという事は、それだけ相手より優位に立てる事を示している。その為、現在において各国のステルスへの注目度は高く、今後もステルス性を考慮した各種の兵器が開発されていくと思われる。
一般的に軍用機は敵に発見された場合のリスクが比較的大きく、それを最小化できるステルス技術が重視されている。軍艦等では堪航性に支障が出ない程度のステルス性を持たせているものが多い。戦闘車両に対して空中からのレーダーによる探知が始まってはいるが、今のところはまだ限定的なためや地上車両に対するそれほど有効な技術が存在しないために、電波に対するステルス性はあまり考慮されてはいない。多くは目視に対するカムフラージュや赤外線への対策を行っている程度である。
形状制御技術はステルス性を求める兵器にとって重要である。
以下の形状はレーダー断面積を増大させる。形状制御技術は兵器の外面にこれらの形状が露出するのを避ける。
艦船ならば、上部構造物の外面や艦舷を単純平面で構成しこれを垂直方向から斜めに傾けることで、多くの場合に水平方向から放射されるレーダー波に対してその反射波を同じ水平には戻さない。アンテナ・マストにはAEM/S(先進型閉囲マスト/センサー,Advanced Enclosed Mast/Sensor)と呼ばれる単純平面で構成されたFSS機能を備えた覆いを被せる。などの工夫を行っている。
軍用機では、主に正面下方からRCSに注意を払い、側面方向にも気を配っている。元々流線型の機体であるため、正面からのRCSは比較的良好であるが、ジェットエンジンの吸気口からコンプレッサーのファンブレードが見える場合は、吸入流路を延長湾曲して隠したり、斜めに取り付けたメッシュやグリッド状の部品によって電波反射を抑える必要がある。
自機のアンテナを覆う機首レドームにFSS機能つまり電波の選択透過性を備えた遮蔽材を使用する。戦闘機や攻撃機なども機外に搭載するものがある場合にはRCSが悪化するので、出来るだけ機内への収容が求められる。
側方への配慮として、垂直尾翼を斜めに傾けるか備えないで済ます。機体側面は主翼付け根から機首まで水平方向への張り出しを付けるか、全翼機として胴体側面から垂直面を排除するなどの工夫を行っている。
また反射波を全て同じ方向に返すため、上から見ると機体の主翼、水平尾翼、エンジン前縁の角度を同一とし、正面から見ると、垂直尾翼とエンジン側面の角度が同一とする工夫が行われている(F-22の三面図参照)。
ステルス性の観点では対象物の大きさも影響する。Xバンド(8-12GHz)では波長3cm以上であるが、Cバンド(4-8GHz)やSバンド(2-4GHz)での対象物の部分的な長さがレーダーの波長と共鳴することも考慮される[1]。また反対に1/4波長の厚みを持った電波吸収体に入射したレーダー波は表面と裏面の2ヶ所からの反射によって互いに打ち消しあって、上手くすれば消滅する[2][2]。
電波吸収体技術は形状制御技術ではコントロールしきれなかった鋭角などに、電波吸収体または電波吸収材料(Radar absorbent material、RAM)と呼ばれる物質を使って電波を吸収し反射波を減らす技術である。電波吸収材料は大きく3つに分かれる。
また、使用する形態によっても電波吸収体は分けられる。
電波吸収体は、電波特性、角度特性、偏波特性、付加特性(重量、耐熱性、耐候性、施工性、価格など)の特性が考慮される。カーボンマイクロコイル(CMC)を使用することで幅広い帯域に対する電波吸収が実現出来る。コイル径が1-10μm、長さは0.2-10mm程度で、ポリウレタンのような支持基材中に添加量が1wt%-1.5wt%が-15dB以上の最も効率的な吸収を示す。
また、EMファイバーと呼ばれる、ガラス繊維や合繊繊維中に吸収する波長の2倍の長さのステンレス繊維を分散させた電波吸収材がある。電波吸収体は、インピーダンスの異なるいくつかの層を重ねることで、入射電波を逃がさないようにできる。入射側は低インピーダンスとして、内部深くに電波が進むにつれてインピーダンスを高くし、電波の反射を抑えながら効果的に吸収・消滅させることが図れる。
誘電性の吸収材料を使用して 現在各国ではステルス機の開発に加え、ステルス機の探知技術にも力を入れている。
ステルス機はレーダーの電波を発信された方向とは「異なる方向」に反射させる工夫をしているが、この「異なる方向」の先に反射波を受信する専用レーダーがあればステルス機でも反射波を捉えることが可能となる。
レーダー波を送信する場所とレーダー波を受信する場所を初めから離しておいて、両者間は通信線で結び発信されたレーダーの情報を受信側に伝える。このようなレーダー・システムをバイスタティック・レーダーと呼ぶ。通常のレーダをモノスタティック・レーダーと呼ぶ。
バイスタティック・レーダーの技術を使えばステルス機をレーダで捉えられる。以下の課題がある。
1.は原子時計やGPS衛星により高度な同期が可能となっている。2.はフェーズドアレイレーダーやその発展形ともいえるデジタル・ビーム・ホーミングや高性能マイクロプロセッサによって複数の受信ビームを構成することで有効領域を広げることが可能となる。
対象の位置は次の2つの交点から求められる。
受信レーダーを複数持つものをマルチスタティック・レーダーと呼ぶ。バイスタティック・レーダーやマルチスタティック・レーダーはECCM性(Electronic counter-countermeasures)に優れ、敵の電波妨害に対して強い[1]。
パッシブ・レーダーはバイスタティック・レーダーを一歩進めた技術であり、送信側のレーダーは設けずに代わりにラジオやテレビ、携帯電話などの既存の送信局をレーダー波源として利用するものである。バイスタティック・レーダーの利点や特徴に加えて、レーダー送信局がいらないのでコストが省け、敵の攻撃を受けるリスクも送信局分は無くなる。パルス圧縮技術やレンジサイドローブの影響を小さくする技術により現実的なレーダーとなってきている[1]。
機体の長さなどの半波長の低周波数レーダーを使用すれば探知精度は悪いながらもステルス機を探知することが可能である。ステルス機の電波吸収のための処理の多くが、火器管制用の短波長の電波に主眼が置かれており、低周波数帯での反射が比較的大きい事も探知側の有利に働いている。
ロシアと中国は既にVHF帯を用いた対ステルス機用のレーダーの配備を進めている。波長が1m程のVHFの電波は、垂直尾翼や翼端部分の寸法に近く、ここから強い反射が生じる。
VHF帯を用いた低周波数レーダーとして、ロシアは「55Zh6M・Nebo-M」、中国は「JA27Aスカイウォッチ-A」「JA27スカイウォッチ-U」を開発しNebo-MとJA27Aは配備中である[5]。
艦艇の中でも潜水艦は究極のステルス兵器と呼ばれる。
戦車の電波ステルスは主に、天敵である対戦車ヘリコプター対策となる。上方からの探知を防ぐため、上面のミリ波レーダーに対する反射断面積が抑制される。
赤外線モニターや赤外線誘導兵器対策として、エンジン排気の赤外線抑制も重要である。排気を拡散させる他、チャレンジャー1のように排気孔を車体床下に設置する設計がある。(排気孔を上面につける航空機とはちょうど逆である)
正面被弾面積を抑えるための低車体高は、低視認性も兼ねる。極端な例として、スウェーデンのStrv.103は待ち伏せ攻撃に特化するため回転砲塔を廃して車体高を下げ、低視認を実現している。
光学迷彩のアイディアは、サイエンス・フィクションにおいては以前より使用されている。プレデターや攻殻機動隊などを参照。
形状制御技術
レーダー波の一部は反射体(または電波吸収体)の表面で反射され、一部は内部に浸透して裏面で反射される。反射体の厚みがレーダー波の1/4波長の時は内部に浸透した波が往復の距離分、つまり「1/4+1/4=1/2=半波長」の分だけ遅れて表面からの反射波に重なるため、干渉し互いに打ち消し合う[2]。電波吸収体技術
対ステルス技術
バイスタティック・レーダー
パッシブ・レーダー
低周波数レーダー
ステルス兵器一覧
航空機
艦艇
車両
ステルス性を扱ったドキュメンタリー映像作品
フィクションにおけるステルス
脚注
出典
参考文献
外部リンク
ステルス技術
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 09:23 UTC 版)
「次期戦闘機 (F-2後継機)」の記事における「ステルス技術」の解説
X-2の研究で培ったステルス技術を始め、エアインテーク、ウェポンベイ、レドームなど探知を避けるための技術が取り入れられる。
※この「ステルス技術」の解説は、「次期戦闘機 (F-2後継機)」の解説の一部です。
「ステルス技術」を含む「次期戦闘機 (F-2後継機)」の記事については、「次期戦闘機 (F-2後継機)」の概要を参照ください。
「ステルス技術」の例文・使い方・用例・文例
- F35はステルス技術を備えている。
- ステルス技術のページへのリンク